i965: Only call create_for_planar_image for multiple planes
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_image.h"
31 #include "intel_mipmap_tree.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt,
53 GLbitfield mode);
54
55 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
56
57 static bool
58 intel_miptree_alloc_aux(struct brw_context *brw,
59 struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 /* MCS compression only applies to multisampled miptrees */
66 if (mt->surf.samples <= 1)
67 return false;
68
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return false;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(mt->format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return false;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
92 return false;
93 } else {
94 return true;
95 }
96 }
97 }
98
99 static bool
100 intel_tiling_supports_ccs(const struct brw_context *brw,
101 enum isl_tiling tiling)
102 {
103 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
104 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
105 *
106 * - Support is limited to tiled render targets.
107 *
108 * Gen9 changes the restriction to Y-tile only.
109 */
110 if (brw->gen >= 9)
111 return tiling == ISL_TILING_Y0;
112 else if (brw->gen >= 7)
113 return tiling != ISL_TILING_LINEAR;
114 else
115 return false;
116 }
117
118 /**
119 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
120 * can be used. This doesn't (and should not) inspect any of the properties of
121 * the miptree's BO.
122 *
123 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
124 * beneath the "Fast Color Clear" bullet (p326):
125 *
126 * - Support is for non-mip-mapped and non-array surface types only.
127 *
128 * And then later, on p327:
129 *
130 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
131 * 64bpp, and 128bpp.
132 *
133 * From the Skylake documentation, it is made clear that X-tiling is no longer
134 * supported:
135 *
136 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
137 * non-MSRTs only.
138 */
139 static bool
140 intel_miptree_supports_ccs(struct brw_context *brw,
141 const struct intel_mipmap_tree *mt)
142 {
143 /* MCS support does not exist prior to Gen7 */
144 if (brw->gen < 7)
145 return false;
146
147 /* This function applies only to non-multisampled render targets. */
148 if (mt->surf.samples > 1)
149 return false;
150
151 /* MCS is only supported for color buffers */
152 switch (_mesa_get_format_base_format(mt->format)) {
153 case GL_DEPTH_COMPONENT:
154 case GL_DEPTH_STENCIL:
155 case GL_STENCIL_INDEX:
156 return false;
157 }
158
159 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
160 return false;
161
162 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
163 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
164 mt->surf.logical_level0_px.depth > 1;
165
166 if (arrayed) {
167 /* Multisample surfaces with the CMS layout are not layered surfaces,
168 * yet still have physical_depth0 > 1. Assert that we don't
169 * accidentally reject a multisampled surface here. We should have
170 * rejected it earlier by explicitly checking the sample count.
171 */
172 assert(mt->surf.samples == 1);
173 }
174
175 /* Handle the hardware restrictions...
176 *
177 * All GENs have the following restriction: "MCS buffer for non-MSRT is
178 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
179 *
180 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
181 * Non-MultiSampler Render Target Restrictions) Support is for
182 * non-mip-mapped and non-array surface types only.
183 *
184 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
185 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
186 * surfaces are supported with MCS buffer layout with these alignments in
187 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
188 *
189 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
190 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
191 * surfaces are supported with MCS buffer layout with these alignments in
192 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
193 */
194 if (brw->gen < 8 && (mip_mapped || arrayed))
195 return false;
196
197 /* There's no point in using an MCS buffer if the surface isn't in a
198 * renderable format.
199 */
200 if (!brw->mesa_format_supports_render[mt->format])
201 return false;
202
203 return true;
204 }
205
206 static bool
207 intel_tiling_supports_hiz(const struct brw_context *brw,
208 enum isl_tiling tiling)
209 {
210 if (brw->gen < 6)
211 return false;
212
213 return tiling == ISL_TILING_Y0;
214 }
215
216 static bool
217 intel_miptree_supports_hiz(const struct brw_context *brw,
218 const struct intel_mipmap_tree *mt)
219 {
220 if (!brw->has_hiz)
221 return false;
222
223 switch (mt->format) {
224 case MESA_FORMAT_Z_FLOAT32:
225 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
226 case MESA_FORMAT_Z24_UNORM_X8_UINT:
227 case MESA_FORMAT_Z24_UNORM_S8_UINT:
228 case MESA_FORMAT_Z_UNORM16:
229 return true;
230 default:
231 return false;
232 }
233 }
234
235 static bool
236 intel_miptree_supports_ccs_e(struct brw_context *brw,
237 const struct intel_mipmap_tree *mt)
238 {
239 if (brw->gen < 9)
240 return false;
241
242 /* For now compression is only enabled for integer formats even though
243 * there exist supported floating point formats also. This is a heuristic
244 * decision based on current public benchmarks. In none of the cases these
245 * formats provided any improvement but a few cases were seen to regress.
246 * Hence these are left to to be enabled in the future when they are known
247 * to improve things.
248 */
249 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
250 return false;
251
252 if (!intel_miptree_supports_ccs(brw, mt))
253 return false;
254
255 /* Many window system buffers are sRGB even if they are never rendered as
256 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
257 * surface is used as sRGB, we fall back to CCS_D.
258 */
259 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
260 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
261 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
262 }
263
264 /**
265 * Determine depth format corresponding to a depth+stencil format,
266 * for separate stencil.
267 */
268 mesa_format
269 intel_depth_format_for_depthstencil_format(mesa_format format) {
270 switch (format) {
271 case MESA_FORMAT_Z24_UNORM_S8_UINT:
272 return MESA_FORMAT_Z24_UNORM_X8_UINT;
273 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
274 return MESA_FORMAT_Z_FLOAT32;
275 default:
276 return format;
277 }
278 }
279
280 static bool
281 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
282 unsigned depth0, struct intel_mipmap_level *table)
283 {
284 for (unsigned level = first_level; level <= last_level; level++) {
285 const unsigned d =
286 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
287
288 table[level].slice = calloc(d, sizeof(*table[0].slice));
289 if (!table[level].slice)
290 goto unwind;
291 }
292
293 return true;
294
295 unwind:
296 for (unsigned level = first_level; level <= last_level; level++)
297 free(table[level].slice);
298
299 return false;
300 }
301
302 static bool
303 needs_separate_stencil(const struct brw_context *brw,
304 struct intel_mipmap_tree *mt,
305 mesa_format format)
306 {
307 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
308 return false;
309
310 if (brw->must_use_separate_stencil)
311 return true;
312
313 return brw->has_separate_stencil &&
314 intel_miptree_supports_hiz(brw, mt);
315 }
316
317 /**
318 * Choose the aux usage for this miptree. This function must be called fairly
319 * late in the miptree create process after we have a tiling.
320 */
321 static void
322 intel_miptree_choose_aux_usage(struct brw_context *brw,
323 struct intel_mipmap_tree *mt)
324 {
325 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
326
327 if (intel_miptree_supports_mcs(brw, mt)) {
328 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
329 mt->aux_usage = ISL_AUX_USAGE_MCS;
330 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
331 intel_miptree_supports_ccs(brw, mt)) {
332 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
333 intel_miptree_supports_ccs_e(brw, mt)) {
334 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
335 } else {
336 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
337 }
338 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
339 intel_miptree_supports_hiz(brw, mt)) {
340 mt->aux_usage = ISL_AUX_USAGE_HIZ;
341 }
342
343 /* We can do fast-clear on all auxiliary surface types that are
344 * allocated through the normal texture creation paths.
345 */
346 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
347 mt->supports_fast_clear = true;
348 }
349
350
351 /**
352 * Choose an appropriate uncompressed format for a requested
353 * compressed format, if unsupported.
354 */
355 mesa_format
356 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
357 {
358 /* No need to lower ETC formats on these platforms,
359 * they are supported natively.
360 */
361 if (brw->gen >= 8 || brw->is_baytrail)
362 return format;
363
364 switch (format) {
365 case MESA_FORMAT_ETC1_RGB8:
366 return MESA_FORMAT_R8G8B8X8_UNORM;
367 case MESA_FORMAT_ETC2_RGB8:
368 return MESA_FORMAT_R8G8B8X8_UNORM;
369 case MESA_FORMAT_ETC2_SRGB8:
370 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
371 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
372 return MESA_FORMAT_B8G8R8A8_SRGB;
373 case MESA_FORMAT_ETC2_RGBA8_EAC:
374 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
375 return MESA_FORMAT_R8G8B8A8_UNORM;
376 case MESA_FORMAT_ETC2_R11_EAC:
377 return MESA_FORMAT_R_UNORM16;
378 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
379 return MESA_FORMAT_R_SNORM16;
380 case MESA_FORMAT_ETC2_RG11_EAC:
381 return MESA_FORMAT_R16G16_UNORM;
382 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
383 return MESA_FORMAT_R16G16_SNORM;
384 default:
385 /* Non ETC1 / ETC2 format */
386 return format;
387 }
388 }
389
390 unsigned
391 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
392 {
393 if (mt->surf.dim == ISL_SURF_DIM_3D)
394 return minify(mt->surf.logical_level0_px.depth, level);
395 else
396 return mt->surf.logical_level0_px.array_len;
397 }
398
399 static unsigned
400 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
401 {
402 /* In case of physical dimensions one needs to consider also the layout.
403 * See isl_calc_phys_level0_extent_sa().
404 */
405 if (surf->dim != ISL_SURF_DIM_3D)
406 return surf->phys_level0_sa.array_len;
407
408 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
409 return minify(surf->phys_level0_sa.array_len, level);
410
411 return minify(surf->phys_level0_sa.depth, level);
412 }
413
414 /** \brief Assert that the level and layer are valid for the miptree. */
415 void
416 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
417 uint32_t level,
418 uint32_t layer)
419 {
420 (void) mt;
421 (void) level;
422 (void) layer;
423
424 assert(level >= mt->first_level);
425 assert(level <= mt->last_level);
426 assert(layer < get_num_phys_layers(&mt->surf, level));
427 }
428
429 static enum isl_aux_state **
430 create_aux_state_map(struct intel_mipmap_tree *mt,
431 enum isl_aux_state initial)
432 {
433 const uint32_t levels = mt->last_level + 1;
434
435 uint32_t total_slices = 0;
436 for (uint32_t level = 0; level < levels; level++)
437 total_slices += brw_get_num_logical_layers(mt, level);
438
439 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
440
441 /* We're going to allocate a single chunk of data for both the per-level
442 * reference array and the arrays of aux_state. This makes cleanup
443 * significantly easier.
