i965/hiz: Start to separate miptree out from hiz buffers
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <GL/gl.h>
29 #include <GL/internal/dri_interface.h>
30
31 #include "intel_batchbuffer.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_resolve_map.h"
34 #include "intel_tex.h"
35 #include "intel_blit.h"
36 #include "intel_fbo.h"
37
38 #include "brw_blorp.h"
39 #include "brw_context.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 /**
53 * Determine which MSAA layout should be used by the MSAA surface being
54 * created, based on the chip generation and the surface type.
55 */
56 static enum intel_msaa_layout
57 compute_msaa_layout(struct brw_context *brw, mesa_format format, GLenum target)
58 {
59 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
60 if (brw->gen < 7)
61 return INTEL_MSAA_LAYOUT_IMS;
62
63 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
64 switch (_mesa_get_format_base_format(format)) {
65 case GL_DEPTH_COMPONENT:
66 case GL_STENCIL_INDEX:
67 case GL_DEPTH_STENCIL:
68 return INTEL_MSAA_LAYOUT_IMS;
69 default:
70 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
71 *
72 * This field must be set to 0 for all SINT MSRTs when all RT channels
73 * are not written
74 *
75 * In practice this means that we have to disable MCS for all signed
76 * integer MSAA buffers. The alternative, to disable MCS only when one
77 * of the render target channels is disabled, is impractical because it
78 * would require converting between CMS and UMS MSAA layouts on the fly,
79 * which is expensive.
80 */
81 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
82 return INTEL_MSAA_LAYOUT_UMS;
83 } else {
84 return INTEL_MSAA_LAYOUT_CMS;
85 }
86 }
87 }
88
89
90 /**
91 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
92 * scaled-down bitfield representation of the color buffer which is capable of
93 * recording when blocks of the color buffer are equal to the clear value.
94 * This function returns the block size that will be used by the MCS buffer
95 * corresponding to a certain color miptree.
96 *
97 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
98 * beneath the "Fast Color Clear" bullet (p327):
99 *
100 * The following table describes the RT alignment
101 *
102 * Pixels Lines
103 * TiledY RT CL
104 * bpp
105 * 32 8 4
106 * 64 4 4
107 * 128 2 4
108 * TiledX RT CL
109 * bpp
110 * 32 16 2
111 * 64 8 2
112 * 128 4 2
113 *
114 * This alignment has the following uses:
115 *
116 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
117 * buffer contains 128 blocks horizontally and 256 blocks vertically.
118 *
119 * - For figuring out alignment restrictions for a fast clear operation. Fast
120 * clear operations must always clear aligned multiples of 16 blocks
121 * horizontally and 32 blocks vertically.
122 *
123 * - For scaling down the coordinates sent through the render pipeline during
124 * a fast clear. X coordinates must be scaled down by 8 times the block
125 * width, and Y coordinates by 16 times the block height.
126 *
127 * - For scaling down the coordinates sent through the render pipeline during
128 * a "Render Target Resolve" operation. X coordinates must be scaled down
129 * by half the block width, and Y coordinates by half the block height.
130 */
131 void
132 intel_get_non_msrt_mcs_alignment(struct brw_context *brw,
133 struct intel_mipmap_tree *mt,
134 unsigned *width_px, unsigned *height)
135 {
136 switch (mt->tiling) {
137 default:
138 unreachable("Non-MSRT MCS requires X or Y tiling");
139 /* In release builds, fall through */
140 case I915_TILING_Y:
141 *width_px = 32 / mt->cpp;
142 *height = 4;
143 break;
144 case I915_TILING_X:
145 *width_px = 64 / mt->cpp;
146 *height = 2;
147 }
148 }
149
150
151 /**
152 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
153 * can be used.
154 *
155 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
156 * beneath the "Fast Color Clear" bullet (p326):
157 *
158 * - Support is limited to tiled render targets.
159 * - Support is for non-mip-mapped and non-array surface types only.
160 *
161 * And then later, on p327:
162 *
163 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
164 * 64bpp, and 128bpp.
165 */
166 bool
167 intel_is_non_msrt_mcs_buffer_supported(struct brw_context *brw,
168 struct intel_mipmap_tree *mt)
169 {
170 /* MCS support does not exist prior to Gen7 */
171 if (brw->gen < 7)
172 return false;
173
174 /* MCS is only supported for color buffers */
175 switch (_mesa_get_format_base_format(mt->format)) {
176 case GL_DEPTH_COMPONENT:
177 case GL_DEPTH_STENCIL:
178 case GL_STENCIL_INDEX:
179 return false;
180 }
181
182 if (mt->tiling != I915_TILING_X &&
183 mt->tiling != I915_TILING_Y)
184 return false;
185 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
186 return false;
187 if (mt->first_level != 0 || mt->last_level != 0)
188 return false;
189 if (mt->physical_depth0 != 1)
190 return false;
191
192 /* There's no point in using an MCS buffer if the surface isn't in a
193 * renderable format.
194 */
195 if (!brw->format_supported_as_render_target[mt->format])
196 return false;
197
198 return true;
199 }
200
201
202 /**
203 * Determine depth format corresponding to a depth+stencil format,
204 * for separate stencil.
205 */
206 mesa_format
207 intel_depth_format_for_depthstencil_format(mesa_format format) {
208 switch (format) {
209 case MESA_FORMAT_Z24_UNORM_S8_UINT:
210 return MESA_FORMAT_Z24_UNORM_X8_UINT;
211 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
212 return MESA_FORMAT_Z_FLOAT32;
213 default:
214 return format;
215 }
216 }
217
218
219 /**
220 * @param for_bo Indicates that the caller is
221 * intel_miptree_create_for_bo(). If true, then do not create
222 * \c stencil_mt.
223 */
224 struct intel_mipmap_tree *
225 intel_miptree_create_layout(struct brw_context *brw,
226 GLenum target,
227 mesa_format format,
228 GLuint first_level,
229 GLuint last_level,
230 GLuint width0,
231 GLuint height0,
232 GLuint depth0,
233 bool for_bo,
234 GLuint num_samples,
235 bool force_all_slices_at_each_lod)
236 {
237 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
238 if (!mt)
239 return NULL;
240
241 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __FUNCTION__,
242 _mesa_lookup_enum_by_nr(target),
243 _mesa_get_format_name(format),
244 first_level, last_level, depth0, mt);
245
246 if (target == GL_TEXTURE_1D_ARRAY) {
247 /* For a 1D Array texture the OpenGL API will treat the height0
248 * parameter as the number of array slices. For Intel hardware, we treat
249 * the 1D array as a 2D Array with a height of 1.
250 *
251 * So, when we first come through this path to create a 1D Array
252 * texture, height0 stores the number of slices, and depth0 is 1. In
253 * this case, we want to swap height0 and depth0.
254 *
255 * Since some miptrees will be created based on the base miptree, we may
256 * come through this path and see height0 as 1 and depth0 being the
257 * number of slices. In this case we don't need to do the swap.
258 */
259 assert(height0 == 1 || depth0 == 1);
260 if (height0 > 1) {
261 depth0 = height0;
262 height0 = 1;
263 }
264 }
265
266 mt->target = target;
267 mt->format = format;
268 mt->first_level = first_level;
269 mt->last_level = last_level;
270 mt->logical_width0 = width0;
271 mt->logical_height0 = height0;
272 mt->logical_depth0 = depth0;
273 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
274 exec_list_make_empty(&mt->hiz_map);
275
276 /* The cpp is bytes per (1, blockheight)-sized block for compressed
277 * textures. This is why you'll see divides by blockheight all over
278 */
279 unsigned bw, bh;
280 _mesa_get_format_block_size(format, &bw, &bh);
281 assert(_mesa_get_format_bytes(mt->format) % bw == 0);
282 mt->cpp = _mesa_get_format_bytes(mt->format) / bw;
283
284 mt->num_samples = num_samples;
285 mt->compressed = _mesa_is_format_compressed(format);
286 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
287 mt->refcount = 1;
288
289 if (num_samples > 1) {
290 /* Adjust width/height/depth for MSAA */
291 mt->msaa_layout = compute_msaa_layout(brw, format, mt->target);
292 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
293 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
294 * "If the surface is multisampled and it is a depth or stencil
295 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
296 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
297 * proceeding:
298 *
299 * +----------------------------------------------------------------+
300 * | Num Multisamples | W_l = | H_l = |
301 * +----------------------------------------------------------------+
302 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
303 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
304 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
305 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
306 * +----------------------------------------------------------------+
307 * "
308 *
309 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
310 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
311 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
312 *
313 * Another more complicated explanation for these adjustments comes
314 * from the Sandybridge PRM, volume 4, part 1, page 31:
315 *
316 * "Any of the other messages (sample*, LOD, load4) used with a
317 * (4x) multisampled surface will in-effect sample a surface with
318 * double the height and width as that indicated in the surface
319 * state. Each pixel position on the original-sized surface is
320 * replaced with a 2x2 of samples with the following arrangement:
321 *
322 * sample 0 sample 2
323 * sample 1 sample 3"
324 *
325 * Thus, when sampling from a multisampled texture, it behaves as
326 * though the layout in memory for (x,y,sample) is:
327 *
328 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
329 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
330 *
331 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
332 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
333 *
334 * However, the actual layout of multisampled data in memory is:
335 *
336 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
337 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
338 *
339 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
340 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
341 *
342 * This pattern repeats for each 2x2 pixel block.
343 *
344 * As a result, when calculating the size of our 4-sample buffer for
345 * an odd width or height, we have to align before scaling up because
346 * sample 3 is in that bottom right 2x2 block.
