i965: Drop BO_ALLOC_BUSY in intel_miptree_create_for_bo().
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* See isl_surf_get_mcs_surf for details. */
77 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
78 return false;
79
80 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
81 switch (_mesa_get_format_base_format(mt->format)) {
82 case GL_DEPTH_COMPONENT:
83 case GL_STENCIL_INDEX:
84 case GL_DEPTH_STENCIL:
85 return false;
86 default:
87 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
88 *
89 * This field must be set to 0 for all SINT MSRTs when all RT channels
90 * are not written
91 *
92 * In practice this means that we have to disable MCS for all signed
93 * integer MSAA buffers. The alternative, to disable MCS only when one
94 * of the render target channels is disabled, is impractical because it
95 * would require converting between CMS and UMS MSAA layouts on the fly,
96 * which is expensive.
97 */
98 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
99 return false;
100 } else {
101 return true;
102 }
103 }
104 }
105
106 static bool
107 intel_tiling_supports_ccs(const struct brw_context *brw,
108 enum isl_tiling tiling)
109 {
110 const struct gen_device_info *devinfo = &brw->screen->devinfo;
111
112 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
113 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
114 *
115 * - Support is limited to tiled render targets.
116 *
117 * Gen9 changes the restriction to Y-tile only.
118 */
119 if (devinfo->gen >= 9)
120 return tiling == ISL_TILING_Y0;
121 else if (devinfo->gen >= 7)
122 return tiling != ISL_TILING_LINEAR;
123 else
124 return false;
125 }
126
127 /**
128 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
129 * can be used. This doesn't (and should not) inspect any of the properties of
130 * the miptree's BO.
131 *
132 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
133 * beneath the "Fast Color Clear" bullet (p326):
134 *
135 * - Support is for non-mip-mapped and non-array surface types only.
136 *
137 * And then later, on p327:
138 *
139 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
140 * 64bpp, and 128bpp.
141 *
142 * From the Skylake documentation, it is made clear that X-tiling is no longer
143 * supported:
144 *
145 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
146 * non-MSRTs only.
147 */
148 static bool
149 intel_miptree_supports_ccs(struct brw_context *brw,
150 const struct intel_mipmap_tree *mt)
151 {
152 const struct gen_device_info *devinfo = &brw->screen->devinfo;
153
154 /* MCS support does not exist prior to Gen7 */
155 if (devinfo->gen < 7)
156 return false;
157
158 /* This function applies only to non-multisampled render targets. */
159 if (mt->surf.samples > 1)
160 return false;
161
162 /* MCS is only supported for color buffers */
163 switch (_mesa_get_format_base_format(mt->format)) {
164 case GL_DEPTH_COMPONENT:
165 case GL_DEPTH_STENCIL:
166 case GL_STENCIL_INDEX:
167 return false;
168 }
169
170 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
171 return false;
172
173 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
174 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
175 mt->surf.logical_level0_px.depth > 1;
176
177 if (arrayed) {
178 /* Multisample surfaces with the CMS layout are not layered surfaces,
179 * yet still have physical_depth0 > 1. Assert that we don't
180 * accidentally reject a multisampled surface here. We should have
181 * rejected it earlier by explicitly checking the sample count.
182 */
183 assert(mt->surf.samples == 1);
184 }
185
186 /* Handle the hardware restrictions...
187 *
188 * All GENs have the following restriction: "MCS buffer for non-MSRT is
189 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
190 *
191 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
192 * Non-MultiSampler Render Target Restrictions) Support is for
193 * non-mip-mapped and non-array surface types only.
194 *
195 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
199 *
200 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
201 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
202 * surfaces are supported with MCS buffer layout with these alignments in
203 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
204 */
205 if (devinfo->gen < 8 && (mip_mapped || arrayed))
206 return false;
207
208 /* There's no point in using an MCS buffer if the surface isn't in a
209 * renderable format.
210 */
211 if (!brw->mesa_format_supports_render[mt->format])
212 return false;
213
214 return true;
215 }
216
217 static bool
218 intel_tiling_supports_hiz(const struct brw_context *brw,
219 enum isl_tiling tiling)
220 {
221 const struct gen_device_info *devinfo = &brw->screen->devinfo;
222
223 if (devinfo->gen < 6)
224 return false;
225
226 return tiling == ISL_TILING_Y0;
227 }
228
229 static bool
230 intel_miptree_supports_hiz(const struct brw_context *brw,
231 const struct intel_mipmap_tree *mt)
232 {
233 if (!brw->has_hiz)
234 return false;
235
236 switch (mt->format) {
237 case MESA_FORMAT_Z_FLOAT32:
238 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
239 case MESA_FORMAT_Z24_UNORM_X8_UINT:
240 case MESA_FORMAT_Z24_UNORM_S8_UINT:
241 case MESA_FORMAT_Z_UNORM16:
242 return true;
243 default:
244 return false;
245 }
246 }
247
248 /**
249 * Return true if the format that will be used to access the miptree is
250 * CCS_E-compatible with the miptree's linear/non-sRGB format.
251 *
252 * Why use the linear format? Well, although the miptree may be specified with
253 * an sRGB format, the usage of that color space/format can be toggled. Since
254 * our HW tends to support more linear formats than sRGB ones, we use this
255 * format variant for check for CCS_E compatibility.
256 */
257 static bool
258 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
259 const struct intel_mipmap_tree *mt,
260 enum isl_format access_format)
261 {
262 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
263
264 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
265 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
266 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
267 }
268
269 static bool
270 intel_miptree_supports_ccs_e(struct brw_context *brw,
271 const struct intel_mipmap_tree *mt)
272 {
273 const struct gen_device_info *devinfo = &brw->screen->devinfo;
274
275 if (devinfo->gen < 9)
276 return false;
277
278 /* For now compression is only enabled for integer formats even though
279 * there exist supported floating point formats also. This is a heuristic
280 * decision based on current public benchmarks. In none of the cases these
281 * formats provided any improvement but a few cases were seen to regress.
282 * Hence these are left to to be enabled in the future when they are known
283 * to improve things.
284 */
285 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
286 return false;
287
288 if (!intel_miptree_supports_ccs(brw, mt))
289 return false;
290
291 /* Many window system buffers are sRGB even if they are never rendered as
292 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
293 * surface is used as sRGB, we fall back to CCS_D.
294 */
295 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
296 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
297 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
298 }
299
300 /**
301 * Determine depth format corresponding to a depth+stencil format,
302 * for separate stencil.
303 */
304 mesa_format
305 intel_depth_format_for_depthstencil_format(mesa_format format) {
306 switch (format) {
307 case MESA_FORMAT_Z24_UNORM_S8_UINT:
308 return MESA_FORMAT_Z24_UNORM_X8_UINT;
309 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
310 return MESA_FORMAT_Z_FLOAT32;
311 default:
312 return format;
313 }
314 }
315
316 static bool
317 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
318 unsigned depth0, struct intel_mipmap_level *table)
319 {
320 for (unsigned level = first_level; level <= last_level; level++) {
321 const unsigned d =
322 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
323
324 table[level].slice = calloc(d, sizeof(*table[0].slice));
325 if (!table[level].slice)
326 goto unwind;
327 }
328
329 return true;
330
331 unwind:
332 for (unsigned level = first_level; level <= last_level; level++)
333 free(table[level].slice);
334
335 return false;
336 }
337
338 static bool
339 needs_separate_stencil(const struct brw_context *brw,
340 struct intel_mipmap_tree *mt,
341 mesa_format format)
342 {
343 const struct gen_device_info *devinfo = &brw->screen->devinfo;
344
345 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
346 return false;
347
348 if (devinfo->must_use_separate_stencil)
349 return true;
350
351 return brw->has_separate_stencil &&
352 intel_miptree_supports_hiz(brw, mt);
353 }
354
355 /**
356 * Choose the aux usage for this miptree. This function must be called fairly
357 * late in the miptree create process after we have a tiling.
358 */
359 static void
360 intel_miptree_choose_aux_usage(struct brw_context *brw,
361 struct intel_mipmap_tree *mt)
362 {
363 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
364
365 if (intel_miptree_supports_mcs(brw, mt)) {
366 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
367 mt->aux_usage = ISL_AUX_USAGE_MCS;
368 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
369 intel_miptree_supports_ccs(brw, mt)) {
370 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
371 intel_miptree_supports_ccs_e(brw, mt)) {
372 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
373 } else {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
375 }
376 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
377 intel_miptree_supports_hiz(brw, mt)) {
378 mt->aux_usage = ISL_AUX_USAGE_HIZ;
379 }
380
381 /* We can do fast-clear on all auxiliary surface types that are
382 * allocated through the normal texture creation paths.
383 */
384 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
385 mt->supports_fast_clear = true;
386 }
387
388
389 /**
390 * Choose an appropriate uncompressed format for a requested
391 * compressed format, if unsupported.
392 */
393 mesa_format
394 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
395 {
396 const struct gen_device_info *devinfo = &brw->screen->devinfo;
397
398 /* No need to lower ETC formats on these platforms,
399 * they are supported natively.
400 */
401 if (devinfo->gen >= 8 || devinfo->is_baytrail)
402 return format;
403
404 switch (format) {
405 case MESA_FORMAT_ETC1_RGB8:
406 return MESA_FORMAT_R8G8B8X8_UNORM;
407 case MESA_FORMAT_ETC2_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_SRGB8:
410 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
411 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
412 return MESA_FORMAT_B8G8R8A8_SRGB;
413 case MESA_FORMAT_ETC2_RGBA8_EAC:
414 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
415 return MESA_FORMAT_R8G8B8A8_UNORM;
416 case MESA_FORMAT_ETC2_R11_EAC:
417 return MESA_FORMAT_R_UNORM16;
418 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
419 return MESA_FORMAT_R_SNORM16;
420 case MESA_FORMAT_ETC2_RG11_EAC:
421 return MESA_FORMAT_R16G16_UNORM;
422 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
423 return MESA_FORMAT_R16G16_SNORM;
424 default:
425 /* Non ETC1 / ETC2 format */
426 return format;
427 }
428 }
429
430 unsigned
431 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
432 {
433 if (mt->surf.dim == ISL_SURF_DIM_3D)
434 return minify(mt->surf.logical_level0_px.depth, level);
435 else
436 return mt->surf.logical_level0_px.array_len;
437 }
438
439 UNUSED static unsigned
440 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
441 {
442 /* In case of physical dimensions one needs to consider also the layout.
443 * See isl_calc_phys_level0_extent_sa().
444 */
445 if (surf->dim != ISL_SURF_DIM_3D)
446 return surf->phys_level0_sa.array_len;
447
448 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
449 return minify(surf->phys_level0_sa.array_len, level);
450
451 return minify(surf->phys_level0_sa.depth, level);
452 }
453
454 /** \brief Assert that the level and layer are valid for the miptree. */
455 void
456 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
457 uint32_t level,
458 uint32_t layer)
459 {
460 (void) mt;
461 (void) level;
462 (void) layer;
463
464 assert(level >= mt->first_level);
465 assert(level <= mt->last_level);
466 assert(layer < get_num_phys_layers(&mt->surf, level));
467 }
468
469 static enum isl_aux_state **
470 create_aux_state_map(struct intel_mipmap_tree *mt,
471 enum isl_aux_state initial)
472 {
473 const uint32_t levels = mt->last_level + 1;
474
475 uint32_t total_slices = 0;
476 for (uint32_t level = 0; level < levels; level++)
477 total_slices += brw_get_num_logical_layers(mt, level);
478
479 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
480
481 /* We're going to allocate a single chunk of data for both the per-level
482 * reference array and the arrays of aux_state. This makes cleanup
483 * significantly easier.
484 */
485 const size_t total_size = per_level_array_size +
486 total_slices * sizeof(enum isl_aux_state);
487 void *data = malloc(total_size);
488 if (data == NULL)
489 return NULL;
490
491 enum isl_aux_state **per_level_arr = data;
492 enum isl_aux_state *s = data + per_level_array_size;
493 for (uint32_t level = 0; level < levels; level++) {
494 per_level_arr[level] = s;
495 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
496 for (uint32_t a = 0; a < level_layers; a++)
497 *(s++) = initial;
498 }
499 assert((void *)s == data + total_size);
500
501 return per_level_arr;
502 }
503
504 static void
505 free_aux_state_map(enum isl_aux_state **state)
506 {
507 free(state);
508 }
509
510 static bool
511 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
512 enum isl_tiling tiling, unsigned samples)
513 {
514 if (samples > 1)
515 return false;
516
517 if (tiling == ISL_TILING_LINEAR)
518 return false;
519
520 /* If the width is much smaller than a tile, don't bother tiling. */
521 if (row_pitch < 64)
522 return true;
523
524 if (ALIGN(row_pitch, 512) >= 32768) {
525 perf_debug("row pitch %u too large to blit, falling back to untiled",
526 row_pitch);
527 return true;
528 }
529
530 return false;
531 }
532
533 static bool
534 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
535 enum isl_tiling tiling)
536 {
537 const struct gen_device_info *devinfo = &brw->screen->devinfo;
538
539 /* If the BO is too large to fit in the aperture, we need to use the
540 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
541 * handle Y-tiling, so we need to fall back to X.