444 */
445 const size_t total_size = per_level_array_size +
446 total_slices * sizeof(enum isl_aux_state);
447 void *data = malloc(total_size);
448 if (data == NULL)
449 return NULL;
450
451 enum isl_aux_state **per_level_arr = data;
452 enum isl_aux_state *s = data + per_level_array_size;
453 for (uint32_t level = 0; level < levels; level++) {
454 per_level_arr[level] = s;
455 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
456 for (uint32_t a = 0; a < level_layers; a++)
457 *(s++) = initial;
458 }
459 assert((void *)s == data + total_size);
460
461 return per_level_arr;
462 }
463
464 static void
465 free_aux_state_map(enum isl_aux_state **state)
466 {
467 free(state);
468 }
469
470 static bool
471 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
472 enum isl_tiling tiling, unsigned samples)
473 {
474 if (samples > 1)
475 return false;
476
477 if (tiling == ISL_TILING_LINEAR)
478 return false;
479
480 /* If the width is much smaller than a tile, don't bother tiling. */
481 if (row_pitch < 64)
482 return true;
483
484 if (ALIGN(row_pitch, 512) >= 32768) {
485 perf_debug("row pitch %u too large to blit, falling back to untiled",
486 row_pitch);
487 return true;
488 }
489
490 return false;
491 }
492
493 static bool
494 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
495 enum isl_tiling tiling)
496 {
497 /* If the BO is too large to fit in the aperture, we need to use the
498 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
499 * handle Y-tiling, so we need to fall back to X.
500 */
501 if (brw->gen < 6 && size >= brw->max_gtt_map_object_size &&
502 tiling == ISL_TILING_Y0)
503 return true;
504
505 return false;
506 }
507
508 static struct intel_mipmap_tree *
509 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
510 unsigned first_level, unsigned last_level,
511 unsigned width0, unsigned height0, unsigned depth0,
512 unsigned num_samples, isl_tiling_flags_t tiling_flags,
513 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
514 unsigned row_pitch, struct brw_bo *bo)
515 {
516 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
517 if (!mt)
518 return NULL;
519
520 if (!create_mapping_table(target, first_level, last_level, depth0,
521 mt->level)) {
522 free(mt);
523 return NULL;
524 }
525
526 mt->refcount = 1;
527
528 if (target == GL_TEXTURE_CUBE_MAP ||
529 target == GL_TEXTURE_CUBE_MAP_ARRAY)
530 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
531
532 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
533 __func__,
534 _mesa_enum_to_string(target),
535 _mesa_get_format_name(format),
536 num_samples, width0, height0, depth0,
537 first_level, last_level, mt);
538
539 struct isl_surf_init_info init_info = {
540 .dim = get_isl_surf_dim(target),
541 .format = translate_tex_format(brw, format, false),
542 .width = width0,
543 .height = height0,
544 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
545 .levels = last_level - first_level + 1,
546 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
547 .samples = num_samples,
548 .row_pitch = row_pitch,
549 .usage = isl_usage_flags,
550 .tiling_flags = tiling_flags,
551 };
552
553 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
554 goto fail;
555
556 /* In case caller doesn't specifically request Y-tiling (needed
557 * unconditionally for depth), check for corner cases needing special
558 * treatment.
559 */
560 if (tiling_flags & ~ISL_TILING_Y0_BIT) {
561 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
562 mt->surf.tiling, mt->surf.samples)) {
563 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
564 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
565 goto fail;
566 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
567 init_info.tiling_flags = 1u << ISL_TILING_X;
568 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
569 goto fail;
570 }
571 }
572
573 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
574 * the size may not be multiple of row_pitch.
575 * See isl_apply_surface_padding().
576 */
577 if (mt->surf.tiling != ISL_TILING_LINEAR)
578 assert(mt->surf.size % mt->surf.row_pitch == 0);
579
580 if (!bo) {
581 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
582 mt->surf.size,
583 isl_tiling_to_i915_tiling(
584 mt->surf.tiling),
585 mt->surf.row_pitch, alloc_flags);
586 if (!mt->bo)
587 goto fail;
588 } else {
589 mt->bo = bo;
590 }
591
592 mt->first_level = first_level;
593 mt->last_level = last_level;
594 mt->target = target;
595 mt->format = format;
596 mt->aux_state = NULL;
597 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
598 mt->compressed = _mesa_is_format_compressed(format);
599
600 return mt;
601
602 fail:
603 intel_miptree_release(&mt);
604 return NULL;
605 }
606
607 static bool
608 make_separate_stencil_surface(struct brw_context *brw,
609 struct intel_mipmap_tree *mt)
610 {
611 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
612 0, mt->surf.levels - 1,
613 mt->surf.logical_level0_px.width,
614 mt->surf.logical_level0_px.height,
615 mt->surf.dim == ISL_SURF_DIM_3D ?
616 mt->surf.logical_level0_px.depth :
617 mt->surf.logical_level0_px.array_len,
618 mt->surf.samples, ISL_TILING_W_BIT,
619 ISL_SURF_USAGE_STENCIL_BIT |
620 ISL_SURF_USAGE_TEXTURE_BIT,
621 BO_ALLOC_FOR_RENDER, 0, NULL);
622
623 if (!mt->stencil_mt)
624 return false;
625
626 mt->stencil_mt->r8stencil_needs_update = true;
627
628 return true;
629 }
630
631 static struct intel_mipmap_tree *
632 miptree_create(struct brw_context *brw,
633 GLenum target,
634 mesa_format format,
635 GLuint first_level,
636 GLuint last_level,
637 GLuint width0,
638 GLuint height0,
639 GLuint depth0,
640 GLuint num_samples,
641 enum intel_miptree_create_flags flags)
642 {
643 if (format == MESA_FORMAT_S_UINT8)
644 return make_surface(brw, target, format, first_level, last_level,
645 width0, height0, depth0, num_samples,
646 ISL_TILING_W_BIT,
647 ISL_SURF_USAGE_STENCIL_BIT |
648 ISL_SURF_USAGE_TEXTURE_BIT,
649 BO_ALLOC_FOR_RENDER,
650 0,
651 NULL);
652
653 const GLenum base_format = _mesa_get_format_base_format(format);
654 if ((base_format == GL_DEPTH_COMPONENT ||
655 base_format == GL_DEPTH_STENCIL) &&
656 !(flags & MIPTREE_CREATE_LINEAR)) {
657 /* Fix up the Z miptree format for how we're splitting out separate
658 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
659 */
660 const mesa_format depth_only_format =
661 intel_depth_format_for_depthstencil_format(format);
662 struct intel_mipmap_tree *mt = make_surface(
663 brw, target, brw->gen >= 6 ? depth_only_format : format,
664 first_level, last_level,
665 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
666 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
667 BO_ALLOC_FOR_RENDER, 0, NULL);
668
669 if (needs_separate_stencil(brw, mt, format) &&
670 !make_separate_stencil_surface(brw, mt)) {
671 intel_miptree_release(&mt);
672 return NULL;
673 }
674
675 if (!(flags & MIPTREE_CREATE_NO_AUX))
676 intel_miptree_choose_aux_usage(brw, mt);
677
678 return mt;
679 }
680
681 mesa_format tex_format = format;
682 mesa_format etc_format = MESA_FORMAT_NONE;
683 uint32_t alloc_flags = 0;
684
685 format = intel_lower_compressed_format(brw, format);
686
687 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
688
689 if (flags & MIPTREE_CREATE_BUSY)
690 alloc_flags |= BO_ALLOC_FOR_RENDER;
691
692 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
693 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
694
695 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
696 if (brw->gen < 6)
697 tiling_flags &= ~ISL_TILING_Y0_BIT;
698
699 struct intel_mipmap_tree *mt = make_surface(
700 brw, target, format,
701 first_level, last_level,
702 width0, height0, depth0,
703 num_samples, tiling_flags,
704 ISL_SURF_USAGE_RENDER_TARGET_BIT |
705 ISL_SURF_USAGE_TEXTURE_BIT,
706 alloc_flags, 0, NULL);
707 if (!mt)
708 return NULL;
709
710 mt->etc_format = etc_format;
711
712 if (!(flags & MIPTREE_CREATE_NO_AUX))
713 intel_miptree_choose_aux_usage(brw, mt);
714
715 return mt;
716 }
717
718 struct intel_mipmap_tree *
719 intel_miptree_create(struct brw_context *brw,
720 GLenum target,
721 mesa_format format,
722 GLuint first_level,
723 GLuint last_level,
724 GLuint width0,
725 GLuint height0,
726 GLuint depth0,
727 GLuint num_samples,
728 enum intel_miptree_create_flags flags)
729 {
730 assert(num_samples > 0);
731
732 struct intel_mipmap_tree *mt = miptree_create(
733 brw, target, format,
734 first_level, last_level,
735 width0, height0, depth0, num_samples,
736 flags);
737 if (!mt)
738 return NULL;
739
740 mt->offset = 0;
741
742 if (!intel_miptree_alloc_aux(brw, mt)) {
743 intel_miptree_release(&mt);
744 return NULL;
745 }
746
747 return mt;
748 }
749
750 struct intel_mipmap_tree *
751 intel_miptree_create_for_bo(struct brw_context *brw,
752 struct brw_bo *bo,
753 mesa_format format,
754 uint32_t offset,
755 uint32_t width,
756 uint32_t height,
757 uint32_t depth,
758 int pitch,
759 enum intel_miptree_create_flags flags)
760 {
761 struct intel_mipmap_tree *mt;
762 uint32_t tiling, swizzle;
763 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
764 const GLenum base_format = _mesa_get_format_base_format(format);
765
766 if ((base_format == GL_DEPTH_COMPONENT ||
767 base_format == GL_DEPTH_STENCIL)) {
768 const mesa_format depth_only_format =
769 intel_depth_format_for_depthstencil_format(format);
770 mt = make_surface(brw, target,
771 brw->gen >= 6 ? depth_only_format : format,
772 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
773 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
774 BO_ALLOC_FOR_RENDER, pitch, bo);
775 if (!mt)
776 return NULL;
777
778 brw_bo_reference(bo);
779
780 if (!(flags & MIPTREE_CREATE_NO_AUX))
781 intel_miptree_choose_aux_usage(brw, mt);
782
783 return mt;
784 } else if (format == MESA_FORMAT_S_UINT8) {
785 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
786 0, 0, width, height, depth, 1,
787 ISL_TILING_W_BIT,
788 ISL_SURF_USAGE_STENCIL_BIT |
789 ISL_SURF_USAGE_TEXTURE_BIT,
790 BO_ALLOC_FOR_RENDER, pitch, bo);
791 if (!mt)
792 return NULL;
793
794 assert(bo->size >= mt->surf.size);
795
796 brw_bo_reference(bo);
797 return mt;
798 }
799
800 brw_bo_get_tiling(bo, &tiling, &swizzle);
801
802 /* Nothing will be able to use this miptree with the BO if the offset isn't
803 * aligned.