347 */
348 switch (num_samples) {
349 case 2:
350 assert(brw->gen >= 8);
351 width0 = ALIGN(width0, 2) * 2;
352 height0 = ALIGN(height0, 2);
353 break;
354 case 4:
355 width0 = ALIGN(width0, 2) * 2;
356 height0 = ALIGN(height0, 2) * 2;
357 break;
358 case 8:
359 width0 = ALIGN(width0, 2) * 4;
360 height0 = ALIGN(height0, 2) * 2;
361 break;
362 default:
363 /* num_samples should already have been quantized to 0, 1, 2, 4, or
364 * 8.
365 */
366 unreachable("not reached");
367 }
368 } else {
369 /* Non-interleaved */
370 depth0 *= num_samples;
371 }
372 }
373
374 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when gen7+ array_spacing_lod0
375 * can be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces.
376 * TODO: can we use it elsewhere?
377 */
378 switch (mt->msaa_layout) {
379 case INTEL_MSAA_LAYOUT_NONE:
380 case INTEL_MSAA_LAYOUT_IMS:
381 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
382 break;
383 case INTEL_MSAA_LAYOUT_UMS:
384 case INTEL_MSAA_LAYOUT_CMS:
385 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
386 break;
387 }
388
389 if (target == GL_TEXTURE_CUBE_MAP) {
390 assert(depth0 == 1);
391 depth0 = 6;
392 }
393
394 mt->physical_width0 = width0;
395 mt->physical_height0 = height0;
396 mt->physical_depth0 = depth0;
397
398 if (!for_bo &&
399 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
400 (brw->must_use_separate_stencil ||
401 (brw->has_separate_stencil && brw_is_hiz_depth_format(brw, format)))) {
402 const bool force_all_slices_at_each_lod = brw->gen == 6;
403 mt->stencil_mt = intel_miptree_create(brw,
404 mt->target,
405 MESA_FORMAT_S_UINT8,
406 mt->first_level,
407 mt->last_level,
408 mt->logical_width0,
409 mt->logical_height0,
410 mt->logical_depth0,
411 true,
412 num_samples,
413 INTEL_MIPTREE_TILING_ANY,
414 force_all_slices_at_each_lod);
415 if (!mt->stencil_mt) {
416 intel_miptree_release(&mt);
417 return NULL;
418 }
419
420 /* Fix up the Z miptree format for how we're splitting out separate
421 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
422 */
423 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
424 mt->cpp = 4;
425
426 if (format == mt->format) {
427 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
428 _mesa_get_format_name(mt->format));
429 }
430 }
431
432 if (force_all_slices_at_each_lod)
433 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
434
435 brw_miptree_layout(brw, mt);
436
437 return mt;
438 }
439
440 /**
441 * \brief Helper function for intel_miptree_create().
442 */
443 static uint32_t
444 intel_miptree_choose_tiling(struct brw_context *brw,
445 mesa_format format,
446 uint32_t width0,
447 uint32_t num_samples,
448 enum intel_miptree_tiling_mode requested,
449 struct intel_mipmap_tree *mt)
450 {
451 if (format == MESA_FORMAT_S_UINT8) {
452 /* The stencil buffer is W tiled. However, we request from the kernel a
453 * non-tiled buffer because the GTT is incapable of W fencing.
454 */
455 return I915_TILING_NONE;
456 }
457
458 /* Some usages may want only one type of tiling, like depth miptrees (Y
459 * tiled), or temporary BOs for uploading data once (linear).
460 */
461 switch (requested) {
462 case INTEL_MIPTREE_TILING_ANY:
463 break;
464 case INTEL_MIPTREE_TILING_Y:
465 return I915_TILING_Y;
466 case INTEL_MIPTREE_TILING_NONE:
467 return I915_TILING_NONE;
468 }
469
470 if (num_samples > 1) {
471 /* From p82 of the Sandy Bridge PRM, dw3[1] of SURFACE_STATE ("Tiled
472 * Surface"):
473 *
474 * [DevSNB+]: For multi-sample render targets, this field must be
475 * 1. MSRTs can only be tiled.
476 *
477 * Our usual reason for preferring X tiling (fast blits using the
478 * blitting engine) doesn't apply to MSAA, since we'll generally be
479 * downsampling or upsampling when blitting between the MSAA buffer
480 * and another buffer, and the blitting engine doesn't support that.
481 * So use Y tiling, since it makes better use of the cache.
482 */
483 return I915_TILING_Y;
484 }
485
486 GLenum base_format = _mesa_get_format_base_format(format);
487 if (base_format == GL_DEPTH_COMPONENT ||
488 base_format == GL_DEPTH_STENCIL_EXT)
489 return I915_TILING_Y;
490
491 /* 1D textures (and 1D array textures) don't get any benefit from tiling,
492 * in fact it leads to a less efficient use of memory space and bandwidth
493 * due to tile alignment.
494 */
495 if (mt->logical_height0 == 1)
496 return I915_TILING_NONE;
497
498 int minimum_pitch = mt->total_width * mt->cpp;
499
500 /* If the width is much smaller than a tile, don't bother tiling. */
501 if (minimum_pitch < 64)
502 return I915_TILING_NONE;
503
504 if (ALIGN(minimum_pitch, 512) >= 32768 ||
505 mt->total_width >= 32768 || mt->total_height >= 32768) {
506 perf_debug("%dx%d miptree too large to blit, falling back to untiled",
507 mt->total_width, mt->total_height);
508 return I915_TILING_NONE;
509 }
510
511 /* Pre-gen6 doesn't have BLORP to handle Y-tiling, so use X-tiling. */
512 if (brw->gen < 6)
513 return I915_TILING_X;
514
515 /* From the Sandybridge PRM, Volume 1, Part 2, page 32:
516 * "NOTE: 128BPE Format Color Buffer ( render target ) MUST be either TileX
517 * or Linear."
518 * 128 bits per pixel translates to 16 bytes per pixel. This is necessary
519 * all the way back to 965, but is permitted on Gen7+.
520 */
521 if (brw->gen < 7 && mt->cpp >= 16)
522 return I915_TILING_X;
523
524 /* From the Ivy Bridge PRM, Vol4 Part1 2.12.2.1 (SURFACE_STATE for most
525 * messages), on p64, under the heading "Surface Vertical Alignment":
526 *
527 * This field must be set to VALIGN_4 for all tiled Y Render Target
528 * surfaces.
529 *
530 * So if the surface is renderable and uses a vertical alignment of 2,
531 * force it to be X tiled. This is somewhat conservative (it's possible
532 * that the client won't ever render to this surface), but it's difficult
533 * to know that ahead of time. And besides, since we use a vertical
534 * alignment of 4 as often as we can, this shouldn't happen very often.
535 */
536 if (brw->gen == 7 && mt->align_h == 2 &&
537 brw->format_supported_as_render_target[format]) {
538 return I915_TILING_X;
539 }
540
541 return I915_TILING_Y | I915_TILING_X;
542 }
543
544
545 /**
546 * Choose an appropriate uncompressed format for a requested
547 * compressed format, if unsupported.
548 */
549 mesa_format
550 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
551 {
552 /* No need to lower ETC formats on these platforms,
553 * they are supported natively.
554 */
555 if (brw->gen >= 8 || brw->is_baytrail)
556 return format;
557
558 switch (format) {
559 case MESA_FORMAT_ETC1_RGB8:
560 return MESA_FORMAT_R8G8B8X8_UNORM;
561 case MESA_FORMAT_ETC2_RGB8:
562 return MESA_FORMAT_R8G8B8X8_UNORM;
563 case MESA_FORMAT_ETC2_SRGB8:
564 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
565 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
566 return MESA_FORMAT_B8G8R8A8_SRGB;
567 case MESA_FORMAT_ETC2_RGBA8_EAC:
568 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
569 return MESA_FORMAT_R8G8B8A8_UNORM;
570 case MESA_FORMAT_ETC2_R11_EAC:
571 return MESA_FORMAT_R_UNORM16;
572 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
573 return MESA_FORMAT_R_SNORM16;
574 case MESA_FORMAT_ETC2_RG11_EAC:
575 return MESA_FORMAT_R16G16_UNORM;
576 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
577 return MESA_FORMAT_R16G16_SNORM;
578 default:
579 /* Non ETC1 / ETC2 format */
580 return format;
581 }
582 }
583
584
585 struct intel_mipmap_tree *
586 intel_miptree_create(struct brw_context *brw,
587 GLenum target,
588 mesa_format format,
589 GLuint first_level,
590 GLuint last_level,
591 GLuint width0,
592 GLuint height0,
593 GLuint depth0,
594 bool expect_accelerated_upload,
595 GLuint num_samples,
596 enum intel_miptree_tiling_mode requested_tiling,
597 bool force_all_slices_at_each_lod)
598 {
599 struct intel_mipmap_tree *mt;
600 mesa_format tex_format = format;
601 mesa_format etc_format = MESA_FORMAT_NONE;
602 GLuint total_width, total_height;
603
604 format = intel_lower_compressed_format(brw, format);
605
606 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
607
608 mt = intel_miptree_create_layout(brw, target, format,
609 first_level, last_level, width0,
610 height0, depth0,
611 false, num_samples,
612 force_all_slices_at_each_lod);
613 /*
614 * pitch == 0 || height == 0 indicates the null texture
615 */
616 if (!mt || !mt->total_width || !mt->total_height) {
617 intel_miptree_release(&mt);
618 return NULL;
619 }
620
621 total_width = mt->total_width;
622 total_height = mt->total_height;
623
624 if (format == MESA_FORMAT_S_UINT8) {
625 /* Align to size of W tile, 64x64. */
626 total_width = ALIGN(total_width, 64);
627 total_height = ALIGN(total_height, 64);
628 }
629
630 uint32_t tiling = intel_miptree_choose_tiling(brw, format, width0,
631 num_samples, requested_tiling,
632 mt);
633 bool y_or_x = false;
634
635 if (tiling == (I915_TILING_Y | I915_TILING_X)) {
636 y_or_x = true;
637 mt->tiling = I915_TILING_Y;
638 } else {
639 mt->tiling = tiling;
640 }
641
642 unsigned long pitch;
643 mt->etc_format = etc_format;
644 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
645 total_width, total_height, mt->cpp,
646 &mt->tiling, &pitch,
647 (expect_accelerated_upload ?
