i965/drm: Add stall warnings when mapping or waiting on BOs.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_resolve_map.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt);
53
54 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
55
56 static bool
57 intel_miptree_alloc_mcs(struct brw_context *brw,
58 struct intel_mipmap_tree *mt,
59 GLuint num_samples);
60
61 /**
62 * Determine which MSAA layout should be used by the MSAA surface being
63 * created, based on the chip generation and the surface type.
64 */
65 static enum intel_msaa_layout
66 compute_msaa_layout(struct brw_context *brw, mesa_format format,
67 enum intel_aux_disable aux_disable)
68 {
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return INTEL_MSAA_LAYOUT_IMS;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return INTEL_MSAA_LAYOUT_IMS;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
92 return INTEL_MSAA_LAYOUT_UMS;
93 } else if (aux_disable & INTEL_AUX_DISABLE_MCS) {
94 /* We can't use the CMS layout because it uses an aux buffer, the MCS
95 * buffer. So fallback to UMS, which is identical to CMS without the
96 * MCS. */
97 return INTEL_MSAA_LAYOUT_UMS;
98 } else {
99 return INTEL_MSAA_LAYOUT_CMS;
100 }
101 }
102 }
103
104 bool
105 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
106 unsigned tiling)
107 {
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (brw->gen >= 9)
116 return tiling == I915_TILING_Y;
117 else if (brw->gen >= 7)
118 return tiling != I915_TILING_NONE;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 bool
145 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 /* MCS support does not exist prior to Gen7 */
149 if (brw->gen < 7)
150 return false;
151
152 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
153 return false;
154
155 /* This function applies only to non-multisampled render targets. */
156 if (mt->num_samples > 1)
157 return false;
158
159 /* MCS is only supported for color buffers */
160 switch (_mesa_get_format_base_format(mt->format)) {
161 case GL_DEPTH_COMPONENT:
162 case GL_DEPTH_STENCIL:
163 case GL_STENCIL_INDEX:
164 return false;
165 }
166
167 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
168 return false;
169
170 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
171 const bool arrayed = mt->physical_depth0 != 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->num_samples <= 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (brw->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->format_supported_as_render_target[mt->format])
208 return false;
209
210 if (brw->gen >= 9) {
211 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
212 const uint32_t brw_format = brw_isl_format_for_mesa_format(linear_format);
213 return isl_format_supports_ccs_e(&brw->screen->devinfo, brw_format);
214 } else
215 return true;
216 }
217
218 /* On Gen9 support for color buffer compression was extended to single
219 * sampled surfaces. This is a helper considering both auxiliary buffer
220 * type and number of samples telling if the given miptree represents
221 * the new single sampled case - also called lossless compression.
222 */
223 bool
224 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
225 const struct intel_mipmap_tree *mt)
226 {
227 /* Only available from Gen9 onwards. */
228 if (brw->gen < 9)
229 return false;
230
231 /* Compression always requires auxiliary buffer. */
232 if (!mt->mcs_buf)
233 return false;
234
235 /* Single sample compression is represented re-using msaa compression
236 * layout type: "Compressed Multisampled Surfaces".
237 */
238 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
239 return false;
240
241 /* And finally distinguish between msaa and single sample case. */
242 return mt->num_samples <= 1;
243 }
244
245 bool
246 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
247 const struct intel_mipmap_tree *mt)
248 {
249 /* For now compression is only enabled for integer formats even though
250 * there exist supported floating point formats also. This is a heuristic
251 * decision based on current public benchmarks. In none of the cases these
252 * formats provided any improvement but a few cases were seen to regress.
253 * Hence these are left to to be enabled in the future when they are known
254 * to improve things.
255 */
256 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
257 return false;
258
259 /* Fast clear mechanism and lossless compression go hand in hand. */
260 if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
261 return false;
262
263 /* Fast clear can be also used to clear srgb surfaces by using equivalent
264 * linear format. This trick, however, can't be extended to be used with
265 * lossless compression and therefore a check is needed to see if the format
266 * really is linear.
267 */
268 return _mesa_get_srgb_format_linear(mt->format) == mt->format;
269 }
270
271 /**
272 * Determine depth format corresponding to a depth+stencil format,
273 * for separate stencil.
274 */
275 mesa_format
276 intel_depth_format_for_depthstencil_format(mesa_format format) {
277 switch (format) {
278 case MESA_FORMAT_Z24_UNORM_S8_UINT:
279 return MESA_FORMAT_Z24_UNORM_X8_UINT;
280 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
281 return MESA_FORMAT_Z_FLOAT32;
282 default:
283 return format;
284 }
285 }
286
287
288 /**
289 * @param for_bo Indicates that the caller is
290 * intel_miptree_create_for_bo(). If true, then do not create
291 * \c stencil_mt.
292 */
293 static struct intel_mipmap_tree *
294 intel_miptree_create_layout(struct brw_context *brw,
295 GLenum target,
296 mesa_format format,
297 GLuint first_level,
298 GLuint last_level,
299 GLuint width0,
300 GLuint height0,
301 GLuint depth0,
302 GLuint num_samples,
303 uint32_t layout_flags)
304 {
305 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
306 if (!mt)
307 return NULL;
308
309 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
310 _mesa_enum_to_string(target),
311 _mesa_get_format_name(format),
312 first_level, last_level, depth0, mt);
313
314 if (target == GL_TEXTURE_1D_ARRAY)
315 assert(height0 == 1);
316
317 mt->target = target;
318 mt->format = format;
319 mt->first_level = first_level;
320 mt->last_level = last_level;
321 mt->logical_width0 = width0;
322 mt->logical_height0 = height0;
323 mt->logical_depth0 = depth0;
324 mt->aux_disable = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0 ?
325 INTEL_AUX_DISABLE_ALL : INTEL_AUX_DISABLE_NONE;
326 mt->aux_disable |= INTEL_AUX_DISABLE_CCS;
327 mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
328 exec_list_make_empty(&mt->hiz_map);
329 exec_list_make_empty(&mt->color_resolve_map);
330 mt->cpp = _mesa_get_format_bytes(format);
331 mt->num_samples = num_samples;
332 mt->compressed = _mesa_is_format_compressed(format);
333 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
334 mt->refcount = 1;
335
336 int depth_multiply = 1;
337 if (num_samples > 1) {
338 /* Adjust width/height/depth for MSAA */
339 mt->msaa_layout = compute_msaa_layout(brw, format, mt->aux_disable);
340 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
341 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
342 * "If the surface is multisampled and it is a depth or stencil
343 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
344 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
345 * proceeding:
346 *
347 * +----------------------------------------------------------------+
348 * | Num Multisamples | W_l = | H_l = |
349 * +----------------------------------------------------------------+
350 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
351 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
352 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
353 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
354 * +----------------------------------------------------------------+
355 * "
356 *
357 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
358 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
359 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
360 *
361 * Another more complicated explanation for these adjustments comes
362 * from the Sandybridge PRM, volume 4, part 1, page 31:
363 *
364 * "Any of the other messages (sample*, LOD, load4) used with a
365 * (4x) multisampled surface will in-effect sample a surface with
366 * double the height and width as that indicated in the surface
367 * state. Each pixel position on the original-sized surface is
368 * replaced with a 2x2 of samples with the following arrangement:
369 *
370 * sample 0 sample 2
371 * sample 1 sample 3"
372 *
373 * Thus, when sampling from a multisampled texture, it behaves as
374 * though the layout in memory for (x,y,sample) is:
375 *
376 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
377 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
378 *
379 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
380 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
381 *
382 * However, the actual layout of multisampled data in memory is:
383 *
384 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
385 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
386 *
387 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
388 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
389 *
390 * This pattern repeats for each 2x2 pixel block.
391 *
392 * As a result, when calculating the size of our 4-sample buffer for
393 * an odd width or height, we have to align before scaling up because
394 * sample 3 is in that bottom right 2x2 block.
395 */
396 switch (num_samples) {
397 case 2:
398 assert(brw->gen >= 8);
399 width0 = ALIGN(width0, 2) * 2;
400 height0 = ALIGN(height0, 2);
401 break;
402 case 4:
403 width0 = ALIGN(width0, 2) * 2;
404 height0 = ALIGN(height0, 2) * 2;
405 break;
406 case 8:
407 width0 = ALIGN(width0, 2) * 4;
408 height0 = ALIGN(height0, 2) * 2;
409 break;
410 case 16:
411 width0 = ALIGN(width0, 2) * 4;
412 height0 = ALIGN(height0, 2) * 4;
413 break;
414 default:
415 /* num_samples should already have been quantized to 0, 1, 2, 4, 8
416 * or 16.
417 */
418 unreachable("not reached");
419 }
420 } else {
421 /* Non-interleaved */
422 depth_multiply = num_samples;
423 depth0 *= depth_multiply;
424 }
425 }
426
427 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
428 * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
429 * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
430 * used on Gen8 to make it pick a qpitch value which doesn't include space
431 * for the mipmaps. On Gen9 this is not necessary because it will
432 * automatically pick a packed qpitch value whenever mt->first_level ==
433 * mt->last_level.
434 * TODO: can we use it elsewhere?
435 * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
436 */
437 if (brw->gen >= 9) {
438 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
439 } else {
440 switch (mt->msaa_layout) {
441 case INTEL_MSAA_LAYOUT_NONE:
442 case INTEL_MSAA_LAYOUT_IMS:
443 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
444 break;
445 case INTEL_MSAA_LAYOUT_UMS:
446 case INTEL_MSAA_LAYOUT_CMS:
447 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
448 break;
449 }
450 }
451
452 if (target == GL_TEXTURE_CUBE_MAP)
453 assert(depth0 == 6 * depth_multiply);
454
455 mt->physical_width0 = width0;
456 mt->physical_height0 = height0;
457 mt->physical_depth0 = depth0;
458
459 if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
460 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
461 (brw->must_use_separate_stencil ||
462 (brw->has_separate_stencil &&
463 intel_miptree_wants_hiz_buffer(brw, mt)))) {
464 uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
465 if (brw->gen == 6) {
466 stencil_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD |
467 MIPTREE_LAYOUT_TILING_ANY;
468 }
469
470 mt->stencil_mt = intel_miptree_create(brw,
471 mt->target,
472 MESA_FORMAT_S_UINT8,
473 mt->first_level,
474 mt->last_level,
475 mt->logical_width0,
476 mt->logical_height0,
477 mt->logical_depth0,
478 num_samples,
479 stencil_flags);
480
481 if (!mt->stencil_mt) {
482 intel_miptree_release(&mt);
483 return NULL;
484 }
485 mt->stencil_mt->r8stencil_needs_update = true;
486
487 /* Fix up the Z miptree format for how we're splitting out separate
488 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
489 */
490 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
491 mt->cpp = 4;
492
493 if (format == mt->format) {
494 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
495 _mesa_get_format_name(mt->format));
496 }
497 }
498
499 if (layout_flags & MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD)
500 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
501
502 /*
503 * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
504 * multisampled or have an AUX buffer attached to it.
505 *
506 * GEN | MSRT | AUX_CCS_* or AUX_MCS
507 * -------------------------------------------
508 * 9 | HALIGN_16 | HALIGN_16
509 * 8 | HALIGN_ANY | HALIGN_16
510 * 7 | ? | ?
511 * 6 | ? | ?
512 */
513 if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
514 if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
515 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
516 } else if (brw->gen >= 9 && num_samples > 1) {
517 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
518 } else {
519 const UNUSED bool is_lossless_compressed_aux =
520 brw->gen >= 9 && num_samples == 1 &&
521 mt->format == MESA_FORMAT_R_UINT32;
522
523 /* For now, nothing else has this requirement */
524 assert(is_lossless_compressed_aux ||
525 (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
526 }
527
528 if (!brw_miptree_layout(brw, mt, layout_flags)) {
529 intel_miptree_release(&mt);
530 return NULL;
531 }
532
533 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
534 assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
535
536 return mt;
537 }
538
539
540 /**
541 * Choose an appropriate uncompressed format for a requested
542 * compressed format, if unsupported.
543 */
544 mesa_format
545 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
546 {
547 /* No need to lower ETC formats on these platforms,
548 * they are supported natively.