542 */
543 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
544 tiling == ISL_TILING_Y0)
545 return true;
546
547 return false;
548 }
549
550 static struct intel_mipmap_tree *
551 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
552 unsigned first_level, unsigned last_level,
553 unsigned width0, unsigned height0, unsigned depth0,
554 unsigned num_samples, isl_tiling_flags_t tiling_flags,
555 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
556 unsigned row_pitch, struct brw_bo *bo)
557 {
558 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
559 if (!mt)
560 return NULL;
561
562 if (!create_mapping_table(target, first_level, last_level, depth0,
563 mt->level)) {
564 free(mt);
565 return NULL;
566 }
567
568 mt->refcount = 1;
569
570 if (target == GL_TEXTURE_CUBE_MAP ||
571 target == GL_TEXTURE_CUBE_MAP_ARRAY)
572 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
573
574 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
575 __func__,
576 _mesa_enum_to_string(target),
577 _mesa_get_format_name(format),
578 num_samples, width0, height0, depth0,
579 first_level, last_level, mt);
580
581 struct isl_surf_init_info init_info = {
582 .dim = get_isl_surf_dim(target),
583 .format = translate_tex_format(brw, format, false),
584 .width = width0,
585 .height = height0,
586 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
587 .levels = last_level - first_level + 1,
588 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
589 .samples = num_samples,
590 .row_pitch = row_pitch,
591 .usage = isl_usage_flags,
592 .tiling_flags = tiling_flags,
593 };
594
595 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
596 goto fail;
597
598 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
599 * on gen7 platforms we also need to create Y-tiled copies of stencil for
600 * texturing since the hardware can't sample from W-tiled surfaces. For
601 * everything else, check for corner cases needing special treatment.
602 */
603 bool is_depth_stencil =
604 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
605 if (!is_depth_stencil) {
606 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
607 mt->surf.tiling, mt->surf.samples)) {
608 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
609 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
610 goto fail;
611 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
612 init_info.tiling_flags = 1u << ISL_TILING_X;
613 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
614 goto fail;
615 }
616 }
617
618 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
619 * the size may not be multiple of row_pitch.
620 * See isl_apply_surface_padding().
621 */
622 if (mt->surf.tiling != ISL_TILING_LINEAR)
623 assert(mt->surf.size % mt->surf.row_pitch == 0);
624
625 if (!bo) {
626 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
627 mt->surf.size,
628 isl_tiling_to_i915_tiling(
629 mt->surf.tiling),
630 mt->surf.row_pitch, alloc_flags);
631 if (!mt->bo)
632 goto fail;
633 } else {
634 mt->bo = bo;
635 }
636
637 mt->first_level = first_level;
638 mt->last_level = last_level;
639 mt->target = target;
640 mt->format = format;
641 mt->aux_state = NULL;
642 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
643 mt->compressed = _mesa_is_format_compressed(format);
644 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
645
646 return mt;
647
648 fail:
649 intel_miptree_release(&mt);
650 return NULL;
651 }
652
653 static bool
654 make_separate_stencil_surface(struct brw_context *brw,
655 struct intel_mipmap_tree *mt)
656 {
657 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
658 0, mt->surf.levels - 1,
659 mt->surf.logical_level0_px.width,
660 mt->surf.logical_level0_px.height,
661 mt->surf.dim == ISL_SURF_DIM_3D ?
662 mt->surf.logical_level0_px.depth :
663 mt->surf.logical_level0_px.array_len,
664 mt->surf.samples, ISL_TILING_W_BIT,
665 ISL_SURF_USAGE_STENCIL_BIT |
666 ISL_SURF_USAGE_TEXTURE_BIT,
667 BO_ALLOC_BUSY, 0, NULL);
668
669 if (!mt->stencil_mt)
670 return false;
671
672 mt->stencil_mt->r8stencil_needs_update = true;
673
674 return true;
675 }
676
677 static struct intel_mipmap_tree *
678 miptree_create(struct brw_context *brw,
679 GLenum target,
680 mesa_format format,
681 GLuint first_level,
682 GLuint last_level,
683 GLuint width0,
684 GLuint height0,
685 GLuint depth0,
686 GLuint num_samples,
687 enum intel_miptree_create_flags flags)
688 {
689 const struct gen_device_info *devinfo = &brw->screen->devinfo;
690
691 if (format == MESA_FORMAT_S_UINT8)
692 return make_surface(brw, target, format, first_level, last_level,
693 width0, height0, depth0, num_samples,
694 ISL_TILING_W_BIT,
695 ISL_SURF_USAGE_STENCIL_BIT |
696 ISL_SURF_USAGE_TEXTURE_BIT,
697 BO_ALLOC_BUSY,
698 0,
699 NULL);
700
701 const GLenum base_format = _mesa_get_format_base_format(format);
702 if ((base_format == GL_DEPTH_COMPONENT ||
703 base_format == GL_DEPTH_STENCIL) &&
704 !(flags & MIPTREE_CREATE_LINEAR)) {
705 /* Fix up the Z miptree format for how we're splitting out separate
706 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
707 */
708 const mesa_format depth_only_format =
709 intel_depth_format_for_depthstencil_format(format);
710 struct intel_mipmap_tree *mt = make_surface(
711 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
712 first_level, last_level,
713 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
714 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
715 BO_ALLOC_BUSY, 0, NULL);
716
717 if (needs_separate_stencil(brw, mt, format) &&
718 !make_separate_stencil_surface(brw, mt)) {
719 intel_miptree_release(&mt);
720 return NULL;
721 }
722
723 if (!(flags & MIPTREE_CREATE_NO_AUX))
724 intel_miptree_choose_aux_usage(brw, mt);
725
726 return mt;
727 }
728
729 mesa_format tex_format = format;
730 mesa_format etc_format = MESA_FORMAT_NONE;
731 uint32_t alloc_flags = 0;
732
733 format = intel_lower_compressed_format(brw, format);
734
735 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
736
737 if (flags & MIPTREE_CREATE_BUSY)
738 alloc_flags |= BO_ALLOC_BUSY;
739
740 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
741 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
742
743 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
744 if (devinfo->gen < 6)
745 tiling_flags &= ~ISL_TILING_Y0_BIT;
746
747 struct intel_mipmap_tree *mt = make_surface(
748 brw, target, format,
749 first_level, last_level,
750 width0, height0, depth0,
751 num_samples, tiling_flags,
752 ISL_SURF_USAGE_RENDER_TARGET_BIT |
753 ISL_SURF_USAGE_TEXTURE_BIT,
754 alloc_flags, 0, NULL);
755 if (!mt)
756 return NULL;
757
758 mt->etc_format = etc_format;
759
760 if (!(flags & MIPTREE_CREATE_NO_AUX))
761 intel_miptree_choose_aux_usage(brw, mt);
762
763 return mt;
764 }
765
766 struct intel_mipmap_tree *
767 intel_miptree_create(struct brw_context *brw,
768 GLenum target,
769 mesa_format format,
770 GLuint first_level,
771 GLuint last_level,
772 GLuint width0,
773 GLuint height0,
774 GLuint depth0,
775 GLuint num_samples,
776 enum intel_miptree_create_flags flags)
777 {
778 assert(num_samples > 0);
779
780 struct intel_mipmap_tree *mt = miptree_create(
781 brw, target, format,
782 first_level, last_level,
783 width0, height0, depth0, num_samples,
784 flags);
785 if (!mt)
786 return NULL;
787
788 mt->offset = 0;
789
790 if (!intel_miptree_alloc_aux(brw, mt)) {
791 intel_miptree_release(&mt);
792 return NULL;
793 }
794
795 return mt;
796 }
797
798 struct intel_mipmap_tree *
799 intel_miptree_create_for_bo(struct brw_context *brw,
800 struct brw_bo *bo,
801 mesa_format format,
802 uint32_t offset,
803 uint32_t width,
804 uint32_t height,
805 uint32_t depth,
806 int pitch,
807 enum isl_tiling tiling,
808 enum intel_miptree_create_flags flags)
809 {
810 const struct gen_device_info *devinfo = &brw->screen->devinfo;
811 struct intel_mipmap_tree *mt;
812 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
813 const GLenum base_format = _mesa_get_format_base_format(format);
814
815 if ((base_format == GL_DEPTH_COMPONENT ||
816 base_format == GL_DEPTH_STENCIL)) {
817 const mesa_format depth_only_format =
818 intel_depth_format_for_depthstencil_format(format);
819 mt = make_surface(brw, target,
820 devinfo->gen >= 6 ? depth_only_format : format,
821 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
822 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
823 0, pitch, bo);
824 if (!mt)
825 return NULL;
826
827 brw_bo_reference(bo);
828
829 if (!(flags & MIPTREE_CREATE_NO_AUX))
830 intel_miptree_choose_aux_usage(brw, mt);
831
832 return mt;
833 } else if (format == MESA_FORMAT_S_UINT8) {
834 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
835 0, 0, width, height, depth, 1,
836 ISL_TILING_W_BIT,
837 ISL_SURF_USAGE_STENCIL_BIT |
838 ISL_SURF_USAGE_TEXTURE_BIT,
839 0, pitch, bo);
840 if (!mt)
841 return NULL;
842
843 assert(bo->size >= mt->surf.size);
844
845 brw_bo_reference(bo);
846 return mt;
847 }
848
849 /* Nothing will be able to use this miptree with the BO if the offset isn't
850 * aligned.
851 */
852 if (tiling != ISL_TILING_LINEAR)
853 assert(offset % 4096 == 0);
854
855 /* miptrees can't handle negative pitch. If you need flipping of images,
856 * that's outside of the scope of the mt.
857 */
858 assert(pitch >= 0);
859
860 /* The BO already has a tiling format and we shouldn't confuse the lower
861 * layers by making it try to find a tiling format again.
862 */
863 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
864
865 mt = make_surface(brw, target, format,
866 0, 0, width, height, depth, 1,
867 1lu << tiling,
868 ISL_SURF_USAGE_RENDER_TARGET_BIT |
869 ISL_SURF_USAGE_TEXTURE_BIT,
870 0, pitch, bo);
871 if (!mt)
872 return NULL;
873
874 brw_bo_reference(bo);
875 mt->bo = bo;
876 mt->offset = offset;
877
878 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
879 intel_miptree_choose_aux_usage(brw, mt);
880
881 if (!intel_miptree_alloc_aux(brw, mt)) {
882 intel_miptree_release(&mt);
883 return NULL;
884 }
885 }
886
887 return mt;
888 }
889
890 static struct intel_mipmap_tree *
891 miptree_create_for_planar_image(struct brw_context *brw,
892 __DRIimage *image, GLenum target,
893 enum isl_tiling tiling)
894 {
895 const struct intel_image_format *f = image->planar_format;
896 struct intel_mipmap_tree *planar_mt = NULL;
897
898 for (int i = 0; i < f->nplanes; i++) {
899 const int index = f->planes[i].buffer_index;
900 const uint32_t dri_format = f->planes[i].dri_format;
901 const mesa_format format = driImageFormatToGLFormat(dri_format);
902 const uint32_t width = image->width >> f->planes[i].width_shift;
903 const uint32_t height = image->height >> f->planes[i].height_shift;
904
905 /* Disable creation of the texture's aux buffers because the driver
906 * exposes no EGL API to manage them. That is, there is no API for
907 * resolving the aux buffer's content to the main buffer nor for
908 * invalidating the aux buffer's content.
909 */
910 struct intel_mipmap_tree *mt =
911 intel_miptree_create_for_bo(brw, image->bo, format,
912 image->offsets[index],
913 width, height, 1,
914 image->strides[index],
915 tiling,
916 MIPTREE_CREATE_NO_AUX);
917 if (mt == NULL)
918 return NULL;
919
920 mt->target = target;
921
922 if (i == 0)
923 planar_mt = mt;
924 else
925 planar_mt->plane[i - 1] = mt;
926 }
927
928 planar_mt->drm_modifier = image->modifier;
929
930 return planar_mt;
931 }
932
933 static bool
934 create_ccs_buf_for_image(struct brw_context *brw,
935 __DRIimage *image,
936 struct intel_mipmap_tree *mt,
937 enum isl_aux_state initial_state)
938 {
939 struct isl_surf temp_ccs_surf;
940
941 /* CCS is only supported for very simple miptrees */
942 assert(image->aux_offset != 0 && image->aux_pitch != 0);
943 assert(image->tile_x == 0 && image->tile_y == 0);
944 assert(mt->surf.samples == 1);
945 assert(mt->surf.levels == 1);
946 assert(mt->surf.logical_level0_px.depth == 1);
947 assert(mt->surf.logical_level0_px.array_len == 1);
948 assert(mt->first_level == 0);
949 assert(mt->last_level == 0);
950
951 /* We shouldn't already have a CCS */
952 assert(!mt->mcs_buf);
953
954 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
955 image->aux_pitch))
956 return false;
957
958 assert(image->aux_offset < image->bo->size);
959 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
960
961 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
962 if (mt->mcs_buf == NULL)
963 return false;
964
965 mt->aux_state = create_aux_state_map(mt, initial_state);
966 if (!mt->aux_state) {
967 free(mt->mcs_buf);
968 mt->mcs_buf = NULL;
969 return false;
970 }
971
972 mt->mcs_buf->bo = image->bo;
973 brw_bo_reference(image->bo);
974
975 mt->mcs_buf->offset = image->aux_offset;
976 mt->mcs_buf->size = image->bo->size - image->aux_offset;
977 mt->mcs_buf->pitch = image->aux_pitch;
978 mt->mcs_buf->qpitch = 0;
979 mt->mcs_buf->surf = temp_ccs_surf;
980
981 return true;
982 }
983
984 struct intel_mipmap_tree *
985 intel_miptree_create_for_dri_image(struct brw_context *brw,
986 __DRIimage *image, GLenum target,
987 mesa_format format,
988 bool is_winsys_image)
989 {
990 uint32_t bo_tiling, bo_swizzle;
991 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
992
993 const struct isl_drm_modifier_info *mod_info =
994 isl_drm_modifier_get_info(image->modifier);
995
996 const enum isl_tiling tiling =
997 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
998
999 if (image->planar_format && image->planar_format->nplanes > 1)
1000 return miptree_create_for_planar_image(brw, image, target, tiling);
1001
1002 if (image->planar_format)
1003 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1004
1005 if (!brw->ctx.TextureFormatSupported[format]) {
1006 /* The texture storage paths in core Mesa detect if the driver does not
1007 * support the user-requested format, and then searches for a
1008 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1009 * do the fallbacks here for important formats.
1010 *
1011 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1012 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1013 * the Chrome OS compositor consumes as dma_buf EGLImages.