648 BO_ALLOC_FOR_RENDER : 0));
649 mt->pitch = pitch;
650
651 /* If the BO is too large to fit in the aperture, we need to use the
652 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
653 * handle Y-tiling, so we need to fall back to X.
654 */
655 if (brw->gen < 6 && y_or_x && mt->bo->size >= brw->max_gtt_map_object_size) {
656 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
657 mt->total_width, mt->total_height);
658
659 mt->tiling = I915_TILING_X;
660 drm_intel_bo_unreference(mt->bo);
661 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
662 total_width, total_height, mt->cpp,
663 &mt->tiling, &pitch,
664 (expect_accelerated_upload ?
665 BO_ALLOC_FOR_RENDER : 0));
666 mt->pitch = pitch;
667 }
668
669 mt->offset = 0;
670
671 if (!mt->bo) {
672 intel_miptree_release(&mt);
673 return NULL;
674 }
675
676
677 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
678 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
679 intel_miptree_release(&mt);
680 return NULL;
681 }
682 }
683
684 /* If this miptree is capable of supporting fast color clears, set
685 * fast_clear_state appropriately to ensure that fast clears will occur.
686 * Allocation of the MCS miptree will be deferred until the first fast
687 * clear actually occurs.
688 */
689 if (intel_is_non_msrt_mcs_buffer_supported(brw, mt))
690 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
691
692 return mt;
693 }
694
695 struct intel_mipmap_tree *
696 intel_miptree_create_for_bo(struct brw_context *brw,
697 drm_intel_bo *bo,
698 mesa_format format,
699 uint32_t offset,
700 uint32_t width,
701 uint32_t height,
702 uint32_t depth,
703 int pitch)
704 {
705 struct intel_mipmap_tree *mt;
706 uint32_t tiling, swizzle;
707 GLenum target;
708
709 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
710
711 /* Nothing will be able to use this miptree with the BO if the offset isn't
712 * aligned.
713 */
714 if (tiling != I915_TILING_NONE)
715 assert(offset % 4096 == 0);
716
717 /* miptrees can't handle negative pitch. If you need flipping of images,
718 * that's outside of the scope of the mt.
719 */
720 assert(pitch >= 0);
721
722 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
723
724 mt = intel_miptree_create_layout(brw, target, format,
725 0, 0,
726 width, height, depth,
727 true, 0, false);
728 if (!mt) {
729 free(mt);
730 return mt;
731 }
732
733 drm_intel_bo_reference(bo);
734 mt->bo = bo;
735 mt->pitch = pitch;
736 mt->offset = offset;
737 mt->tiling = tiling;
738
739 return mt;
740 }
741
742 /**
743 * For a singlesample renderbuffer, this simply wraps the given BO with a
744 * miptree.
745 *
746 * For a multisample renderbuffer, this wraps the window system's
747 * (singlesample) BO with a singlesample miptree attached to the
748 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
749 * that will contain the actual rendering (which is lazily resolved to
750 * irb->singlesample_mt).
751 */
752 void
753 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
754 struct intel_renderbuffer *irb,
755 drm_intel_bo *bo,
756 uint32_t width, uint32_t height,
757 uint32_t pitch)
758 {
759 struct intel_mipmap_tree *singlesample_mt = NULL;
760 struct intel_mipmap_tree *multisample_mt = NULL;
761 struct gl_renderbuffer *rb = &irb->Base.Base;
762 mesa_format format = rb->Format;
763 int num_samples = rb->NumSamples;
764
765 /* Only the front and back buffers, which are color buffers, are allocated
766 * through the image loader.
767 */
768 assert(_mesa_get_format_base_format(format) == GL_RGB ||
769 _mesa_get_format_base_format(format) == GL_RGBA);
770
771 singlesample_mt = intel_miptree_create_for_bo(intel,
772 bo,
773 format,
774 0,
775 width,
776 height,
777 1,
778 pitch);
779 if (!singlesample_mt)
780 goto fail;
781
782 /* If this miptree is capable of supporting fast color clears, set
783 * mcs_state appropriately to ensure that fast clears will occur.
784 * Allocation of the MCS miptree will be deferred until the first fast
785 * clear actually occurs.
786 */
787 if (intel_is_non_msrt_mcs_buffer_supported(intel, singlesample_mt))
788 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
789
790 if (num_samples == 0) {
791 intel_miptree_release(&irb->mt);
792 irb->mt = singlesample_mt;
793
794 assert(!irb->singlesample_mt);
795 } else {
796 intel_miptree_release(&irb->singlesample_mt);
797 irb->singlesample_mt = singlesample_mt;
798
799 if (!irb->mt ||
800 irb->mt->logical_width0 != width ||
801 irb->mt->logical_height0 != height) {
802 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
803 format,
804 width,
805 height,
806 num_samples);
807 if (!multisample_mt)
808 goto fail;
809
810 irb->need_downsample = false;
811 intel_miptree_release(&irb->mt);
812 irb->mt = multisample_mt;
813 }
814 }
815 return;
816
817 fail:
818 intel_miptree_release(&irb->singlesample_mt);
819 intel_miptree_release(&irb->mt);
820 return;
821 }
822
823 struct intel_mipmap_tree*
824 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
825 mesa_format format,
826 uint32_t width,
827 uint32_t height,
828 uint32_t num_samples)
829 {
830 struct intel_mipmap_tree *mt;
831 uint32_t depth = 1;
832 bool ok;
833 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
834
835 mt = intel_miptree_create(brw, target, format, 0, 0,
836 width, height, depth, true, num_samples,
837 INTEL_MIPTREE_TILING_ANY, false);
838 if (!mt)
839 goto fail;
840
841 if (brw_is_hiz_depth_format(brw, format)) {
842 ok = intel_miptree_alloc_hiz(brw, mt);
843 if (!ok)
844 goto fail;
845 }
846
847 return mt;
848
849 fail:
850 intel_miptree_release(&mt);
851 return NULL;
852 }
853
854 void
855 intel_miptree_reference(struct intel_mipmap_tree **dst,
856 struct intel_mipmap_tree *src)
857 {
858 if (*dst == src)
859 return;
860
861 intel_miptree_release(dst);
862
863 if (src) {
864 src->refcount++;
865 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
866 }
867
868 *dst = src;
869 }
870
871
872 void
873 intel_miptree_release(struct intel_mipmap_tree **mt)
874 {
875 if (!*mt)
876 return;
877
878 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
879 if (--(*mt)->refcount <= 0) {
880 GLuint i;
881
882 DBG("%s deleting %p\n", __FUNCTION__, *mt);
883
884 drm_intel_bo_unreference((*mt)->bo);
885 intel_miptree_release(&(*mt)->stencil_mt);
886 if ((*mt)->hiz_buf) {
887 intel_miptree_release(&(*mt)->hiz_buf->mt);
888 free((*mt)->hiz_buf);
889 }
890 intel_miptree_release(&(*mt)->mcs_mt);
891 intel_resolve_map_clear(&(*mt)->hiz_map);
892
893 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
894 free((*mt)->level[i].slice);
895 }
896
897 free(*mt);
898 }
899 *mt = NULL;
900 }
901
902 void
903 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
904 int *width, int *height, int *depth)
905 {
906 switch (image->TexObject->Target) {
907 case GL_TEXTURE_1D_ARRAY:
908 *width = image->Width;
909 *height = 1;
910 *depth = image->Height;
911 break;
912 default:
913 *width = image->Width;
914 *height = image->Height;
915 *depth = image->Depth;
916 break;
917 }
918 }
919
920 /**
921 * Can the image be pulled into a unified mipmap tree? This mirrors
922 * the completeness test in a lot of ways.
923 *
924 * Not sure whether I want to pass gl_texture_image here.
925 */
926 bool
927 intel_miptree_match_image(struct intel_mipmap_tree *mt,
928 struct gl_texture_image *image)
929 {
930 struct intel_texture_image *intelImage = intel_texture_image(image);
931 GLuint level = intelImage->base.Base.Level;
932 int width, height, depth;
933
934 /* glTexImage* choose the texture object based on the target passed in, and
935 * objects can't change targets over their lifetimes, so this should be
936 * true.