549 */
550 if (brw->gen >= 8 || brw->is_baytrail)
551 return format;
552
553 switch (format) {
554 case MESA_FORMAT_ETC1_RGB8:
555 return MESA_FORMAT_R8G8B8X8_UNORM;
556 case MESA_FORMAT_ETC2_RGB8:
557 return MESA_FORMAT_R8G8B8X8_UNORM;
558 case MESA_FORMAT_ETC2_SRGB8:
559 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
560 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
561 return MESA_FORMAT_B8G8R8A8_SRGB;
562 case MESA_FORMAT_ETC2_RGBA8_EAC:
563 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
564 return MESA_FORMAT_R8G8B8A8_UNORM;
565 case MESA_FORMAT_ETC2_R11_EAC:
566 return MESA_FORMAT_R_UNORM16;
567 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
568 return MESA_FORMAT_R_SNORM16;
569 case MESA_FORMAT_ETC2_RG11_EAC:
570 return MESA_FORMAT_R16G16_UNORM;
571 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
572 return MESA_FORMAT_R16G16_SNORM;
573 default:
574 /* Non ETC1 / ETC2 format */
575 return format;
576 }
577 }
578
579 static struct intel_mipmap_tree *
580 miptree_create(struct brw_context *brw,
581 GLenum target,
582 mesa_format format,
583 GLuint first_level,
584 GLuint last_level,
585 GLuint width0,
586 GLuint height0,
587 GLuint depth0,
588 GLuint num_samples,
589 uint32_t layout_flags)
590 {
591 struct intel_mipmap_tree *mt;
592 mesa_format tex_format = format;
593 mesa_format etc_format = MESA_FORMAT_NONE;
594 uint32_t alloc_flags = 0;
595
596 format = intel_lower_compressed_format(brw, format);
597
598 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
599
600 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
601 mt = intel_miptree_create_layout(brw, target, format,
602 first_level, last_level, width0,
603 height0, depth0, num_samples,
604 layout_flags);
605 if (!mt)
606 return NULL;
607
608 if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
609 mt->tiling = I915_TILING_Y;
610
611 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
612 alloc_flags |= BO_ALLOC_FOR_RENDER;
613
614 unsigned long pitch;
615 mt->etc_format = etc_format;
616
617 if (format == MESA_FORMAT_S_UINT8) {
618 /* Align to size of W tile, 64x64. */
619 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "miptree",
620 ALIGN(mt->total_width, 64),
621 ALIGN(mt->total_height, 64),
622 mt->cpp, &mt->tiling, &pitch,
623 alloc_flags);
624 } else {
625 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "miptree",
626 mt->total_width, mt->total_height,
627 mt->cpp, &mt->tiling, &pitch,
628 alloc_flags);
629 }
630
631 mt->pitch = pitch;
632
633 return mt;
634 }
635
636 struct intel_mipmap_tree *
637 intel_miptree_create(struct brw_context *brw,
638 GLenum target,
639 mesa_format format,
640 GLuint first_level,
641 GLuint last_level,
642 GLuint width0,
643 GLuint height0,
644 GLuint depth0,
645 GLuint num_samples,
646 uint32_t layout_flags)
647 {
648 struct intel_mipmap_tree *mt = miptree_create(
649 brw, target, format,
650 first_level, last_level,
651 width0, height0, depth0, num_samples,
652 layout_flags);
653
654 /* If the BO is too large to fit in the aperture, we need to use the
655 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
656 * handle Y-tiling, so we need to fall back to X.
657 */
658 if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
659 mt->tiling == I915_TILING_Y) {
660 unsigned long pitch = mt->pitch;
661 const uint32_t alloc_flags =
662 (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
663 BO_ALLOC_FOR_RENDER : 0;
664 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
665 mt->total_width, mt->total_height);
666
667 mt->tiling = I915_TILING_X;
668 brw_bo_unreference(mt->bo);
669 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "miptree",
670 mt->total_width, mt->total_height, mt->cpp,
671 &mt->tiling, &pitch, alloc_flags);
672 mt->pitch = pitch;
673 }
674
675 mt->offset = 0;
676
677 if (!mt->bo) {
678 intel_miptree_release(&mt);
679 return NULL;
680 }
681
682
683 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
684 assert(mt->num_samples > 1);
685 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
686 intel_miptree_release(&mt);
687 return NULL;
688 }
689 }
690
691 /* If this miptree is capable of supporting fast color clears, set
692 * fast_clear_state appropriately to ensure that fast clears will occur.
693 * Allocation of the MCS miptree will be deferred until the first fast
694 * clear actually occurs or when compressed single sampled buffer is
695 * written by the GPU for the first time.
696 */
697 if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
698 intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
699 mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
700 assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
701
702 /* On Gen9+ clients are not currently capable of consuming compressed
703 * single-sampled buffers. Disabling compression allows us to skip
704 * resolves.
705 */
706 const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
707 const bool is_lossless_compressed =
708 unlikely(!lossless_compression_disabled) &&
709 brw->gen >= 9 && !mt->is_scanout &&
710 intel_miptree_supports_lossless_compressed(brw, mt);
711
712 if (is_lossless_compressed) {
713 intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
714 }
715 }
716
717 return mt;
718 }
719
720 struct intel_mipmap_tree *
721 intel_miptree_create_for_bo(struct brw_context *brw,
722 struct brw_bo *bo,
723 mesa_format format,
724 uint32_t offset,
725 uint32_t width,
726 uint32_t height,
727 uint32_t depth,
728 int pitch,
729 uint32_t layout_flags)
730 {
731 struct intel_mipmap_tree *mt;
732 uint32_t tiling, swizzle;
733 GLenum target;
734
735 brw_bo_get_tiling(bo, &tiling, &swizzle);
736
737 /* Nothing will be able to use this miptree with the BO if the offset isn't
738 * aligned.
739 */
740 if (tiling != I915_TILING_NONE)
741 assert(offset % 4096 == 0);
742
743 /* miptrees can't handle negative pitch. If you need flipping of images,
744 * that's outside of the scope of the mt.
745 */
746 assert(pitch >= 0);
747
748 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
749
750 /* The BO already has a tiling format and we shouldn't confuse the lower
751 * layers by making it try to find a tiling format again.
752 */
753 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
754 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
755
756 layout_flags |= MIPTREE_LAYOUT_FOR_BO;
757 mt = intel_miptree_create_layout(brw, target, format,
758 0, 0,
759 width, height, depth, 0,
760 layout_flags);
761 if (!mt)
762 return NULL;
763
764 brw_bo_reference(bo);
765 mt->bo = bo;
766 mt->pitch = pitch;
767 mt->offset = offset;
768 mt->tiling = tiling;
769
770 return mt;
771 }
772
773 /**
774 * For a singlesample renderbuffer, this simply wraps the given BO with a
775 * miptree.
776 *
777 * For a multisample renderbuffer, this wraps the window system's
778 * (singlesample) BO with a singlesample miptree attached to the
779 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
780 * that will contain the actual rendering (which is lazily resolved to
781 * irb->singlesample_mt).
782 */
783 void
784 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
785 struct intel_renderbuffer *irb,
786 struct brw_bo *bo,
787 uint32_t width, uint32_t height,
788 uint32_t pitch)
789 {
790 struct intel_mipmap_tree *singlesample_mt = NULL;
791 struct intel_mipmap_tree *multisample_mt = NULL;
792 struct gl_renderbuffer *rb = &irb->Base.Base;
793 mesa_format format = rb->Format;
794 int num_samples = rb->NumSamples;
795
796 /* Only the front and back buffers, which are color buffers, are allocated
797 * through the image loader.
798 */
799 assert(_mesa_get_format_base_format(format) == GL_RGB ||
800 _mesa_get_format_base_format(format) == GL_RGBA);
801
802 singlesample_mt = intel_miptree_create_for_bo(intel,
803 bo,
804 format,
805 0,
806 width,
807 height,
808 1,
809 pitch,
810 MIPTREE_LAYOUT_FOR_SCANOUT);
811 if (!singlesample_mt)
812 goto fail;
813
814 /* If this miptree is capable of supporting fast color clears, set
815 * mcs_state appropriately to ensure that fast clears will occur.
816 * Allocation of the MCS miptree will be deferred until the first fast
817 * clear actually occurs.
818 */
819 if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
820 intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
821 singlesample_mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
822 }
823
824 if (num_samples == 0) {
825 intel_miptree_release(&irb->mt);
826 irb->mt = singlesample_mt;
827
828 assert(!irb->singlesample_mt);
829 } else {
830 intel_miptree_release(&irb->singlesample_mt);
831 irb->singlesample_mt = singlesample_mt;
832
833 if (!irb->mt ||
834 irb->mt->logical_width0 != width ||
835 irb->mt->logical_height0 != height) {
836 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
837 format,
838 width,
839 height,
840 num_samples);
841 if (!multisample_mt)
842 goto fail;
843
844 irb->need_downsample = false;
845 intel_miptree_release(&irb->mt);
846 irb->mt = multisample_mt;
847 }
848 }
849 return;
850
851 fail:
852 intel_miptree_release(&irb->singlesample_mt);
853 intel_miptree_release(&irb->mt);
854 return;
855 }
856
857 struct intel_mipmap_tree*
858 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
859 mesa_format format,
860 uint32_t width,
861 uint32_t height,
862 uint32_t num_samples)
863 {
864 struct intel_mipmap_tree *mt;
865 uint32_t depth = 1;
866 bool ok;
867 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
868 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
869 MIPTREE_LAYOUT_TILING_ANY |
870 MIPTREE_LAYOUT_FOR_SCANOUT;
871
872 mt = intel_miptree_create(brw, target, format, 0, 0,
873 width, height, depth, num_samples,
874 layout_flags);
875 if (!mt)
876 goto fail;
877
878 if (intel_miptree_wants_hiz_buffer(brw, mt)) {
879 ok = intel_miptree_alloc_hiz(brw, mt);
880 if (!ok)
881 goto fail;
882 }
883
884 return mt;
885
886 fail:
887 intel_miptree_release(&mt);
888 return NULL;
889 }
890
891 void
892 intel_miptree_reference(struct intel_mipmap_tree **dst,
893 struct intel_mipmap_tree *src)
894 {
895 if (*dst == src)
896 return;
897
898 intel_miptree_release(dst);
899
900 if (src) {
901 src->refcount++;
902 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
903 }
904
905 *dst = src;
906 }
907
908 static void
909 intel_miptree_hiz_buffer_free(struct intel_miptree_hiz_buffer *hiz_buf)
910 {
911 if (hiz_buf == NULL)
912 return;
913
914 if (hiz_buf->mt)
915 intel_miptree_release(&hiz_buf->mt);
916 else
917 brw_bo_unreference(hiz_buf->aux_base.bo);
918
919 free(hiz_buf);
920 }
921
922 void
923 intel_miptree_release(struct intel_mipmap_tree **mt)
924 {
925 if (!*mt)
926 return;
927
928 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
929 if (--(*mt)->refcount <= 0) {
930 GLuint i;
931
932 DBG("%s deleting %p\n", __func__, *mt);
933
934 brw_bo_unreference((*mt)->bo);
935 intel_miptree_release(&(*mt)->stencil_mt);
936 intel_miptree_release(&(*mt)->r8stencil_mt);
937 intel_miptree_hiz_buffer_free((*mt)->hiz_buf);
938 if ((*mt)->mcs_buf) {
939 brw_bo_unreference((*mt)->mcs_buf->bo);
940 free((*mt)->mcs_buf);
941 }
942 intel_resolve_map_clear(&(*mt)->hiz_map);
943 intel_resolve_map_clear(&(*mt)->color_resolve_map);
944
945 intel_miptree_release(&(*mt)->plane[0]);
946 intel_miptree_release(&(*mt)->plane[1]);
947
948 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
949 free((*mt)->level[i].slice);
950 }
951
952 free(*mt);
953 }
954 *mt = NULL;
955 }
956
957
958 void
959 intel_get_image_dims(struct gl_texture_image *image,
960 int *width, int *height, int *depth)
961 {
962 switch (image->TexObject->Target) {
963 case GL_TEXTURE_1D_ARRAY:
964 /* For a 1D Array texture the OpenGL API will treat the image height as
965 * the number of array slices. For Intel hardware, we treat the 1D array
966 * as a 2D Array with a height of 1. So, here we want to swap image
967 * height and depth.
968 */
969 assert(image->Depth == 1);
970 *width = image->Width;
971 *height = 1;
972 *depth = image->Height;
973 break;
974 case GL_TEXTURE_CUBE_MAP:
975 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
976 * though we really have 6 slices.
977 */
978 assert(image->Depth == 1);
979 *width = image->Width;
980 *height = image->Height;
981 *depth = 6;
982 break;
983 default:
984 *width = image->Width;
985 *height = image->Height;
986 *depth = image->Depth;
987 break;
988 }
989 }
990
991 /**
992 * Can the image be pulled into a unified mipmap tree? This mirrors
993 * the completeness test in a lot of ways.
994 *
995 * Not sure whether I want to pass gl_texture_image here.
996 */
997 bool
998 intel_miptree_match_image(struct intel_mipmap_tree *mt,
999 struct gl_texture_image *image)
1000 {
1001 struct intel_texture_image *intelImage = intel_texture_image(image);
1002 GLuint level = intelImage->base.Base.Level;
1003 int width, height, depth;
1004
1005 /* glTexImage* choose the texture object based on the target passed in, and
1006 * objects can't change targets over their lifetimes, so this should be
1007 * true.