1014 */
1015 format = _mesa_format_fallback_rgbx_to_rgba(format);
1016 }
1017
1018 if (!brw->ctx.TextureFormatSupported[format])
1019 return NULL;
1020
1021 enum intel_miptree_create_flags mt_create_flags = 0;
1022
1023 /* If this image comes in from a window system, we have different
1024 * requirements than if it comes in via an EGL import operation. Window
1025 * system images can use any form of auxiliary compression we wish because
1026 * they get "flushed" before being handed off to the window system and we
1027 * have the opportunity to do resolves. Non window-system images, on the
1028 * other hand, have no resolve point so we can't have aux without a
1029 * modifier.
1030 */
1031 if (!is_winsys_image)
1032 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1033
1034 /* If we have a modifier which specifies aux, don't create one yet */
1035 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1036 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1037
1038 /* Disable creation of the texture's aux buffers because the driver exposes
1039 * no EGL API to manage them. That is, there is no API for resolving the aux
1040 * buffer's content to the main buffer nor for invalidating the aux buffer's
1041 * content.
1042 */
1043 struct intel_mipmap_tree *mt =
1044 intel_miptree_create_for_bo(brw, image->bo, format,
1045 image->offset, image->width, image->height, 1,
1046 image->pitch, tiling, mt_create_flags);
1047 if (mt == NULL)
1048 return NULL;
1049
1050 mt->target = target;
1051 mt->level[0].level_x = image->tile_x;
1052 mt->level[0].level_y = image->tile_y;
1053 mt->drm_modifier = image->modifier;
1054
1055 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1056 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1057 * trouble resolving back to destination image due to alignment issues.
1058 */
1059 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1060 if (!devinfo->has_surface_tile_offset) {
1061 uint32_t draw_x, draw_y;
1062 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1063
1064 if (draw_x != 0 || draw_y != 0) {
1065 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1066 intel_miptree_release(&mt);
1067 return NULL;
1068 }
1069 }
1070
1071 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1072 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1073
1074 mt->aux_usage = mod_info->aux_usage;
1075 /* If we are a window system buffer, then we can support fast-clears
1076 * even if the modifier doesn't support them by doing a partial resolve
1077 * as part of the flush operation.
1078 */
1079 mt->supports_fast_clear =
1080 is_winsys_image || mod_info->supports_clear_color;
1081
1082 /* We don't know the actual state of the surface when we get it but we
1083 * can make a pretty good guess based on the modifier. What we do know
1084 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1085 * a worst case of compression.
1086 */
1087 enum isl_aux_state initial_state =
1088 isl_drm_modifier_get_default_aux_state(image->modifier);
1089
1090 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1091 intel_miptree_release(&mt);
1092 return NULL;
1093 }
1094 }
1095
1096 /* Don't assume coherency for imported EGLimages. We don't know what
1097 * external clients are going to do with it. They may scan it out.
1098 */
1099 image->bo->cache_coherent = false;
1100
1101 return mt;
1102 }
1103
1104 /**
1105 * For a singlesample renderbuffer, this simply wraps the given BO with a
1106 * miptree.
1107 *
1108 * For a multisample renderbuffer, this wraps the window system's
1109 * (singlesample) BO with a singlesample miptree attached to the
1110 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1111 * that will contain the actual rendering (which is lazily resolved to
1112 * irb->singlesample_mt).
1113 */
1114 bool
1115 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1116 struct intel_renderbuffer *irb,
1117 struct intel_mipmap_tree *singlesample_mt,
1118 uint32_t width, uint32_t height,
1119 uint32_t pitch)
1120 {
1121 struct intel_mipmap_tree *multisample_mt = NULL;
1122 struct gl_renderbuffer *rb = &irb->Base.Base;
1123 mesa_format format = rb->Format;
1124 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1125
1126 /* Only the front and back buffers, which are color buffers, are allocated
1127 * through the image loader.
1128 */
1129 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1130 _mesa_get_format_base_format(format) == GL_RGBA);
1131
1132 assert(singlesample_mt);
1133
1134 if (num_samples == 1) {
1135 intel_miptree_release(&irb->mt);
1136 irb->mt = singlesample_mt;
1137
1138 assert(!irb->singlesample_mt);
1139 } else {
1140 intel_miptree_release(&irb->singlesample_mt);
1141 irb->singlesample_mt = singlesample_mt;
1142
1143 if (!irb->mt ||
1144 irb->mt->surf.logical_level0_px.width != width ||
1145 irb->mt->surf.logical_level0_px.height != height) {
1146 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1147 format,
1148 width,
1149 height,
1150 num_samples);
1151 if (!multisample_mt)
1152 goto fail;
1153
1154 irb->need_downsample = false;
1155 intel_miptree_release(&irb->mt);
1156 irb->mt = multisample_mt;
1157 }
1158 }
1159 return true;
1160
1161 fail:
1162 intel_miptree_release(&irb->mt);
1163 return false;
1164 }
1165
1166 struct intel_mipmap_tree*
1167 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1168 mesa_format format,
1169 uint32_t width,
1170 uint32_t height,
1171 uint32_t num_samples)
1172 {
1173 struct intel_mipmap_tree *mt;
1174 uint32_t depth = 1;
1175 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1176
1177 mt = intel_miptree_create(brw, target, format, 0, 0,
1178 width, height, depth, num_samples,
1179 MIPTREE_CREATE_BUSY);
1180 if (!mt)
1181 goto fail;
1182
1183 return mt;
1184
1185 fail:
1186 intel_miptree_release(&mt);
1187 return NULL;
1188 }
1189
1190 void
1191 intel_miptree_reference(struct intel_mipmap_tree **dst,
1192 struct intel_mipmap_tree *src)
1193 {
1194 if (*dst == src)
1195 return;
1196
1197 intel_miptree_release(dst);
1198
1199 if (src) {
1200 src->refcount++;
1201 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1202 }
1203
1204 *dst = src;
1205 }
1206
1207 static void
1208 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1209 {
1210 if (aux_buf == NULL)
1211 return;
1212
1213 brw_bo_unreference(aux_buf->bo);
1214
1215 free(aux_buf);
1216 }
1217
1218 void
1219 intel_miptree_release(struct intel_mipmap_tree **mt)
1220 {
1221 if (!*mt)
1222 return;
1223
1224 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1225 if (--(*mt)->refcount <= 0) {
1226 GLuint i;
1227
1228 DBG("%s deleting %p\n", __func__, *mt);
1229
1230 brw_bo_unreference((*mt)->bo);
1231 intel_miptree_release(&(*mt)->stencil_mt);
1232 intel_miptree_release(&(*mt)->r8stencil_mt);
1233 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1234 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1235 free_aux_state_map((*mt)->aux_state);
1236
1237 intel_miptree_release(&(*mt)->plane[0]);
1238 intel_miptree_release(&(*mt)->plane[1]);
1239
1240 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1241 free((*mt)->level[i].slice);
1242 }
1243
1244 free(*mt);
1245 }
1246 *mt = NULL;
1247 }
1248
1249
1250 void
1251 intel_get_image_dims(struct gl_texture_image *image,
1252 int *width, int *height, int *depth)
1253 {
1254 switch (image->TexObject->Target) {
1255 case GL_TEXTURE_1D_ARRAY:
1256 /* For a 1D Array texture the OpenGL API will treat the image height as
1257 * the number of array slices. For Intel hardware, we treat the 1D array
1258 * as a 2D Array with a height of 1. So, here we want to swap image
1259 * height and depth.
1260 */
1261 assert(image->Depth == 1);
1262 *width = image->Width;
1263 *height = 1;
1264 *depth = image->Height;
1265 break;
1266 case GL_TEXTURE_CUBE_MAP:
1267 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1268 * though we really have 6 slices.
1269 */
1270 assert(image->Depth == 1);
1271 *width = image->Width;
1272 *height = image->Height;
1273 *depth = 6;
1274 break;
1275 default:
1276 *width = image->Width;
1277 *height = image->Height;
1278 *depth = image->Depth;
1279 break;
1280 }
1281 }
1282
1283 /**
1284 * Can the image be pulled into a unified mipmap tree? This mirrors
1285 * the completeness test in a lot of ways.
1286 *
1287 * Not sure whether I want to pass gl_texture_image here.
1288 */
1289 bool
1290 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1291 struct gl_texture_image *image)
1292 {
1293 struct intel_texture_image *intelImage = intel_texture_image(image);
1294 GLuint level = intelImage->base.Base.Level;
1295 int width, height, depth;
1296
1297 /* glTexImage* choose the texture object based on the target passed in, and
1298 * objects can't change targets over their lifetimes, so this should be
1299 * true.
1300 */
1301 assert(image->TexObject->Target == mt->target);
1302
1303 mesa_format mt_format = mt->format;
1304 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1305 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1306 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1307 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1308 if (mt->etc_format != MESA_FORMAT_NONE)
1309 mt_format = mt->etc_format;
1310
1311 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1312 _mesa_get_srgb_format_linear(mt_format))
1313 return false;
1314
1315 intel_get_image_dims(image, &width, &height, &depth);
1316
1317 if (mt->target == GL_TEXTURE_CUBE_MAP)
1318 depth = 6;
1319
1320 if (level >= mt->surf.levels)
1321 return false;
1322
1323 const unsigned level_depth =
1324 mt->surf.dim == ISL_SURF_DIM_3D ?
1325 minify(mt->surf.logical_level0_px.depth, level) :
1326 mt->surf.logical_level0_px.array_len;
1327
1328 return width == minify(mt->surf.logical_level0_px.width, level) &&
1329 height == minify(mt->surf.logical_level0_px.height, level) &&
1330 depth == level_depth &&
1331 MAX2(image->NumSamples, 1) == mt->surf.samples;
1332 }
1333
1334 void
1335 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1336 GLuint level, GLuint slice,
1337 GLuint *x, GLuint *y)
1338 {
1339 if (level == 0 && slice == 0) {
1340 *x = mt->level[0].level_x;
1341 *y = mt->level[0].level_y;
1342 return;
1343 }
1344
1345 uint32_t x_offset_sa, y_offset_sa;
1346
1347 /* Miptree itself can have an offset only if it represents a single
1348 * slice in an imported buffer object.
1349 * See intel_miptree_create_for_dri_image().
1350 */
1351 assert(mt->level[0].level_x == 0);
1352 assert(mt->level[0].level_y == 0);
1353
1354 /* Given level is relative to level zero while the miptree may be
1355 * represent just a subset of all levels starting from 'first_level'.
1356 */
1357 assert(level >= mt->first_level);
1358 level -= mt->first_level;
1359
1360 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1361 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1362 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1363 &x_offset_sa, &y_offset_sa);
1364
1365 *x = x_offset_sa;
1366 *y = y_offset_sa;
1367 }
1368
1369
1370 /**
1371 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1372 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1373 * and tile_h is set to 1.
1374 */
1375 void
1376 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1377 uint32_t *tile_w, uint32_t *tile_h)
1378 {
1379 switch (tiling) {
1380 case ISL_TILING_X:
1381 *tile_w = 512;
1382 *tile_h = 8;
1383 break;
1384 case ISL_TILING_Y0:
1385 *tile_w = 128;
1386 *tile_h = 32;
1387 break;
1388 case ISL_TILING_LINEAR:
1389 *tile_w = cpp;
1390 *tile_h = 1;
1391 break;
1392 default:
1393 unreachable("not reached");
1394 }
1395 }
1396
1397
1398 /**
1399 * This function computes masks that may be used to select the bits of the X
1400 * and Y coordinates that indicate the offset within a tile. If the BO is
1401 * untiled, the masks are set to 0.
1402 */
1403 void
1404 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1405 uint32_t *mask_x, uint32_t *mask_y)
1406 {
1407 uint32_t tile_w_bytes, tile_h;
1408
1409 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1410
1411 *mask_x = tile_w_bytes / cpp - 1;
1412 *mask_y = tile_h - 1;
1413 }
1414
1415 /**
1416 * Compute the offset (in bytes) from the start of the BO to the given x
1417 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1418 * multiples of the tile size.
1419 */
1420 uint32_t
1421 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1422 uint32_t x, uint32_t y)
1423 {
1424 int cpp = mt->cpp;
1425 uint32_t pitch = mt->surf.row_pitch;
1426
1427 switch (mt->surf.tiling) {
1428 default:
1429 unreachable("not reached");
1430 case ISL_TILING_LINEAR:
1431 return y * pitch + x * cpp;
1432 case ISL_TILING_X:
1433 assert((x % (512 / cpp)) == 0);
1434 assert((y % 8) == 0);
1435 return y * pitch + x / (512 / cpp) * 4096;
1436 case ISL_TILING_Y0:
1437 assert((x % (128 / cpp)) == 0);
1438 assert((y % 32) == 0);
1439 return y * pitch + x / (128 / cpp) * 4096;
1440 }
1441 }
1442
1443 /**
1444 * Rendering with tiled buffers requires that the base address of the buffer
1445 * be aligned to a page boundary. For renderbuffers, and sometimes with
1446 * textures, we may want the surface to point at a texture image level that
1447 * isn't at a page boundary.
1448 *
1449 * This function returns an appropriately-aligned base offset
1450 * according to the tiling restrictions, plus any required x/y offset
1451 * from there.