937 */
938 assert(image->TexObject->Target == mt->target);
939
940 mesa_format mt_format = mt->format;
941 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
942 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
943 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
944 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
945 if (mt->etc_format != MESA_FORMAT_NONE)
946 mt_format = mt->etc_format;
947
948 if (image->TexFormat != mt_format)
949 return false;
950
951 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
952
953 if (mt->target == GL_TEXTURE_CUBE_MAP)
954 depth = 6;
955
956 int level_depth = mt->level[level].depth;
957 if (mt->num_samples > 1) {
958 switch (mt->msaa_layout) {
959 case INTEL_MSAA_LAYOUT_NONE:
960 case INTEL_MSAA_LAYOUT_IMS:
961 break;
962 case INTEL_MSAA_LAYOUT_UMS:
963 case INTEL_MSAA_LAYOUT_CMS:
964 level_depth /= mt->num_samples;
965 break;
966 }
967 }
968
969 /* Test image dimensions against the base level image adjusted for
970 * minification. This will also catch images not present in the
971 * tree, changed targets, etc.
972 */
973 if (width != minify(mt->logical_width0, level - mt->first_level) ||
974 height != minify(mt->logical_height0, level - mt->first_level) ||
975 depth != level_depth) {
976 return false;
977 }
978
979 if (image->NumSamples != mt->num_samples)
980 return false;
981
982 return true;
983 }
984
985
986 void
987 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
988 GLuint level,
989 GLuint x, GLuint y, GLuint d)
990 {
991 mt->level[level].depth = d;
992 mt->level[level].level_x = x;
993 mt->level[level].level_y = y;
994
995 DBG("%s level %d, depth %d, offset %d,%d\n", __FUNCTION__,
996 level, d, x, y);
997
998 assert(mt->level[level].slice == NULL);
999
1000 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1001 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1002 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1003 }
1004
1005
1006 void
1007 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1008 GLuint level, GLuint img,
1009 GLuint x, GLuint y)
1010 {
1011 if (img == 0 && level == 0)
1012 assert(x == 0 && y == 0);
1013
1014 assert(img < mt->level[level].depth);
1015
1016 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1017 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1018
1019 DBG("%s level %d img %d pos %d,%d\n",
1020 __FUNCTION__, level, img,
1021 mt->level[level].slice[img].x_offset,
1022 mt->level[level].slice[img].y_offset);
1023 }
1024
1025 void
1026 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1027 GLuint level, GLuint slice,
1028 GLuint *x, GLuint *y)
1029 {
1030 assert(slice < mt->level[level].depth);
1031
1032 *x = mt->level[level].slice[slice].x_offset;
1033 *y = mt->level[level].slice[slice].y_offset;
1034 }
1035
1036 /**
1037 * This function computes masks that may be used to select the bits of the X
1038 * and Y coordinates that indicate the offset within a tile. If the BO is
1039 * untiled, the masks are set to 0.
1040 */
1041 void
1042 intel_miptree_get_tile_masks(const struct intel_mipmap_tree *mt,
1043 uint32_t *mask_x, uint32_t *mask_y,
1044 bool map_stencil_as_y_tiled)
1045 {
1046 int cpp = mt->cpp;
1047 uint32_t tiling = mt->tiling;
1048
1049 if (map_stencil_as_y_tiled)
1050 tiling = I915_TILING_Y;
1051
1052 switch (tiling) {
1053 default:
1054 unreachable("not reached");
1055 case I915_TILING_NONE:
1056 *mask_x = *mask_y = 0;
1057 break;
1058 case I915_TILING_X:
1059 *mask_x = 512 / cpp - 1;
1060 *mask_y = 7;
1061 break;
1062 case I915_TILING_Y:
1063 *mask_x = 128 / cpp - 1;
1064 *mask_y = 31;
1065 break;
1066 }
1067 }
1068
1069 /**
1070 * Compute the offset (in bytes) from the start of the BO to the given x
1071 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1072 * multiples of the tile size.
1073 */
1074 uint32_t
1075 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1076 uint32_t x, uint32_t y,
1077 bool map_stencil_as_y_tiled)
1078 {
1079 int cpp = mt->cpp;
1080 uint32_t pitch = mt->pitch;
1081 uint32_t tiling = mt->tiling;
1082
1083 if (map_stencil_as_y_tiled) {
1084 tiling = I915_TILING_Y;
1085
1086 /* When mapping a W-tiled stencil buffer as Y-tiled, each 64-high W-tile
1087 * gets transformed into a 32-high Y-tile. Accordingly, the pitch of
1088 * the resulting surface is twice the pitch of the original miptree,
1089 * since each row in the Y-tiled view corresponds to two rows in the
1090 * actual W-tiled surface. So we need to correct the pitch before
1091 * computing the offsets.
1092 */
1093 pitch *= 2;
1094 }
1095
1096 switch (tiling) {
1097 default:
1098 unreachable("not reached");
1099 case I915_TILING_NONE:
1100 return y * pitch + x * cpp;
1101 case I915_TILING_X:
1102 assert((x % (512 / cpp)) == 0);
1103 assert((y % 8) == 0);
1104 return y * pitch + x / (512 / cpp) * 4096;
1105 case I915_TILING_Y:
1106 assert((x % (128 / cpp)) == 0);
1107 assert((y % 32) == 0);
1108 return y * pitch + x / (128 / cpp) * 4096;
1109 }
1110 }
1111
1112 /**
1113 * Rendering with tiled buffers requires that the base address of the buffer
1114 * be aligned to a page boundary. For renderbuffers, and sometimes with
1115 * textures, we may want the surface to point at a texture image level that
1116 * isn't at a page boundary.
1117 *
1118 * This function returns an appropriately-aligned base offset
1119 * according to the tiling restrictions, plus any required x/y offset
1120 * from there.
1121 */
1122 uint32_t
1123 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1124 GLuint level, GLuint slice,
1125 uint32_t *tile_x,
1126 uint32_t *tile_y)
1127 {
1128 uint32_t x, y;
1129 uint32_t mask_x, mask_y;
1130
1131 intel_miptree_get_tile_masks(mt, &mask_x, &mask_y, false);
1132 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1133
1134 *tile_x = x & mask_x;
1135 *tile_y = y & mask_y;
1136
1137 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y, false);
1138 }
1139
1140 static void
1141 intel_miptree_copy_slice_sw(struct brw_context *brw,
1142 struct intel_mipmap_tree *dst_mt,
1143 struct intel_mipmap_tree *src_mt,
1144 int level,
1145 int slice,
1146 int width,
1147 int height)
1148 {
1149 void *src, *dst;
1150 ptrdiff_t src_stride, dst_stride;
1151 int cpp = dst_mt->cpp;
1152
1153 intel_miptree_map(brw, src_mt,
1154 level, slice,
1155 0, 0,
1156 width, height,
1157 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1158 &src, &src_stride);
1159
1160 intel_miptree_map(brw, dst_mt,
1161 level, slice,
1162 0, 0,
1163 width, height,
1164 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1165 BRW_MAP_DIRECT_BIT,
1166 &dst, &dst_stride);
1167
1168 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1169 _mesa_get_format_name(src_mt->format),
1170 src_mt, src, src_stride,
1171 _mesa_get_format_name(dst_mt->format),
1172 dst_mt, dst, dst_stride,
1173 width, height);
1174
1175 int row_size = cpp * width;
1176 if (src_stride == row_size &&
1177 dst_stride == row_size) {
1178 memcpy(dst, src, row_size * height);
1179 } else {
1180 for (int i = 0; i < height; i++) {
1181 memcpy(dst, src, row_size);
1182 dst += dst_stride;
1183 src += src_stride;
1184 }
1185 }
1186
1187 intel_miptree_unmap(brw, dst_mt, level, slice);
1188 intel_miptree_unmap(brw, src_mt, level, slice);
1189
1190 /* Don't forget to copy the stencil data over, too. We could have skipped
1191 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1192 * shuffling the two data sources in/out of temporary storage instead of
1193 * the direct mapping we get this way.
1194 */
1195 if (dst_mt->stencil_mt) {
1196 assert(src_mt->stencil_mt);
1197 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1198 level, slice, width, height);
1199 }
1200 }
1201
1202 static void
1203 intel_miptree_copy_slice(struct brw_context *brw,
1204 struct intel_mipmap_tree *dst_mt,
1205 struct intel_mipmap_tree *src_mt,
1206 int level,
1207 int face,
1208 int depth)
1209
1210 {
1211 mesa_format format = src_mt->format;
1212 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1213 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1214 int slice;
1215
1216 if (face > 0)
1217 slice = face;
1218 else
1219 slice = depth;
1220
1221 assert(depth < src_mt->level[level].depth);
1222 assert(src_mt->format == dst_mt->format);
1223
1224 if (dst_mt->compressed) {
1225 height = ALIGN(height, dst_mt->align_h) / dst_mt->align_h;
1226 width = ALIGN(width, dst_mt->align_w);
1227 }
1228
1229 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1230 * below won't apply since we can't do the depth's Y tiling or the
1231 * stencil's W tiling in the blitter.
1232 */
1233 if (src_mt->stencil_mt) {
1234 intel_miptree_copy_slice_sw(brw,
1235 dst_mt, src_mt,
1236 level, slice,
1237 width, height);
1238 return;
1239 }
1240
1241 uint32_t dst_x, dst_y, src_x, src_y;
1242 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1243 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1244
1245 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1246 _mesa_get_format_name(src_mt->format),
1247 src_mt, src_x, src_y, src_mt->pitch,
1248 _mesa_get_format_name(dst_mt->format),
1249 dst_mt, dst_x, dst_y, dst_mt->pitch,
1250 width, height);
1251
1252 if (!intel_miptree_blit(brw,
1253 src_mt, level, slice, 0, 0, false,
1254 dst_mt, level, slice, 0, 0, false,
1255 width, height, GL_COPY)) {
1256 perf_debug("miptree validate blit for %s failed\n",
1257 _mesa_get_format_name(format));
1258
1259 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1260 width, height);
1261 }
1262 }
1263
1264 /**
1265 * Copies the image's current data to the given miptree, and associates that
1266 * miptree with the image.