1008 */
1009 assert(image->TexObject->Target == mt->target);
1010
1011 mesa_format mt_format = mt->format;
1012 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1013 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1014 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1015 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1016 if (mt->etc_format != MESA_FORMAT_NONE)
1017 mt_format = mt->etc_format;
1018
1019 if (image->TexFormat != mt_format)
1020 return false;
1021
1022 intel_get_image_dims(image, &width, &height, &depth);
1023
1024 if (mt->target == GL_TEXTURE_CUBE_MAP)
1025 depth = 6;
1026
1027 int level_depth = mt->level[level].depth;
1028 if (mt->num_samples > 1) {
1029 switch (mt->msaa_layout) {
1030 case INTEL_MSAA_LAYOUT_NONE:
1031 case INTEL_MSAA_LAYOUT_IMS:
1032 break;
1033 case INTEL_MSAA_LAYOUT_UMS:
1034 case INTEL_MSAA_LAYOUT_CMS:
1035 level_depth /= mt->num_samples;
1036 break;
1037 }
1038 }
1039
1040 /* Test image dimensions against the base level image adjusted for
1041 * minification. This will also catch images not present in the
1042 * tree, changed targets, etc.
1043 */
1044 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1045 height != minify(mt->logical_height0, level - mt->first_level) ||
1046 depth != level_depth) {
1047 return false;
1048 }
1049
1050 if (image->NumSamples != mt->num_samples)
1051 return false;
1052
1053 return true;
1054 }
1055
1056
1057 void
1058 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1059 GLuint level,
1060 GLuint x, GLuint y, GLuint d)
1061 {
1062 mt->level[level].depth = d;
1063 mt->level[level].level_x = x;
1064 mt->level[level].level_y = y;
1065
1066 DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1067 level, d, x, y);
1068
1069 assert(mt->level[level].slice == NULL);
1070
1071 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1072 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1073 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1074 }
1075
1076
1077 void
1078 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1079 GLuint level, GLuint img,
1080 GLuint x, GLuint y)
1081 {
1082 if (img == 0 && level == 0)
1083 assert(x == 0 && y == 0);
1084
1085 assert(img < mt->level[level].depth);
1086
1087 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1088 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1089
1090 DBG("%s level %d img %d pos %d,%d\n",
1091 __func__, level, img,
1092 mt->level[level].slice[img].x_offset,
1093 mt->level[level].slice[img].y_offset);
1094 }
1095
1096 void
1097 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1098 GLuint level, GLuint slice,
1099 GLuint *x, GLuint *y)
1100 {
1101 assert(slice < mt->level[level].depth);
1102
1103 *x = mt->level[level].slice[slice].x_offset;
1104 *y = mt->level[level].slice[slice].y_offset;
1105 }
1106
1107
1108 /**
1109 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1110 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1111 * and tile_h is set to 1.
1112 */
1113 void
1114 intel_get_tile_dims(uint32_t tiling, uint32_t cpp,
1115 uint32_t *tile_w, uint32_t *tile_h)
1116 {
1117 switch (tiling) {
1118 case I915_TILING_X:
1119 *tile_w = 512;
1120 *tile_h = 8;
1121 break;
1122 case I915_TILING_Y:
1123 *tile_w = 128;
1124 *tile_h = 32;
1125 break;
1126 case I915_TILING_NONE:
1127 *tile_w = cpp;
1128 *tile_h = 1;
1129 break;
1130 default:
1131 unreachable("not reached");
1132 }
1133 }
1134
1135
1136 /**
1137 * This function computes masks that may be used to select the bits of the X
1138 * and Y coordinates that indicate the offset within a tile. If the BO is
1139 * untiled, the masks are set to 0.
1140 */
1141 void
1142 intel_get_tile_masks(uint32_t tiling, uint32_t cpp,
1143 uint32_t *mask_x, uint32_t *mask_y)
1144 {
1145 uint32_t tile_w_bytes, tile_h;
1146
1147 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1148
1149 *mask_x = tile_w_bytes / cpp - 1;
1150 *mask_y = tile_h - 1;
1151 }
1152
1153 /**
1154 * Compute the offset (in bytes) from the start of the BO to the given x
1155 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1156 * multiples of the tile size.
1157 */
1158 uint32_t
1159 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1160 uint32_t x, uint32_t y)
1161 {
1162 int cpp = mt->cpp;
1163 uint32_t pitch = mt->pitch;
1164 uint32_t tiling = mt->tiling;
1165
1166 switch (tiling) {
1167 default:
1168 unreachable("not reached");
1169 case I915_TILING_NONE:
1170 return y * pitch + x * cpp;
1171 case I915_TILING_X:
1172 assert((x % (512 / cpp)) == 0);
1173 assert((y % 8) == 0);
1174 return y * pitch + x / (512 / cpp) * 4096;
1175 case I915_TILING_Y:
1176 assert((x % (128 / cpp)) == 0);
1177 assert((y % 32) == 0);
1178 return y * pitch + x / (128 / cpp) * 4096;
1179 }
1180 }
1181
1182 /**
1183 * Rendering with tiled buffers requires that the base address of the buffer
1184 * be aligned to a page boundary. For renderbuffers, and sometimes with
1185 * textures, we may want the surface to point at a texture image level that
1186 * isn't at a page boundary.
1187 *
1188 * This function returns an appropriately-aligned base offset
1189 * according to the tiling restrictions, plus any required x/y offset
1190 * from there.
1191 */
1192 uint32_t
1193 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1194 GLuint level, GLuint slice,
1195 uint32_t *tile_x,
1196 uint32_t *tile_y)
1197 {
1198 uint32_t x, y;
1199 uint32_t mask_x, mask_y;
1200
1201 intel_get_tile_masks(mt->tiling, mt->cpp, &mask_x, &mask_y);
1202 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1203
1204 *tile_x = x & mask_x;
1205 *tile_y = y & mask_y;
1206
1207 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1208 }
1209
1210 static void
1211 intel_miptree_copy_slice_sw(struct brw_context *brw,
1212 struct intel_mipmap_tree *dst_mt,
1213 struct intel_mipmap_tree *src_mt,
1214 int level,
1215 int slice,
1216 int width,
1217 int height)
1218 {
1219 void *src, *dst;
1220 ptrdiff_t src_stride, dst_stride;
1221 int cpp = dst_mt->cpp;
1222
1223 intel_miptree_map(brw, src_mt,
1224 level, slice,
1225 0, 0,
1226 width, height,
1227 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1228 &src, &src_stride);
1229
1230 intel_miptree_map(brw, dst_mt,
1231 level, slice,
1232 0, 0,
1233 width, height,
1234 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1235 BRW_MAP_DIRECT_BIT,
1236 &dst, &dst_stride);
1237
1238 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1239 _mesa_get_format_name(src_mt->format),
1240 src_mt, src, src_stride,
1241 _mesa_get_format_name(dst_mt->format),
1242 dst_mt, dst, dst_stride,
1243 width, height);
1244
1245 int row_size = cpp * width;
1246 if (src_stride == row_size &&
1247 dst_stride == row_size) {
1248 memcpy(dst, src, row_size * height);
1249 } else {
1250 for (int i = 0; i < height; i++) {
1251 memcpy(dst, src, row_size);
1252 dst += dst_stride;
1253 src += src_stride;
1254 }
1255 }
1256
1257 intel_miptree_unmap(brw, dst_mt, level, slice);
1258 intel_miptree_unmap(brw, src_mt, level, slice);
1259
1260 /* Don't forget to copy the stencil data over, too. We could have skipped
1261 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1262 * shuffling the two data sources in/out of temporary storage instead of
1263 * the direct mapping we get this way.
1264 */
1265 if (dst_mt->stencil_mt) {
1266 assert(src_mt->stencil_mt);
1267 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1268 level, slice, width, height);
1269 }
1270 }
1271
1272 static void
1273 intel_miptree_copy_slice(struct brw_context *brw,
1274 struct intel_mipmap_tree *dst_mt,
1275 struct intel_mipmap_tree *src_mt,
1276 int level,
1277 int face,
1278 int depth)
1279
1280 {
1281 mesa_format format = src_mt->format;
1282 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1283 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1284 int slice;
1285
1286 if (face > 0)
1287 slice = face;
1288 else
1289 slice = depth;
1290
1291 assert(depth < src_mt->level[level].depth);
1292 assert(src_mt->format == dst_mt->format);
1293
1294 if (dst_mt->compressed) {
1295 unsigned int i, j;
1296 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1297 height = ALIGN_NPOT(height, j) / j;
1298 width = ALIGN_NPOT(width, i) / i;
1299 }
1300
1301 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1302 * below won't apply since we can't do the depth's Y tiling or the
1303 * stencil's W tiling in the blitter.
1304 */
1305 if (src_mt->stencil_mt) {
1306 intel_miptree_copy_slice_sw(brw,
1307 dst_mt, src_mt,
1308 level, slice,
1309 width, height);
1310 return;
1311 }
1312
1313 uint32_t dst_x, dst_y, src_x, src_y;
1314 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1315 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1316
1317 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1318 _mesa_get_format_name(src_mt->format),
1319 src_mt, src_x, src_y, src_mt->pitch,
1320 _mesa_get_format_name(dst_mt->format),
1321 dst_mt, dst_x, dst_y, dst_mt->pitch,
1322 width, height);
1323
1324 if (!intel_miptree_blit(brw,
1325 src_mt, level, slice, 0, 0, false,
1326 dst_mt, level, slice, 0, 0, false,
1327 width, height, GL_COPY)) {
1328 perf_debug("miptree validate blit for %s failed\n",
1329 _mesa_get_format_name(format));
1330
1331 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1332 width, height);
1333 }
1334 }
1335
1336 /**
1337 * Copies the image's current data to the given miptree, and associates that
1338 * miptree with the image.
1339 *
1340 * If \c invalidate is true, then the actual image data does not need to be
1341 * copied, but the image still needs to be associated to the new miptree (this
1342 * is set to true if we're about to clear the image).
1343 */
1344 void
1345 intel_miptree_copy_teximage(struct brw_context *brw,
1346 struct intel_texture_image *intelImage,
1347 struct intel_mipmap_tree *dst_mt,
1348 bool invalidate)
1349 {
1350 struct intel_mipmap_tree *src_mt = intelImage->mt;
1351 struct intel_texture_object *intel_obj =
1352 intel_texture_object(intelImage->base.Base.TexObject);
1353 int level = intelImage->base.Base.Level;
1354 int face = intelImage->base.Base.Face;
1355
1356 GLuint depth;
1357 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1358 depth = intelImage->base.Base.Height;
1359 else
1360 depth = intelImage->base.Base.Depth;
1361
1362 if (!invalidate) {
1363 for (int slice = 0; slice < depth; slice++) {
1364 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1365 }
1366 }
1367
1368 intel_miptree_reference(&intelImage->mt, dst_mt);
1369 intel_obj->needs_validate = true;
1370 }
1371
1372 static void
1373 intel_miptree_init_mcs(struct brw_context *brw,
1374 struct intel_mipmap_tree *mt,
1375 int init_value)
1376 {
1377 assert(mt->mcs_buf != NULL);
1378
1379 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1380 *
1381 * When MCS buffer is enabled and bound to MSRT, it is required that it
1382 * is cleared prior to any rendering.
1383 *
1384 * Since we don't use the MCS buffer for any purpose other than rendering,
1385 * it makes sense to just clear it immediately upon allocation.
1386 *
1387 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1388 */
1389 const int ret = brw_bo_map_gtt(brw, mt->mcs_buf->bo);
1390 if (unlikely(ret)) {
1391 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1392 brw_bo_unreference(mt->mcs_buf->bo);
1393 free(mt->mcs_buf);
1394 return;
1395 }
1396 void *data = mt->mcs_buf->bo->virtual;
1397 memset(data, init_value, mt->mcs_buf->size);
1398 brw_bo_unmap(mt->mcs_buf->bo);
1399 }
1400
1401 static struct intel_miptree_aux_buffer *
1402 intel_mcs_miptree_buf_create(struct brw_context *brw,
1403 struct intel_mipmap_tree *mt,
1404 mesa_format format,
1405 unsigned mcs_width,
1406 unsigned mcs_height,
1407 uint32_t layout_flags)
1408 {
1409 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1410 struct intel_mipmap_tree *temp_mt;
1411
1412 if (!buf)
1413 return NULL;
1414
1415 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1416 *
1417 * "The MCS surface must be stored as Tile Y."
1418 */
1419 layout_flags |= MIPTREE_LAYOUT_TILING_Y;
1420 temp_mt = miptree_create(brw,
1421 mt->target,
1422 format,
1423 mt->first_level,
1424 mt->last_level,
1425 mcs_width,
1426 mcs_height,
1427 mt->logical_depth0,
1428 0 /* num_samples */,
1429 layout_flags);
1430 if (!temp_mt) {
1431 free(buf);
1432 return NULL;
1433 }
1434
1435 buf->bo = temp_mt->bo;
1436 buf->offset = temp_mt->offset;
1437 buf->size = temp_mt->total_height * temp_mt->pitch;
1438 buf->pitch = temp_mt->pitch;
1439 buf->qpitch = temp_mt->qpitch;
1440
1441 /* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
1442 * structure should go away. We use miptree create simply as a means to make
1443 * sure all the constraints for the buffer are satisfied.