1452 */
1453 uint32_t
1454 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1455 GLuint level, GLuint slice,
1456 uint32_t *tile_x,
1457 uint32_t *tile_y)
1458 {
1459 uint32_t x, y;
1460 uint32_t mask_x, mask_y;
1461
1462 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1463 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1464
1465 *tile_x = x & mask_x;
1466 *tile_y = y & mask_y;
1467
1468 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1469 }
1470
1471 static void
1472 intel_miptree_copy_slice_sw(struct brw_context *brw,
1473 struct intel_mipmap_tree *src_mt,
1474 unsigned src_level, unsigned src_layer,
1475 struct intel_mipmap_tree *dst_mt,
1476 unsigned dst_level, unsigned dst_layer,
1477 unsigned width, unsigned height)
1478 {
1479 void *src, *dst;
1480 ptrdiff_t src_stride, dst_stride;
1481 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1482
1483 intel_miptree_map(brw, src_mt,
1484 src_level, src_layer,
1485 0, 0,
1486 width, height,
1487 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1488 &src, &src_stride);
1489
1490 intel_miptree_map(brw, dst_mt,
1491 dst_level, dst_layer,
1492 0, 0,
1493 width, height,
1494 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1495 BRW_MAP_DIRECT_BIT,
1496 &dst, &dst_stride);
1497
1498 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1499 _mesa_get_format_name(src_mt->format),
1500 src_mt, src, src_stride,
1501 _mesa_get_format_name(dst_mt->format),
1502 dst_mt, dst, dst_stride,
1503 width, height);
1504
1505 int row_size = cpp * width;
1506 if (src_stride == row_size &&
1507 dst_stride == row_size) {
1508 memcpy(dst, src, row_size * height);
1509 } else {
1510 for (int i = 0; i < height; i++) {
1511 memcpy(dst, src, row_size);
1512 dst += dst_stride;
1513 src += src_stride;
1514 }
1515 }
1516
1517 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1518 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1519
1520 /* Don't forget to copy the stencil data over, too. We could have skipped
1521 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1522 * shuffling the two data sources in/out of temporary storage instead of
1523 * the direct mapping we get this way.
1524 */
1525 if (dst_mt->stencil_mt) {
1526 assert(src_mt->stencil_mt);
1527 intel_miptree_copy_slice_sw(brw,
1528 src_mt->stencil_mt, src_level, src_layer,
1529 dst_mt->stencil_mt, dst_level, dst_layer,
1530 width, height);
1531 }
1532 }
1533
1534 void
1535 intel_miptree_copy_slice(struct brw_context *brw,
1536 struct intel_mipmap_tree *src_mt,
1537 unsigned src_level, unsigned src_layer,
1538 struct intel_mipmap_tree *dst_mt,
1539 unsigned dst_level, unsigned dst_layer)
1540
1541 {
1542 mesa_format format = src_mt->format;
1543 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1544 src_level - src_mt->first_level);
1545 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1546 src_level - src_mt->first_level);
1547
1548 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1549 src_level - src_mt->first_level));
1550
1551 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1552 _mesa_get_srgb_format_linear(dst_mt->format));
1553
1554 if (dst_mt->compressed) {
1555 unsigned int i, j;
1556 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1557 height = ALIGN_NPOT(height, j) / j;
1558 width = ALIGN_NPOT(width, i) / i;
1559 }
1560
1561 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1562 * below won't apply since we can't do the depth's Y tiling or the
1563 * stencil's W tiling in the blitter.
1564 */
1565 if (src_mt->stencil_mt) {
1566 intel_miptree_copy_slice_sw(brw,
1567 src_mt, src_level, src_layer,
1568 dst_mt, dst_level, dst_layer,
1569 width, height);
1570 return;
1571 }
1572
1573 uint32_t dst_x, dst_y, src_x, src_y;
1574 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1575 &dst_x, &dst_y);
1576 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1577 &src_x, &src_y);
1578
1579 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1580 _mesa_get_format_name(src_mt->format),
1581 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1582 _mesa_get_format_name(dst_mt->format),
1583 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1584 width, height);
1585
1586 if (!intel_miptree_blit(brw,
1587 src_mt, src_level, src_layer, 0, 0, false,
1588 dst_mt, dst_level, dst_layer, 0, 0, false,
1589 width, height, COLOR_LOGICOP_COPY)) {
1590 perf_debug("miptree validate blit for %s failed\n",
1591 _mesa_get_format_name(format));
1592
1593 intel_miptree_copy_slice_sw(brw,
1594 src_mt, src_level, src_layer,
1595 dst_mt, dst_level, dst_layer,
1596 width, height);
1597 }
1598 }
1599
1600 /**
1601 * Copies the image's current data to the given miptree, and associates that
1602 * miptree with the image.
1603 */
1604 void
1605 intel_miptree_copy_teximage(struct brw_context *brw,
1606 struct intel_texture_image *intelImage,
1607 struct intel_mipmap_tree *dst_mt)
1608 {
1609 struct intel_mipmap_tree *src_mt = intelImage->mt;
1610 struct intel_texture_object *intel_obj =
1611 intel_texture_object(intelImage->base.Base.TexObject);
1612 int level = intelImage->base.Base.Level;
1613 const unsigned face = intelImage->base.Base.Face;
1614 unsigned start_layer, end_layer;
1615
1616 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1617 assert(face == 0);
1618 assert(intelImage->base.Base.Height);
1619 start_layer = 0;
1620 end_layer = intelImage->base.Base.Height - 1;
1621 } else if (face > 0) {
1622 start_layer = face;
1623 end_layer = face;
1624 } else {
1625 assert(intelImage->base.Base.Depth);
1626 start_layer = 0;
1627 end_layer = intelImage->base.Base.Depth - 1;
1628 }
1629
1630 for (unsigned i = start_layer; i <= end_layer; i++) {
1631 intel_miptree_copy_slice(brw,
1632 src_mt, level, i,
1633 dst_mt, level, i);
1634 }
1635
1636 intel_miptree_reference(&intelImage->mt, dst_mt);
1637 intel_obj->needs_validate = true;
1638 }
1639
1640 static void
1641 intel_miptree_init_mcs(struct brw_context *brw,
1642 struct intel_mipmap_tree *mt,
1643 int init_value)
1644 {
1645 assert(mt->mcs_buf != NULL);
1646
1647 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1648 *
1649 * When MCS buffer is enabled and bound to MSRT, it is required that it
1650 * is cleared prior to any rendering.
1651 *
1652 * Since we don't use the MCS buffer for any purpose other than rendering,
1653 * it makes sense to just clear it immediately upon allocation.
1654 *
1655 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1656 */
1657 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE | MAP_RAW);
1658 if (unlikely(map == NULL)) {
1659 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1660 brw_bo_unreference(mt->mcs_buf->bo);
1661 free(mt->mcs_buf);
1662 return;
1663 }
1664 void *data = map;
1665 memset(data, init_value, mt->mcs_buf->size);
1666 brw_bo_unmap(mt->mcs_buf->bo);
1667 }
1668
1669 static struct intel_miptree_aux_buffer *
1670 intel_alloc_aux_buffer(struct brw_context *brw,
1671 const char *name,
1672 const struct isl_surf *aux_surf,
1673 uint32_t alloc_flags,
1674 struct intel_mipmap_tree *mt)
1675 {
1676 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1677 if (!buf)
1678 return false;
1679
1680 buf->size = aux_surf->size;
1681 buf->pitch = aux_surf->row_pitch;
1682 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1683
1684 /* ISL has stricter set of alignment rules then the drm allocator.
1685 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1686 * trying to recalculate based on different format block sizes.
1687 */
1688 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1689 I915_TILING_Y, buf->pitch, alloc_flags);
1690 if (!buf->bo) {
1691 free(buf);
1692 return NULL;
1693 }
1694
1695 buf->surf = *aux_surf;
1696
1697 return buf;
1698 }
1699
1700 static bool
1701 intel_miptree_alloc_mcs(struct brw_context *brw,
1702 struct intel_mipmap_tree *mt,
1703 GLuint num_samples)
1704 {
1705 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1706 assert(mt->mcs_buf == NULL);
1707 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1708
1709 /* Multisampled miptrees are only supported for single level. */
1710 assert(mt->first_level == 0);
1711 enum isl_aux_state **aux_state =
1712 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1713 if (!aux_state)
1714 return false;
1715
1716 struct isl_surf temp_mcs_surf;
1717
1718 MAYBE_UNUSED bool ok =
1719 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1720 assert(ok);
1721
1722 /* Buffer needs to be initialised requiring the buffer to be immediately
1723 * mapped to cpu space for writing. Therefore do not use the gpu access
1724 * flag which can cause an unnecessary delay if the backing pages happened
1725 * to be just used by the GPU.
1726 */
1727 const uint32_t alloc_flags = 0;
1728 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1729 &temp_mcs_surf, alloc_flags, mt);
1730 if (!mt->mcs_buf) {
1731 free(aux_state);
1732 return false;
1733 }
1734
1735 mt->aux_state = aux_state;
1736
1737 intel_miptree_init_mcs(brw, mt, 0xFF);
1738
1739 return true;
1740 }
1741
1742 bool
1743 intel_miptree_alloc_ccs(struct brw_context *brw,
1744 struct intel_mipmap_tree *mt)
1745 {
1746 assert(mt->mcs_buf == NULL);
1747 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1748 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1749
1750 struct isl_surf temp_ccs_surf;
1751
1752 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1753 return false;
1754
1755 assert(temp_ccs_surf.size &&
1756 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1757
1758 enum isl_aux_state **aux_state =
1759 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1760 if (!aux_state)
1761 return false;
1762
1763 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1764 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1765 *
1766 * "If Software wants to enable Color Compression without Fast clear,
1767 * Software needs to initialize MCS with zeros."
1768 *
1769 * A CCS value of 0 indicates that the corresponding block is in the
1770 * pass-through state which is what we want.
1771 *
1772 * For CCS_D, on the other hand, we don't care as we're about to perform a
1773 * fast-clear operation. In that case, being hot in caches more useful.
1774 */
1775 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1776 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1777 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1778 &temp_ccs_surf, alloc_flags, mt);
1779 if (!mt->mcs_buf) {
1780 free(aux_state);
1781 return false;
1782 }
1783
1784 mt->aux_state = aux_state;
1785
1786 return true;
1787 }
1788
1789 /**
1790 * Helper for intel_miptree_alloc_hiz() that sets
1791 * \c mt->level[level].has_hiz. Return true if and only if
1792 * \c has_hiz was set.
1793 */
1794 static bool
1795 intel_miptree_level_enable_hiz(struct brw_context *brw,
1796 struct intel_mipmap_tree *mt,
1797 uint32_t level)
1798 {
1799 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1800
1801 assert(mt->hiz_buf);
1802 assert(mt->surf.size > 0);
1803
1804 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1805 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1806 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1807
1808 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1809 * and the height is 4 aligned. This allows our HiZ support
1810 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1811 * we can grow the width & height to allow the HiZ op to
1812 * force the proper size alignments.
1813 */
1814 if (level > 0 && ((width & 7) || (height & 3))) {
1815 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1816 return false;
1817 }
1818 }
1819
1820 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1821 mt->level[level].has_hiz = true;
1822 return true;
1823 }
1824
1825 bool
1826 intel_miptree_alloc_hiz(struct brw_context *brw,
1827 struct intel_mipmap_tree *mt)
1828 {
1829 assert(mt->hiz_buf == NULL);
1830 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1831
1832 enum isl_aux_state **aux_state =
1833 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1834 if (!aux_state)
1835 return false;
1836
1837 struct isl_surf temp_hiz_surf;
1838
1839 MAYBE_UNUSED bool ok =
1840 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1841 assert(ok);
1842
1843 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1844 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1845 &temp_hiz_surf, alloc_flags, mt);
1846
1847 if (!mt->hiz_buf) {
1848 free(aux_state);
1849 return false;
1850 }
1851
1852 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1853 intel_miptree_level_enable_hiz(brw, mt, level);
1854
1855 mt->aux_state = aux_state;
1856
1857 return true;
1858 }
1859
1860
1861 /**
1862 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1863 *
1864 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1865 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1866 * compress clear color so we wait until an actual fast-clear to allocate it.
1867 */
1868 static bool
1869 intel_miptree_alloc_aux(struct brw_context *brw,
1870 struct intel_mipmap_tree *mt)
1871 {
1872 switch (mt->aux_usage) {
1873 case ISL_AUX_USAGE_NONE:
1874 return true;
1875
1876 case ISL_AUX_USAGE_HIZ:
1877 assert(!_mesa_is_format_color_format(mt->format));
1878 if (!intel_miptree_alloc_hiz(brw, mt))
1879 return false;
1880 return true;
1881
1882 case ISL_AUX_USAGE_MCS:
1883 assert(_mesa_is_format_color_format(mt->format));
1884 assert(mt->surf.samples > 1);
1885 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1886 return false;
1887 return true;
1888
1889 case ISL_AUX_USAGE_CCS_D:
1890 /* Since CCS_D can only compress clear color so we wait until an actual
1891 * fast-clear to allocate it.
1892 */
1893 return true;
1894
1895 case ISL_AUX_USAGE_CCS_E:
1896 assert(_mesa_is_format_color_format(mt->format));
1897 assert(mt->surf.samples == 1);
1898 if (!intel_miptree_alloc_ccs(brw, mt))
1899 return false;
1900 return true;
1901 }
1902
1903 unreachable("Invalid aux usage");
1904 }
1905
1906
1907 /**
1908 * Can the miptree sample using the hiz buffer?
1909 */
1910 bool
1911 intel_miptree_sample_with_hiz(struct brw_context *brw,
1912 struct intel_mipmap_tree *mt)
1913 {
1914 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1915
1916 if (!devinfo->has_sample_with_hiz) {
1917 return false;
1918 }
1919
1920 if (!mt->hiz_buf) {
1921 return false;
1922 }
1923
1924 /* It seems the hardware won't fallback to the depth buffer if some of the
1925 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1926 * of the texture to be HiZ enabled.
1927 */
1928 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1929 if (!intel_miptree_level_has_hiz(mt, level))
1930 return false;
1931 }
1932
1933 /* If compressed multisampling is enabled, then we use it for the auxiliary
1934 * buffer instead.
1935 *
1936 * From the BDW PRM (Volume 2d: Command Reference: Structures
1937 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1938 *
1939 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1940 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1941 *
1942 * There is no such blurb for 1D textures, but there is sufficient evidence
1943 * that this is broken on SKL+.
1944 */
1945 return (mt->surf.samples == 1 &&
1946 mt->target != GL_TEXTURE_3D &&
1947 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1948 }
1949
1950 /**
1951 * Does the miptree slice have hiz enabled?