1267 *
1268 * If \c invalidate is true, then the actual image data does not need to be
1269 * copied, but the image still needs to be associated to the new miptree (this
1270 * is set to true if we're about to clear the image).
1271 */
1272 void
1273 intel_miptree_copy_teximage(struct brw_context *brw,
1274 struct intel_texture_image *intelImage,
1275 struct intel_mipmap_tree *dst_mt,
1276 bool invalidate)
1277 {
1278 struct intel_mipmap_tree *src_mt = intelImage->mt;
1279 struct intel_texture_object *intel_obj =
1280 intel_texture_object(intelImage->base.Base.TexObject);
1281 int level = intelImage->base.Base.Level;
1282 int face = intelImage->base.Base.Face;
1283
1284 GLuint depth;
1285 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1286 depth = intelImage->base.Base.Height;
1287 else
1288 depth = intelImage->base.Base.Depth;
1289
1290 if (!invalidate) {
1291 for (int slice = 0; slice < depth; slice++) {
1292 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1293 }
1294 }
1295
1296 intel_miptree_reference(&intelImage->mt, dst_mt);
1297 intel_obj->needs_validate = true;
1298 }
1299
1300 bool
1301 intel_miptree_alloc_mcs(struct brw_context *brw,
1302 struct intel_mipmap_tree *mt,
1303 GLuint num_samples)
1304 {
1305 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1306 assert(mt->mcs_mt == NULL);
1307
1308 /* Choose the correct format for the MCS buffer. All that really matters
1309 * is that we allocate the right buffer size, since we'll always be
1310 * accessing this miptree using MCS-specific hardware mechanisms, which
1311 * infer the correct format based on num_samples.
1312 */
1313 mesa_format format;
1314 switch (num_samples) {
1315 case 2:
1316 case 4:
1317 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1318 * each sample).
1319 */
1320 format = MESA_FORMAT_R_UNORM8;
1321 break;
1322 case 8:
1323 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1324 * for each sample, plus 8 padding bits).
1325 */
1326 format = MESA_FORMAT_R_UINT32;
1327 break;
1328 default:
1329 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1330 };
1331
1332 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1333 *
1334 * "The MCS surface must be stored as Tile Y."
1335 */
1336 mt->mcs_mt = intel_miptree_create(brw,
1337 mt->target,
1338 format,
1339 mt->first_level,
1340 mt->last_level,
1341 mt->logical_width0,
1342 mt->logical_height0,
1343 mt->logical_depth0,
1344 true,
1345 0 /* num_samples */,
1346 INTEL_MIPTREE_TILING_Y,
1347 false);
1348
1349 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1350 *
1351 * When MCS buffer is enabled and bound to MSRT, it is required that it
1352 * is cleared prior to any rendering.
1353 *
1354 * Since we don't use the MCS buffer for any purpose other than rendering,
1355 * it makes sense to just clear it immediately upon allocation.
1356 *
1357 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1358 */
1359 void *data = intel_miptree_map_raw(brw, mt->mcs_mt);
1360 memset(data, 0xff, mt->mcs_mt->total_height * mt->mcs_mt->pitch);
1361 intel_miptree_unmap_raw(brw, mt->mcs_mt);
1362 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1363
1364 return mt->mcs_mt;
1365 }
1366
1367
1368 bool
1369 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1370 struct intel_mipmap_tree *mt)
1371 {
1372 assert(mt->mcs_mt == NULL);
1373
1374 /* The format of the MCS buffer is opaque to the driver; all that matters
1375 * is that we get its size and pitch right. We'll pretend that the format
1376 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1377 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1378 * the block width and then a further factor of 4. Since an MCS tile
1379 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1380 * we'll need to scale the height down by the block height and then a
1381 * further factor of 8.
1382 */
1383 const mesa_format format = MESA_FORMAT_R_UINT32;
1384 unsigned block_width_px;
1385 unsigned block_height;
1386 intel_get_non_msrt_mcs_alignment(brw, mt, &block_width_px, &block_height);
1387 unsigned width_divisor = block_width_px * 4;
1388 unsigned height_divisor = block_height * 8;
1389 unsigned mcs_width =
1390 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1391 unsigned mcs_height =
1392 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1393 assert(mt->logical_depth0 == 1);
1394 mt->mcs_mt = intel_miptree_create(brw,
1395 mt->target,
1396 format,
1397 mt->first_level,
1398 mt->last_level,
1399 mcs_width,
1400 mcs_height,
1401 mt->logical_depth0,
1402 true,
1403 0 /* num_samples */,
1404 INTEL_MIPTREE_TILING_Y,
1405 false);
1406
1407 return mt->mcs_mt;
1408 }
1409
1410
1411 /**
1412 * Helper for intel_miptree_alloc_hiz() that sets
1413 * \c mt->level[level].has_hiz. Return true if and only if
1414 * \c has_hiz was set.
1415 */
1416 static bool
1417 intel_miptree_level_enable_hiz(struct brw_context *brw,
1418 struct intel_mipmap_tree *mt,
1419 uint32_t level)
1420 {
1421 assert(mt->hiz_buf);
1422
1423 if (brw->gen >= 8 || brw->is_haswell) {
1424 uint32_t width = minify(mt->physical_width0, level);
1425 uint32_t height = minify(mt->physical_height0, level);
1426
1427 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1428 * and the height is 4 aligned. This allows our HiZ support
1429 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1430 * we can grow the width & height to allow the HiZ op to
1431 * force the proper size alignments.
1432 */
1433 if (level > 0 && ((width & 7) || (height & 3))) {
1434 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1435 return false;
1436 }
1437 }
1438
1439 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1440 mt->level[level].has_hiz = true;
1441 return true;
1442 }
1443
1444
1445 static struct intel_miptree_aux_buffer *
1446 intel_hiz_miptree_buf_create(struct brw_context *brw,
1447 struct intel_mipmap_tree *mt)
1448 {
1449 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1450 const bool force_all_slices_at_each_lod = brw->gen == 6;
1451
1452 if (!buf)
1453 return NULL;
1454
1455 buf->mt = intel_miptree_create(brw,
1456 mt->target,
1457 mt->format,
1458 mt->first_level,
1459 mt->last_level,
1460 mt->logical_width0,
1461 mt->logical_height0,
1462 mt->logical_depth0,
1463 true,
1464 mt->num_samples,
1465 INTEL_MIPTREE_TILING_ANY,
1466 force_all_slices_at_each_lod);
1467 if (!buf->mt) {
1468 free(buf);
1469 return NULL;
1470 }
1471
1472 buf->bo = buf->mt->bo;
1473 buf->pitch = buf->mt->pitch;
1474 buf->qpitch = buf->mt->qpitch;
1475
1476 return buf;
1477 }
1478
1479
1480 bool
1481 intel_miptree_alloc_hiz(struct brw_context *brw,
1482 struct intel_mipmap_tree *mt)
1483 {
1484 assert(mt->hiz_buf == NULL);
1485 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1486
1487 if (!mt->hiz_buf)
1488 return false;
1489
1490 /* Mark that all slices need a HiZ resolve. */
1491 for (int level = mt->first_level; level <= mt->last_level; ++level) {
1492 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1493 continue;
1494
1495 for (int layer = 0; layer < mt->level[level].depth; ++layer) {
1496 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1497 exec_node_init(&m->link);
1498 m->level = level;
1499 m->layer = layer;
1500 m->need = GEN6_HIZ_OP_HIZ_RESOLVE;
1501
1502 exec_list_push_tail(&mt->hiz_map, &m->link);
1503 }
1504 }
1505
1506 return true;
1507 }
1508
1509 /**
1510 * Does the miptree slice have hiz enabled?