1444 */
1445 brw_bo_reference(temp_mt->bo);
1446 intel_miptree_release(&temp_mt);
1447
1448 return buf;
1449 }
1450
1451 static bool
1452 intel_miptree_alloc_mcs(struct brw_context *brw,
1453 struct intel_mipmap_tree *mt,
1454 GLuint num_samples)
1455 {
1456 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1457 assert(mt->mcs_buf == NULL);
1458 assert((mt->aux_disable & INTEL_AUX_DISABLE_MCS) == 0);
1459
1460 /* Choose the correct format for the MCS buffer. All that really matters
1461 * is that we allocate the right buffer size, since we'll always be
1462 * accessing this miptree using MCS-specific hardware mechanisms, which
1463 * infer the correct format based on num_samples.
1464 */
1465 mesa_format format;
1466 switch (num_samples) {
1467 case 2:
1468 case 4:
1469 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1470 * each sample).
1471 */
1472 format = MESA_FORMAT_R_UNORM8;
1473 break;
1474 case 8:
1475 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1476 * for each sample, plus 8 padding bits).
1477 */
1478 format = MESA_FORMAT_R_UINT32;
1479 break;
1480 case 16:
1481 /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
1482 * for each sample).
1483 */
1484 format = MESA_FORMAT_RG_UINT32;
1485 break;
1486 default:
1487 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1488 };
1489
1490 mt->mcs_buf =
1491 intel_mcs_miptree_buf_create(brw, mt,
1492 format,
1493 mt->logical_width0,
1494 mt->logical_height0,
1495 MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
1496 if (!mt->mcs_buf)
1497 return false;
1498
1499 intel_miptree_init_mcs(brw, mt, 0xFF);
1500
1501 /* Multisampled miptrees are only supported for single level. */
1502 assert(mt->first_level == 0);
1503 intel_miptree_set_fast_clear_state(brw, mt, mt->first_level, 0,
1504 mt->logical_depth0,
1505 INTEL_FAST_CLEAR_STATE_CLEAR);
1506
1507 return true;
1508 }
1509
1510
1511 bool
1512 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1513 struct intel_mipmap_tree *mt,
1514 bool is_lossless_compressed)
1515 {
1516 assert(mt->mcs_buf == NULL);
1517 assert(!(mt->aux_disable & (INTEL_AUX_DISABLE_MCS | INTEL_AUX_DISABLE_CCS)));
1518
1519 struct isl_surf temp_main_surf;
1520 struct isl_surf temp_ccs_surf;
1521
1522 /* Create first an ISL presentation for the main color surface and let ISL
1523 * calculate equivalent CCS surface against it.
1524 */
1525 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1526 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
1527 return false;
1528
1529 assert(temp_ccs_surf.size &&
1530 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1531
1532 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1533 if (!buf)
1534 return false;
1535
1536 buf->size = temp_ccs_surf.size;
1537 buf->pitch = temp_ccs_surf.row_pitch;
1538 buf->qpitch = isl_surf_get_array_pitch_sa_rows(&temp_ccs_surf);
1539
1540 /* In case of compression mcs buffer needs to be initialised requiring the
1541 * buffer to be immediately mapped to cpu space for writing. Therefore do
1542 * not use the gpu access flag which can cause an unnecessary delay if the
1543 * backing pages happened to be just used by the GPU.
1544 */
1545 const uint32_t alloc_flags =
1546 is_lossless_compressed ? 0 : BO_ALLOC_FOR_RENDER;
1547 uint32_t tiling = I915_TILING_Y;
1548 unsigned long pitch;
1549
1550 /* ISL has stricter set of alignment rules then the drm allocator.
1551 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1552 * trying to recalculate based on different format block sizes.
1553 */
1554 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "ccs-miptree",
1555 buf->pitch, buf->size / buf->pitch,
1556 1, &tiling, &pitch, alloc_flags);
1557 if (buf->bo) {
1558 assert(pitch == buf->pitch);
1559 assert(tiling == I915_TILING_Y);
1560 } else {
1561 free(buf);
1562 return false;
1563 }
1564
1565 mt->mcs_buf = buf;
1566
1567 /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1568 * used for lossless compression which requires similar initialisation
1569 * as multi-sample compression.
1570 */
1571 if (is_lossless_compressed) {
1572 /* Hardware sets the auxiliary buffer to all zeroes when it does full
1573 * resolve. Initialize it accordingly in case the first renderer is
1574 * cpu (or other none compression aware party).
1575 *
1576 * This is also explicitly stated in the spec (MCS Buffer for Render
1577 * Target(s)):
1578 * "If Software wants to enable Color Compression without Fast clear,
1579 * Software needs to initialize MCS with zeros."
1580 */
1581 intel_miptree_init_mcs(brw, mt, 0);
1582 mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1583 }
1584
1585 return true;
1586 }
1587
1588 /**
1589 * Helper for intel_miptree_alloc_hiz() that sets
1590 * \c mt->level[level].has_hiz. Return true if and only if
1591 * \c has_hiz was set.
1592 */
1593 static bool
1594 intel_miptree_level_enable_hiz(struct brw_context *brw,
1595 struct intel_mipmap_tree *mt,
1596 uint32_t level)
1597 {
1598 assert(mt->hiz_buf);
1599
1600 if (brw->gen >= 8 || brw->is_haswell) {
1601 uint32_t width = minify(mt->physical_width0, level);
1602 uint32_t height = minify(mt->physical_height0, level);
1603
1604 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1605 * and the height is 4 aligned. This allows our HiZ support
1606 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1607 * we can grow the width & height to allow the HiZ op to
1608 * force the proper size alignments.
1609 */
1610 if (level > 0 && ((width & 7) || (height & 3))) {
1611 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1612 return false;
1613 }
1614 }
1615
1616 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1617 mt->level[level].has_hiz = true;
1618 return true;
1619 }
1620
1621
1622 /**
1623 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1624 * buffer dimensions and allocates a bo for the hiz buffer.
1625 */
1626 static struct intel_miptree_hiz_buffer *
1627 intel_gen7_hiz_buf_create(struct brw_context *brw,
1628 struct intel_mipmap_tree *mt)
1629 {
1630 unsigned z_width = mt->logical_width0;
1631 unsigned z_height = mt->logical_height0;
1632 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1633 unsigned hz_width, hz_height;
1634 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1635
1636 if (!buf)
1637 return NULL;
1638
1639 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1640 * adjustments required for Z_Height and Z_Width based on multisampling.
1641 */
1642 switch (mt->num_samples) {
1643 case 0:
1644 case 1:
1645 break;
1646 case 2:
1647 case 4:
1648 z_width *= 2;
1649 z_height *= 2;
1650 break;
1651 case 8:
1652 z_width *= 4;
1653 z_height *= 2;
1654 break;
1655 default:
1656 unreachable("unsupported sample count");
1657 }
1658
1659 const unsigned vertical_align = 8; /* 'j' in the docs */
1660 const unsigned H0 = z_height;
1661 const unsigned h0 = ALIGN(H0, vertical_align);
1662 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1663 const unsigned Z0 = z_depth;
1664
1665 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1666 hz_width = ALIGN(z_width, 16);
1667
1668 if (mt->target == GL_TEXTURE_3D) {
1669 unsigned H_i = H0;
1670 unsigned Z_i = Z0;
1671 hz_height = 0;
1672 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1673 unsigned h_i = ALIGN(H_i, vertical_align);
1674 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1675 hz_height += h_i * Z_i;
1676 H_i = minify(H_i, 1);
1677 Z_i = minify(Z_i, 1);
1678 }
1679 /* HZ_Height =
1680 * (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1681 */
1682 hz_height = DIV_ROUND_UP(hz_height, 2);
1683 } else {
1684 const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1685 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1686 hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1687 }
1688
1689 unsigned long pitch;
1690 uint32_t tiling = I915_TILING_Y;
1691 buf->aux_base.bo = brw_bo_alloc_tiled(brw->bufmgr, "hiz",
1692 hz_width, hz_height, 1,
1693 &tiling, &pitch,
1694 BO_ALLOC_FOR_RENDER);
1695 if (!buf->aux_base.bo) {
1696 free(buf);
1697 return NULL;
1698 } else if (tiling != I915_TILING_Y) {
1699 brw_bo_unreference(buf->aux_base.bo);
1700 free(buf);
1701 return NULL;
1702 }
1703
1704 buf->aux_base.size = hz_width * hz_height;
1705 buf->aux_base.pitch = pitch;
1706
1707 return buf;
1708 }
1709
1710
1711 /**
1712 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1713 * buffer dimensions and allocates a bo for the hiz buffer.
1714 */
1715 static struct intel_miptree_hiz_buffer *
1716 intel_gen8_hiz_buf_create(struct brw_context *brw,
1717 struct intel_mipmap_tree *mt)
1718 {
1719 unsigned z_width = mt->logical_width0;
1720 unsigned z_height = mt->logical_height0;
1721 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1722 unsigned hz_width, hz_height;
1723 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1724
1725 if (!buf)
1726 return NULL;
1727
1728 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1729 * adjustments required for Z_Height and Z_Width based on multisampling.
1730 */
1731 if (brw->gen < 9) {
1732 switch (mt->num_samples) {
1733 case 0:
1734 case 1:
1735 break;
1736 case 2:
1737 case 4:
1738 z_width *= 2;
1739 z_height *= 2;
1740 break;
1741 case 8:
1742 z_width *= 4;
1743 z_height *= 2;
1744 break;
1745 default:
1746 unreachable("unsupported sample count");
1747 }
1748 }
1749
1750 const unsigned vertical_align = 8; /* 'j' in the docs */
1751 const unsigned H0 = z_height;
1752 const unsigned h0 = ALIGN(H0, vertical_align);
1753 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1754 const unsigned Z0 = z_depth;
1755
1756 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1757 hz_width = ALIGN(z_width, 16);
1758
1759 unsigned H_i = H0;
1760 unsigned Z_i = Z0;
1761 unsigned sum_h_i = 0;
1762 unsigned hz_height_3d_sum = 0;
1763 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1764 unsigned i = level - mt->first_level;
1765 unsigned h_i = ALIGN(H_i, vertical_align);
1766 /* sum(i=2 to m; h_i) */
1767 if (i >= 2) {
1768 sum_h_i += h_i;
1769 }
1770 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1771 hz_height_3d_sum += h_i * Z_i;
1772 H_i = minify(H_i, 1);
1773 Z_i = minify(Z_i, 1);
1774 }
1775 /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1776 buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
1777
1778 if (mt->target == GL_TEXTURE_3D) {
1779 /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1780 hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1781 } else {
1782 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1783 hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
1784 }
1785
1786 unsigned long pitch;
1787 uint32_t tiling = I915_TILING_Y;
1788 buf->aux_base.bo = brw_bo_alloc_tiled(brw->bufmgr, "hiz",
1789 hz_width, hz_height, 1,
1790 &tiling, &pitch,
1791 BO_ALLOC_FOR_RENDER);
1792 if (!buf->aux_base.bo) {
1793 free(buf);
1794 return NULL;
1795 } else if (tiling != I915_TILING_Y) {
1796 brw_bo_unreference(buf->aux_base.bo);
1797 free(buf);
1798 return NULL;
1799 }
1800
1801 buf->aux_base.size = hz_width * hz_height;
1802 buf->aux_base.pitch = pitch;
1803
1804 return buf;
1805 }
1806
1807
1808 static struct intel_miptree_hiz_buffer *
1809 intel_hiz_miptree_buf_create(struct brw_context *brw,
1810 struct intel_mipmap_tree *mt)
1811 {
1812 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1813 uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1814
1815 if (brw->gen == 6)
1816 layout_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD;
1817
1818 if (!buf)
1819 return NULL;
1820
1821 layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
1822 buf->mt = intel_miptree_create(brw,
1823 mt->target,
1824 mt->format,
1825 mt->first_level,
1826 mt->last_level,
1827 mt->logical_width0,
1828 mt->logical_height0,
1829 mt->logical_depth0,
1830 mt->num_samples,
1831 layout_flags);
1832 if (!buf->mt) {
1833 free(buf);
1834 return NULL;
1835 }
1836
1837 buf->aux_base.bo = buf->mt->bo;
1838 buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
1839 buf->aux_base.pitch = buf->mt->pitch;
1840
1841 /* On gen6 hiz is unconditionally laid out packing all slices
1842 * at each level-of-detail (LOD). This means there is no valid qpitch
1843 * setting. In fact, this is ignored when hardware is setup - there is no
1844 * hardware qpitch setting of hiz on gen6.