804 */
805 if (tiling != I915_TILING_NONE)
806 assert(offset % 4096 == 0);
807
808 /* miptrees can't handle negative pitch. If you need flipping of images,
809 * that's outside of the scope of the mt.
810 */
811 assert(pitch >= 0);
812
813 /* The BO already has a tiling format and we shouldn't confuse the lower
814 * layers by making it try to find a tiling format again.
815 */
816 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
817
818 mt = make_surface(brw, target, format,
819 0, 0, width, height, depth, 1,
820 1lu << isl_tiling_from_i915_tiling(tiling),
821 ISL_SURF_USAGE_RENDER_TARGET_BIT |
822 ISL_SURF_USAGE_TEXTURE_BIT,
823 0, pitch, bo);
824 if (!mt)
825 return NULL;
826
827 brw_bo_reference(bo);
828 mt->bo = bo;
829 mt->offset = offset;
830
831 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
832 intel_miptree_choose_aux_usage(brw, mt);
833
834 if (!intel_miptree_alloc_aux(brw, mt)) {
835 intel_miptree_release(&mt);
836 return NULL;
837 }
838 }
839
840 return mt;
841 }
842
843 static struct intel_mipmap_tree *
844 miptree_create_for_planar_image(struct brw_context *brw,
845 __DRIimage *image, GLenum target)
846 {
847 const struct intel_image_format *f = image->planar_format;
848 struct intel_mipmap_tree *planar_mt = NULL;
849
850 for (int i = 0; i < f->nplanes; i++) {
851 const int index = f->planes[i].buffer_index;
852 const uint32_t dri_format = f->planes[i].dri_format;
853 const mesa_format format = driImageFormatToGLFormat(dri_format);
854 const uint32_t width = image->width >> f->planes[i].width_shift;
855 const uint32_t height = image->height >> f->planes[i].height_shift;
856
857 /* Disable creation of the texture's aux buffers because the driver
858 * exposes no EGL API to manage them. That is, there is no API for
859 * resolving the aux buffer's content to the main buffer nor for
860 * invalidating the aux buffer's content.
861 */
862 struct intel_mipmap_tree *mt =
863 intel_miptree_create_for_bo(brw, image->bo, format,
864 image->offsets[index],
865 width, height, 1,
866 image->strides[index],
867 MIPTREE_CREATE_NO_AUX);
868 if (mt == NULL)
869 return NULL;
870
871 mt->target = target;
872
873 if (i == 0)
874 planar_mt = mt;
875 else
876 planar_mt->plane[i - 1] = mt;
877 }
878
879 return planar_mt;
880 }
881
882 struct intel_mipmap_tree *
883 intel_miptree_create_for_dri_image(struct brw_context *brw,
884 __DRIimage *image, GLenum target,
885 enum isl_colorspace colorspace,
886 bool is_winsys_image)
887 {
888 if (image->planar_format && image->planar_format->nplanes > 1) {
889 assert(colorspace == ISL_COLORSPACE_NONE ||
890 colorspace == ISL_COLORSPACE_YUV);
891 return miptree_create_for_planar_image(brw, image, target);
892 }
893
894 if (image->planar_format)
895 assert(image->planar_format->planes[0].dri_format == image->dri_format);
896
897 mesa_format format = image->format;
898 switch (colorspace) {
899 case ISL_COLORSPACE_NONE:
900 /* Keep the image format unmodified */
901 break;
902
903 case ISL_COLORSPACE_LINEAR:
904 format =_mesa_get_srgb_format_linear(format);
905 break;
906
907 case ISL_COLORSPACE_SRGB:
908 format =_mesa_get_linear_format_srgb(format);
909 break;
910
911 default:
912 unreachable("Inalid colorspace for non-planar image");
913 }
914
915 if (!brw->ctx.TextureFormatSupported[format]) {
916 /* The texture storage paths in core Mesa detect if the driver does not
917 * support the user-requested format, and then searches for a
918 * fallback format. The DRIimage code bypasses core Mesa, though. So we
919 * do the fallbacks here for important formats.
920 *
921 * We must support DRM_FOURCC_XBGR8888 textures because the Android
922 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
923 * the Chrome OS compositor consumes as dma_buf EGLImages.
924 */
925 format = _mesa_format_fallback_rgbx_to_rgba(format);
926 }
927
928 if (!brw->ctx.TextureFormatSupported[format])
929 return NULL;
930
931 /* If this image comes in from a window system, we have different
932 * requirements than if it comes in via an EGL import operation. Window
933 * system images can use any form of auxiliary compression we wish because
934 * they get "flushed" before being handed off to the window system and we
935 * have the opportunity to do resolves. Window system buffers also may be
936 * used for scanout so we need to flag that appropriately.
937 */
938 const enum intel_miptree_create_flags mt_create_flags =
939 is_winsys_image ? 0 : MIPTREE_CREATE_NO_AUX;
940
941 /* Disable creation of the texture's aux buffers because the driver exposes
942 * no EGL API to manage them. That is, there is no API for resolving the aux
943 * buffer's content to the main buffer nor for invalidating the aux buffer's
944 * content.
945 */
946 struct intel_mipmap_tree *mt =
947 intel_miptree_create_for_bo(brw, image->bo, format,
948 image->offset, image->width, image->height, 1,
949 image->pitch, mt_create_flags);
950 if (mt == NULL)
951 return NULL;
952
953 mt->target = target;
954 mt->level[0].level_x = image->tile_x;
955 mt->level[0].level_y = image->tile_y;
956
957 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
958 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
959 * trouble resolving back to destination image due to alignment issues.
960 */
961 if (!brw->has_surface_tile_offset) {
962 uint32_t draw_x, draw_y;
963 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
964
965 if (draw_x != 0 || draw_y != 0) {
966 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
967 intel_miptree_release(&mt);
968 return NULL;
969 }
970 }
971
972 /* If this is a window-system image, then we can no longer assume it's
973 * cache-coherent because it may suddenly get scanned out which destroys
974 * coherency.
975 */
976 if (is_winsys_image)
977 image->bo->cache_coherent = false;
978
979 return mt;
980 }
981
982 /**
983 * For a singlesample renderbuffer, this simply wraps the given BO with a
984 * miptree.
985 *
986 * For a multisample renderbuffer, this wraps the window system's
987 * (singlesample) BO with a singlesample miptree attached to the
988 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
989 * that will contain the actual rendering (which is lazily resolved to
990 * irb->singlesample_mt).
991 */
992 bool
993 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
994 struct intel_renderbuffer *irb,
995 struct intel_mipmap_tree *singlesample_mt,
996 uint32_t width, uint32_t height,
997 uint32_t pitch)
998 {
999 struct intel_mipmap_tree *multisample_mt = NULL;
1000 struct gl_renderbuffer *rb = &irb->Base.Base;
1001 mesa_format format = rb->Format;
1002 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1003
1004 /* Only the front and back buffers, which are color buffers, are allocated
1005 * through the image loader.
1006 */
1007 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1008 _mesa_get_format_base_format(format) == GL_RGBA);
1009
1010 assert(singlesample_mt);
1011
1012 if (num_samples == 1) {
1013 intel_miptree_release(&irb->mt);
1014 irb->mt = singlesample_mt;
1015
1016 assert(!irb->singlesample_mt);
1017 } else {
1018 intel_miptree_release(&irb->singlesample_mt);
1019 irb->singlesample_mt = singlesample_mt;
1020
1021 if (!irb->mt ||
1022 irb->mt->surf.logical_level0_px.width != width ||
1023 irb->mt->surf.logical_level0_px.height != height) {
1024 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1025 format,
1026 width,
1027 height,
1028 num_samples);
1029 if (!multisample_mt)
1030 goto fail;
1031
1032 irb->need_downsample = false;
1033 intel_miptree_release(&irb->mt);
1034 irb->mt = multisample_mt;
1035 }
1036 }
1037 return true;
1038
1039 fail:
1040 intel_miptree_release(&irb->mt);
1041 return false;
1042 }
1043
1044 struct intel_mipmap_tree*
1045 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1046 mesa_format format,
1047 uint32_t width,
1048 uint32_t height,
1049 uint32_t num_samples)
1050 {
1051 struct intel_mipmap_tree *mt;
1052 uint32_t depth = 1;
1053 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1054
1055 mt = intel_miptree_create(brw, target, format, 0, 0,
1056 width, height, depth, num_samples,
1057 MIPTREE_CREATE_BUSY);
1058 if (!mt)
1059 goto fail;
1060
1061 return mt;
1062
1063 fail:
1064 intel_miptree_release(&mt);
1065 return NULL;
1066 }
1067
1068 void
1069 intel_miptree_reference(struct intel_mipmap_tree **dst,
1070 struct intel_mipmap_tree *src)
1071 {
1072 if (*dst == src)
1073 return;
1074
1075 intel_miptree_release(dst);
1076
1077 if (src) {
1078 src->refcount++;
1079 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1080 }
1081
1082 *dst = src;
1083 }
1084
1085 static void
1086 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1087 {
1088 if (aux_buf == NULL)
1089 return;
1090
1091 brw_bo_unreference(aux_buf->bo);
1092
1093 free(aux_buf);
1094 }
1095
1096 void
1097 intel_miptree_release(struct intel_mipmap_tree **mt)
1098 {
1099 if (!*mt)
1100 return;
1101
1102 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1103 if (--(*mt)->refcount <= 0) {
1104 GLuint i;
1105
1106 DBG("%s deleting %p\n", __func__, *mt);
1107
1108 brw_bo_unreference((*mt)->bo);
1109 intel_miptree_release(&(*mt)->stencil_mt);
1110 intel_miptree_release(&(*mt)->r8stencil_mt);
1111 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1112 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1113 free_aux_state_map((*mt)->aux_state);
1114
1115 intel_miptree_release(&(*mt)->plane[0]);
1116 intel_miptree_release(&(*mt)->plane[1]);
1117
1118 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1119 free((*mt)->level[i].slice);
1120 }
1121
1122 free(*mt);
1123 }
1124 *mt = NULL;
1125 }
1126
1127
1128 void
1129 intel_get_image_dims(struct gl_texture_image *image,
1130 int *width, int *height, int *depth)
1131 {
1132 switch (image->TexObject->Target) {
1133 case GL_TEXTURE_1D_ARRAY:
1134 /* For a 1D Array texture the OpenGL API will treat the image height as
1135 * the number of array slices. For Intel hardware, we treat the 1D array
1136 * as a 2D Array with a height of 1. So, here we want to swap image
1137 * height and depth.