1952 */
1953 bool
1954 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1955 {
1956 intel_miptree_check_level_layer(mt, level, 0);
1957 return mt->level[level].has_hiz;
1958 }
1959
1960 static inline uint32_t
1961 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1962 uint32_t start_level, uint32_t num_levels)
1963 {
1964 assert(start_level >= mt->first_level);
1965 assert(start_level <= mt->last_level);
1966
1967 if (num_levels == INTEL_REMAINING_LAYERS)
1968 num_levels = mt->last_level - start_level + 1;
1969 /* Check for overflow */
1970 assert(start_level + num_levels >= start_level);
1971 assert(start_level + num_levels <= mt->last_level + 1);
1972
1973 return num_levels;
1974 }
1975
1976 static inline uint32_t
1977 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1978 uint32_t start_layer, uint32_t num_layers)
1979 {
1980 assert(level <= mt->last_level);
1981
1982 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1983 assert(start_layer < total_num_layers);
1984 if (num_layers == INTEL_REMAINING_LAYERS)
1985 num_layers = total_num_layers - start_layer;
1986 /* Check for overflow */
1987 assert(start_layer + num_layers >= start_layer);
1988 assert(start_layer + num_layers <= total_num_layers);
1989
1990 return num_layers;
1991 }
1992
1993 bool
1994 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1995 unsigned start_level, unsigned num_levels,
1996 unsigned start_layer, unsigned num_layers)
1997 {
1998 assert(_mesa_is_format_color_format(mt->format));
1999
2000 if (!mt->mcs_buf)
2001 return false;
2002
2003 /* Clamp the level range to fit the miptree */
2004 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2005
2006 for (uint32_t l = 0; l < num_levels; l++) {
2007 const uint32_t level = start_level + l;
2008 const uint32_t level_layers =
2009 miptree_layer_range_length(mt, level, start_layer, num_layers);
2010 for (unsigned a = 0; a < level_layers; a++) {
2011 enum isl_aux_state aux_state =
2012 intel_miptree_get_aux_state(mt, level, start_layer + a);
2013 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2014 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2015 return true;
2016 }
2017 }
2018
2019 return false;
2020 }
2021
2022 static void
2023 intel_miptree_check_color_resolve(const struct brw_context *brw,
2024 const struct intel_mipmap_tree *mt,
2025 unsigned level, unsigned layer)
2026 {
2027 if (!mt->mcs_buf)
2028 return;
2029
2030 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2031 assert(brw->screen->devinfo.gen >= 8 ||
2032 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2033
2034 /* Compression of arrayed msaa surfaces is supported. */
2035 if (mt->surf.samples > 1)
2036 return;
2037
2038 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2039 assert(brw->screen->devinfo.gen >= 8 ||
2040 (layer == 0 &&
2041 mt->surf.logical_level0_px.depth == 1 &&
2042 mt->surf.logical_level0_px.array_len == 1));
2043
2044 (void)level;
2045 (void)layer;
2046 }
2047
2048 static enum isl_aux_op
2049 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2050 enum isl_aux_usage aux_usage,
2051 bool fast_clear_supported)
2052 {
2053 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2054
2055 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2056
2057 assert(ccs_supported == fast_clear_supported);
2058
2059 switch (aux_state) {
2060 case ISL_AUX_STATE_CLEAR:
2061 case ISL_AUX_STATE_PARTIAL_CLEAR:
2062 if (!ccs_supported)
2063 return ISL_AUX_OP_FULL_RESOLVE;
2064 else
2065 return ISL_AUX_OP_NONE;
2066
2067 case ISL_AUX_STATE_PASS_THROUGH:
2068 return ISL_AUX_OP_NONE;
2069
2070 case ISL_AUX_STATE_RESOLVED:
2071 case ISL_AUX_STATE_AUX_INVALID:
2072 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2073 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2074 break;
2075 }
2076
2077 unreachable("Invalid aux state for CCS_D");
2078 }
2079
2080 static enum isl_aux_op
2081 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2082 enum isl_aux_usage aux_usage,
2083 bool fast_clear_supported)
2084 {
2085 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2086 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2087 aux_usage == ISL_AUX_USAGE_CCS_D ||
2088 aux_usage == ISL_AUX_USAGE_CCS_E);
2089
2090 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2091 assert(fast_clear_supported);
2092
2093 switch (aux_state) {
2094 case ISL_AUX_STATE_CLEAR:
2095 case ISL_AUX_STATE_PARTIAL_CLEAR:
2096 if (fast_clear_supported)
2097 return ISL_AUX_OP_NONE;
2098 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2099 return ISL_AUX_OP_PARTIAL_RESOLVE;
2100 else
2101 return ISL_AUX_OP_FULL_RESOLVE;
2102
2103 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2104 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2105 return ISL_AUX_OP_FULL_RESOLVE;
2106 else if (!fast_clear_supported)
2107 return ISL_AUX_OP_PARTIAL_RESOLVE;
2108 else
2109 return ISL_AUX_OP_NONE;
2110
2111 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2112 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2113 return ISL_AUX_OP_FULL_RESOLVE;
2114 else
2115 return ISL_AUX_OP_NONE;
2116
2117 case ISL_AUX_STATE_PASS_THROUGH:
2118 return ISL_AUX_OP_NONE;
2119
2120 case ISL_AUX_STATE_RESOLVED:
2121 case ISL_AUX_STATE_AUX_INVALID:
2122 break;
2123 }
2124
2125 unreachable("Invalid aux state for CCS_E");
2126 }
2127
2128 static void
2129 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2130 struct intel_mipmap_tree *mt,
2131 uint32_t level, uint32_t layer,
2132 enum isl_aux_usage aux_usage,
2133 bool fast_clear_supported)
2134 {
2135 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2136
2137 enum isl_aux_op resolve_op;
2138 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2139 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2140 fast_clear_supported);
2141 } else {
2142 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2143 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2144 fast_clear_supported);
2145 }
2146
2147 if (resolve_op != ISL_AUX_OP_NONE) {
2148 intel_miptree_check_color_resolve(brw, mt, level, layer);
2149 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2150
2151 switch (resolve_op) {
2152 case ISL_AUX_OP_FULL_RESOLVE:
2153 /* The CCS full resolve operation destroys the CCS and sets it to the
2154 * pass-through state. (You can also think of this as being both a
2155 * resolve and an ambiguate in one operation.)
2156 */
2157 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2158 ISL_AUX_STATE_PASS_THROUGH);
2159 break;
2160
2161 case ISL_AUX_OP_PARTIAL_RESOLVE:
2162 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2163 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2164 break;
2165
2166 default:
2167 unreachable("Invalid resolve op");
2168 }
2169 }
2170 }
2171
2172 static void
2173 intel_miptree_finish_ccs_write(struct brw_context *brw,
2174 struct intel_mipmap_tree *mt,
2175 uint32_t level, uint32_t layer,
2176 enum isl_aux_usage aux_usage)
2177 {
2178 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2179 aux_usage == ISL_AUX_USAGE_CCS_D ||
2180 aux_usage == ISL_AUX_USAGE_CCS_E);
2181
2182 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2183
2184 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2185 switch (aux_state) {
2186 case ISL_AUX_STATE_CLEAR:
2187 case ISL_AUX_STATE_PARTIAL_CLEAR:
2188 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2189 aux_usage == ISL_AUX_USAGE_CCS_D);
2190
2191 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2192 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2193 ISL_AUX_STATE_COMPRESSED_CLEAR);
2194 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2195 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2196 ISL_AUX_STATE_PARTIAL_CLEAR);
2197 }
2198 break;
2199
2200 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2201 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2202 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2203 break; /* Nothing to do */
2204
2205 case ISL_AUX_STATE_PASS_THROUGH:
2206 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2207 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2208 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2209 } else {
2210 /* Nothing to do */
2211 }
2212 break;
2213
2214 case ISL_AUX_STATE_RESOLVED:
2215 case ISL_AUX_STATE_AUX_INVALID:
2216 unreachable("Invalid aux state for CCS_E");
2217 }
2218 } else {
2219 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2220 /* CCS_D is a bit simpler */
2221 switch (aux_state) {
2222 case ISL_AUX_STATE_CLEAR:
2223 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2224 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2225 ISL_AUX_STATE_PARTIAL_CLEAR);
2226 break;
2227
2228 case ISL_AUX_STATE_PARTIAL_CLEAR:
2229 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2230 break; /* Nothing to do */
2231
2232 case ISL_AUX_STATE_PASS_THROUGH:
2233 /* Nothing to do */
2234 break;
2235
2236 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2237 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2238 case ISL_AUX_STATE_RESOLVED:
2239 case ISL_AUX_STATE_AUX_INVALID:
2240 unreachable("Invalid aux state for CCS_D");
2241 }
2242 }
2243 }
2244
2245 static void
2246 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2247 struct intel_mipmap_tree *mt,
2248 uint32_t layer,
2249 enum isl_aux_usage aux_usage,
2250 bool fast_clear_supported)
2251 {
2252 assert(aux_usage == ISL_AUX_USAGE_MCS);
2253
2254 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2255 case ISL_AUX_STATE_CLEAR:
2256 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2257 if (!fast_clear_supported) {
2258 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2259 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2260 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2261 }
2262 break;
2263
2264 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2265 break; /* Nothing to do */
2266
2267 case ISL_AUX_STATE_RESOLVED:
2268 case ISL_AUX_STATE_PASS_THROUGH:
2269 case ISL_AUX_STATE_AUX_INVALID:
2270 case ISL_AUX_STATE_PARTIAL_CLEAR:
2271 unreachable("Invalid aux state for MCS");
2272 }
2273 }
2274
2275 static void
2276 intel_miptree_finish_mcs_write(struct brw_context *brw,
2277 struct intel_mipmap_tree *mt,
2278 uint32_t layer,
2279 enum isl_aux_usage aux_usage)
2280 {
2281 assert(aux_usage == ISL_AUX_USAGE_MCS);
2282
2283 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2284 case ISL_AUX_STATE_CLEAR:
2285 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2286 ISL_AUX_STATE_COMPRESSED_CLEAR);
2287 break;
2288
2289 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2290 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2291 break; /* Nothing to do */
2292
2293 case ISL_AUX_STATE_RESOLVED:
2294 case ISL_AUX_STATE_PASS_THROUGH:
2295 case ISL_AUX_STATE_AUX_INVALID:
2296 case ISL_AUX_STATE_PARTIAL_CLEAR:
2297 unreachable("Invalid aux state for MCS");
2298 }
2299 }
2300
2301 static void
2302 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2303 struct intel_mipmap_tree *mt,
2304 uint32_t level, uint32_t layer,
2305 enum isl_aux_usage aux_usage,
2306 bool fast_clear_supported)
2307 {
2308 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2309
2310 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2311 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2312 case ISL_AUX_STATE_CLEAR:
2313 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2314 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2315 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2316 break;
2317
2318 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2319 if (aux_usage != ISL_AUX_USAGE_HIZ)
2320 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2321 break;
2322
2323 case ISL_AUX_STATE_PASS_THROUGH:
2324 case ISL_AUX_STATE_RESOLVED:
2325 break;
2326
2327 case ISL_AUX_STATE_AUX_INVALID:
2328 if (aux_usage == ISL_AUX_USAGE_HIZ)
2329 hiz_op = ISL_AUX_OP_AMBIGUATE;
2330 break;
2331
2332 case ISL_AUX_STATE_PARTIAL_CLEAR:
2333 unreachable("Invalid HiZ state");
2334 }
2335
2336 if (hiz_op != ISL_AUX_OP_NONE) {
2337 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2338
2339 switch (hiz_op) {
2340 case ISL_AUX_OP_FULL_RESOLVE:
2341 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2342 ISL_AUX_STATE_RESOLVED);
2343 break;
2344
2345 case ISL_AUX_OP_AMBIGUATE:
2346 /* The HiZ resolve operation is actually an ambiguate */
2347 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2348 ISL_AUX_STATE_PASS_THROUGH);
2349 break;
2350
2351 default:
2352 unreachable("Invalid HiZ op");
2353 }
2354 }
2355 }
2356
2357 static void
2358 intel_miptree_finish_hiz_write(struct brw_context *brw,
2359 struct intel_mipmap_tree *mt,
2360 uint32_t level, uint32_t layer,
2361 enum isl_aux_usage aux_usage)
2362 {
2363 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2364
2365 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2366 case ISL_AUX_STATE_CLEAR:
2367 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2368 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2369 ISL_AUX_STATE_COMPRESSED_CLEAR);
2370 break;
2371
2372 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2373 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2374 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2375 break; /* Nothing to do */
2376
2377 case ISL_AUX_STATE_RESOLVED:
2378 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2379 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2380 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2381 } else {
2382 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2383 ISL_AUX_STATE_AUX_INVALID);
2384 }
2385 break;
2386
2387 case ISL_AUX_STATE_PASS_THROUGH:
2388 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2389 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2390 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2391 }
2392 break;
2393
2394 case ISL_AUX_STATE_AUX_INVALID:
2395 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2396 break;
2397
2398 case ISL_AUX_STATE_PARTIAL_CLEAR:
2399 unreachable("Invalid HiZ state");
2400 }
2401 }
2402
2403 void
2404 intel_miptree_prepare_access(struct brw_context *brw,
2405 struct intel_mipmap_tree *mt,
2406 uint32_t start_level, uint32_t num_levels,