1845 */
1846 buf->aux_base.qpitch = 0;
1847
1848 return buf;
1849 }
1850
1851 bool
1852 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1853 struct intel_mipmap_tree *mt)
1854 {
1855 if (!brw->has_hiz)
1856 return false;
1857
1858 if (mt->hiz_buf != NULL)
1859 return false;
1860
1861 if (mt->aux_disable & INTEL_AUX_DISABLE_HIZ)
1862 return false;
1863
1864 switch (mt->format) {
1865 case MESA_FORMAT_Z_FLOAT32:
1866 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1867 case MESA_FORMAT_Z24_UNORM_X8_UINT:
1868 case MESA_FORMAT_Z24_UNORM_S8_UINT:
1869 case MESA_FORMAT_Z_UNORM16:
1870 return true;
1871 default:
1872 return false;
1873 }
1874 }
1875
1876 bool
1877 intel_miptree_alloc_hiz(struct brw_context *brw,
1878 struct intel_mipmap_tree *mt)
1879 {
1880 assert(mt->hiz_buf == NULL);
1881 assert((mt->aux_disable & INTEL_AUX_DISABLE_HIZ) == 0);
1882
1883 if (brw->gen == 7) {
1884 mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
1885 } else if (brw->gen >= 8) {
1886 mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
1887 } else {
1888 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1889 }
1890
1891 if (!mt->hiz_buf)
1892 return false;
1893
1894 /* Mark that all slices need a HiZ resolve. */
1895 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1896 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1897 continue;
1898
1899 for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
1900 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1901 exec_node_init(&m->link);
1902 m->level = level;
1903 m->layer = layer;
1904 m->need = BLORP_HIZ_OP_HIZ_RESOLVE;
1905
1906 exec_list_push_tail(&mt->hiz_map, &m->link);
1907 }
1908 }
1909
1910 return true;
1911 }
1912
1913 /**
1914 * Can the miptree sample using the hiz buffer?
1915 */
1916 bool
1917 intel_miptree_sample_with_hiz(struct brw_context *brw,
1918 struct intel_mipmap_tree *mt)
1919 {
1920 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1921 * so keep things conservative for now and never enable it unless we're SKL+.
1922 */
1923 if (brw->gen < 9) {
1924 return false;
1925 }
1926
1927 if (!mt->hiz_buf) {
1928 return false;
1929 }
1930
1931 /* It seems the hardware won't fallback to the depth buffer if some of the
1932 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1933 * of the texture to be HiZ enabled.
1934 */
1935 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1936 if (!intel_miptree_level_has_hiz(mt, level))
1937 return false;
1938 }
1939
1940 /* If compressed multisampling is enabled, then we use it for the auxiliary
1941 * buffer instead.
1942 *
1943 * From the BDW PRM (Volume 2d: Command Reference: Structures
1944 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1945 *
1946 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1947 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1948 *
1949 * There is no such blurb for 1D textures, but there is sufficient evidence
1950 * that this is broken on SKL+.
1951 */
1952 return (mt->num_samples <= 1 &&
1953 mt->target != GL_TEXTURE_3D &&
1954 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1955 }
1956
1957 /**
1958 * Does the miptree slice have hiz enabled?
1959 */
1960 bool
1961 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
1962 {
1963 intel_miptree_check_level_layer(mt, level, 0);
1964 return mt->level[level].has_hiz;
1965 }
1966
1967 void
1968 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
1969 uint32_t level,
1970 uint32_t layer)
1971 {
1972 if (!intel_miptree_level_has_hiz(mt, level))
1973 return;
1974
1975 intel_resolve_map_set(&mt->hiz_map,
1976 level, layer, BLORP_HIZ_OP_HIZ_RESOLVE);
1977 }
1978
1979
1980 void
1981 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
1982 uint32_t level,
1983 uint32_t layer)
1984 {
1985 if (!intel_miptree_level_has_hiz(mt, level))
1986 return;
1987
1988 intel_resolve_map_set(&mt->hiz_map,
1989 level, layer, BLORP_HIZ_OP_DEPTH_RESOLVE);
1990 }
1991
1992 void
1993 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
1994 uint32_t level)
1995 {
1996 uint32_t layer;
1997 uint32_t end_layer = mt->level[level].depth;
1998
1999 for (layer = 0; layer < end_layer; layer++) {
2000 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
2001 }
2002 }
2003
2004 static bool
2005 intel_miptree_slice_resolve(struct brw_context *brw,
2006 struct intel_mipmap_tree *mt,
2007 uint32_t level,
2008 uint32_t layer,
2009 enum blorp_hiz_op need)
2010 {
2011 intel_miptree_check_level_layer(mt, level, layer);
2012
2013 struct intel_resolve_map *item =
2014 intel_resolve_map_get(&mt->hiz_map, level, layer);
2015
2016 if (!item || item->need != need)
2017 return false;
2018
2019 intel_hiz_exec(brw, mt, level, layer, need);
2020 intel_resolve_map_remove(item);
2021 return true;
2022 }
2023
2024 bool
2025 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
2026 struct intel_mipmap_tree *mt,
2027 uint32_t level,
2028 uint32_t layer)
2029 {
2030 return intel_miptree_slice_resolve(brw, mt, level, layer,
2031 BLORP_HIZ_OP_HIZ_RESOLVE);
2032 }
2033
2034 bool
2035 intel_miptree_slice_resolve_depth(struct brw_context *brw,
2036 struct intel_mipmap_tree *mt,
2037 uint32_t level,
2038 uint32_t layer)
2039 {
2040 return intel_miptree_slice_resolve(brw, mt, level, layer,
2041 BLORP_HIZ_OP_DEPTH_RESOLVE);
2042 }
2043
2044 static bool
2045 intel_miptree_all_slices_resolve(struct brw_context *brw,
2046 struct intel_mipmap_tree *mt,
2047 enum blorp_hiz_op need)
2048 {
2049 bool did_resolve = false;
2050
2051 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
2052 if (map->need != need)
2053 continue;
2054
2055 intel_hiz_exec(brw, mt, map->level, map->layer, need);
2056 intel_resolve_map_remove(map);
2057 did_resolve = true;
2058 }
2059
2060 return did_resolve;
2061 }
2062
2063 bool
2064 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
2065 struct intel_mipmap_tree *mt)
2066 {
2067 return intel_miptree_all_slices_resolve(brw, mt,
2068 BLORP_HIZ_OP_HIZ_RESOLVE);
2069 }
2070
2071 bool
2072 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
2073 struct intel_mipmap_tree *mt)
2074 {
2075 return intel_miptree_all_slices_resolve(brw, mt,
2076 BLORP_HIZ_OP_DEPTH_RESOLVE);
2077 }
2078
2079 enum intel_fast_clear_state
2080 intel_miptree_get_fast_clear_state(const struct intel_mipmap_tree *mt,
2081 unsigned level, unsigned layer)
2082 {
2083 intel_miptree_check_level_layer(mt, level, layer);
2084
2085 const struct intel_resolve_map *item =
2086 intel_resolve_map_const_get(&mt->color_resolve_map, level, layer);
2087
2088 if (!item)
2089 return INTEL_FAST_CLEAR_STATE_RESOLVED;
2090
2091 return item->fast_clear_state;
2092 }
2093
2094 static void
2095 intel_miptree_check_color_resolve(const struct brw_context *brw,
2096 const struct intel_mipmap_tree *mt,
2097 unsigned level, unsigned layer)
2098 {
2099
2100 if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) || !mt->mcs_buf)
2101 return;
2102
2103 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2104 assert(brw->gen >= 8 ||
2105 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2106
2107 /* Compression of arrayed msaa surfaces is supported. */
2108 if (mt->num_samples > 1)
2109 return;
2110
2111 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2112 assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
2113
2114 (void)level;
2115 (void)layer;
2116 }
2117
2118 void
2119 intel_miptree_set_fast_clear_state(const struct brw_context *brw,
2120 struct intel_mipmap_tree *mt,
2121 unsigned level,
2122 unsigned first_layer,
2123 unsigned num_layers,
2124 enum intel_fast_clear_state new_state)
2125 {
2126 /* Setting the state to resolved means removing the item from the list
2127 * altogether.
2128 */
2129 assert(new_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2130
2131 intel_miptree_check_color_resolve(brw, mt, level, first_layer);
2132
2133 assert(first_layer + num_layers <= mt->physical_depth0);
2134
2135 for (unsigned i = 0; i < num_layers; i++)
2136 intel_resolve_map_set(&mt->color_resolve_map, level,
2137 first_layer + i, new_state);
2138 }
2139
2140 bool
2141 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2142 unsigned start_level, unsigned num_levels,
2143 unsigned start_layer, unsigned num_layers)
2144 {
2145 return intel_resolve_map_find_any(&mt->color_resolve_map,
2146 start_level, num_levels,
2147 start_layer, num_layers) != NULL;
2148 }
2149
2150 void
2151 intel_miptree_used_for_rendering(const struct brw_context *brw,
2152 struct intel_mipmap_tree *mt, unsigned level,
2153 unsigned start_layer, unsigned num_layers)
2154 {
2155 const bool is_lossless_compressed =
2156 intel_miptree_is_lossless_compressed(brw, mt);
2157
2158 for (unsigned i = 0; i < num_layers; ++i) {
2159 const enum intel_fast_clear_state fast_clear_state =
2160 intel_miptree_get_fast_clear_state(mt, level, start_layer + i);
2161
2162 /* If the buffer was previously in fast clear state, change it to
2163 * unresolved state, since it won't be guaranteed to be clear after
2164 * rendering occurs.
2165 */
2166 if (is_lossless_compressed ||
2167 fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR) {
2168 intel_miptree_set_fast_clear_state(
2169 brw, mt, level, start_layer + i, 1,
2170 INTEL_FAST_CLEAR_STATE_UNRESOLVED);
2171 }
2172 }
2173 }
2174
2175 static bool
2176 intel_miptree_needs_color_resolve(const struct brw_context *brw,
2177 const struct intel_mipmap_tree *mt,
2178 int flags)
2179 {
2180 if (mt->aux_disable & INTEL_AUX_DISABLE_CCS)
2181 return false;
2182
2183 const bool is_lossless_compressed =
2184 intel_miptree_is_lossless_compressed(brw, mt);
2185
2186 /* From gen9 onwards there is new compression scheme for single sampled
2187 * surfaces called "lossless compressed". These don't need to be always
2188 * resolved.
2189 */
2190 if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) && is_lossless_compressed)
2191 return false;
2192
2193 /* Fast color clear resolves only make sense for non-MSAA buffers. */
2194 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_NONE && !is_lossless_compressed)
2195 return false;
2196
2197 return true;
2198 }
2199
2200 bool
2201 intel_miptree_resolve_color(struct brw_context *brw,
2202 struct intel_mipmap_tree *mt, unsigned level,
2203 unsigned start_layer, unsigned num_layers,
2204 int flags)
2205 {
2206 intel_miptree_check_color_resolve(brw, mt, level, start_layer);
2207
2208 if (!intel_miptree_needs_color_resolve(brw, mt, flags))
2209 return false;
2210
2211 /* Arrayed fast clear is only supported for gen8+. */
2212 assert(brw->gen >= 8 || num_layers == 1);
2213
2214 bool resolved = false;
2215 for (unsigned i = 0; i < num_layers; ++i) {
2216 intel_miptree_check_level_layer(mt, level, start_layer + i);
2217
2218 struct intel_resolve_map *item =
2219 intel_resolve_map_get(&mt->color_resolve_map, level,
2220 start_layer + i);
2221
2222 if (item) {
2223 assert(item->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2224
2225 brw_blorp_resolve_color(brw, mt, level, start_layer);
2226 intel_resolve_map_remove(item);
2227 resolved = true;
2228 }
2229 }
2230
2231 return resolved;
2232 }
2233
2234 void
2235 intel_miptree_all_slices_resolve_color(struct brw_context *brw,
2236 struct intel_mipmap_tree *mt,
2237 int flags)
2238 {
2239 if (!intel_miptree_needs_color_resolve(brw, mt, flags))
2240 return;
2241
2242 foreach_list_typed_safe(struct intel_resolve_map, map, link,
2243 &mt->color_resolve_map) {
2244 assert(map->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2245
2246 brw_blorp_resolve_color(brw, mt, map->level, map->layer);
2247 intel_resolve_map_remove(map);
2248 }
2249 }
2250
2251 /**
2252 * Make it possible to share the BO backing the given miptree with another
2253 * process or another miptree.
2254 *
2255 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2256 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2257 * ensure that no MCS buffer gets allocated in the future.
2258 *
2259 * HiZ is similarly unsafe with shared buffers.
2260 */
2261 void
2262 intel_miptree_make_shareable(struct brw_context *brw,
2263 struct intel_mipmap_tree *mt)
2264 {
2265 /* MCS buffers are also used for multisample buffers, but we can't resolve
2266 * away a multisample MCS buffer because it's an integral part of how the
2267 * pixel data is stored. Fortunately this code path should never be
2268 * reached for multisample buffers.