1138 */
1139 assert(image->Depth == 1);
1140 *width = image->Width;
1141 *height = 1;
1142 *depth = image->Height;
1143 break;
1144 case GL_TEXTURE_CUBE_MAP:
1145 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1146 * though we really have 6 slices.
1147 */
1148 assert(image->Depth == 1);
1149 *width = image->Width;
1150 *height = image->Height;
1151 *depth = 6;
1152 break;
1153 default:
1154 *width = image->Width;
1155 *height = image->Height;
1156 *depth = image->Depth;
1157 break;
1158 }
1159 }
1160
1161 /**
1162 * Can the image be pulled into a unified mipmap tree? This mirrors
1163 * the completeness test in a lot of ways.
1164 *
1165 * Not sure whether I want to pass gl_texture_image here.
1166 */
1167 bool
1168 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1169 struct gl_texture_image *image)
1170 {
1171 struct intel_texture_image *intelImage = intel_texture_image(image);
1172 GLuint level = intelImage->base.Base.Level;
1173 int width, height, depth;
1174
1175 /* glTexImage* choose the texture object based on the target passed in, and
1176 * objects can't change targets over their lifetimes, so this should be
1177 * true.
1178 */
1179 assert(image->TexObject->Target == mt->target);
1180
1181 mesa_format mt_format = mt->format;
1182 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1183 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1184 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1185 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1186 if (mt->etc_format != MESA_FORMAT_NONE)
1187 mt_format = mt->etc_format;
1188
1189 if (image->TexFormat != mt_format)
1190 return false;
1191
1192 intel_get_image_dims(image, &width, &height, &depth);
1193
1194 if (mt->target == GL_TEXTURE_CUBE_MAP)
1195 depth = 6;
1196
1197 if (level >= mt->surf.levels)
1198 return false;
1199
1200 const unsigned level_depth =
1201 mt->surf.dim == ISL_SURF_DIM_3D ?
1202 minify(mt->surf.logical_level0_px.depth, level) :
1203 mt->surf.logical_level0_px.array_len;
1204
1205 return width == minify(mt->surf.logical_level0_px.width, level) &&
1206 height == minify(mt->surf.logical_level0_px.height, level) &&
1207 depth == level_depth &&
1208 MAX2(image->NumSamples, 1) == mt->surf.samples;
1209 }
1210
1211 void
1212 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1213 GLuint level, GLuint slice,
1214 GLuint *x, GLuint *y)
1215 {
1216 if (level == 0 && slice == 0) {
1217 *x = mt->level[0].level_x;
1218 *y = mt->level[0].level_y;
1219 return;
1220 }
1221
1222 uint32_t x_offset_sa, y_offset_sa;
1223
1224 /* Miptree itself can have an offset only if it represents a single
1225 * slice in an imported buffer object.
1226 * See intel_miptree_create_for_dri_image().
1227 */
1228 assert(mt->level[0].level_x == 0);
1229 assert(mt->level[0].level_y == 0);
1230
1231 /* Given level is relative to level zero while the miptree may be
1232 * represent just a subset of all levels starting from 'first_level'.
1233 */
1234 assert(level >= mt->first_level);
1235 level -= mt->first_level;
1236
1237 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1238 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1239 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1240 &x_offset_sa, &y_offset_sa);
1241
1242 *x = x_offset_sa;
1243 *y = y_offset_sa;
1244 }
1245
1246
1247 /**
1248 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1249 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1250 * and tile_h is set to 1.
1251 */
1252 void
1253 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1254 uint32_t *tile_w, uint32_t *tile_h)
1255 {
1256 switch (tiling) {
1257 case ISL_TILING_X:
1258 *tile_w = 512;
1259 *tile_h = 8;
1260 break;
1261 case ISL_TILING_Y0:
1262 *tile_w = 128;
1263 *tile_h = 32;
1264 break;
1265 case ISL_TILING_LINEAR:
1266 *tile_w = cpp;
1267 *tile_h = 1;
1268 break;
1269 default:
1270 unreachable("not reached");
1271 }
1272 }
1273
1274
1275 /**
1276 * This function computes masks that may be used to select the bits of the X
1277 * and Y coordinates that indicate the offset within a tile. If the BO is
1278 * untiled, the masks are set to 0.
1279 */
1280 void
1281 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1282 uint32_t *mask_x, uint32_t *mask_y)
1283 {
1284 uint32_t tile_w_bytes, tile_h;
1285
1286 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1287
1288 *mask_x = tile_w_bytes / cpp - 1;
1289 *mask_y = tile_h - 1;
1290 }
1291
1292 /**
1293 * Compute the offset (in bytes) from the start of the BO to the given x
1294 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1295 * multiples of the tile size.
1296 */
1297 uint32_t
1298 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1299 uint32_t x, uint32_t y)
1300 {
1301 int cpp = mt->cpp;
1302 uint32_t pitch = mt->surf.row_pitch;
1303
1304 switch (mt->surf.tiling) {
1305 default:
1306 unreachable("not reached");
1307 case ISL_TILING_LINEAR:
1308 return y * pitch + x * cpp;
1309 case ISL_TILING_X:
1310 assert((x % (512 / cpp)) == 0);
1311 assert((y % 8) == 0);
1312 return y * pitch + x / (512 / cpp) * 4096;
1313 case ISL_TILING_Y0:
1314 assert((x % (128 / cpp)) == 0);
1315 assert((y % 32) == 0);
1316 return y * pitch + x / (128 / cpp) * 4096;
1317 }
1318 }
1319
1320 /**
1321 * Rendering with tiled buffers requires that the base address of the buffer
1322 * be aligned to a page boundary. For renderbuffers, and sometimes with
1323 * textures, we may want the surface to point at a texture image level that
1324 * isn't at a page boundary.
1325 *
1326 * This function returns an appropriately-aligned base offset
1327 * according to the tiling restrictions, plus any required x/y offset
1328 * from there.
1329 */
1330 uint32_t
1331 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1332 GLuint level, GLuint slice,
1333 uint32_t *tile_x,
1334 uint32_t *tile_y)
1335 {
1336 uint32_t x, y;
1337 uint32_t mask_x, mask_y;
1338
1339 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1340 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1341
1342 *tile_x = x & mask_x;
1343 *tile_y = y & mask_y;
1344
1345 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1346 }
1347
1348 static void
1349 intel_miptree_copy_slice_sw(struct brw_context *brw,
1350 struct intel_mipmap_tree *src_mt,
1351 unsigned src_level, unsigned src_layer,
1352 struct intel_mipmap_tree *dst_mt,
1353 unsigned dst_level, unsigned dst_layer,
1354 unsigned width, unsigned height)
1355 {
1356 void *src, *dst;
1357 ptrdiff_t src_stride, dst_stride;
1358 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1359
1360 intel_miptree_map(brw, src_mt,
1361 src_level, src_layer,
1362 0, 0,
1363 width, height,
1364 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1365 &src, &src_stride);
1366
1367 intel_miptree_map(brw, dst_mt,
1368 dst_level, dst_layer,
1369 0, 0,
1370 width, height,
1371 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1372 BRW_MAP_DIRECT_BIT,
1373 &dst, &dst_stride);
1374
1375 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1376 _mesa_get_format_name(src_mt->format),
1377 src_mt, src, src_stride,
1378 _mesa_get_format_name(dst_mt->format),
1379 dst_mt, dst, dst_stride,
1380 width, height);
1381
1382 int row_size = cpp * width;
1383 if (src_stride == row_size &&
1384 dst_stride == row_size) {
1385 memcpy(dst, src, row_size * height);
1386 } else {
1387 for (int i = 0; i < height; i++) {
1388 memcpy(dst, src, row_size);
1389 dst += dst_stride;
1390 src += src_stride;
1391 }
1392 }
1393
1394 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1395 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1396
1397 /* Don't forget to copy the stencil data over, too. We could have skipped
1398 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1399 * shuffling the two data sources in/out of temporary storage instead of
1400 * the direct mapping we get this way.
1401 */
1402 if (dst_mt->stencil_mt) {
1403 assert(src_mt->stencil_mt);
1404 intel_miptree_copy_slice_sw(brw,
1405 src_mt->stencil_mt, src_level, src_layer,
1406 dst_mt->stencil_mt, dst_level, dst_layer,
1407 width, height);
1408 }
1409 }
1410
1411 void
1412 intel_miptree_copy_slice(struct brw_context *brw,
1413 struct intel_mipmap_tree *src_mt,
1414 unsigned src_level, unsigned src_layer,
1415 struct intel_mipmap_tree *dst_mt,
1416 unsigned dst_level, unsigned dst_layer)
1417
1418 {
1419 mesa_format format = src_mt->format;
1420 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1421 src_level - src_mt->first_level);
1422 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1423 src_level - src_mt->first_level);
1424
1425 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1426 src_level - src_mt->first_level));
1427
1428 assert(src_mt->format == dst_mt->format);
1429
1430 if (dst_mt->compressed) {
1431 unsigned int i, j;
1432 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1433 height = ALIGN_NPOT(height, j) / j;
1434 width = ALIGN_NPOT(width, i) / i;
1435 }
1436
1437 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1438 * below won't apply since we can't do the depth's Y tiling or the
1439 * stencil's W tiling in the blitter.
1440 */
1441 if (src_mt->stencil_mt) {
1442 intel_miptree_copy_slice_sw(brw,
1443 src_mt, src_level, src_layer,
1444 dst_mt, dst_level, dst_layer,
1445 width, height);
1446 return;
1447 }
1448
1449 uint32_t dst_x, dst_y, src_x, src_y;
1450 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1451 &dst_x, &dst_y);
1452 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1453 &src_x, &src_y);
1454
1455 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1456 _mesa_get_format_name(src_mt->format),
1457 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1458 _mesa_get_format_name(dst_mt->format),
1459 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1460 width, height);
1461
1462 if (!intel_miptree_blit(brw,
1463 src_mt, src_level, src_layer, 0, 0, false,
1464 dst_mt, dst_level, dst_layer, 0, 0, false,
1465 width, height, GL_COPY)) {
1466 perf_debug("miptree validate blit for %s failed\n",
1467 _mesa_get_format_name(format));
1468
1469 intel_miptree_copy_slice_sw(brw,
1470 src_mt, src_level, src_layer,
1471 dst_mt, dst_level, dst_layer,
1472 width, height);
1473 }
1474 }
1475
1476 /**
1477 * Copies the image's current data to the given miptree, and associates that
1478 * miptree with the image.