2407 uint32_t start_layer, uint32_t num_layers,
2408 enum isl_aux_usage aux_usage,
2409 bool fast_clear_supported)
2410 {
2411 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2412
2413 switch (mt->aux_usage) {
2414 case ISL_AUX_USAGE_NONE:
2415 /* Nothing to do */
2416 break;
2417
2418 case ISL_AUX_USAGE_MCS:
2419 assert(mt->mcs_buf);
2420 assert(start_level == 0 && num_levels == 1);
2421 const uint32_t level_layers =
2422 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2423 for (uint32_t a = 0; a < level_layers; a++) {
2424 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2425 aux_usage, fast_clear_supported);
2426 }
2427 break;
2428
2429 case ISL_AUX_USAGE_CCS_D:
2430 case ISL_AUX_USAGE_CCS_E:
2431 if (!mt->mcs_buf)
2432 return;
2433
2434 for (uint32_t l = 0; l < num_levels; l++) {
2435 const uint32_t level = start_level + l;
2436 const uint32_t level_layers =
2437 miptree_layer_range_length(mt, level, start_layer, num_layers);
2438 for (uint32_t a = 0; a < level_layers; a++) {
2439 intel_miptree_prepare_ccs_access(brw, mt, level,
2440 start_layer + a,
2441 aux_usage, fast_clear_supported);
2442 }
2443 }
2444 break;
2445
2446 case ISL_AUX_USAGE_HIZ:
2447 assert(mt->hiz_buf);
2448 for (uint32_t l = 0; l < num_levels; l++) {
2449 const uint32_t level = start_level + l;
2450 if (!intel_miptree_level_has_hiz(mt, level))
2451 continue;
2452
2453 const uint32_t level_layers =
2454 miptree_layer_range_length(mt, level, start_layer, num_layers);
2455 for (uint32_t a = 0; a < level_layers; a++) {
2456 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2457 aux_usage, fast_clear_supported);
2458 }
2459 }
2460 break;
2461
2462 default:
2463 unreachable("Invalid aux usage");
2464 }
2465 }
2466
2467 void
2468 intel_miptree_finish_write(struct brw_context *brw,
2469 struct intel_mipmap_tree *mt, uint32_t level,
2470 uint32_t start_layer, uint32_t num_layers,
2471 enum isl_aux_usage aux_usage)
2472 {
2473 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2474
2475 switch (mt->aux_usage) {
2476 case ISL_AUX_USAGE_NONE:
2477 /* Nothing to do */
2478 break;
2479
2480 case ISL_AUX_USAGE_MCS:
2481 assert(mt->mcs_buf);
2482 for (uint32_t a = 0; a < num_layers; a++) {
2483 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2484 aux_usage);
2485 }
2486 break;
2487
2488 case ISL_AUX_USAGE_CCS_D:
2489 case ISL_AUX_USAGE_CCS_E:
2490 if (!mt->mcs_buf)
2491 return;
2492
2493 for (uint32_t a = 0; a < num_layers; a++) {
2494 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2495 aux_usage);
2496 }
2497 break;
2498
2499 case ISL_AUX_USAGE_HIZ:
2500 if (!intel_miptree_level_has_hiz(mt, level))
2501 return;
2502
2503 for (uint32_t a = 0; a < num_layers; a++) {
2504 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2505 aux_usage);
2506 }
2507 break;
2508
2509 default:
2510 unreachable("Invavlid aux usage");
2511 }
2512 }
2513
2514 enum isl_aux_state
2515 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2516 uint32_t level, uint32_t layer)
2517 {
2518 intel_miptree_check_level_layer(mt, level, layer);
2519
2520 if (_mesa_is_format_color_format(mt->format)) {
2521 assert(mt->mcs_buf != NULL);
2522 assert(mt->surf.samples == 1 ||
2523 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2524 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2525 unreachable("Cannot get aux state for stencil");
2526 } else {
2527 assert(intel_miptree_level_has_hiz(mt, level));
2528 }
2529
2530 return mt->aux_state[level][layer];
2531 }
2532
2533 void
2534 intel_miptree_set_aux_state(struct brw_context *brw,
2535 struct intel_mipmap_tree *mt, uint32_t level,
2536 uint32_t start_layer, uint32_t num_layers,
2537 enum isl_aux_state aux_state)
2538 {
2539 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2540
2541 if (_mesa_is_format_color_format(mt->format)) {
2542 assert(mt->mcs_buf != NULL);
2543 assert(mt->surf.samples == 1 ||
2544 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2545 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2546 unreachable("Cannot get aux state for stencil");
2547 } else {
2548 assert(intel_miptree_level_has_hiz(mt, level));
2549 }
2550
2551 for (unsigned a = 0; a < num_layers; a++) {
2552 if (mt->aux_state[level][start_layer + a] != aux_state) {
2553 mt->aux_state[level][start_layer + a] = aux_state;
2554 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2555 }
2556 }
2557 }
2558
2559 /* On Gen9 color buffers may be compressed by the hardware (lossless
2560 * compression). There are, however, format restrictions and care needs to be
2561 * taken that the sampler engine is capable for re-interpreting a buffer with
2562 * format different the buffer was originally written with.
2563 *
2564 * For example, SRGB formats are not compressible and the sampler engine isn't
2565 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2566 * color buffer needs to be resolved so that the sampling surface can be
2567 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2568 * set).
2569 */
2570 static bool
2571 can_texture_with_ccs(struct brw_context *brw,
2572 struct intel_mipmap_tree *mt,
2573 enum isl_format view_format)
2574 {
2575 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2576 return false;
2577
2578 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2579 mt, view_format)) {
2580 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2581 isl_format_get_layout(view_format)->name,
2582 _mesa_get_format_name(mt->format));
2583 return false;
2584 }
2585
2586 return true;
2587 }
2588
2589 enum isl_aux_usage
2590 intel_miptree_texture_aux_usage(struct brw_context *brw,
2591 struct intel_mipmap_tree *mt,
2592 enum isl_format view_format)
2593 {
2594 switch (mt->aux_usage) {
2595 case ISL_AUX_USAGE_HIZ:
2596 if (intel_miptree_sample_with_hiz(brw, mt))
2597 return ISL_AUX_USAGE_HIZ;
2598 break;
2599
2600 case ISL_AUX_USAGE_MCS:
2601 return ISL_AUX_USAGE_MCS;
2602
2603 case ISL_AUX_USAGE_CCS_D:
2604 case ISL_AUX_USAGE_CCS_E:
2605 if (!mt->mcs_buf) {
2606 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2607 return ISL_AUX_USAGE_NONE;
2608 }
2609
2610 /* If we don't have any unresolved color, report an aux usage of
2611 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2612 * aux surface and we can save some bandwidth.
2613 */
2614 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2615 0, INTEL_REMAINING_LAYERS))
2616 return ISL_AUX_USAGE_NONE;
2617
2618 if (can_texture_with_ccs(brw, mt, view_format))
2619 return ISL_AUX_USAGE_CCS_E;
2620 break;
2621
2622 default:
2623 break;
2624 }
2625
2626 return ISL_AUX_USAGE_NONE;
2627 }
2628
2629 static bool
2630 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2631 {
2632 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2633 * values so sRGB curve application was a no-op for all fast-clearable
2634 * formats.
2635 *
2636 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2637 * values, the hardware interprets the floats, not as what would be
2638 * returned from the sampler (or written by the shader), but as being
2639 * between format conversion and sRGB curve application. This means that
2640 * we can switch between sRGB and UNORM without having to whack the clear
2641 * color.
2642 */
2643 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2644 }
2645
2646 void
2647 intel_miptree_prepare_texture(struct brw_context *brw,
2648 struct intel_mipmap_tree *mt,
2649 enum isl_format view_format,
2650 uint32_t start_level, uint32_t num_levels,
2651 uint32_t start_layer, uint32_t num_layers)
2652 {
2653 enum isl_aux_usage aux_usage =
2654 intel_miptree_texture_aux_usage(brw, mt, view_format);
2655 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2656
2657 /* Clear color is specified as ints or floats and the conversion is done by
2658 * the sampler. If we have a texture view, we would have to perform the
2659 * clear color conversion manually. Just disable clear color.
2660 */
2661 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2662 clear_supported = false;
2663
2664 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2665 start_layer, num_layers,
2666 aux_usage, clear_supported);
2667 }
2668
2669 void
2670 intel_miptree_prepare_image(struct brw_context *brw,
2671 struct intel_mipmap_tree *mt)
2672 {
2673 /* The data port doesn't understand any compression */
2674 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2675 0, INTEL_REMAINING_LAYERS,
2676 ISL_AUX_USAGE_NONE, false);
2677 }
2678
2679 enum isl_aux_usage
2680 intel_miptree_render_aux_usage(struct brw_context *brw,
2681 struct intel_mipmap_tree *mt,
2682 enum isl_format render_format,
2683 bool blend_enabled,
2684 bool draw_aux_disabled)
2685 {
2686 struct gen_device_info *devinfo = &brw->screen->devinfo;
2687
2688 if (draw_aux_disabled)
2689 return ISL_AUX_USAGE_NONE;
2690
2691 switch (mt->aux_usage) {
2692 case ISL_AUX_USAGE_MCS:
2693 assert(mt->mcs_buf);
2694 return ISL_AUX_USAGE_MCS;
2695
2696 case ISL_AUX_USAGE_CCS_D:
2697 case ISL_AUX_USAGE_CCS_E:
2698 if (!mt->mcs_buf) {
2699 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2700 return ISL_AUX_USAGE_NONE;
2701 }
2702
2703 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2704 * formats. However, there are issues with blending where it doesn't
2705 * properly apply the sRGB curve to the clear color when blending.
2706 */
2707 if (devinfo->gen == 9 && blend_enabled &&
2708 isl_format_is_srgb(render_format) &&
2709 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2710 return ISL_AUX_USAGE_NONE;
2711
2712 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2713 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2714 mt, render_format))
2715 return ISL_AUX_USAGE_CCS_E;
2716
2717 /* Otherwise, we have to fall back to CCS_D */
2718 return ISL_AUX_USAGE_CCS_D;
2719
2720 default:
2721 return ISL_AUX_USAGE_NONE;
2722 }
2723 }
2724
2725 void
2726 intel_miptree_prepare_render(struct brw_context *brw,
2727 struct intel_mipmap_tree *mt, uint32_t level,
2728 uint32_t start_layer, uint32_t layer_count,
2729 enum isl_aux_usage aux_usage)
2730 {
2731 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2732 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2733 }
2734
2735 void
2736 intel_miptree_finish_render(struct brw_context *brw,
2737 struct intel_mipmap_tree *mt, uint32_t level,
2738 uint32_t start_layer, uint32_t layer_count,
2739 enum isl_aux_usage aux_usage)
2740 {
2741 assert(_mesa_is_format_color_format(mt->format));
2742
2743 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2744 aux_usage);
2745 }
2746
2747 void
2748 intel_miptree_prepare_depth(struct brw_context *brw,
2749 struct intel_mipmap_tree *mt, uint32_t level,
2750 uint32_t start_layer, uint32_t layer_count)
2751 {
2752 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2753 mt->aux_usage, mt->hiz_buf != NULL);
2754 }
2755
2756 void
2757 intel_miptree_finish_depth(struct brw_context *brw,
2758 struct intel_mipmap_tree *mt, uint32_t level,
2759 uint32_t start_layer, uint32_t layer_count,
2760 bool depth_written)
2761 {
2762 if (depth_written) {
2763 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2764 mt->hiz_buf != NULL);
2765 }
2766 }
2767
2768 void
2769 intel_miptree_prepare_external(struct brw_context *brw,
2770 struct intel_mipmap_tree *mt)
2771 {
2772 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2773 bool supports_fast_clear = false;
2774
2775 const struct isl_drm_modifier_info *mod_info =
2776 isl_drm_modifier_get_info(mt->drm_modifier);
2777
2778 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2779 /* CCS_E is the only supported aux for external images and it's only
2780 * supported on very simple images.
2781 */
2782 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2783 assert(_mesa_is_format_color_format(mt->format));
2784 assert(mt->first_level == 0 && mt->last_level == 0);
2785 assert(mt->surf.logical_level0_px.depth == 1);
2786 assert(mt->surf.logical_level0_px.array_len == 1);
2787 assert(mt->surf.samples == 1);
2788 assert(mt->mcs_buf != NULL);
2789
2790 aux_usage = mod_info->aux_usage;
2791 supports_fast_clear = mod_info->supports_clear_color;
2792 }
2793
2794 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2795 0, INTEL_REMAINING_LAYERS,
2796 aux_usage, supports_fast_clear);
2797 }
2798
2799 void
2800 intel_miptree_finish_external(struct brw_context *brw,
2801 struct intel_mipmap_tree *mt)
2802 {
2803 if (!mt->mcs_buf)
2804 return;
2805
2806 /* We don't know the actual aux state of the aux surface. The previous
2807 * owner could have given it to us in a number of different states.
2808 * Because we don't know the aux state, we reset the aux state to the
2809 * least common denominator of possible valid states.
2810 */
2811 enum isl_aux_state default_aux_state =
2812 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2813 assert(mt->last_level == mt->first_level);
2814 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2815 default_aux_state);
2816 }
2817
2818 /**
2819 * Make it possible to share the BO backing the given miptree with another
2820 * process or another miptree.
2821 *
2822 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2823 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2824 * ensure that no MCS buffer gets allocated in the future.
2825 *
2826 * HiZ is similarly unsafe with shared buffers.
2827 */
2828 void
2829 intel_miptree_make_shareable(struct brw_context *brw,
2830 struct intel_mipmap_tree *mt)
2831 {
2832 /* MCS buffers are also used for multisample buffers, but we can't resolve
2833 * away a multisample MCS buffer because it's an integral part of how the
2834 * pixel data is stored. Fortunately this code path should never be
2835 * reached for multisample buffers.
2836 */
2837 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2838 mt->surf.samples == 1);
2839
2840 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2841 0, INTEL_REMAINING_LAYERS,
2842 ISL_AUX_USAGE_NONE, false);
2843
2844 if (mt->mcs_buf) {
2845 brw_bo_unreference(mt->mcs_buf->bo);
2846 free(mt->mcs_buf);
2847 mt->mcs_buf = NULL;
2848
2849 /* Any pending MCS/CCS operations are no longer needed. Trying to
2850 * execute any will likely crash due to the missing aux buffer. So let's
2851 * delete all pending ops.