1511 */
1512 bool
1513 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
1514 {
1515 intel_miptree_check_level_layer(mt, level, 0);
1516 return mt->level[level].has_hiz;
1517 }
1518
1519 void
1520 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1521 uint32_t level,
1522 uint32_t layer)
1523 {
1524 if (!intel_miptree_level_has_hiz(mt, level))
1525 return;
1526
1527 intel_resolve_map_set(&mt->hiz_map,
1528 level, layer, GEN6_HIZ_OP_HIZ_RESOLVE);
1529 }
1530
1531
1532 void
1533 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1534 uint32_t level,
1535 uint32_t layer)
1536 {
1537 if (!intel_miptree_level_has_hiz(mt, level))
1538 return;
1539
1540 intel_resolve_map_set(&mt->hiz_map,
1541 level, layer, GEN6_HIZ_OP_DEPTH_RESOLVE);
1542 }
1543
1544 void
1545 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1546 uint32_t level)
1547 {
1548 uint32_t layer;
1549 uint32_t end_layer = mt->level[level].depth;
1550
1551 for (layer = 0; layer < end_layer; layer++) {
1552 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
1553 }
1554 }
1555
1556 static bool
1557 intel_miptree_slice_resolve(struct brw_context *brw,
1558 struct intel_mipmap_tree *mt,
1559 uint32_t level,
1560 uint32_t layer,
1561 enum gen6_hiz_op need)
1562 {
1563 intel_miptree_check_level_layer(mt, level, layer);
1564
1565 struct intel_resolve_map *item =
1566 intel_resolve_map_get(&mt->hiz_map, level, layer);
1567
1568 if (!item || item->need != need)
1569 return false;
1570
1571 intel_hiz_exec(brw, mt, level, layer, need);
1572 intel_resolve_map_remove(item);
1573 return true;
1574 }
1575
1576 bool
1577 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
1578 struct intel_mipmap_tree *mt,
1579 uint32_t level,
1580 uint32_t layer)
1581 {
1582 return intel_miptree_slice_resolve(brw, mt, level, layer,
1583 GEN6_HIZ_OP_HIZ_RESOLVE);
1584 }
1585
1586 bool
1587 intel_miptree_slice_resolve_depth(struct brw_context *brw,
1588 struct intel_mipmap_tree *mt,
1589 uint32_t level,
1590 uint32_t layer)
1591 {
1592 return intel_miptree_slice_resolve(brw, mt, level, layer,
1593 GEN6_HIZ_OP_DEPTH_RESOLVE);
1594 }
1595
1596 static bool
1597 intel_miptree_all_slices_resolve(struct brw_context *brw,
1598 struct intel_mipmap_tree *mt,
1599 enum gen6_hiz_op need)
1600 {
1601 bool did_resolve = false;
1602
1603 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
1604 if (map->need != need)
1605 continue;
1606
1607 intel_hiz_exec(brw, mt, map->level, map->layer, need);
1608 intel_resolve_map_remove(map);
1609 did_resolve = true;
1610 }
1611
1612 return did_resolve;
1613 }
1614
1615 bool
1616 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
1617 struct intel_mipmap_tree *mt)
1618 {
1619 return intel_miptree_all_slices_resolve(brw, mt,
1620 GEN6_HIZ_OP_HIZ_RESOLVE);
1621 }
1622
1623 bool
1624 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
1625 struct intel_mipmap_tree *mt)
1626 {
1627 return intel_miptree_all_slices_resolve(brw, mt,
1628 GEN6_HIZ_OP_DEPTH_RESOLVE);
1629 }
1630
1631
1632 void
1633 intel_miptree_resolve_color(struct brw_context *brw,
1634 struct intel_mipmap_tree *mt)
1635 {
1636 switch (mt->fast_clear_state) {
1637 case INTEL_FAST_CLEAR_STATE_NO_MCS:
1638 case INTEL_FAST_CLEAR_STATE_RESOLVED:
1639 /* No resolve needed */
1640 break;
1641 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
1642 case INTEL_FAST_CLEAR_STATE_CLEAR:
1643 /* Fast color clear resolves only make sense for non-MSAA buffers. */
1644 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE)
1645 brw_meta_resolve_color(brw, mt);
1646 break;
1647 }
1648 }
1649
1650
1651 /**
1652 * Make it possible to share the BO backing the given miptree with another
1653 * process or another miptree.
1654 *
1655 * Fast color clears are unsafe with shared buffers, so we need to resolve and
1656 * then discard the MCS buffer, if present. We also set the fast_clear_state
1657 * to INTEL_FAST_CLEAR_STATE_NO_MCS to ensure that no MCS buffer gets
1658 * allocated in the future.
1659 */
1660 void
1661 intel_miptree_make_shareable(struct brw_context *brw,
1662 struct intel_mipmap_tree *mt)
1663 {
1664 /* MCS buffers are also used for multisample buffers, but we can't resolve
1665 * away a multisample MCS buffer because it's an integral part of how the
1666 * pixel data is stored. Fortunately this code path should never be
1667 * reached for multisample buffers.
1668 */
1669 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
1670
1671 if (mt->mcs_mt) {
1672 intel_miptree_resolve_color(brw, mt);
1673 intel_miptree_release(&mt->mcs_mt);
1674 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_NO_MCS;
1675 }
1676 }
1677
1678
1679 /**
1680 * \brief Get pointer offset into stencil buffer.
1681 *
1682 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
1683 * must decode the tile's layout in software.
1684 *
1685 * See
1686 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
1687 * Format.
1688 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
1689 *
1690 * Even though the returned offset is always positive, the return type is
1691 * signed due to
1692 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
1693 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
1694 */
1695 static intptr_t
1696 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
1697 {
1698 uint32_t tile_size = 4096;
1699 uint32_t tile_width = 64;
1700 uint32_t tile_height = 64;
1701 uint32_t row_size = 64 * stride;
1702
1703 uint32_t tile_x = x / tile_width;
1704 uint32_t tile_y = y / tile_height;
1705
1706 /* The byte's address relative to the tile's base addres. */
1707 uint32_t byte_x = x % tile_width;
1708 uint32_t byte_y = y % tile_height;
1709
1710 uintptr_t u = tile_y * row_size
1711 + tile_x * tile_size
1712 + 512 * (byte_x / 8)
1713 + 64 * (byte_y / 8)
1714 + 32 * ((byte_y / 4) % 2)
1715 + 16 * ((byte_x / 4) % 2)
1716 + 8 * ((byte_y / 2) % 2)
1717 + 4 * ((byte_x / 2) % 2)
1718 + 2 * (byte_y % 2)
1719 + 1 * (byte_x % 2);
1720
1721 if (swizzled) {
1722 /* adjust for bit6 swizzling */
1723 if (((byte_x / 8) % 2) == 1) {
1724 if (((byte_y / 8) % 2) == 0) {
1725 u += 64;
1726 } else {
1727 u -= 64;
1728 }
1729 }
1730 }
1731
1732 return u;
1733 }
1734
1735 void
1736 intel_miptree_updownsample(struct brw_context *brw,
1737 struct intel_mipmap_tree *src,
1738 struct intel_mipmap_tree *dst)
1739 {
1740 if (brw->gen < 8) {
1741 brw_blorp_blit_miptrees(brw,
1742 src, 0 /* level */, 0 /* layer */, src->format,
1743 dst, 0 /* level */, 0 /* layer */, dst->format,
1744 0, 0,
1745 src->logical_width0, src->logical_height0,
1746 0, 0,
1747 dst->logical_width0, dst->logical_height0,
1748 GL_NEAREST, false, false /*mirror x, y*/);
1749 } else if (src->format == MESA_FORMAT_S_UINT8) {
1750 brw_meta_stencil_updownsample(brw, src, dst);
1751 } else {
1752 brw_meta_updownsample(brw, src, dst);
1753 }
1754
1755 if (src->stencil_mt) {
1756 if (brw->gen >= 8) {
1757 brw_meta_stencil_updownsample(brw, src->stencil_mt, dst);
1758 return;
1759 }
1760
1761 brw_blorp_blit_miptrees(brw,
1762 src->stencil_mt, 0 /* level */, 0 /* layer */,
1763 src->stencil_mt->format,
1764 dst->stencil_mt, 0 /* level */, 0 /* layer */,
1765 dst->stencil_mt->format,
1766 0, 0,
1767 src->logical_width0, src->logical_height0,
1768 0, 0,
1769 dst->logical_width0, dst->logical_height0,
1770 GL_NEAREST, false, false /*mirror x, y*/);
1771 }
1772 }
1773
1774 void *
1775 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
1776 {
1777 /* CPU accesses to color buffers don't understand fast color clears, so
1778 * resolve any pending fast color clears before we map.
1779 */
1780 intel_miptree_resolve_color(brw, mt);
1781
1782 drm_intel_bo *bo = mt->bo;
1783
1784 if (drm_intel_bo_references(brw->batch.bo, bo))
1785 intel_batchbuffer_flush(brw);
1786
1787 if (mt->tiling != I915_TILING_NONE)
1788 brw_bo_map_gtt(brw, bo, "miptree");
1789 else
1790 brw_bo_map(brw, bo, true, "miptree");
1791
1792 return bo->virtual;
1793 }
1794
1795 void
1796 intel_miptree_unmap_raw(struct brw_context *brw,
1797 struct intel_mipmap_tree *mt)
1798 {
1799 drm_intel_bo_unmap(mt->bo);
1800 }
1801
1802 static void
1803 intel_miptree_map_gtt(struct brw_context *brw,
1804 struct intel_mipmap_tree *mt,
1805 struct intel_miptree_map *map,
1806 unsigned int level, unsigned int slice)
1807 {
1808 unsigned int bw, bh;
1809 void *base;
1810 unsigned int image_x, image_y;
1811 intptr_t x = map->x;
1812 intptr_t y = map->y;
1813
1814 /* For compressed formats, the stride is the number of bytes per
1815 * row of blocks. intel_miptree_get_image_offset() already does
1816 * the divide.
1817 */
1818 _mesa_get_format_block_size(mt->format, &bw, &bh);
1819 assert(y % bh == 0);
1820 y /= bh;
1821
1822 base = intel_miptree_map_raw(brw, mt) + mt->offset;
1823
1824 if (base == NULL)
1825 map->ptr = NULL;
1826 else {
1827 /* Note that in the case of cube maps, the caller must have passed the
1828 * slice number referencing the face.
1829 */
1830 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1831 x += image_x;
1832 y += image_y;
1833
1834 map->stride = mt->pitch;
1835 map->ptr = base + y * map->stride + x * mt->cpp;
1836 }
1837
1838 DBG("%s: %d,%d %dx%d from mt %p (%s) "
1839 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __FUNCTION__,
1840 map->x, map->y, map->w, map->h,
1841 mt, _mesa_get_format_name(mt->format),
1842 x, y, map->ptr, map->stride);
1843 }
1844
1845 static void
1846 intel_miptree_unmap_gtt(struct brw_context *brw,
1847 struct intel_mipmap_tree *mt,
1848 struct intel_miptree_map *map,
1849 unsigned int level,
1850 unsigned int slice)
1851 {
1852 intel_miptree_unmap_raw(brw, mt);
1853 }
1854
1855 static void
1856 intel_miptree_map_blit(struct brw_context *brw,
1857 struct intel_mipmap_tree *mt,
1858 struct intel_miptree_map *map,
1859 unsigned int level, unsigned int slice)
1860 {
1861 map->mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
1862 0, 0,
1863 map->w, map->h, 1,
1864 false, 0,
1865 INTEL_MIPTREE_TILING_NONE,
1866 false);
1867 if (!map->mt) {
1868 fprintf(stderr, "Failed to allocate blit temporary\n");
1869 goto fail;
1870 }
1871 map->stride = map->mt->pitch;
1872
1873 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
1874 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
1875 * invalidate is set, since we'll be writing the whole rectangle from our
1876 * temporary buffer back out.