2269 */
2270 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
2271
2272 if (mt->mcs_buf) {
2273 intel_miptree_all_slices_resolve_color(brw, mt, 0);
2274 mt->aux_disable |= (INTEL_AUX_DISABLE_CCS | INTEL_AUX_DISABLE_MCS);
2275 brw_bo_unreference(mt->mcs_buf->bo);
2276 free(mt->mcs_buf);
2277 mt->mcs_buf = NULL;
2278
2279 /* Any pending MCS/CCS operations are no longer needed. Trying to
2280 * execute any will likely crash due to the missing aux buffer. So let's
2281 * delete all pending ops.
2282 */
2283 exec_list_make_empty(&mt->color_resolve_map);
2284 }
2285
2286 if (mt->hiz_buf) {
2287 mt->aux_disable |= INTEL_AUX_DISABLE_HIZ;
2288 intel_miptree_all_slices_resolve_depth(brw, mt);
2289 intel_miptree_hiz_buffer_free(mt->hiz_buf);
2290 mt->hiz_buf = NULL;
2291
2292 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2293 mt->level[l].has_hiz = false;
2294 }
2295
2296 /* Any pending HiZ operations are no longer needed. Trying to execute
2297 * any will likely crash due to the missing aux buffer. So let's delete
2298 * all pending ops.
2299 */
2300 exec_list_make_empty(&mt->hiz_map);
2301 }
2302 }
2303
2304
2305 /**
2306 * \brief Get pointer offset into stencil buffer.
2307 *
2308 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2309 * must decode the tile's layout in software.
2310 *
2311 * See
2312 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2313 * Format.
2314 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2315 *
2316 * Even though the returned offset is always positive, the return type is
2317 * signed due to
2318 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2319 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2320 */
2321 static intptr_t
2322 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2323 {
2324 uint32_t tile_size = 4096;
2325 uint32_t tile_width = 64;
2326 uint32_t tile_height = 64;
2327 uint32_t row_size = 64 * stride;
2328
2329 uint32_t tile_x = x / tile_width;
2330 uint32_t tile_y = y / tile_height;
2331
2332 /* The byte's address relative to the tile's base addres. */
2333 uint32_t byte_x = x % tile_width;
2334 uint32_t byte_y = y % tile_height;
2335
2336 uintptr_t u = tile_y * row_size
2337 + tile_x * tile_size
2338 + 512 * (byte_x / 8)
2339 + 64 * (byte_y / 8)
2340 + 32 * ((byte_y / 4) % 2)
2341 + 16 * ((byte_x / 4) % 2)
2342 + 8 * ((byte_y / 2) % 2)
2343 + 4 * ((byte_x / 2) % 2)
2344 + 2 * (byte_y % 2)
2345 + 1 * (byte_x % 2);
2346
2347 if (swizzled) {
2348 /* adjust for bit6 swizzling */
2349 if (((byte_x / 8) % 2) == 1) {
2350 if (((byte_y / 8) % 2) == 0) {
2351 u += 64;
2352 } else {
2353 u -= 64;
2354 }
2355 }
2356 }
2357
2358 return u;
2359 }
2360
2361 void
2362 intel_miptree_updownsample(struct brw_context *brw,
2363 struct intel_mipmap_tree *src,
2364 struct intel_mipmap_tree *dst)
2365 {
2366 brw_blorp_blit_miptrees(brw,
2367 src, 0 /* level */, 0 /* layer */,
2368 src->format, SWIZZLE_XYZW,
2369 dst, 0 /* level */, 0 /* layer */, dst->format,
2370 0, 0,
2371 src->logical_width0, src->logical_height0,
2372 0, 0,
2373 dst->logical_width0, dst->logical_height0,
2374 GL_NEAREST, false, false /*mirror x, y*/,
2375 false, false);
2376
2377 if (src->stencil_mt) {
2378 brw_blorp_blit_miptrees(brw,
2379 src->stencil_mt, 0 /* level */, 0 /* layer */,
2380 src->stencil_mt->format, SWIZZLE_XYZW,
2381 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2382 dst->stencil_mt->format,
2383 0, 0,
2384 src->logical_width0, src->logical_height0,
2385 0, 0,
2386 dst->logical_width0, dst->logical_height0,
2387 GL_NEAREST, false, false /*mirror x, y*/,
2388 false, false /* decode/encode srgb */);
2389 }
2390 }
2391
2392 void
2393 intel_update_r8stencil(struct brw_context *brw,
2394 struct intel_mipmap_tree *mt)
2395 {
2396 assert(brw->gen >= 7);
2397 struct intel_mipmap_tree *src =
2398 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2399 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2400 return;
2401
2402 if (!mt->r8stencil_mt) {
2403 const uint32_t r8stencil_flags =
2404 MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2405 MIPTREE_LAYOUT_DISABLE_AUX;
2406 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD */
2407 mt->r8stencil_mt = intel_miptree_create(brw,
2408 src->target,
2409 MESA_FORMAT_R_UINT8,
2410 src->first_level,
2411 src->last_level,
2412 src->logical_width0,
2413 src->logical_height0,
2414 src->logical_depth0,
2415 src->num_samples,
2416 r8stencil_flags);
2417 assert(mt->r8stencil_mt);
2418 }
2419
2420 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2421
2422 for (int level = src->first_level; level <= src->last_level; level++) {
2423 const unsigned depth = src->level[level].depth;
2424 const int layers_per_blit =
2425 (dst->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
2426 dst->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
2427 dst->num_samples : 1;
2428
2429 for (unsigned layer = 0; layer < depth; layer++) {
2430 brw_blorp_blit_miptrees(brw,
2431 src, level, layer,
2432 src->format, SWIZZLE_X,
2433 dst, level, layers_per_blit * layer,
2434 MESA_FORMAT_R_UNORM8,
2435 0, 0,
2436 minify(src->logical_width0, level),
2437 minify(src->logical_height0, level),
2438 0, 0,
2439 minify(dst->logical_width0, level),
2440 minify(dst->logical_height0, level),
2441 GL_NEAREST, false, false /*mirror x, y*/,
2442 false, false /* decode/encode srgb */);
2443 }
2444 }
2445
2446 brw_render_cache_set_check_flush(brw, dst->bo);
2447 src->r8stencil_needs_update = false;
2448 }
2449
2450 static void *
2451 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
2452 {
2453 /* CPU accesses to color buffers don't understand fast color clears, so
2454 * resolve any pending fast color clears before we map.
2455 */
2456 intel_miptree_all_slices_resolve_color(brw, mt, 0);
2457
2458 struct brw_bo *bo = mt->bo;
2459
2460 if (brw_batch_references(&brw->batch, bo))
2461 intel_batchbuffer_flush(brw);
2462
2463 /* brw_bo_map() uses a WB mmaping of the buffer's backing storage. It
2464 * will utilize the CPU cache even if the buffer is incoherent with the
2465 * GPU (i.e. any writes will be stored in the cache and not flushed to
2466 * memory and so will be invisible to the GPU or display engine). This
2467 * is the majority of buffers on a !llc machine, but even on a llc
2468 * almost all scanouts are incoherent with the CPU. A WB write into the
2469 * backing storage of the current scanout will not be immediately
2470 * visible on the screen. The transfer from cache to screen is slow and
2471 * indeterministic causing visible glitching on the screen. Never use
2472 * this WB mapping for writes to an active scanout (reads are fine, so
2473 * long as cache consistency is maintained).
2474 */
2475 if (mt->tiling != I915_TILING_NONE || mt->is_scanout)
2476 brw_bo_map_gtt(brw, bo);
2477 else
2478 brw_bo_map(brw, bo, true);
2479
2480 return bo->virtual;
2481 }
2482
2483 static void
2484 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2485 {
2486 brw_bo_unmap(mt->bo);
2487 }
2488
2489 static void
2490 intel_miptree_map_gtt(struct brw_context *brw,
2491 struct intel_mipmap_tree *mt,
2492 struct intel_miptree_map *map,
2493 unsigned int level, unsigned int slice)
2494 {
2495 unsigned int bw, bh;
2496 void *base;
2497 unsigned int image_x, image_y;
2498 intptr_t x = map->x;
2499 intptr_t y = map->y;
2500
2501 /* For compressed formats, the stride is the number of bytes per
2502 * row of blocks. intel_miptree_get_image_offset() already does
2503 * the divide.
2504 */
2505 _mesa_get_format_block_size(mt->format, &bw, &bh);
2506 assert(y % bh == 0);
2507 assert(x % bw == 0);
2508 y /= bh;
2509 x /= bw;
2510
2511 base = intel_miptree_map_raw(brw, mt) + mt->offset;
2512
2513 if (base == NULL)
2514 map->ptr = NULL;
2515 else {
2516 /* Note that in the case of cube maps, the caller must have passed the
2517 * slice number referencing the face.
2518 */
2519 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2520 x += image_x;
2521 y += image_y;
2522
2523 map->stride = mt->pitch;
2524 map->ptr = base + y * map->stride + x * mt->cpp;
2525 }
2526
2527 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2528 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2529 map->x, map->y, map->w, map->h,
2530 mt, _mesa_get_format_name(mt->format),
2531 x, y, map->ptr, map->stride);
2532 }
2533
2534 static void
2535 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2536 {
2537 intel_miptree_unmap_raw(mt);
2538 }
2539
2540 static void
2541 intel_miptree_map_blit(struct brw_context *brw,
2542 struct intel_mipmap_tree *mt,
2543 struct intel_miptree_map *map,
2544 unsigned int level, unsigned int slice)
2545 {
2546 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2547 /* first_level */ 0,
2548 /* last_level */ 0,
2549 map->w, map->h, 1,
2550 /* samples */ 0,
2551 MIPTREE_LAYOUT_TILING_NONE);
2552
2553 if (!map->linear_mt) {
2554 fprintf(stderr, "Failed to allocate blit temporary\n");
2555 goto fail;
2556 }
2557 map->stride = map->linear_mt->pitch;
2558
2559 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2560 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2561 * invalidate is set, since we'll be writing the whole rectangle from our
2562 * temporary buffer back out.
2563 */
2564 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2565 if (!intel_miptree_copy(brw,
2566 mt, level, slice, map->x, map->y,
2567 map->linear_mt, 0, 0, 0, 0,
2568 map->w, map->h)) {
2569 fprintf(stderr, "Failed to blit\n");
2570 goto fail;
2571 }
2572 }
2573
2574 map->ptr = intel_miptree_map_raw(brw, map->linear_mt);
2575
2576 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2577 map->x, map->y, map->w, map->h,
2578 mt, _mesa_get_format_name(mt->format),
2579 level, slice, map->ptr, map->stride);
2580
2581 return;
2582
2583 fail:
2584 intel_miptree_release(&map->linear_mt);
2585 map->ptr = NULL;
2586 map->stride = 0;
2587 }
2588
2589 static void
2590 intel_miptree_unmap_blit(struct brw_context *brw,
2591 struct intel_mipmap_tree *mt,
2592 struct intel_miptree_map *map,
2593 unsigned int level,
2594 unsigned int slice)
2595 {
2596 struct gl_context *ctx = &brw->ctx;
2597
2598 intel_miptree_unmap_raw(map->linear_mt);
2599
2600 if (map->mode & GL_MAP_WRITE_BIT) {
2601 bool ok = intel_miptree_copy(brw,
2602 map->linear_mt, 0, 0, 0, 0,
2603 mt, level, slice, map->x, map->y,
2604 map->w, map->h);
2605 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2606 }
2607
2608 intel_miptree_release(&map->linear_mt);
2609 }
2610
2611 /**
2612 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2613 */
2614 #if defined(USE_SSE41)
2615 static void
2616 intel_miptree_map_movntdqa(struct brw_context *brw,
2617 struct intel_mipmap_tree *mt,
2618 struct intel_miptree_map *map,
2619 unsigned int level, unsigned int slice)
2620 {
2621 assert(map->mode & GL_MAP_READ_BIT);
2622 assert(!(map->mode & GL_MAP_WRITE_BIT));
2623
2624 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2625 map->x, map->y, map->w, map->h,
2626 mt, _mesa_get_format_name(mt->format),
2627 level, slice, map->ptr, map->stride);
2628
2629 /* Map the original image */
2630 uint32_t image_x;
2631 uint32_t image_y;
2632 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2633 image_x += map->x;
2634 image_y += map->y;
2635
2636 void *src = intel_miptree_map_raw(brw, mt);
2637 if (!src)
2638 return;
2639
2640 src += mt->offset;
2641
2642 src += image_y * mt->pitch;
2643 src += image_x * mt->cpp;
2644
2645 /* Due to the pixel offsets for the particular image being mapped, our
2646 * src pointer may not be 16-byte aligned. However, if the pitch is
2647 * divisible by 16, then the amount by which it's misaligned will remain
2648 * consistent from row to row.