2852 */
2853 free(mt->aux_state);
2854 mt->aux_state = NULL;
2855 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2856 }
2857
2858 if (mt->hiz_buf) {
2859 intel_miptree_aux_buffer_free(mt->hiz_buf);
2860 mt->hiz_buf = NULL;
2861
2862 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2863 mt->level[l].has_hiz = false;
2864 }
2865
2866 /* Any pending HiZ operations are no longer needed. Trying to execute
2867 * any will likely crash due to the missing aux buffer. So let's delete
2868 * all pending ops.
2869 */
2870 free(mt->aux_state);
2871 mt->aux_state = NULL;
2872 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2873 }
2874
2875 mt->aux_usage = ISL_AUX_USAGE_NONE;
2876 mt->supports_fast_clear = false;
2877 }
2878
2879
2880 /**
2881 * \brief Get pointer offset into stencil buffer.
2882 *
2883 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2884 * must decode the tile's layout in software.
2885 *
2886 * See
2887 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2888 * Format.
2889 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2890 *
2891 * Even though the returned offset is always positive, the return type is
2892 * signed due to
2893 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2894 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2895 */
2896 static intptr_t
2897 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2898 {
2899 uint32_t tile_size = 4096;
2900 uint32_t tile_width = 64;
2901 uint32_t tile_height = 64;
2902 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2903
2904 uint32_t tile_x = x / tile_width;
2905 uint32_t tile_y = y / tile_height;
2906
2907 /* The byte's address relative to the tile's base addres. */
2908 uint32_t byte_x = x % tile_width;
2909 uint32_t byte_y = y % tile_height;
2910
2911 uintptr_t u = tile_y * row_size
2912 + tile_x * tile_size
2913 + 512 * (byte_x / 8)
2914 + 64 * (byte_y / 8)
2915 + 32 * ((byte_y / 4) % 2)
2916 + 16 * ((byte_x / 4) % 2)
2917 + 8 * ((byte_y / 2) % 2)
2918 + 4 * ((byte_x / 2) % 2)
2919 + 2 * (byte_y % 2)
2920 + 1 * (byte_x % 2);
2921
2922 if (swizzled) {
2923 /* adjust for bit6 swizzling */
2924 if (((byte_x / 8) % 2) == 1) {
2925 if (((byte_y / 8) % 2) == 0) {
2926 u += 64;
2927 } else {
2928 u -= 64;
2929 }
2930 }
2931 }
2932
2933 return u;
2934 }
2935
2936 void
2937 intel_miptree_updownsample(struct brw_context *brw,
2938 struct intel_mipmap_tree *src,
2939 struct intel_mipmap_tree *dst)
2940 {
2941 unsigned src_w = src->surf.logical_level0_px.width;
2942 unsigned src_h = src->surf.logical_level0_px.height;
2943 unsigned dst_w = dst->surf.logical_level0_px.width;
2944 unsigned dst_h = dst->surf.logical_level0_px.height;
2945
2946 brw_blorp_blit_miptrees(brw,
2947 src, 0 /* level */, 0 /* layer */,
2948 src->format, SWIZZLE_XYZW,
2949 dst, 0 /* level */, 0 /* layer */, dst->format,
2950 0, 0, src_w, src_h,
2951 0, 0, dst_w, dst_h,
2952 GL_NEAREST, false, false /*mirror x, y*/,
2953 false, false);
2954
2955 if (src->stencil_mt) {
2956 src_w = src->stencil_mt->surf.logical_level0_px.width;
2957 src_h = src->stencil_mt->surf.logical_level0_px.height;
2958 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2959 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2960
2961 brw_blorp_blit_miptrees(brw,
2962 src->stencil_mt, 0 /* level */, 0 /* layer */,
2963 src->stencil_mt->format, SWIZZLE_XYZW,
2964 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2965 dst->stencil_mt->format,
2966 0, 0, src_w, src_h,
2967 0, 0, dst_w, dst_h,
2968 GL_NEAREST, false, false /*mirror x, y*/,
2969 false, false /* decode/encode srgb */);
2970 }
2971 }
2972
2973 void
2974 intel_update_r8stencil(struct brw_context *brw,
2975 struct intel_mipmap_tree *mt)
2976 {
2977 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2978
2979 assert(devinfo->gen >= 7);
2980 struct intel_mipmap_tree *src =
2981 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2982 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2983 return;
2984
2985 assert(src->surf.size > 0);
2986
2987 if (!mt->r8stencil_mt) {
2988 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2989 mt->r8stencil_mt = make_surface(
2990 brw,
2991 src->target,
2992 MESA_FORMAT_R_UINT8,
2993 src->first_level, src->last_level,
2994 src->surf.logical_level0_px.width,
2995 src->surf.logical_level0_px.height,
2996 src->surf.dim == ISL_SURF_DIM_3D ?
2997 src->surf.logical_level0_px.depth :
2998 src->surf.logical_level0_px.array_len,
2999 src->surf.samples,
3000 ISL_TILING_Y0_BIT,
3001 ISL_SURF_USAGE_TEXTURE_BIT,
3002 BO_ALLOC_BUSY, 0, NULL);
3003 assert(mt->r8stencil_mt);
3004 }
3005
3006 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3007
3008 for (int level = src->first_level; level <= src->last_level; level++) {
3009 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3010 minify(src->surf.phys_level0_sa.depth, level) :
3011 src->surf.phys_level0_sa.array_len;
3012
3013 for (unsigned layer = 0; layer < depth; layer++) {
3014 brw_blorp_copy_miptrees(brw,
3015 src, level, layer,
3016 dst, level, layer,
3017 0, 0, 0, 0,
3018 minify(src->surf.logical_level0_px.width,
3019 level),
3020 minify(src->surf.logical_level0_px.height,
3021 level));
3022 }
3023 }
3024
3025 brw_cache_flush_for_read(brw, dst->bo);
3026 src->r8stencil_needs_update = false;
3027 }
3028
3029 static void *
3030 intel_miptree_map_raw(struct brw_context *brw,
3031 struct intel_mipmap_tree *mt,
3032 GLbitfield mode)
3033 {
3034 struct brw_bo *bo = mt->bo;
3035
3036 if (brw_batch_references(&brw->batch, bo))
3037 intel_batchbuffer_flush(brw);
3038
3039 return brw_bo_map(brw, bo, mode);
3040 }
3041
3042 static void
3043 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3044 {
3045 brw_bo_unmap(mt->bo);
3046 }
3047
3048 static void
3049 intel_miptree_map_gtt(struct brw_context *brw,
3050 struct intel_mipmap_tree *mt,
3051 struct intel_miptree_map *map,
3052 unsigned int level, unsigned int slice)
3053 {
3054 unsigned int bw, bh;
3055 void *base;
3056 unsigned int image_x, image_y;
3057 intptr_t x = map->x;
3058 intptr_t y = map->y;
3059
3060 /* For compressed formats, the stride is the number of bytes per
3061 * row of blocks. intel_miptree_get_image_offset() already does
3062 * the divide.
3063 */
3064 _mesa_get_format_block_size(mt->format, &bw, &bh);
3065 assert(y % bh == 0);
3066 assert(x % bw == 0);
3067 y /= bh;
3068 x /= bw;
3069
3070 base = intel_miptree_map_raw(brw, mt, map->mode);
3071
3072 if (base == NULL)
3073 map->ptr = NULL;
3074 else {
3075 base += mt->offset;
3076
3077 /* Note that in the case of cube maps, the caller must have passed the
3078 * slice number referencing the face.
3079 */
3080 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3081 x += image_x;
3082 y += image_y;
3083
3084 map->stride = mt->surf.row_pitch;
3085 map->ptr = base + y * map->stride + x * mt->cpp;
3086 }
3087
3088 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3089 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3090 map->x, map->y, map->w, map->h,
3091 mt, _mesa_get_format_name(mt->format),
3092 x, y, map->ptr, map->stride);
3093 }
3094
3095 static void
3096 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3097 {
3098 intel_miptree_unmap_raw(mt);
3099 }
3100
3101 static void
3102 intel_miptree_map_blit(struct brw_context *brw,
3103 struct intel_mipmap_tree *mt,
3104 struct intel_miptree_map *map,
3105 unsigned int level, unsigned int slice)
3106 {
3107 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3108 /* first_level */ 0,
3109 /* last_level */ 0,
3110 map->w, map->h, 1,
3111 /* samples */ 1,
3112 MIPTREE_CREATE_LINEAR);
3113
3114 if (!map->linear_mt) {
3115 fprintf(stderr, "Failed to allocate blit temporary\n");
3116 goto fail;
3117 }
3118 map->stride = map->linear_mt->surf.row_pitch;
3119
3120 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3121 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3122 * invalidate is set, since we'll be writing the whole rectangle from our
3123 * temporary buffer back out.
3124 */
3125 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3126 if (!intel_miptree_copy(brw,
3127 mt, level, slice, map->x, map->y,
3128 map->linear_mt, 0, 0, 0, 0,
3129 map->w, map->h)) {
3130 fprintf(stderr, "Failed to blit\n");
3131 goto fail;
3132 }
3133 }
3134
3135 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3136
3137 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3138 map->x, map->y, map->w, map->h,
3139 mt, _mesa_get_format_name(mt->format),
3140 level, slice, map->ptr, map->stride);
3141
3142 return;
3143
3144 fail:
3145 intel_miptree_release(&map->linear_mt);
3146 map->ptr = NULL;
3147 map->stride = 0;
3148 }
3149
3150 static void
3151 intel_miptree_unmap_blit(struct brw_context *brw,
3152 struct intel_mipmap_tree *mt,
3153 struct intel_miptree_map *map,
3154 unsigned int level,
3155 unsigned int slice)
3156 {
3157 struct gl_context *ctx = &brw->ctx;
3158
3159 intel_miptree_unmap_raw(map->linear_mt);
3160
3161 if (map->mode & GL_MAP_WRITE_BIT) {
3162 bool ok = intel_miptree_copy(brw,
3163 map->linear_mt, 0, 0, 0, 0,
3164 mt, level, slice, map->x, map->y,
3165 map->w, map->h);
3166 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3167 }
3168
3169 intel_miptree_release(&map->linear_mt);
3170 }
3171
3172 /**
3173 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3174 */
3175 #if defined(USE_SSE41)
3176 static void
3177 intel_miptree_map_movntdqa(struct brw_context *brw,
3178 struct intel_mipmap_tree *mt,
3179 struct intel_miptree_map *map,
3180 unsigned int level, unsigned int slice)
3181 {
3182 assert(map->mode & GL_MAP_READ_BIT);
3183 assert(!(map->mode & GL_MAP_WRITE_BIT));
3184
3185 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3186 map->x, map->y, map->w, map->h,
3187 mt, _mesa_get_format_name(mt->format),
3188 level, slice, map->ptr, map->stride);
3189
3190 /* Map the original image */
3191 uint32_t image_x;
3192 uint32_t image_y;
3193 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3194 image_x += map->x;
3195 image_y += map->y;
3196
3197 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3198 if (!src)
3199 return;
3200
3201 src += mt->offset;
3202
3203 src += image_y * mt->surf.row_pitch;
3204 src += image_x * mt->cpp;
3205
3206 /* Due to the pixel offsets for the particular image being mapped, our
3207 * src pointer may not be 16-byte aligned. However, if the pitch is
3208 * divisible by 16, then the amount by which it's misaligned will remain
3209 * consistent from row to row.
3210 */
3211 assert((mt->surf.row_pitch % 16) == 0);
3212 const int misalignment = ((uintptr_t) src) & 15;
3213
3214 /* Create an untiled temporary buffer for the mapping. */
3215 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3216
3217 map->stride = ALIGN(misalignment + width_bytes, 16);
3218
3219 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3220 /* Offset the destination so it has the same misalignment as src. */
3221 map->ptr = map->buffer + misalignment;
3222
3223 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3224
3225 for (uint32_t y = 0; y < map->h; y++) {
3226 void *dst_ptr = map->ptr + y * map->stride;
3227 void *src_ptr = src + y * mt->surf.row_pitch;
3228
3229 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3230 }
3231
3232 intel_miptree_unmap_raw(mt);
3233 }
3234
3235 static void
3236 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3237 struct intel_mipmap_tree *mt,
3238 struct intel_miptree_map *map,
3239 unsigned int level,
3240 unsigned int slice)
3241 {
3242 _mesa_align_free(map->buffer);
3243 map->buffer = NULL;
3244 map->ptr = NULL;
3245 }
3246 #endif
3247
3248 static void
3249 intel_miptree_map_s8(struct brw_context *brw,
3250 struct intel_mipmap_tree *mt,
3251 struct intel_miptree_map *map,
3252 unsigned int level, unsigned int slice)
3253 {
3254 map->stride = map->w;
3255 map->buffer = map->ptr = malloc(map->stride * map->h);
3256 if (!map->buffer)
3257 return;
3258
3259 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3260 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3261 * invalidate is set, since we'll be writing the whole rectangle from our
3262 * temporary buffer back out.