1479 *
1480 * If \c invalidate is true, then the actual image data does not need to be
1481 * copied, but the image still needs to be associated to the new miptree (this
1482 * is set to true if we're about to clear the image).
1483 */
1484 void
1485 intel_miptree_copy_teximage(struct brw_context *brw,
1486 struct intel_texture_image *intelImage,
1487 struct intel_mipmap_tree *dst_mt,
1488 bool invalidate)
1489 {
1490 struct intel_mipmap_tree *src_mt = intelImage->mt;
1491 struct intel_texture_object *intel_obj =
1492 intel_texture_object(intelImage->base.Base.TexObject);
1493 int level = intelImage->base.Base.Level;
1494 const unsigned face = intelImage->base.Base.Face;
1495 unsigned start_layer, end_layer;
1496
1497 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1498 assert(face == 0);
1499 assert(intelImage->base.Base.Height);
1500 start_layer = 0;
1501 end_layer = intelImage->base.Base.Height - 1;
1502 } else if (face > 0) {
1503 start_layer = face;
1504 end_layer = face;
1505 } else {
1506 assert(intelImage->base.Base.Depth);
1507 start_layer = 0;
1508 end_layer = intelImage->base.Base.Depth - 1;
1509 }
1510
1511 if (!invalidate) {
1512 for (unsigned i = start_layer; i <= end_layer; i++) {
1513 intel_miptree_copy_slice(brw,
1514 src_mt, level, i,
1515 dst_mt, level, i);
1516 }
1517 }
1518
1519 intel_miptree_reference(&intelImage->mt, dst_mt);
1520 intel_obj->needs_validate = true;
1521 }
1522
1523 static void
1524 intel_miptree_init_mcs(struct brw_context *brw,
1525 struct intel_mipmap_tree *mt,
1526 int init_value)
1527 {
1528 assert(mt->mcs_buf != NULL);
1529
1530 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1531 *
1532 * When MCS buffer is enabled and bound to MSRT, it is required that it
1533 * is cleared prior to any rendering.
1534 *
1535 * Since we don't use the MCS buffer for any purpose other than rendering,
1536 * it makes sense to just clear it immediately upon allocation.
1537 *
1538 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1539 */
1540 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1541 if (unlikely(map == NULL)) {
1542 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1543 brw_bo_unreference(mt->mcs_buf->bo);
1544 free(mt->mcs_buf);
1545 return;
1546 }
1547 void *data = map;
1548 memset(data, init_value, mt->mcs_buf->size);
1549 brw_bo_unmap(mt->mcs_buf->bo);
1550 }
1551
1552 static struct intel_miptree_aux_buffer *
1553 intel_alloc_aux_buffer(struct brw_context *brw,
1554 const char *name,
1555 const struct isl_surf *aux_surf,
1556 uint32_t alloc_flags,
1557 struct intel_mipmap_tree *mt)
1558 {
1559 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1560 if (!buf)
1561 return false;
1562
1563 buf->size = aux_surf->size;
1564 buf->pitch = aux_surf->row_pitch;
1565 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1566
1567 /* ISL has stricter set of alignment rules then the drm allocator.
1568 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1569 * trying to recalculate based on different format block sizes.
1570 */
1571 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1572 I915_TILING_Y, buf->pitch, alloc_flags);
1573 if (!buf->bo) {
1574 free(buf);
1575 return NULL;
1576 }
1577
1578 buf->surf = *aux_surf;
1579
1580 return buf;
1581 }
1582
1583 static bool
1584 intel_miptree_alloc_mcs(struct brw_context *brw,
1585 struct intel_mipmap_tree *mt,
1586 GLuint num_samples)
1587 {
1588 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1589 assert(mt->mcs_buf == NULL);
1590 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1591
1592 /* Multisampled miptrees are only supported for single level. */
1593 assert(mt->first_level == 0);
1594 enum isl_aux_state **aux_state =
1595 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1596 if (!aux_state)
1597 return false;
1598
1599 struct isl_surf temp_mcs_surf;
1600
1601 MAYBE_UNUSED bool ok =
1602 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1603 assert(ok);
1604
1605 /* Buffer needs to be initialised requiring the buffer to be immediately
1606 * mapped to cpu space for writing. Therefore do not use the gpu access
1607 * flag which can cause an unnecessary delay if the backing pages happened
1608 * to be just used by the GPU.
1609 */
1610 const uint32_t alloc_flags = 0;
1611 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1612 &temp_mcs_surf, alloc_flags, mt);
1613 if (!mt->mcs_buf) {
1614 free(aux_state);
1615 return false;
1616 }
1617
1618 mt->aux_state = aux_state;
1619
1620 intel_miptree_init_mcs(brw, mt, 0xFF);
1621
1622 return true;
1623 }
1624
1625 bool
1626 intel_miptree_alloc_ccs(struct brw_context *brw,
1627 struct intel_mipmap_tree *mt)
1628 {
1629 assert(mt->mcs_buf == NULL);
1630 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1631 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1632
1633 struct isl_surf temp_ccs_surf;
1634
1635 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1636 return false;
1637
1638 assert(temp_ccs_surf.size &&
1639 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1640
1641 enum isl_aux_state **aux_state =
1642 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1643 if (!aux_state)
1644 return false;
1645
1646 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1647 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1648 *
1649 * "If Software wants to enable Color Compression without Fast clear,
1650 * Software needs to initialize MCS with zeros."
1651 *
1652 * A CCS value of 0 indicates that the corresponding block is in the
1653 * pass-through state which is what we want.
1654 *
1655 * For CCS_D, on the other hand, we don't care as we're about to perform a
1656 * fast-clear operation. In that case, being hot in caches more useful.
1657 */
1658 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1659 BO_ALLOC_ZEROED : BO_ALLOC_FOR_RENDER;
1660 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1661 &temp_ccs_surf, alloc_flags, mt);
1662 if (!mt->mcs_buf) {
1663 free(aux_state);
1664 return false;
1665 }
1666
1667 mt->aux_state = aux_state;
1668
1669 return true;
1670 }
1671
1672 /**
1673 * Helper for intel_miptree_alloc_hiz() that sets
1674 * \c mt->level[level].has_hiz. Return true if and only if
1675 * \c has_hiz was set.
1676 */
1677 static bool
1678 intel_miptree_level_enable_hiz(struct brw_context *brw,
1679 struct intel_mipmap_tree *mt,
1680 uint32_t level)
1681 {
1682 assert(mt->hiz_buf);
1683 assert(mt->surf.size > 0);
1684
1685 if (brw->gen >= 8 || brw->is_haswell) {
1686 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1687 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1688
1689 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1690 * and the height is 4 aligned. This allows our HiZ support
1691 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1692 * we can grow the width & height to allow the HiZ op to
1693 * force the proper size alignments.
1694 */
1695 if (level > 0 && ((width & 7) || (height & 3))) {
1696 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1697 return false;
1698 }
1699 }
1700
1701 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1702 mt->level[level].has_hiz = true;
1703 return true;
1704 }
1705
1706 bool
1707 intel_miptree_alloc_hiz(struct brw_context *brw,
1708 struct intel_mipmap_tree *mt)
1709 {
1710 assert(mt->hiz_buf == NULL);
1711 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1712
1713 enum isl_aux_state **aux_state =
1714 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1715 if (!aux_state)
1716 return false;
1717
1718 struct isl_surf temp_hiz_surf;
1719
1720 MAYBE_UNUSED bool ok =
1721 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1722 assert(ok);
1723
1724 const uint32_t alloc_flags = BO_ALLOC_FOR_RENDER;
1725 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1726 &temp_hiz_surf, alloc_flags, mt);
1727
1728 if (!mt->hiz_buf) {
1729 free(aux_state);
1730 return false;
1731 }
1732
1733 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1734 intel_miptree_level_enable_hiz(brw, mt, level);
1735
1736 mt->aux_state = aux_state;
1737
1738 return true;
1739 }
1740
1741
1742 /**
1743 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1744 *
1745 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1746 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1747 * compress clear color so we wait until an actual fast-clear to allocate it.
1748 */
1749 static bool
1750 intel_miptree_alloc_aux(struct brw_context *brw,
1751 struct intel_mipmap_tree *mt)
1752 {
1753 switch (mt->aux_usage) {
1754 case ISL_AUX_USAGE_NONE:
1755 return true;
1756
1757 case ISL_AUX_USAGE_HIZ:
1758 assert(!_mesa_is_format_color_format(mt->format));
1759 if (!intel_miptree_alloc_hiz(brw, mt))
1760 return false;
1761 return true;
1762
1763 case ISL_AUX_USAGE_MCS:
1764 assert(_mesa_is_format_color_format(mt->format));
1765 assert(mt->surf.samples > 1);
1766 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1767 return false;
1768 return true;
1769
1770 case ISL_AUX_USAGE_CCS_D:
1771 /* Since CCS_D can only compress clear color so we wait until an actual
1772 * fast-clear to allocate it.
1773 */
1774 return true;
1775
1776 case ISL_AUX_USAGE_CCS_E:
1777 assert(_mesa_is_format_color_format(mt->format));
1778 assert(mt->surf.samples == 1);
1779 if (!intel_miptree_alloc_ccs(brw, mt))
1780 return false;
1781 return true;
1782 }
1783
1784 unreachable("Invalid aux usage");
1785 }
1786
1787
1788 /**
1789 * Can the miptree sample using the hiz buffer?
1790 */
1791 bool
1792 intel_miptree_sample_with_hiz(struct brw_context *brw,
1793 struct intel_mipmap_tree *mt)
1794 {
1795 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1796 * so keep things conservative for now and never enable it unless we're SKL+.
1797 */
1798 if (brw->gen < 9) {
1799 return false;
1800 }
1801
1802 if (!mt->hiz_buf) {
1803 return false;
1804 }
1805
1806 /* It seems the hardware won't fallback to the depth buffer if some of the
1807 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1808 * of the texture to be HiZ enabled.
1809 */
1810 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1811 if (!intel_miptree_level_has_hiz(mt, level))
1812 return false;
1813 }
1814
1815 /* If compressed multisampling is enabled, then we use it for the auxiliary
1816 * buffer instead.
1817 *
1818 * From the BDW PRM (Volume 2d: Command Reference: Structures
1819 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1820 *
1821 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1822 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1823 *
1824 * There is no such blurb for 1D textures, but there is sufficient evidence
1825 * that this is broken on SKL+.