2649 */
2650 assert((mt->pitch % 16) == 0);
2651 const int misalignment = ((uintptr_t) src) & 15;
2652
2653 /* Create an untiled temporary buffer for the mapping. */
2654 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2655
2656 map->stride = ALIGN(misalignment + width_bytes, 16);
2657
2658 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2659 /* Offset the destination so it has the same misalignment as src. */
2660 map->ptr = map->buffer + misalignment;
2661
2662 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2663
2664 for (uint32_t y = 0; y < map->h; y++) {
2665 void *dst_ptr = map->ptr + y * map->stride;
2666 void *src_ptr = src + y * mt->pitch;
2667
2668 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2669 }
2670
2671 intel_miptree_unmap_raw(mt);
2672 }
2673
2674 static void
2675 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2676 struct intel_mipmap_tree *mt,
2677 struct intel_miptree_map *map,
2678 unsigned int level,
2679 unsigned int slice)
2680 {
2681 _mesa_align_free(map->buffer);
2682 map->buffer = NULL;
2683 map->ptr = NULL;
2684 }
2685 #endif
2686
2687 static void
2688 intel_miptree_map_s8(struct brw_context *brw,
2689 struct intel_mipmap_tree *mt,
2690 struct intel_miptree_map *map,
2691 unsigned int level, unsigned int slice)
2692 {
2693 map->stride = map->w;
2694 map->buffer = map->ptr = malloc(map->stride * map->h);
2695 if (!map->buffer)
2696 return;
2697
2698 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2699 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2700 * invalidate is set, since we'll be writing the whole rectangle from our
2701 * temporary buffer back out.
2702 */
2703 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2704 uint8_t *untiled_s8_map = map->ptr;
2705 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2706 unsigned int image_x, image_y;
2707
2708 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2709
2710 for (uint32_t y = 0; y < map->h; y++) {
2711 for (uint32_t x = 0; x < map->w; x++) {
2712 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2713 x + image_x + map->x,
2714 y + image_y + map->y,
2715 brw->has_swizzling);
2716 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2717 }
2718 }
2719
2720 intel_miptree_unmap_raw(mt);
2721
2722 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2723 map->x, map->y, map->w, map->h,
2724 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2725 } else {
2726 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2727 map->x, map->y, map->w, map->h,
2728 mt, map->ptr, map->stride);
2729 }
2730 }
2731
2732 static void
2733 intel_miptree_unmap_s8(struct brw_context *brw,
2734 struct intel_mipmap_tree *mt,
2735 struct intel_miptree_map *map,
2736 unsigned int level,
2737 unsigned int slice)
2738 {
2739 if (map->mode & GL_MAP_WRITE_BIT) {
2740 unsigned int image_x, image_y;
2741 uint8_t *untiled_s8_map = map->ptr;
2742 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2743
2744 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2745
2746 for (uint32_t y = 0; y < map->h; y++) {
2747 for (uint32_t x = 0; x < map->w; x++) {
2748 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2749 image_x + x + map->x,
2750 image_y + y + map->y,
2751 brw->has_swizzling);
2752 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2753 }
2754 }
2755
2756 intel_miptree_unmap_raw(mt);
2757 }
2758
2759 free(map->buffer);
2760 }
2761
2762 static void
2763 intel_miptree_map_etc(struct brw_context *brw,
2764 struct intel_mipmap_tree *mt,
2765 struct intel_miptree_map *map,
2766 unsigned int level,
2767 unsigned int slice)
2768 {
2769 assert(mt->etc_format != MESA_FORMAT_NONE);
2770 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2771 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2772 }
2773
2774 assert(map->mode & GL_MAP_WRITE_BIT);
2775 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2776
2777 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2778 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2779 map->w, map->h, 1));
2780 map->ptr = map->buffer;
2781 }
2782
2783 static void
2784 intel_miptree_unmap_etc(struct brw_context *brw,
2785 struct intel_mipmap_tree *mt,
2786 struct intel_miptree_map *map,
2787 unsigned int level,
2788 unsigned int slice)
2789 {
2790 uint32_t image_x;
2791 uint32_t image_y;
2792 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2793
2794 image_x += map->x;
2795 image_y += map->y;
2796
2797 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2798 + image_y * mt->pitch
2799 + image_x * mt->cpp;
2800
2801 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2802 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2803 map->ptr, map->stride,
2804 map->w, map->h);
2805 else
2806 _mesa_unpack_etc2_format(dst, mt->pitch,
2807 map->ptr, map->stride,
2808 map->w, map->h, mt->etc_format);
2809
2810 intel_miptree_unmap_raw(mt);
2811 free(map->buffer);
2812 }
2813
2814 /**
2815 * Mapping function for packed depth/stencil miptrees backed by real separate
2816 * miptrees for depth and stencil.
2817 *
2818 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2819 * separate from the depth buffer. Yet at the GL API level, we have to expose
2820 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2821 * be able to map that memory for texture storage and glReadPixels-type
2822 * operations. We give Mesa core that access by mallocing a temporary and
2823 * copying the data between the actual backing store and the temporary.
2824 */
2825 static void
2826 intel_miptree_map_depthstencil(struct brw_context *brw,
2827 struct intel_mipmap_tree *mt,
2828 struct intel_miptree_map *map,
2829 unsigned int level, unsigned int slice)
2830 {
2831 struct intel_mipmap_tree *z_mt = mt;
2832 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2833 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2834 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2835
2836 map->stride = map->w * packed_bpp;
2837 map->buffer = map->ptr = malloc(map->stride * map->h);
2838 if (!map->buffer)
2839 return;
2840
2841 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2842 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2843 * invalidate is set, since we'll be writing the whole rectangle from our
2844 * temporary buffer back out.
2845 */
2846 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2847 uint32_t *packed_map = map->ptr;
2848 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2849 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2850 unsigned int s_image_x, s_image_y;
2851 unsigned int z_image_x, z_image_y;
2852
2853 intel_miptree_get_image_offset(s_mt, level, slice,
2854 &s_image_x, &s_image_y);
2855 intel_miptree_get_image_offset(z_mt, level, slice,
2856 &z_image_x, &z_image_y);
2857
2858 for (uint32_t y = 0; y < map->h; y++) {
2859 for (uint32_t x = 0; x < map->w; x++) {
2860 int map_x = map->x + x, map_y = map->y + y;
2861 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2862 map_x + s_image_x,
2863 map_y + s_image_y,
2864 brw->has_swizzling);
2865 ptrdiff_t z_offset = ((map_y + z_image_y) *
2866 (z_mt->pitch / 4) +
2867 (map_x + z_image_x));
2868 uint8_t s = s_map[s_offset];
2869 uint32_t z = z_map[z_offset];
2870
2871 if (map_z32f_x24s8) {
2872 packed_map[(y * map->w + x) * 2 + 0] = z;
2873 packed_map[(y * map->w + x) * 2 + 1] = s;
2874 } else {
2875 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2876 }
2877 }
2878 }
2879
2880 intel_miptree_unmap_raw(s_mt);
2881 intel_miptree_unmap_raw(z_mt);
2882
2883 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2884 __func__,
2885 map->x, map->y, map->w, map->h,
2886 z_mt, map->x + z_image_x, map->y + z_image_y,
2887 s_mt, map->x + s_image_x, map->y + s_image_y,
2888 map->ptr, map->stride);
2889 } else {
2890 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2891 map->x, map->y, map->w, map->h,
2892 mt, map->ptr, map->stride);
2893 }
2894 }
2895
2896 static void
2897 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2898 struct intel_mipmap_tree *mt,
2899 struct intel_miptree_map *map,
2900 unsigned int level,
2901 unsigned int slice)
2902 {
2903 struct intel_mipmap_tree *z_mt = mt;
2904 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2905 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2906
2907 if (map->mode & GL_MAP_WRITE_BIT) {
2908 uint32_t *packed_map = map->ptr;
2909 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2910 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2911 unsigned int s_image_x, s_image_y;
2912 unsigned int z_image_x, z_image_y;
2913
2914 intel_miptree_get_image_offset(s_mt, level, slice,
2915 &s_image_x, &s_image_y);
2916 intel_miptree_get_image_offset(z_mt, level, slice,
2917 &z_image_x, &z_image_y);
2918
2919 for (uint32_t y = 0; y < map->h; y++) {
2920 for (uint32_t x = 0; x < map->w; x++) {
2921 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2922 x + s_image_x + map->x,
2923 y + s_image_y + map->y,
2924 brw->has_swizzling);
2925 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2926 (z_mt->pitch / 4) +
2927 (x + z_image_x + map->x));
2928
2929 if (map_z32f_x24s8) {
2930 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2931 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2932 } else {
2933 uint32_t packed = packed_map[y * map->w + x];
2934 s_map[s_offset] = packed >> 24;
2935 z_map[z_offset] = packed;
2936 }
2937 }
2938 }
2939
2940 intel_miptree_unmap_raw(s_mt);
2941 intel_miptree_unmap_raw(z_mt);
2942
2943 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2944 __func__,
2945 map->x, map->y, map->w, map->h,
2946 z_mt, _mesa_get_format_name(z_mt->format),
2947 map->x + z_image_x, map->y + z_image_y,
2948 s_mt, map->x + s_image_x, map->y + s_image_y,
2949 map->ptr, map->stride);
2950 }
2951
2952 free(map->buffer);
2953 }
2954
2955 /**
2956 * Create and attach a map to the miptree at (level, slice). Return the
2957 * attached map.
2958 */
2959 static struct intel_miptree_map*
2960 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2961 unsigned int level,
2962 unsigned int slice,
2963 unsigned int x,
2964 unsigned int y,
2965 unsigned int w,
2966 unsigned int h,
2967 GLbitfield mode)
2968 {
2969 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2970
2971 if (!map)
2972 return NULL;
2973
2974 assert(mt->level[level].slice[slice].map == NULL);
2975 mt->level[level].slice[slice].map = map;
2976
2977 map->mode = mode;
2978 map->x = x;
2979 map->y = y;
2980 map->w = w;
2981 map->h = h;
2982
2983 return map;
2984 }
2985
2986 /**
2987 * Release the map at (level, slice).
2988 */
2989 static void
2990 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2991 unsigned int level,
2992 unsigned int slice)
2993 {
2994 struct intel_miptree_map **map;
2995
2996 map = &mt->level[level].slice[slice].map;
2997 free(*map);
2998 *map = NULL;
2999 }
3000
3001 static bool
3002 can_blit_slice(struct intel_mipmap_tree *mt,
3003 unsigned int level, unsigned int slice)
3004 {
3005 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3006 if (mt->pitch >= 32768)
3007 return false;
3008
3009 return true;
3010 }
3011
3012 static bool
3013 use_intel_mipree_map_blit(struct brw_context *brw,
3014 struct intel_mipmap_tree *mt,
3015 GLbitfield mode,
3016 unsigned int level,
3017 unsigned int slice)
3018 {
3019 if (brw->has_llc &&
3020 /* It's probably not worth swapping to the blit ring because of
3021 * all the overhead involved.
3022 */
3023 !(mode & GL_MAP_WRITE_BIT) &&
3024 !mt->compressed &&
3025 (mt->tiling == I915_TILING_X ||
3026 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3027 (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3028 /* Fast copy blit on skl+ supports all tiling formats. */
3029 brw->gen >= 9) &&
3030 can_blit_slice(mt, level, slice))
3031 return true;
3032
3033 if (mt->tiling != I915_TILING_NONE &&
3034 mt->bo->size >= brw->max_gtt_map_object_size) {
3035 assert(can_blit_slice(mt, level, slice));
3036 return true;
3037 }
3038
3039 return false;
3040 }
3041
3042 /**
3043 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3044 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3045 * arithmetic overflow.
3046 *
3047 * If you call this function and use \a out_stride, then you're doing pointer
3048 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3049 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3050 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3051 * which usually have type uint32_t or GLuint.