3263 */
3264 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3265 uint8_t *untiled_s8_map = map->ptr;
3266 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3267 unsigned int image_x, image_y;
3268
3269 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3270
3271 for (uint32_t y = 0; y < map->h; y++) {
3272 for (uint32_t x = 0; x < map->w; x++) {
3273 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3274 x + image_x + map->x,
3275 y + image_y + map->y,
3276 brw->has_swizzling);
3277 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3278 }
3279 }
3280
3281 intel_miptree_unmap_raw(mt);
3282
3283 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3284 map->x, map->y, map->w, map->h,
3285 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3286 } else {
3287 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3288 map->x, map->y, map->w, map->h,
3289 mt, map->ptr, map->stride);
3290 }
3291 }
3292
3293 static void
3294 intel_miptree_unmap_s8(struct brw_context *brw,
3295 struct intel_mipmap_tree *mt,
3296 struct intel_miptree_map *map,
3297 unsigned int level,
3298 unsigned int slice)
3299 {
3300 if (map->mode & GL_MAP_WRITE_BIT) {
3301 unsigned int image_x, image_y;
3302 uint8_t *untiled_s8_map = map->ptr;
3303 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3304
3305 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3306
3307 for (uint32_t y = 0; y < map->h; y++) {
3308 for (uint32_t x = 0; x < map->w; x++) {
3309 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3310 image_x + x + map->x,
3311 image_y + y + map->y,
3312 brw->has_swizzling);
3313 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3314 }
3315 }
3316
3317 intel_miptree_unmap_raw(mt);
3318 }
3319
3320 free(map->buffer);
3321 }
3322
3323 static void
3324 intel_miptree_map_etc(struct brw_context *brw,
3325 struct intel_mipmap_tree *mt,
3326 struct intel_miptree_map *map,
3327 unsigned int level,
3328 unsigned int slice)
3329 {
3330 assert(mt->etc_format != MESA_FORMAT_NONE);
3331 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3332 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3333 }
3334
3335 assert(map->mode & GL_MAP_WRITE_BIT);
3336 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3337
3338 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3339 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3340 map->w, map->h, 1));
3341 map->ptr = map->buffer;
3342 }
3343
3344 static void
3345 intel_miptree_unmap_etc(struct brw_context *brw,
3346 struct intel_mipmap_tree *mt,
3347 struct intel_miptree_map *map,
3348 unsigned int level,
3349 unsigned int slice)
3350 {
3351 uint32_t image_x;
3352 uint32_t image_y;
3353 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3354
3355 image_x += map->x;
3356 image_y += map->y;
3357
3358 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3359 + image_y * mt->surf.row_pitch
3360 + image_x * mt->cpp;
3361
3362 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3363 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3364 map->ptr, map->stride,
3365 map->w, map->h);
3366 else
3367 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3368 map->ptr, map->stride,
3369 map->w, map->h, mt->etc_format);
3370
3371 intel_miptree_unmap_raw(mt);
3372 free(map->buffer);
3373 }
3374
3375 /**
3376 * Mapping function for packed depth/stencil miptrees backed by real separate
3377 * miptrees for depth and stencil.
3378 *
3379 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3380 * separate from the depth buffer. Yet at the GL API level, we have to expose
3381 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3382 * be able to map that memory for texture storage and glReadPixels-type
3383 * operations. We give Mesa core that access by mallocing a temporary and
3384 * copying the data between the actual backing store and the temporary.
3385 */
3386 static void
3387 intel_miptree_map_depthstencil(struct brw_context *brw,
3388 struct intel_mipmap_tree *mt,
3389 struct intel_miptree_map *map,
3390 unsigned int level, unsigned int slice)
3391 {
3392 struct intel_mipmap_tree *z_mt = mt;
3393 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3394 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3395 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3396
3397 map->stride = map->w * packed_bpp;
3398 map->buffer = map->ptr = malloc(map->stride * map->h);
3399 if (!map->buffer)
3400 return;
3401
3402 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3403 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3404 * invalidate is set, since we'll be writing the whole rectangle from our
3405 * temporary buffer back out.
3406 */
3407 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3408 uint32_t *packed_map = map->ptr;
3409 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3410 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3411 unsigned int s_image_x, s_image_y;
3412 unsigned int z_image_x, z_image_y;
3413
3414 intel_miptree_get_image_offset(s_mt, level, slice,
3415 &s_image_x, &s_image_y);
3416 intel_miptree_get_image_offset(z_mt, level, slice,
3417 &z_image_x, &z_image_y);
3418
3419 for (uint32_t y = 0; y < map->h; y++) {
3420 for (uint32_t x = 0; x < map->w; x++) {
3421 int map_x = map->x + x, map_y = map->y + y;
3422 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3423 map_x + s_image_x,
3424 map_y + s_image_y,
3425 brw->has_swizzling);
3426 ptrdiff_t z_offset = ((map_y + z_image_y) *
3427 (z_mt->surf.row_pitch / 4) +
3428 (map_x + z_image_x));
3429 uint8_t s = s_map[s_offset];
3430 uint32_t z = z_map[z_offset];
3431
3432 if (map_z32f_x24s8) {
3433 packed_map[(y * map->w + x) * 2 + 0] = z;
3434 packed_map[(y * map->w + x) * 2 + 1] = s;
3435 } else {
3436 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3437 }
3438 }
3439 }
3440
3441 intel_miptree_unmap_raw(s_mt);
3442 intel_miptree_unmap_raw(z_mt);
3443
3444 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3445 __func__,
3446 map->x, map->y, map->w, map->h,
3447 z_mt, map->x + z_image_x, map->y + z_image_y,
3448 s_mt, map->x + s_image_x, map->y + s_image_y,
3449 map->ptr, map->stride);
3450 } else {
3451 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3452 map->x, map->y, map->w, map->h,
3453 mt, map->ptr, map->stride);
3454 }
3455 }
3456
3457 static void
3458 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3459 struct intel_mipmap_tree *mt,
3460 struct intel_miptree_map *map,
3461 unsigned int level,
3462 unsigned int slice)
3463 {
3464 struct intel_mipmap_tree *z_mt = mt;
3465 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3466 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3467
3468 if (map->mode & GL_MAP_WRITE_BIT) {
3469 uint32_t *packed_map = map->ptr;
3470 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3471 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3472 unsigned int s_image_x, s_image_y;
3473 unsigned int z_image_x, z_image_y;
3474
3475 intel_miptree_get_image_offset(s_mt, level, slice,
3476 &s_image_x, &s_image_y);
3477 intel_miptree_get_image_offset(z_mt, level, slice,
3478 &z_image_x, &z_image_y);
3479
3480 for (uint32_t y = 0; y < map->h; y++) {
3481 for (uint32_t x = 0; x < map->w; x++) {
3482 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3483 x + s_image_x + map->x,
3484 y + s_image_y + map->y,
3485 brw->has_swizzling);
3486 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3487 (z_mt->surf.row_pitch / 4) +
3488 (x + z_image_x + map->x));
3489
3490 if (map_z32f_x24s8) {
3491 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3492 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3493 } else {
3494 uint32_t packed = packed_map[y * map->w + x];
3495 s_map[s_offset] = packed >> 24;
3496 z_map[z_offset] = packed;
3497 }
3498 }
3499 }
3500
3501 intel_miptree_unmap_raw(s_mt);
3502 intel_miptree_unmap_raw(z_mt);
3503
3504 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3505 __func__,
3506 map->x, map->y, map->w, map->h,
3507 z_mt, _mesa_get_format_name(z_mt->format),
3508 map->x + z_image_x, map->y + z_image_y,
3509 s_mt, map->x + s_image_x, map->y + s_image_y,
3510 map->ptr, map->stride);
3511 }
3512
3513 free(map->buffer);
3514 }
3515
3516 /**
3517 * Create and attach a map to the miptree at (level, slice). Return the
3518 * attached map.
3519 */
3520 static struct intel_miptree_map*
3521 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3522 unsigned int level,
3523 unsigned int slice,
3524 unsigned int x,
3525 unsigned int y,
3526 unsigned int w,
3527 unsigned int h,
3528 GLbitfield mode)
3529 {
3530 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3531
3532 if (!map)
3533 return NULL;
3534
3535 assert(mt->level[level].slice[slice].map == NULL);
3536 mt->level[level].slice[slice].map = map;
3537
3538 map->mode = mode;
3539 map->x = x;
3540 map->y = y;
3541 map->w = w;
3542 map->h = h;
3543
3544 return map;
3545 }
3546
3547 /**
3548 * Release the map at (level, slice).
3549 */
3550 static void
3551 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3552 unsigned int level,
3553 unsigned int slice)
3554 {
3555 struct intel_miptree_map **map;
3556
3557 map = &mt->level[level].slice[slice].map;
3558 free(*map);
3559 *map = NULL;
3560 }
3561
3562 static bool
3563 can_blit_slice(struct intel_mipmap_tree *mt,
3564 unsigned int level, unsigned int slice)
3565 {
3566 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3567 if (mt->surf.row_pitch >= 32768)
3568 return false;
3569
3570 return true;
3571 }
3572
3573 static bool
3574 use_intel_mipree_map_blit(struct brw_context *brw,
3575 struct intel_mipmap_tree *mt,
3576 GLbitfield mode,
3577 unsigned int level,
3578 unsigned int slice)
3579 {
3580 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3581
3582 if (devinfo->has_llc &&
3583 /* It's probably not worth swapping to the blit ring because of
3584 * all the overhead involved.
3585 */
3586 !(mode & GL_MAP_WRITE_BIT) &&
3587 !mt->compressed &&
3588 (mt->surf.tiling == ISL_TILING_X ||
3589 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3590 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3591 /* Fast copy blit on skl+ supports all tiling formats. */
3592 devinfo->gen >= 9) &&
3593 can_blit_slice(mt, level, slice))
3594 return true;
3595
3596 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3597 mt->bo->size >= brw->max_gtt_map_object_size) {
3598 assert(can_blit_slice(mt, level, slice));
3599 return true;
3600 }
3601
3602 return false;
3603 }
3604
3605 /**
3606 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3607 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3608 * arithmetic overflow.
3609 *
3610 * If you call this function and use \a out_stride, then you're doing pointer
3611 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3612 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3613 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3614 * which usually have type uint32_t or GLuint.
3615 */
3616 void
3617 intel_miptree_map(struct brw_context *brw,
3618 struct intel_mipmap_tree *mt,
3619 unsigned int level,
3620 unsigned int slice,
3621 unsigned int x,
3622 unsigned int y,
3623 unsigned int w,
3624 unsigned int h,
3625 GLbitfield mode,
3626 void **out_ptr,
3627 ptrdiff_t *out_stride)
3628 {
3629 struct intel_miptree_map *map;
3630
3631 assert(mt->surf.samples == 1);
3632
3633 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3634 if (!map){
3635 *out_ptr = NULL;
3636 *out_stride = 0;
3637 return;
3638 }
3639
3640 intel_miptree_access_raw(brw, mt, level, slice,
3641 map->mode & GL_MAP_WRITE_BIT);
3642
3643 if (mt->format == MESA_FORMAT_S_UINT8) {
3644 intel_miptree_map_s8(brw, mt, map, level, slice);
3645 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3646 !(mode & BRW_MAP_DIRECT_BIT)) {
3647 intel_miptree_map_etc(brw, mt, map, level, slice);
3648 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3649 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3650 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3651 intel_miptree_map_blit(brw, mt, map, level, slice);
3652 #if defined(USE_SSE41)
3653 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3654 !mt->compressed && cpu_has_sse4_1 &&
3655 (mt->surf.row_pitch % 16 == 0)) {
3656 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3657 #endif
3658 } else {
3659 intel_miptree_map_gtt(brw, mt, map, level, slice);
3660 }
3661
3662 *out_ptr = map->ptr;
3663 *out_stride = map->stride;
3664
3665 if (map->ptr == NULL)
3666 intel_miptree_release_map(mt, level, slice);
3667 }
3668
3669 void
3670 intel_miptree_unmap(struct brw_context *brw,
3671 struct intel_mipmap_tree *mt,
3672 unsigned int level,
3673 unsigned int slice)
3674 {
3675 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3676
3677 assert(mt->surf.samples == 1);
3678
3679 if (!map)
3680 return;
3681
3682 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3683 mt, _mesa_get_format_name(mt->format), level, slice);
3684
3685 if (mt->format == MESA_FORMAT_S_UINT8) {
3686 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3687 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3688 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3689 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3690 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3691 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3692 } else if (map->linear_mt) {
3693 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3694 #if defined(USE_SSE41)
3695 } else if (map->buffer && cpu_has_sse4_1) {
3696 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3697 #endif
3698 } else {
3699 intel_miptree_unmap_gtt(mt);
3700 }
3701
3702 intel_miptree_release_map(mt, level, slice);
3703 }
3704
3705 enum isl_surf_dim
3706 get_isl_surf_dim(GLenum target)
3707 {
3708 switch (target) {
3709 case GL_TEXTURE_1D:
3710 case GL_TEXTURE_1D_ARRAY:
3711 return ISL_SURF_DIM_1D;
3712
3713 case GL_TEXTURE_2D:
3714 case GL_TEXTURE_2D_ARRAY:
3715 case GL_TEXTURE_RECTANGLE:
3716 case GL_TEXTURE_CUBE_MAP:
3717 case GL_TEXTURE_CUBE_MAP_ARRAY:
3718 case GL_TEXTURE_2D_MULTISAMPLE:
3719 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3720 case GL_TEXTURE_EXTERNAL_OES:
3721 return ISL_SURF_DIM_2D;
3722
3723 case GL_TEXTURE_3D:
3724 return ISL_SURF_DIM_3D;
3725 }
3726
3727 unreachable("Invalid texture target");
3728 }
3729
3730 enum isl_dim_layout
3731 get_isl_dim_layout(const struct gen_device_info *devinfo,
3732 enum isl_tiling tiling, GLenum target)
3733 {
3734 switch (target) {
3735 case GL_TEXTURE_1D:
3736 case GL_TEXTURE_1D_ARRAY:
3737 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3738 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3739
3740 case GL_TEXTURE_2D:
3741 case GL_TEXTURE_2D_ARRAY:
3742 case GL_TEXTURE_RECTANGLE:
3743 case GL_TEXTURE_2D_MULTISAMPLE:
3744 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3745 case GL_TEXTURE_EXTERNAL_OES:
3746 return ISL_DIM_LAYOUT_GEN4_2D;
3747
3748 case GL_TEXTURE_CUBE_MAP:
3749 case GL_TEXTURE_CUBE_MAP_ARRAY:
3750 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3751 ISL_DIM_LAYOUT_GEN4_2D);
3752
3753 case GL_TEXTURE_3D:
3754 return (devinfo->gen >= 9 ?
3755 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3756 }
3757
3758 unreachable("Invalid texture target");
3759 }
3760
3761 enum isl_aux_usage
3762 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3763 const struct intel_mipmap_tree *mt)
3764 {
3765 if (mt->hiz_buf)
3766 return ISL_AUX_USAGE_HIZ;
3767
3768 if (!mt->mcs_buf)
3769 return ISL_AUX_USAGE_NONE;
3770
3771 return mt->aux_usage;
3772 }