1877 */
1878 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
1879 if (!intel_miptree_blit(brw,
1880 mt, level, slice,
1881 map->x, map->y, false,
1882 map->mt, 0, 0,
1883 0, 0, false,
1884 map->w, map->h, GL_COPY)) {
1885 fprintf(stderr, "Failed to blit\n");
1886 goto fail;
1887 }
1888 }
1889
1890 map->ptr = intel_miptree_map_raw(brw, map->mt);
1891
1892 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1893 map->x, map->y, map->w, map->h,
1894 mt, _mesa_get_format_name(mt->format),
1895 level, slice, map->ptr, map->stride);
1896
1897 return;
1898
1899 fail:
1900 intel_miptree_release(&map->mt);
1901 map->ptr = NULL;
1902 map->stride = 0;
1903 }
1904
1905 static void
1906 intel_miptree_unmap_blit(struct brw_context *brw,
1907 struct intel_mipmap_tree *mt,
1908 struct intel_miptree_map *map,
1909 unsigned int level,
1910 unsigned int slice)
1911 {
1912 struct gl_context *ctx = &brw->ctx;
1913
1914 intel_miptree_unmap_raw(brw, map->mt);
1915
1916 if (map->mode & GL_MAP_WRITE_BIT) {
1917 bool ok = intel_miptree_blit(brw,
1918 map->mt, 0, 0,
1919 0, 0, false,
1920 mt, level, slice,
1921 map->x, map->y, false,
1922 map->w, map->h, GL_COPY);
1923 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
1924 }
1925
1926 intel_miptree_release(&map->mt);
1927 }
1928
1929 /**
1930 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
1931 */
1932 #if defined(USE_SSE41)
1933 static void
1934 intel_miptree_map_movntdqa(struct brw_context *brw,
1935 struct intel_mipmap_tree *mt,
1936 struct intel_miptree_map *map,
1937 unsigned int level, unsigned int slice)
1938 {
1939 assert(map->mode & GL_MAP_READ_BIT);
1940 assert(!(map->mode & GL_MAP_WRITE_BIT));
1941
1942 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __FUNCTION__,
1943 map->x, map->y, map->w, map->h,
1944 mt, _mesa_get_format_name(mt->format),
1945 level, slice, map->ptr, map->stride);
1946
1947 /* Map the original image */
1948 uint32_t image_x;
1949 uint32_t image_y;
1950 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
1951 image_x += map->x;
1952 image_y += map->y;
1953
1954 void *src = intel_miptree_map_raw(brw, mt);
1955 if (!src)
1956 return;
1957 src += image_y * mt->pitch;
1958 src += image_x * mt->cpp;
1959
1960 /* Due to the pixel offsets for the particular image being mapped, our
1961 * src pointer may not be 16-byte aligned. However, if the pitch is
1962 * divisible by 16, then the amount by which it's misaligned will remain
1963 * consistent from row to row.
1964 */
1965 assert((mt->pitch % 16) == 0);
1966 const int misalignment = ((uintptr_t) src) & 15;
1967
1968 /* Create an untiled temporary buffer for the mapping. */
1969 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
1970
1971 map->stride = ALIGN(misalignment + width_bytes, 16);
1972
1973 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
1974 /* Offset the destination so it has the same misalignment as src. */
1975 map->ptr = map->buffer + misalignment;
1976
1977 assert((((uintptr_t) map->ptr) & 15) == misalignment);
1978
1979 for (uint32_t y = 0; y < map->h; y++) {
1980 void *dst_ptr = map->ptr + y * map->stride;
1981 void *src_ptr = src + y * mt->pitch;
1982
1983 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
1984 }
1985
1986 intel_miptree_unmap_raw(brw, mt);
1987 }
1988
1989 static void
1990 intel_miptree_unmap_movntdqa(struct brw_context *brw,
1991 struct intel_mipmap_tree *mt,
1992 struct intel_miptree_map *map,
1993 unsigned int level,
1994 unsigned int slice)
1995 {
1996 _mesa_align_free(map->buffer);
1997 map->buffer = NULL;
1998 map->ptr = NULL;
1999 }
2000 #endif
2001
2002 static void
2003 intel_miptree_map_s8(struct brw_context *brw,
2004 struct intel_mipmap_tree *mt,
2005 struct intel_miptree_map *map,
2006 unsigned int level, unsigned int slice)
2007 {
2008 map->stride = map->w;
2009 map->buffer = map->ptr = malloc(map->stride * map->h);
2010 if (!map->buffer)
2011 return;
2012
2013 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2014 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2015 * invalidate is set, since we'll be writing the whole rectangle from our
2016 * temporary buffer back out.
2017 */
2018 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2019 uint8_t *untiled_s8_map = map->ptr;
2020 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2021 unsigned int image_x, image_y;
2022
2023 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2024
2025 for (uint32_t y = 0; y < map->h; y++) {
2026 for (uint32_t x = 0; x < map->w; x++) {
2027 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2028 x + image_x + map->x,
2029 y + image_y + map->y,
2030 brw->has_swizzling);
2031 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2032 }
2033 }
2034
2035 intel_miptree_unmap_raw(brw, mt);
2036
2037 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __FUNCTION__,
2038 map->x, map->y, map->w, map->h,
2039 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2040 } else {
2041 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2042 map->x, map->y, map->w, map->h,
2043 mt, map->ptr, map->stride);
2044 }
2045 }
2046
2047 static void
2048 intel_miptree_unmap_s8(struct brw_context *brw,
2049 struct intel_mipmap_tree *mt,
2050 struct intel_miptree_map *map,
2051 unsigned int level,
2052 unsigned int slice)
2053 {
2054 if (map->mode & GL_MAP_WRITE_BIT) {
2055 unsigned int image_x, image_y;
2056 uint8_t *untiled_s8_map = map->ptr;
2057 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2058
2059 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2060
2061 for (uint32_t y = 0; y < map->h; y++) {
2062 for (uint32_t x = 0; x < map->w; x++) {
2063 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2064 x + map->x,
2065 y + map->y,
2066 brw->has_swizzling);
2067 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2068 }
2069 }
2070
2071 intel_miptree_unmap_raw(brw, mt);
2072 }
2073
2074 free(map->buffer);
2075 }
2076
2077 static void
2078 intel_miptree_map_etc(struct brw_context *brw,
2079 struct intel_mipmap_tree *mt,
2080 struct intel_miptree_map *map,
2081 unsigned int level,
2082 unsigned int slice)
2083 {
2084 assert(mt->etc_format != MESA_FORMAT_NONE);
2085 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2086 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2087 }
2088
2089 assert(map->mode & GL_MAP_WRITE_BIT);
2090 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2091
2092 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2093 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2094 map->w, map->h, 1));
2095 map->ptr = map->buffer;
2096 }
2097
2098 static void
2099 intel_miptree_unmap_etc(struct brw_context *brw,
2100 struct intel_mipmap_tree *mt,
2101 struct intel_miptree_map *map,
2102 unsigned int level,
2103 unsigned int slice)
2104 {
2105 uint32_t image_x;
2106 uint32_t image_y;
2107 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2108
2109 image_x += map->x;
2110 image_y += map->y;
2111
2112 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2113 + image_y * mt->pitch
2114 + image_x * mt->cpp;
2115
2116 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2117 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2118 map->ptr, map->stride,
2119 map->w, map->h);
2120 else
2121 _mesa_unpack_etc2_format(dst, mt->pitch,
2122 map->ptr, map->stride,
2123 map->w, map->h, mt->etc_format);
2124
2125 intel_miptree_unmap_raw(brw, mt);
2126 free(map->buffer);
2127 }
2128
2129 /**
2130 * Mapping function for packed depth/stencil miptrees backed by real separate
2131 * miptrees for depth and stencil.
2132 *
2133 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2134 * separate from the depth buffer. Yet at the GL API level, we have to expose
2135 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2136 * be able to map that memory for texture storage and glReadPixels-type
2137 * operations. We give Mesa core that access by mallocing a temporary and
2138 * copying the data between the actual backing store and the temporary.
2139 */
2140 static void
2141 intel_miptree_map_depthstencil(struct brw_context *brw,
2142 struct intel_mipmap_tree *mt,
2143 struct intel_miptree_map *map,
2144 unsigned int level, unsigned int slice)
2145 {
2146 struct intel_mipmap_tree *z_mt = mt;
2147 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2148 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2149 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2150
2151 map->stride = map->w * packed_bpp;
2152 map->buffer = map->ptr = malloc(map->stride * map->h);
2153 if (!map->buffer)
2154 return;
2155
2156 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2157 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2158 * invalidate is set, since we'll be writing the whole rectangle from our
2159 * temporary buffer back out.