1826 */
1827 return (mt->surf.samples == 1 &&
1828 mt->target != GL_TEXTURE_3D &&
1829 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1830 }
1831
1832 /**
1833 * Does the miptree slice have hiz enabled?
1834 */
1835 bool
1836 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1837 {
1838 intel_miptree_check_level_layer(mt, level, 0);
1839 return mt->level[level].has_hiz;
1840 }
1841
1842 static inline uint32_t
1843 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1844 uint32_t start_level, uint32_t num_levels)
1845 {
1846 assert(start_level >= mt->first_level);
1847 assert(start_level <= mt->last_level);
1848
1849 if (num_levels == INTEL_REMAINING_LAYERS)
1850 num_levels = mt->last_level - start_level + 1;
1851 /* Check for overflow */
1852 assert(start_level + num_levels >= start_level);
1853 assert(start_level + num_levels <= mt->last_level + 1);
1854
1855 return num_levels;
1856 }
1857
1858 static inline uint32_t
1859 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1860 uint32_t start_layer, uint32_t num_layers)
1861 {
1862 assert(level <= mt->last_level);
1863
1864 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1865 assert(start_layer < total_num_layers);
1866 if (num_layers == INTEL_REMAINING_LAYERS)
1867 num_layers = total_num_layers - start_layer;
1868 /* Check for overflow */
1869 assert(start_layer + num_layers >= start_layer);
1870 assert(start_layer + num_layers <= total_num_layers);
1871
1872 return num_layers;
1873 }
1874
1875 bool
1876 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1877 unsigned start_level, unsigned num_levels,
1878 unsigned start_layer, unsigned num_layers)
1879 {
1880 assert(_mesa_is_format_color_format(mt->format));
1881
1882 if (!mt->mcs_buf)
1883 return false;
1884
1885 /* Clamp the level range to fit the miptree */
1886 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1887
1888 for (uint32_t l = 0; l < num_levels; l++) {
1889 const uint32_t level = start_level + l;
1890 const uint32_t level_layers =
1891 miptree_layer_range_length(mt, level, start_layer, num_layers);
1892 for (unsigned a = 0; a < level_layers; a++) {
1893 enum isl_aux_state aux_state =
1894 intel_miptree_get_aux_state(mt, level, start_layer + a);
1895 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1896 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1897 return true;
1898 }
1899 }
1900
1901 return false;
1902 }
1903
1904 static void
1905 intel_miptree_check_color_resolve(const struct brw_context *brw,
1906 const struct intel_mipmap_tree *mt,
1907 unsigned level, unsigned layer)
1908 {
1909
1910 if (!mt->mcs_buf)
1911 return;
1912
1913 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
1914 assert(brw->gen >= 8 ||
1915 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
1916
1917 /* Compression of arrayed msaa surfaces is supported. */
1918 if (mt->surf.samples > 1)
1919 return;
1920
1921 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
1922 assert(brw->gen >= 8 ||
1923 (layer == 0 &&
1924 mt->surf.logical_level0_px.depth == 1 &&
1925 mt->surf.logical_level0_px.array_len == 1));
1926
1927 (void)level;
1928 (void)layer;
1929 }
1930
1931 static enum blorp_fast_clear_op
1932 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
1933 enum isl_aux_usage aux_usage,
1934 bool fast_clear_supported)
1935 {
1936 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
1937
1938 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
1939
1940 assert(ccs_supported == fast_clear_supported);
1941
1942 switch (aux_state) {
1943 case ISL_AUX_STATE_CLEAR:
1944 case ISL_AUX_STATE_PARTIAL_CLEAR:
1945 if (!ccs_supported)
1946 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1947 else
1948 return BLORP_FAST_CLEAR_OP_NONE;
1949
1950 case ISL_AUX_STATE_PASS_THROUGH:
1951 return BLORP_FAST_CLEAR_OP_NONE;
1952
1953 case ISL_AUX_STATE_RESOLVED:
1954 case ISL_AUX_STATE_AUX_INVALID:
1955 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1956 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1957 break;
1958 }
1959
1960 unreachable("Invalid aux state for CCS_D");
1961 }
1962
1963 static enum blorp_fast_clear_op
1964 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
1965 enum isl_aux_usage aux_usage,
1966 bool fast_clear_supported)
1967 {
1968 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
1969 assert(aux_usage == ISL_AUX_USAGE_NONE ||
1970 aux_usage == ISL_AUX_USAGE_CCS_D ||
1971 aux_usage == ISL_AUX_USAGE_CCS_E);
1972
1973 if (aux_usage == ISL_AUX_USAGE_CCS_D)
1974 assert(fast_clear_supported);
1975
1976 switch (aux_state) {
1977 case ISL_AUX_STATE_CLEAR:
1978 case ISL_AUX_STATE_PARTIAL_CLEAR:
1979 if (fast_clear_supported)
1980 return BLORP_FAST_CLEAR_OP_NONE;
1981 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
1982 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
1983 else
1984 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1985
1986 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1987 if (aux_usage != ISL_AUX_USAGE_CCS_E)
1988 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1989 else if (!fast_clear_supported)
1990 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
1991 else
1992 return BLORP_FAST_CLEAR_OP_NONE;
1993
1994 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1995 if (aux_usage != ISL_AUX_USAGE_CCS_E)
1996 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1997 else
1998 return BLORP_FAST_CLEAR_OP_NONE;
1999
2000 case ISL_AUX_STATE_PASS_THROUGH:
2001 return BLORP_FAST_CLEAR_OP_NONE;
2002
2003 case ISL_AUX_STATE_RESOLVED:
2004 case ISL_AUX_STATE_AUX_INVALID:
2005 break;
2006 }
2007
2008 unreachable("Invalid aux state for CCS_E");
2009 }
2010
2011 static void
2012 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2013 struct intel_mipmap_tree *mt,
2014 uint32_t level, uint32_t layer,
2015 enum isl_aux_usage aux_usage,
2016 bool fast_clear_supported)
2017 {
2018 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2019
2020 enum blorp_fast_clear_op resolve_op;
2021 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2022 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2023 fast_clear_supported);
2024 } else {
2025 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2026 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2027 fast_clear_supported);
2028 }
2029
2030 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2031 intel_miptree_check_color_resolve(brw, mt, level, layer);
2032 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2033
2034 switch (resolve_op) {
2035 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2036 /* The CCS full resolve operation destroys the CCS and sets it to the
2037 * pass-through state. (You can also think of this as being both a
2038 * resolve and an ambiguate in one operation.)
2039 */
2040 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2041 ISL_AUX_STATE_PASS_THROUGH);
2042 break;
2043
2044 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2045 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2046 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2047 break;
2048
2049 default:
2050 unreachable("Invalid resolve op");
2051 }
2052 }
2053 }
2054
2055 static void
2056 intel_miptree_finish_ccs_write(struct brw_context *brw,
2057 struct intel_mipmap_tree *mt,
2058 uint32_t level, uint32_t layer,
2059 enum isl_aux_usage aux_usage)
2060 {
2061 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2062 aux_usage == ISL_AUX_USAGE_CCS_D ||
2063 aux_usage == ISL_AUX_USAGE_CCS_E);
2064
2065 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2066
2067 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2068 switch (aux_state) {
2069 case ISL_AUX_STATE_CLEAR:
2070 case ISL_AUX_STATE_PARTIAL_CLEAR:
2071 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2072 aux_usage == ISL_AUX_USAGE_CCS_D);
2073
2074 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2075 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2076 ISL_AUX_STATE_COMPRESSED_CLEAR);
2077 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2078 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2079 ISL_AUX_STATE_PARTIAL_CLEAR);
2080 }
2081 break;
2082
2083 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2084 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2085 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2086 break; /* Nothing to do */
2087
2088 case ISL_AUX_STATE_PASS_THROUGH:
2089 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2090 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2091 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2092 } else {
2093 /* Nothing to do */
2094 }
2095 break;
2096
2097 case ISL_AUX_STATE_RESOLVED:
2098 case ISL_AUX_STATE_AUX_INVALID:
2099 unreachable("Invalid aux state for CCS_E");
2100 }
2101 } else {
2102 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2103 /* CCS_D is a bit simpler */
2104 switch (aux_state) {
2105 case ISL_AUX_STATE_CLEAR:
2106 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2107 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2108 ISL_AUX_STATE_PARTIAL_CLEAR);
2109 break;
2110
2111 case ISL_AUX_STATE_PARTIAL_CLEAR:
2112 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2113 break; /* Nothing to do */
2114
2115 case ISL_AUX_STATE_PASS_THROUGH:
2116 /* Nothing to do */
2117 break;
2118
2119 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2120 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2121 case ISL_AUX_STATE_RESOLVED:
2122 case ISL_AUX_STATE_AUX_INVALID:
2123 unreachable("Invalid aux state for CCS_D");
2124 }
2125 }
2126 }
2127
2128 static void
2129 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2130 struct intel_mipmap_tree *mt,
2131 uint32_t layer,
2132 enum isl_aux_usage aux_usage,
2133 bool fast_clear_supported)
2134 {
2135 assert(aux_usage == ISL_AUX_USAGE_MCS);
2136
2137 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2138 case ISL_AUX_STATE_CLEAR:
2139 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2140 if (!fast_clear_supported) {
2141 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2142 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2143 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2144 }
2145 break;
2146
2147 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2148 break; /* Nothing to do */
2149
2150 case ISL_AUX_STATE_RESOLVED:
2151 case ISL_AUX_STATE_PASS_THROUGH:
2152 case ISL_AUX_STATE_AUX_INVALID:
2153 case ISL_AUX_STATE_PARTIAL_CLEAR:
2154 unreachable("Invalid aux state for MCS");
2155 }
2156 }
2157
2158 static void
2159 intel_miptree_finish_mcs_write(struct brw_context *brw,
2160 struct intel_mipmap_tree *mt,
2161 uint32_t layer,
2162 enum isl_aux_usage aux_usage)
2163 {
2164 assert(aux_usage == ISL_AUX_USAGE_MCS);
2165
2166 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2167 case ISL_AUX_STATE_CLEAR:
2168 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2169 ISL_AUX_STATE_COMPRESSED_CLEAR);
2170 break;
2171
2172 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2173 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2174 break; /* Nothing to do */