3052 */
3053 void
3054 intel_miptree_map(struct brw_context *brw,
3055 struct intel_mipmap_tree *mt,
3056 unsigned int level,
3057 unsigned int slice,
3058 unsigned int x,
3059 unsigned int y,
3060 unsigned int w,
3061 unsigned int h,
3062 GLbitfield mode,
3063 void **out_ptr,
3064 ptrdiff_t *out_stride)
3065 {
3066 struct intel_miptree_map *map;
3067
3068 assert(mt->num_samples <= 1);
3069
3070 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3071 if (!map){
3072 *out_ptr = NULL;
3073 *out_stride = 0;
3074 return;
3075 }
3076
3077 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
3078 if (map->mode & GL_MAP_WRITE_BIT) {
3079 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
3080 }
3081
3082 if (mt->format == MESA_FORMAT_S_UINT8) {
3083 intel_miptree_map_s8(brw, mt, map, level, slice);
3084 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3085 !(mode & BRW_MAP_DIRECT_BIT)) {
3086 intel_miptree_map_etc(brw, mt, map, level, slice);
3087 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3088 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3089 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3090 intel_miptree_map_blit(brw, mt, map, level, slice);
3091 #if defined(USE_SSE41)
3092 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3093 !mt->compressed && cpu_has_sse4_1 &&
3094 (mt->pitch % 16 == 0)) {
3095 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3096 #endif
3097 } else {
3098 intel_miptree_map_gtt(brw, mt, map, level, slice);
3099 }
3100
3101 *out_ptr = map->ptr;
3102 *out_stride = map->stride;
3103
3104 if (map->ptr == NULL)
3105 intel_miptree_release_map(mt, level, slice);
3106 }
3107
3108 void
3109 intel_miptree_unmap(struct brw_context *brw,
3110 struct intel_mipmap_tree *mt,
3111 unsigned int level,
3112 unsigned int slice)
3113 {
3114 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3115
3116 assert(mt->num_samples <= 1);
3117
3118 if (!map)
3119 return;
3120
3121 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3122 mt, _mesa_get_format_name(mt->format), level, slice);
3123
3124 if (mt->format == MESA_FORMAT_S_UINT8) {
3125 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3126 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3127 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3128 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3129 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3130 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3131 } else if (map->linear_mt) {
3132 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3133 #if defined(USE_SSE41)
3134 } else if (map->buffer && cpu_has_sse4_1) {
3135 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3136 #endif
3137 } else {
3138 intel_miptree_unmap_gtt(mt);
3139 }
3140
3141 intel_miptree_release_map(mt, level, slice);
3142 }
3143
3144 enum isl_surf_dim
3145 get_isl_surf_dim(GLenum target)
3146 {
3147 switch (target) {
3148 case GL_TEXTURE_1D:
3149 case GL_TEXTURE_1D_ARRAY:
3150 return ISL_SURF_DIM_1D;
3151
3152 case GL_TEXTURE_2D:
3153 case GL_TEXTURE_2D_ARRAY:
3154 case GL_TEXTURE_RECTANGLE:
3155 case GL_TEXTURE_CUBE_MAP:
3156 case GL_TEXTURE_CUBE_MAP_ARRAY:
3157 case GL_TEXTURE_2D_MULTISAMPLE:
3158 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3159 case GL_TEXTURE_EXTERNAL_OES:
3160 return ISL_SURF_DIM_2D;
3161
3162 case GL_TEXTURE_3D:
3163 return ISL_SURF_DIM_3D;
3164 }
3165
3166 unreachable("Invalid texture target");
3167 }
3168
3169 enum isl_dim_layout
3170 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3171 GLenum target)
3172 {
3173 switch (target) {
3174 case GL_TEXTURE_1D:
3175 case GL_TEXTURE_1D_ARRAY:
3176 return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3177 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3178
3179 case GL_TEXTURE_2D:
3180 case GL_TEXTURE_2D_ARRAY:
3181 case GL_TEXTURE_RECTANGLE:
3182 case GL_TEXTURE_2D_MULTISAMPLE:
3183 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3184 case GL_TEXTURE_EXTERNAL_OES:
3185 return ISL_DIM_LAYOUT_GEN4_2D;
3186
3187 case GL_TEXTURE_CUBE_MAP:
3188 case GL_TEXTURE_CUBE_MAP_ARRAY:
3189 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3190 ISL_DIM_LAYOUT_GEN4_2D);
3191
3192 case GL_TEXTURE_3D:
3193 return (devinfo->gen >= 9 ?
3194 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3195 }
3196
3197 unreachable("Invalid texture target");
3198 }
3199
3200 enum isl_tiling
3201 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3202 {
3203 if (mt->format == MESA_FORMAT_S_UINT8) {
3204 return ISL_TILING_W;
3205 } else {
3206 switch (mt->tiling) {
3207 case I915_TILING_NONE:
3208 return ISL_TILING_LINEAR;
3209 case I915_TILING_X:
3210 return ISL_TILING_X;
3211 case I915_TILING_Y:
3212 return ISL_TILING_Y0;
3213 default:
3214 unreachable("Invalid tiling mode");
3215 }
3216 }
3217 }
3218
3219 void
3220 intel_miptree_get_isl_surf(struct brw_context *brw,
3221 const struct intel_mipmap_tree *mt,
3222 struct isl_surf *surf)
3223 {
3224 surf->dim = get_isl_surf_dim(mt->target);
3225 surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3226 mt->tiling, mt->target);
3227
3228 if (mt->num_samples > 1) {
3229 switch (mt->msaa_layout) {
3230 case INTEL_MSAA_LAYOUT_IMS:
3231 surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3232 break;
3233 case INTEL_MSAA_LAYOUT_UMS:
3234 case INTEL_MSAA_LAYOUT_CMS:
3235 surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3236 break;
3237 default:
3238 unreachable("Invalid MSAA layout");
3239 }
3240 } else {
3241 surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3242 }
3243
3244 surf->tiling = intel_miptree_get_isl_tiling(mt);
3245
3246 if (mt->format == MESA_FORMAT_S_UINT8) {
3247 /* The ISL definition of row_pitch matches the surface state pitch field
3248 * a bit better than intel_mipmap_tree. In particular, ISL incorporates
3249 * the factor of 2 for W-tiling in row_pitch.
3250 */
3251 surf->row_pitch = 2 * mt->pitch;
3252 } else {
3253 surf->row_pitch = mt->pitch;
3254 }
3255
3256 surf->format = translate_tex_format(brw, mt->format, false);
3257
3258 if (brw->gen >= 9) {
3259 if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3260 /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3261 surf->image_alignment_el = isl_extent3d(64, 1, 1);
3262 } else {
3263 /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3264 * alignment in terms of surface elements like we want.
3265 */
3266 surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3267 }
3268 } else {
3269 /* On earlier gens it's stored in pixels. */
3270 unsigned bw, bh;
3271 _mesa_get_format_block_size(mt->format, &bw, &bh);
3272 surf->image_alignment_el =
3273 isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3274 }
3275
3276 surf->logical_level0_px.width = mt->logical_width0;
3277 surf->logical_level0_px.height = mt->logical_height0;
3278 if (surf->dim == ISL_SURF_DIM_3D) {
3279 surf->logical_level0_px.depth = mt->logical_depth0;
3280 surf->logical_level0_px.array_len = 1;
3281 } else {
3282 surf->logical_level0_px.depth = 1;
3283 surf->logical_level0_px.array_len = mt->logical_depth0;
3284 }
3285
3286 surf->phys_level0_sa.width = mt->physical_width0;
3287 surf->phys_level0_sa.height = mt->physical_height0;
3288 if (surf->dim == ISL_SURF_DIM_3D) {
3289 surf->phys_level0_sa.depth = mt->physical_depth0;
3290 surf->phys_level0_sa.array_len = 1;
3291 } else {
3292 surf->phys_level0_sa.depth = 1;
3293 surf->phys_level0_sa.array_len = mt->physical_depth0;
3294 }
3295
3296 surf->levels = mt->last_level + 1;
3297 surf->samples = MAX2(mt->num_samples, 1);
3298
3299 surf->size = 0; /* TODO */
3300 surf->alignment = 0; /* TODO */
3301
3302 switch (surf->dim_layout) {
3303 case ISL_DIM_LAYOUT_GEN4_2D:
3304 case ISL_DIM_LAYOUT_GEN4_3D:
3305 if (brw->gen >= 9) {
3306 surf->array_pitch_el_rows = mt->qpitch;
3307 } else {
3308 unsigned bw, bh;
3309 _mesa_get_format_block_size(mt->format, &bw, &bh);
3310 assert(mt->qpitch % bh == 0);
3311 surf->array_pitch_el_rows = mt->qpitch / bh;
3312 }
3313 break;
3314 case ISL_DIM_LAYOUT_GEN9_1D:
3315 surf->array_pitch_el_rows = 1;
3316 break;
3317 }
3318
3319 switch (mt->array_layout) {
3320 case ALL_LOD_IN_EACH_SLICE:
3321 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3322 break;
3323 case ALL_SLICES_AT_EACH_LOD:
3324 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3325 break;
3326 default:
3327 unreachable("Invalid array layout");
3328 }
3329
3330 GLenum base_format = _mesa_get_format_base_format(mt->format);
3331 switch (base_format) {
3332 case GL_DEPTH_COMPONENT:
3333 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3334 break;
3335 case GL_STENCIL_INDEX:
3336 surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3337 if (brw->gen >= 8)
3338 surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3339 break;
3340 case GL_DEPTH_STENCIL:
3341 /* In this case we only texture from the depth part */
3342 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3343 ISL_SURF_USAGE_TEXTURE_BIT;
3344 break;
3345 default:
3346 surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3347 if (brw->format_supported_as_render_target[mt->format])
3348 surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3349 break;
3350 }
3351
3352 if (_mesa_is_cube_map_texture(mt->target))
3353 surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3354 }
3355
3356 /* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
3357 * USED FOR ANY REAL CALCULATIONS. THE ONLY VALID USE OF SUCH A SURFACE IS TO
3358 * PASS IT INTO isl_surf_fill_state.
3359 */
3360 void
3361 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
3362 const struct intel_mipmap_tree *mt,
3363 struct isl_surf *surf,
3364 enum isl_aux_usage *usage)
3365 {
3366 uint32_t aux_pitch, aux_qpitch;
3367 if (mt->mcs_buf) {
3368 aux_pitch = mt->mcs_buf->pitch;
3369 aux_qpitch = mt->mcs_buf->qpitch;
3370
3371 if (mt->num_samples > 1) {
3372 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
3373 *usage = ISL_AUX_USAGE_MCS;
3374 } else if (intel_miptree_is_lossless_compressed(brw, mt)) {
3375 assert(brw->gen >= 9);
3376 *usage = ISL_AUX_USAGE_CCS_E;
3377 } else if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) == 0) {
3378 *usage = ISL_AUX_USAGE_CCS_D;
3379 } else {
3380 unreachable("Invalid MCS miptree");
3381 }
3382 } else if (mt->hiz_buf) {
3383 aux_pitch = mt->hiz_buf->aux_base.pitch;
3384 aux_qpitch = mt->hiz_buf->aux_base.qpitch;
3385
3386 *usage = ISL_AUX_USAGE_HIZ;
3387 } else {
3388 *usage = ISL_AUX_USAGE_NONE;
3389 return;
3390 }
3391
3392 /* Start with a copy of the original surface. */
3393 intel_miptree_get_isl_surf(brw, mt, surf);
3394
3395 /* Figure out the format and tiling of the auxiliary surface */
3396 switch (*usage) {
3397 case ISL_AUX_USAGE_NONE:
3398 unreachable("Invalid auxiliary usage");
3399
3400 case ISL_AUX_USAGE_HIZ:
3401 isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
3402 break;
3403
3404 case ISL_AUX_USAGE_MCS:
3405 /*
3406 * From the SKL PRM:
3407 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3408 * HALIGN 16 must be used."
3409 */
3410 if (brw->gen >= 9)
3411 assert(mt->halign == 16);
3412
3413 isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
3414 break;
3415
3416 case ISL_AUX_USAGE_CCS_D:
3417 case ISL_AUX_USAGE_CCS_E:
3418 /*
3419 * From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
3420 *
3421 * "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
3422 *
3423 * From the hardware spec for GEN9:
3424 *
3425 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3426 * HALIGN 16 must be used."
3427 */
3428 assert(mt->num_samples <= 1);
3429 if (brw->gen >= 8)
3430 assert(mt->halign == 16);
3431
3432 isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
3433 break;
3434 }
3435
3436 /* We want the pitch of the actual aux buffer. */
3437 surf->row_pitch = aux_pitch;
3438
3439 /* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
3440 * is in elements. This doesn't match intel_mipmap_tree::qpitch which is
3441 * in elements of the primary color surface so we have to divide by the
3442 * compression block height.
3443 */
3444 surf->array_pitch_el_rows =
3445 aux_qpitch / isl_format_get_layout(surf->format)->bh;
3446 }
3447
3448 union isl_color_value
3449 intel_miptree_get_isl_clear_color(struct brw_context *brw,
3450 const struct intel_mipmap_tree *mt)
3451 {
3452 union isl_color_value clear_color;
3453
3454 if (_mesa_get_format_base_format(mt->format) == GL_DEPTH_COMPONENT) {
3455 clear_color.i32[0] = mt->depth_clear_value;
3456 clear_color.i32[1] = 0;
3457 clear_color.i32[2] = 0;
3458 clear_color.i32[3] = 0;
3459 } else if (brw->gen >= 9) {
3460 clear_color.i32[0] = mt->gen9_fast_clear_color.i[0];
3461 clear_color.i32[1] = mt->gen9_fast_clear_color.i[1];
3462 clear_color.i32[2] = mt->gen9_fast_clear_color.i[2];
3463 clear_color.i32[3] = mt->gen9_fast_clear_color.i[3];
3464 } else if (_mesa_is_format_integer(mt->format)) {
3465 clear_color.i32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3466 clear_color.i32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3467 clear_color.i32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3468 clear_color.i32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3469 } else {
3470 clear_color.f32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3471 clear_color.f32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3472 clear_color.f32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3473 clear_color.f32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3474 }
3475
3476 return clear_color;
3477 }