2160 */
2161 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2162 uint32_t *packed_map = map->ptr;
2163 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2164 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2165 unsigned int s_image_x, s_image_y;
2166 unsigned int z_image_x, z_image_y;
2167
2168 intel_miptree_get_image_offset(s_mt, level, slice,
2169 &s_image_x, &s_image_y);
2170 intel_miptree_get_image_offset(z_mt, level, slice,
2171 &z_image_x, &z_image_y);
2172
2173 for (uint32_t y = 0; y < map->h; y++) {
2174 for (uint32_t x = 0; x < map->w; x++) {
2175 int map_x = map->x + x, map_y = map->y + y;
2176 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2177 map_x + s_image_x,
2178 map_y + s_image_y,
2179 brw->has_swizzling);
2180 ptrdiff_t z_offset = ((map_y + z_image_y) *
2181 (z_mt->pitch / 4) +
2182 (map_x + z_image_x));
2183 uint8_t s = s_map[s_offset];
2184 uint32_t z = z_map[z_offset];
2185
2186 if (map_z32f_x24s8) {
2187 packed_map[(y * map->w + x) * 2 + 0] = z;
2188 packed_map[(y * map->w + x) * 2 + 1] = s;
2189 } else {
2190 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2191 }
2192 }
2193 }
2194
2195 intel_miptree_unmap_raw(brw, s_mt);
2196 intel_miptree_unmap_raw(brw, z_mt);
2197
2198 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2199 __FUNCTION__,
2200 map->x, map->y, map->w, map->h,
2201 z_mt, map->x + z_image_x, map->y + z_image_y,
2202 s_mt, map->x + s_image_x, map->y + s_image_y,
2203 map->ptr, map->stride);
2204 } else {
2205 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __FUNCTION__,
2206 map->x, map->y, map->w, map->h,
2207 mt, map->ptr, map->stride);
2208 }
2209 }
2210
2211 static void
2212 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2213 struct intel_mipmap_tree *mt,
2214 struct intel_miptree_map *map,
2215 unsigned int level,
2216 unsigned int slice)
2217 {
2218 struct intel_mipmap_tree *z_mt = mt;
2219 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2220 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2221
2222 if (map->mode & GL_MAP_WRITE_BIT) {
2223 uint32_t *packed_map = map->ptr;
2224 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2225 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2226 unsigned int s_image_x, s_image_y;
2227 unsigned int z_image_x, z_image_y;
2228
2229 intel_miptree_get_image_offset(s_mt, level, slice,
2230 &s_image_x, &s_image_y);
2231 intel_miptree_get_image_offset(z_mt, level, slice,
2232 &z_image_x, &z_image_y);
2233
2234 for (uint32_t y = 0; y < map->h; y++) {
2235 for (uint32_t x = 0; x < map->w; x++) {
2236 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2237 x + s_image_x + map->x,
2238 y + s_image_y + map->y,
2239 brw->has_swizzling);
2240 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2241 (z_mt->pitch / 4) +
2242 (x + z_image_x + map->x));
2243
2244 if (map_z32f_x24s8) {
2245 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2246 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2247 } else {
2248 uint32_t packed = packed_map[y * map->w + x];
2249 s_map[s_offset] = packed >> 24;
2250 z_map[z_offset] = packed;
2251 }
2252 }
2253 }
2254
2255 intel_miptree_unmap_raw(brw, s_mt);
2256 intel_miptree_unmap_raw(brw, z_mt);
2257
2258 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2259 __FUNCTION__,
2260 map->x, map->y, map->w, map->h,
2261 z_mt, _mesa_get_format_name(z_mt->format),
2262 map->x + z_image_x, map->y + z_image_y,
2263 s_mt, map->x + s_image_x, map->y + s_image_y,
2264 map->ptr, map->stride);
2265 }
2266
2267 free(map->buffer);
2268 }
2269
2270 /**
2271 * Create and attach a map to the miptree at (level, slice). Return the
2272 * attached map.
2273 */
2274 static struct intel_miptree_map*
2275 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2276 unsigned int level,
2277 unsigned int slice,
2278 unsigned int x,
2279 unsigned int y,
2280 unsigned int w,
2281 unsigned int h,
2282 GLbitfield mode)
2283 {
2284 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2285
2286 if (!map)
2287 return NULL;
2288
2289 assert(mt->level[level].slice[slice].map == NULL);
2290 mt->level[level].slice[slice].map = map;
2291
2292 map->mode = mode;
2293 map->x = x;
2294 map->y = y;
2295 map->w = w;
2296 map->h = h;
2297
2298 return map;
2299 }
2300
2301 /**
2302 * Release the map at (level, slice).
2303 */
2304 static void
2305 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2306 unsigned int level,
2307 unsigned int slice)
2308 {
2309 struct intel_miptree_map **map;
2310
2311 map = &mt->level[level].slice[slice].map;
2312 free(*map);
2313 *map = NULL;
2314 }
2315
2316 static bool
2317 can_blit_slice(struct intel_mipmap_tree *mt,
2318 unsigned int level, unsigned int slice)
2319 {
2320 uint32_t image_x;
2321 uint32_t image_y;
2322 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2323 if (image_x >= 32768 || image_y >= 32768)
2324 return false;
2325
2326 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2327 if (mt->pitch >= 32768)
2328 return false;
2329
2330 return true;
2331 }
2332
2333 static bool
2334 use_intel_mipree_map_blit(struct brw_context *brw,
2335 struct intel_mipmap_tree *mt,
2336 GLbitfield mode,
2337 unsigned int level,
2338 unsigned int slice)
2339 {
2340 if (brw->has_llc &&
2341 /* It's probably not worth swapping to the blit ring because of
2342 * all the overhead involved.
2343 */
2344 !(mode & GL_MAP_WRITE_BIT) &&
2345 !mt->compressed &&
2346 (mt->tiling == I915_TILING_X ||
2347 /* Prior to Sandybridge, the blitter can't handle Y tiling */
2348 (brw->gen >= 6 && mt->tiling == I915_TILING_Y)) &&
2349 can_blit_slice(mt, level, slice))
2350 return true;
2351
2352 if (mt->tiling != I915_TILING_NONE &&
2353 mt->bo->size >= brw->max_gtt_map_object_size) {
2354 assert(can_blit_slice(mt, level, slice));
2355 return true;
2356 }
2357
2358 return false;
2359 }
2360
2361 /**
2362 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
2363 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
2364 * arithmetic overflow.
2365 *
2366 * If you call this function and use \a out_stride, then you're doing pointer
2367 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
2368 * bugs. The caller must still take care to avoid 32-bit overflow errors in
2369 * all arithmetic expressions that contain buffer offsets and pixel sizes,
2370 * which usually have type uint32_t or GLuint.
2371 */
2372 void
2373 intel_miptree_map(struct brw_context *brw,
2374 struct intel_mipmap_tree *mt,
2375 unsigned int level,
2376 unsigned int slice,
2377 unsigned int x,
2378 unsigned int y,
2379 unsigned int w,
2380 unsigned int h,
2381 GLbitfield mode,
2382 void **out_ptr,
2383 ptrdiff_t *out_stride)
2384 {
2385 struct intel_miptree_map *map;
2386
2387 assert(mt->num_samples <= 1);
2388
2389 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
2390 if (!map){
2391 *out_ptr = NULL;
2392 *out_stride = 0;
2393 return;
2394 }
2395
2396 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
2397 if (map->mode & GL_MAP_WRITE_BIT) {
2398 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
2399 }
2400
2401 if (mt->format == MESA_FORMAT_S_UINT8) {
2402 intel_miptree_map_s8(brw, mt, map, level, slice);
2403 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2404 !(mode & BRW_MAP_DIRECT_BIT)) {
2405 intel_miptree_map_etc(brw, mt, map, level, slice);
2406 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
2407 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
2408 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
2409 intel_miptree_map_blit(brw, mt, map, level, slice);
2410 #if defined(USE_SSE41)
2411 } else if (!(mode & GL_MAP_WRITE_BIT) && !mt->compressed && cpu_has_sse4_1) {
2412 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
2413 #endif
2414 } else {
2415 intel_miptree_map_gtt(brw, mt, map, level, slice);
2416 }
2417
2418 *out_ptr = map->ptr;
2419 *out_stride = map->stride;
2420
2421 if (map->ptr == NULL)
2422 intel_miptree_release_map(mt, level, slice);
2423 }
2424
2425 void
2426 intel_miptree_unmap(struct brw_context *brw,
2427 struct intel_mipmap_tree *mt,
2428 unsigned int level,
2429 unsigned int slice)
2430 {
2431 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
2432
2433 assert(mt->num_samples <= 1);
2434
2435 if (!map)
2436 return;
2437
2438 DBG("%s: mt %p (%s) level %d slice %d\n", __FUNCTION__,
2439 mt, _mesa_get_format_name(mt->format), level, slice);
2440
2441 if (mt->format == MESA_FORMAT_S_UINT8) {
2442 intel_miptree_unmap_s8(brw, mt, map, level, slice);
2443 } else if (mt->etc_format != MESA_FORMAT_NONE &&
2444 !(map->mode & BRW_MAP_DIRECT_BIT)) {
2445 intel_miptree_unmap_etc(brw, mt, map, level, slice);
2446 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
2447 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
2448 } else if (map->mt) {
2449 intel_miptree_unmap_blit(brw, mt, map, level, slice);
2450 #if defined(USE_SSE41)
2451 } else if (map->buffer && cpu_has_sse4_1) {
2452 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
2453 #endif
2454 } else {
2455 intel_miptree_unmap_gtt(brw, mt, map, level, slice);
2456 }
2457
2458 intel_miptree_release_map(mt, level, slice);
2459 }