2175
2176 case ISL_AUX_STATE_RESOLVED:
2177 case ISL_AUX_STATE_PASS_THROUGH:
2178 case ISL_AUX_STATE_AUX_INVALID:
2179 case ISL_AUX_STATE_PARTIAL_CLEAR:
2180 unreachable("Invalid aux state for MCS");
2181 }
2182 }
2183
2184 static void
2185 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2186 struct intel_mipmap_tree *mt,
2187 uint32_t level, uint32_t layer,
2188 enum isl_aux_usage aux_usage,
2189 bool fast_clear_supported)
2190 {
2191 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2192
2193 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2194 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2195 case ISL_AUX_STATE_CLEAR:
2196 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2197 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2198 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2199 break;
2200
2201 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2202 if (aux_usage != ISL_AUX_USAGE_HIZ)
2203 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2204 break;
2205
2206 case ISL_AUX_STATE_PASS_THROUGH:
2207 case ISL_AUX_STATE_RESOLVED:
2208 break;
2209
2210 case ISL_AUX_STATE_AUX_INVALID:
2211 if (aux_usage == ISL_AUX_USAGE_HIZ)
2212 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2213 break;
2214
2215 case ISL_AUX_STATE_PARTIAL_CLEAR:
2216 unreachable("Invalid HiZ state");
2217 }
2218
2219 if (hiz_op != BLORP_HIZ_OP_NONE) {
2220 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2221
2222 switch (hiz_op) {
2223 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2224 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2225 ISL_AUX_STATE_RESOLVED);
2226 break;
2227
2228 case BLORP_HIZ_OP_HIZ_RESOLVE:
2229 /* The HiZ resolve operation is actually an ambiguate */
2230 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2231 ISL_AUX_STATE_PASS_THROUGH);
2232 break;
2233
2234 default:
2235 unreachable("Invalid HiZ op");
2236 }
2237 }
2238 }
2239
2240 static void
2241 intel_miptree_finish_hiz_write(struct brw_context *brw,
2242 struct intel_mipmap_tree *mt,
2243 uint32_t level, uint32_t layer,
2244 enum isl_aux_usage aux_usage)
2245 {
2246 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2247
2248 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2249 case ISL_AUX_STATE_CLEAR:
2250 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2251 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2252 ISL_AUX_STATE_COMPRESSED_CLEAR);
2253 break;
2254
2255 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2256 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2257 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2258 break; /* Nothing to do */
2259
2260 case ISL_AUX_STATE_RESOLVED:
2261 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2262 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2263 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2264 } else {
2265 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2266 ISL_AUX_STATE_AUX_INVALID);
2267 }
2268 break;
2269
2270 case ISL_AUX_STATE_PASS_THROUGH:
2271 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2272 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2273 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2274 }
2275 break;
2276
2277 case ISL_AUX_STATE_AUX_INVALID:
2278 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2279 break;
2280
2281 case ISL_AUX_STATE_PARTIAL_CLEAR:
2282 unreachable("Invalid HiZ state");
2283 }
2284 }
2285
2286 void
2287 intel_miptree_prepare_access(struct brw_context *brw,
2288 struct intel_mipmap_tree *mt,
2289 uint32_t start_level, uint32_t num_levels,
2290 uint32_t start_layer, uint32_t num_layers,
2291 enum isl_aux_usage aux_usage,
2292 bool fast_clear_supported)
2293 {
2294 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2295
2296 switch (mt->aux_usage) {
2297 case ISL_AUX_USAGE_NONE:
2298 /* Nothing to do */
2299 break;
2300
2301 case ISL_AUX_USAGE_MCS:
2302 assert(mt->mcs_buf);
2303 assert(start_level == 0 && num_levels == 1);
2304 const uint32_t level_layers =
2305 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2306 for (uint32_t a = 0; a < level_layers; a++) {
2307 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2308 aux_usage, fast_clear_supported);
2309 }
2310 break;
2311
2312 case ISL_AUX_USAGE_CCS_D:
2313 case ISL_AUX_USAGE_CCS_E:
2314 if (!mt->mcs_buf)
2315 return;
2316
2317 for (uint32_t l = 0; l < num_levels; l++) {
2318 const uint32_t level = start_level + l;
2319 const uint32_t level_layers =
2320 miptree_layer_range_length(mt, level, start_layer, num_layers);
2321 for (uint32_t a = 0; a < level_layers; a++) {
2322 intel_miptree_prepare_ccs_access(brw, mt, level,
2323 start_layer + a,
2324 aux_usage, fast_clear_supported);
2325 }
2326 }
2327 break;
2328
2329 case ISL_AUX_USAGE_HIZ:
2330 assert(mt->hiz_buf);
2331 for (uint32_t l = 0; l < num_levels; l++) {
2332 const uint32_t level = start_level + l;
2333 if (!intel_miptree_level_has_hiz(mt, level))
2334 continue;
2335
2336 const uint32_t level_layers =
2337 miptree_layer_range_length(mt, level, start_layer, num_layers);
2338 for (uint32_t a = 0; a < level_layers; a++) {
2339 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2340 aux_usage, fast_clear_supported);
2341 }
2342 }
2343 break;
2344
2345 default:
2346 unreachable("Invalid aux usage");
2347 }
2348 }
2349
2350 void
2351 intel_miptree_finish_write(struct brw_context *brw,
2352 struct intel_mipmap_tree *mt, uint32_t level,
2353 uint32_t start_layer, uint32_t num_layers,
2354 enum isl_aux_usage aux_usage)
2355 {
2356 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2357
2358 switch (mt->aux_usage) {
2359 case ISL_AUX_USAGE_NONE:
2360 /* Nothing to do */
2361 break;
2362
2363 case ISL_AUX_USAGE_MCS:
2364 assert(mt->mcs_buf);
2365 for (uint32_t a = 0; a < num_layers; a++) {
2366 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2367 aux_usage);
2368 }
2369 break;
2370
2371 case ISL_AUX_USAGE_CCS_D:
2372 case ISL_AUX_USAGE_CCS_E:
2373 if (!mt->mcs_buf)
2374 return;
2375
2376 for (uint32_t a = 0; a < num_layers; a++) {
2377 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2378 aux_usage);
2379 }
2380 break;
2381
2382 case ISL_AUX_USAGE_HIZ:
2383 if (!intel_miptree_level_has_hiz(mt, level))
2384 return;
2385
2386 for (uint32_t a = 0; a < num_layers; a++) {
2387 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2388 aux_usage);
2389 }
2390 break;
2391
2392 default:
2393 unreachable("Invavlid aux usage");
2394 }
2395 }
2396
2397 enum isl_aux_state
2398 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2399 uint32_t level, uint32_t layer)
2400 {
2401 intel_miptree_check_level_layer(mt, level, layer);
2402
2403 if (_mesa_is_format_color_format(mt->format)) {
2404 assert(mt->mcs_buf != NULL);
2405 assert(mt->surf.samples == 1 ||
2406 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2407 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2408 unreachable("Cannot get aux state for stencil");
2409 } else {
2410 assert(intel_miptree_level_has_hiz(mt, level));
2411 }
2412
2413 return mt->aux_state[level][layer];
2414 }
2415
2416 void
2417 intel_miptree_set_aux_state(struct brw_context *brw,
2418 struct intel_mipmap_tree *mt, uint32_t level,
2419 uint32_t start_layer, uint32_t num_layers,
2420 enum isl_aux_state aux_state)
2421 {
2422 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2423
2424 if (_mesa_is_format_color_format(mt->format)) {
2425 assert(mt->mcs_buf != NULL);
2426 assert(mt->surf.samples == 1 ||
2427 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2428 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2429 unreachable("Cannot get aux state for stencil");
2430 } else {
2431 assert(intel_miptree_level_has_hiz(mt, level));
2432 }
2433
2434 for (unsigned a = 0; a < num_layers; a++)
2435 mt->aux_state[level][start_layer + a] = aux_state;
2436 }
2437
2438 /* On Gen9 color buffers may be compressed by the hardware (lossless
2439 * compression). There are, however, format restrictions and care needs to be
2440 * taken that the sampler engine is capable for re-interpreting a buffer with
2441 * format different the buffer was originally written with.
2442 *
2443 * For example, SRGB formats are not compressible and the sampler engine isn't
2444 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2445 * color buffer needs to be resolved so that the sampling surface can be
2446 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2447 * set).
2448 */
2449 static bool
2450 can_texture_with_ccs(struct brw_context *brw,
2451 struct intel_mipmap_tree *mt,
2452 enum isl_format view_format)
2453 {
2454 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2455 return false;
2456
2457 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2458 mt->surf.format, view_format)) {
2459 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2460 isl_format_get_layout(view_format)->name,
2461 _mesa_get_format_name(mt->format));
2462 return false;
2463 }
2464
2465 return true;
2466 }
2467
2468 enum isl_aux_usage
2469 intel_miptree_texture_aux_usage(struct brw_context *brw,
2470 struct intel_mipmap_tree *mt,
2471 enum isl_format view_format)
2472 {
2473 switch (mt->aux_usage) {
2474 case ISL_AUX_USAGE_HIZ:
2475 if (intel_miptree_sample_with_hiz(brw, mt))
2476 return ISL_AUX_USAGE_HIZ;
2477 break;
2478
2479 case ISL_AUX_USAGE_MCS:
2480 return ISL_AUX_USAGE_MCS;
2481
2482 case ISL_AUX_USAGE_CCS_D:
2483 case ISL_AUX_USAGE_CCS_E:
2484 if (mt->mcs_buf && can_texture_with_ccs(brw, mt, view_format))
2485 return ISL_AUX_USAGE_CCS_E;
2486 break;
2487
2488 default:
2489 break;
2490 }
2491
2492 return ISL_AUX_USAGE_NONE;
2493 }
2494
2495 static bool
2496 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2497 {
2498 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2499 * values so sRGB curve application was a no-op for all fast-clearable
2500 * formats.
2501 *
2502 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2503 * values, the hardware interprets the floats, not as what would be
2504 * returned from the sampler (or written by the shader), but as being
2505 * between format conversion and sRGB curve application. This means that
2506 * we can switch between sRGB and UNORM without having to whack the clear
2507 * color.
2508 */
2509 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2510 }
2511
2512 static void
2513 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2514 struct intel_mipmap_tree *mt,
2515 enum isl_format view_format,
2516 uint32_t start_level, uint32_t num_levels,
2517 uint32_t start_layer, uint32_t num_layers,
2518 bool *aux_supported_out)
2519 {
2520 enum isl_aux_usage aux_usage =
2521 intel_miptree_texture_aux_usage(brw, mt, view_format);
2522 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2523
2524 /* Clear color is specified as ints or floats and the conversion is done by
2525 * the sampler. If we have a texture view, we would have to perform the
2526 * clear color conversion manually. Just disable clear color.
2527 */
2528 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2529 clear_supported = false;
2530
2531 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2532 start_layer, num_layers,
2533 aux_usage, clear_supported);
2534 if (aux_supported_out)
2535 *aux_supported_out = aux_usage != ISL_AUX_USAGE_NONE;
2536 }
2537
2538 void
2539 intel_miptree_prepare_texture(struct brw_context *brw,
2540 struct intel_mipmap_tree *mt,
2541 enum isl_format view_format,
2542 bool *aux_supported_out)
2543 {
2544 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2545 0, INTEL_REMAINING_LEVELS,
2546 0, INTEL_REMAINING_LAYERS,
2547 aux_supported_out);
2548 }
2549
2550 void
2551 intel_miptree_prepare_image(struct brw_context *brw,
2552 struct intel_mipmap_tree *mt)
2553 {
2554 /* The data port doesn't understand any compression */
2555 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2556 0, INTEL_REMAINING_LAYERS,
2557 ISL_AUX_USAGE_NONE, false);
2558 }
2559
2560 void
2561 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2562 struct intel_mipmap_tree *mt, uint32_t level,
2563 uint32_t start_layer, uint32_t num_layers)
2564 {
2565 intel_miptree_prepare_texture_slices(brw, mt, mt->surf.format, level, 1,
2566 start_layer, num_layers, NULL);
2567 }
2568
2569 enum isl_aux_usage
2570 intel_miptree_render_aux_usage(struct brw_context *brw,
2571 struct intel_mipmap_tree *mt,
2572 bool srgb_enabled, bool blend_enabled)
2573 {
2574 switch (mt->aux_usage) {
2575 case ISL_AUX_USAGE_MCS:
2576 assert(mt->mcs_buf);
2577 return ISL_AUX_USAGE_MCS;
2578
2579 case ISL_AUX_USAGE_CCS_D:
2580 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2581
2582 case ISL_AUX_USAGE_CCS_E: {
2583 mesa_format mesa_format =
2584 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2585 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2586
2587 /* If the format supports CCS_E, then we can just use it */
2588 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2589 return ISL_AUX_USAGE_CCS_E;
2590
2591 /* Otherwise, we have to fall back to CCS_D */
2592
2593 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2594 * formats. However, there are issues with blending where it doesn't
2595 * properly apply the sRGB curve to the clear color when blending.
2596 */
2597 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2598 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2599 return ISL_AUX_USAGE_NONE;
2600
2601 return ISL_AUX_USAGE_CCS_D;
2602 }
2603
2604 default:
2605 return ISL_AUX_USAGE_NONE;
2606 }
2607 }
2608
2609 void
2610 intel_miptree_prepare_render(struct brw_context *brw,
2611 struct intel_mipmap_tree *mt, uint32_t level,
2612 uint32_t start_layer, uint32_t layer_count,
2613 bool srgb_enabled, bool blend_enabled)
2614 {
2615 enum isl_aux_usage aux_usage =
2616 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2617 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2618 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2619 }
2620
2621 void
2622 intel_miptree_finish_render(struct brw_context *brw,
2623 struct intel_mipmap_tree *mt, uint32_t level,
2624 uint32_t start_layer, uint32_t layer_count,
2625 bool srgb_enabled, bool blend_enabled)
2626 {
2627 assert(_mesa_is_format_color_format(mt->format));
2628
2629 enum isl_aux_usage aux_usage =
2630 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2631 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2632 aux_usage);
2633 }
2634
2635 void
2636 intel_miptree_prepare_depth(struct brw_context *brw,
2637 struct intel_mipmap_tree *mt, uint32_t level,
2638 uint32_t start_layer, uint32_t layer_count)
2639 {
2640 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2641 mt->aux_usage, mt->hiz_buf != NULL);
2642 }
2643
2644 void
2645 intel_miptree_finish_depth(struct brw_context *brw,
2646 struct intel_mipmap_tree *mt, uint32_t level,
2647 uint32_t start_layer, uint32_t layer_count,
2648 bool depth_written)
2649 {
2650 if (depth_written) {
2651 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2652 mt->hiz_buf != NULL);
2653 }
2654 }
2655
2656 /**
2657 * Make it possible to share the BO backing the given miptree with another
2658 * process or another miptree.
2659 *
2660 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2661 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2662 * ensure that no MCS buffer gets allocated in the future.
2663 *
2664 * HiZ is similarly unsafe with shared buffers.
2665 */
2666 void
2667 intel_miptree_make_shareable(struct brw_context *brw,
2668 struct intel_mipmap_tree *mt)
2669 {
2670 /* MCS buffers are also used for multisample buffers, but we can't resolve
2671 * away a multisample MCS buffer because it's an integral part of how the
2672 * pixel data is stored. Fortunately this code path should never be
2673 * reached for multisample buffers.
2674 */
2675 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2676 mt->surf.samples == 1);
2677
2678 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2679 0, INTEL_REMAINING_LAYERS,
2680 ISL_AUX_USAGE_NONE, false);
2681
2682 if (mt->mcs_buf) {
2683 brw_bo_unreference(mt->mcs_buf->bo);
2684 free(mt->mcs_buf);
2685 mt->mcs_buf = NULL;
2686
2687 /* Any pending MCS/CCS operations are no longer needed. Trying to
2688 * execute any will likely crash due to the missing aux buffer. So let's
2689 * delete all pending ops.
2690 */
2691 free(mt->aux_state);
2692 mt->aux_state = NULL;
2693 }
2694
2695 if (mt->hiz_buf) {
2696 intel_miptree_aux_buffer_free(mt->hiz_buf);
2697 mt->hiz_buf = NULL;
2698
2699 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2700 mt->level[l].has_hiz = false;
2701 }
2702
2703 /* Any pending HiZ operations are no longer needed. Trying to execute
2704 * any will likely crash due to the missing aux buffer. So let's delete
2705 * all pending ops.
2706 */
2707 free(mt->aux_state);
2708 mt->aux_state = NULL;
2709 }
2710
2711 mt->aux_usage = ISL_AUX_USAGE_NONE;
2712 mt->supports_fast_clear = false;
2713 }
2714
2715
2716 /**
2717 * \brief Get pointer offset into stencil buffer.
2718 *
2719 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2720 * must decode the tile's layout in software.
2721 *
2722 * See
2723 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2724 * Format.
2725 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2726 *
2727 * Even though the returned offset is always positive, the return type is
2728 * signed due to
2729 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2730 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2731 */
2732 static intptr_t
2733 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2734 {
2735 uint32_t tile_size = 4096;
2736 uint32_t tile_width = 64;
2737 uint32_t tile_height = 64;
2738 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2739
2740 uint32_t tile_x = x / tile_width;
2741 uint32_t tile_y = y / tile_height;
2742
2743 /* The byte's address relative to the tile's base addres. */
2744 uint32_t byte_x = x % tile_width;
2745 uint32_t byte_y = y % tile_height;
2746
2747 uintptr_t u = tile_y * row_size
2748 + tile_x * tile_size
2749 + 512 * (byte_x / 8)
2750 + 64 * (byte_y / 8)
2751 + 32 * ((byte_y / 4) % 2)
2752 + 16 * ((byte_x / 4) % 2)
2753 + 8 * ((byte_y / 2) % 2)
2754 + 4 * ((byte_x / 2) % 2)
2755 + 2 * (byte_y % 2)
2756 + 1 * (byte_x % 2);
2757
2758 if (swizzled) {
2759 /* adjust for bit6 swizzling */
2760 if (((byte_x / 8) % 2) == 1) {
2761 if (((byte_y / 8) % 2) == 0) {
2762 u += 64;
2763 } else {
2764 u -= 64;
2765 }
2766 }
2767 }
2768
2769 return u;
2770 }
2771
2772 void
2773 intel_miptree_updownsample(struct brw_context *brw,
2774 struct intel_mipmap_tree *src,
2775 struct intel_mipmap_tree *dst)
2776 {
2777 unsigned src_w = src->surf.logical_level0_px.width;
2778 unsigned src_h = src->surf.logical_level0_px.height;
2779 unsigned dst_w = dst->surf.logical_level0_px.width;
2780 unsigned dst_h = dst->surf.logical_level0_px.height;
2781
2782 brw_blorp_blit_miptrees(brw,
2783 src, 0 /* level */, 0 /* layer */,
2784 src->format, SWIZZLE_XYZW,
2785 dst, 0 /* level */, 0 /* layer */, dst->format,
2786 0, 0, src_w, src_h,
2787 0, 0, dst_w, dst_h,
2788 GL_NEAREST, false, false /*mirror x, y*/,
2789 false, false);
2790
2791 if (src->stencil_mt) {
2792 src_w = src->stencil_mt->surf.logical_level0_px.width;
2793 src_h = src->stencil_mt->surf.logical_level0_px.height;
2794 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2795 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2796
2797 brw_blorp_blit_miptrees(brw,
2798 src->stencil_mt, 0 /* level */, 0 /* layer */,
2799 src->stencil_mt->format, SWIZZLE_XYZW,
2800 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2801 dst->stencil_mt->format,
2802 0, 0, src_w, src_h,
2803 0, 0, dst_w, dst_h,
2804 GL_NEAREST, false, false /*mirror x, y*/,
2805 false, false /* decode/encode srgb */);
2806 }
2807 }
2808
2809 void
2810 intel_update_r8stencil(struct brw_context *brw,
2811 struct intel_mipmap_tree *mt)
2812 {
2813 assert(brw->gen >= 7);
2814 struct intel_mipmap_tree *src =
2815 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2816 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2817 return;
2818
2819 assert(src->surf.size > 0);
2820
2821 if (!mt->r8stencil_mt) {
2822 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2823 mt->r8stencil_mt = make_surface(
2824 brw,
2825 src->target,
2826 MESA_FORMAT_R_UINT8,
2827 src->first_level, src->last_level,
2828 src->surf.logical_level0_px.width,
2829 src->surf.logical_level0_px.height,
2830 src->surf.dim == ISL_SURF_DIM_3D ?
2831 src->surf.logical_level0_px.depth :
2832 src->surf.logical_level0_px.array_len,
2833 src->surf.samples,
2834 ISL_TILING_Y0_BIT,
2835 ISL_SURF_USAGE_TEXTURE_BIT,
2836 BO_ALLOC_FOR_RENDER, 0, NULL);
2837 assert(mt->r8stencil_mt);
2838 }
2839
2840 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2841
2842 for (int level = src->first_level; level <= src->last_level; level++) {
2843 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2844 minify(src->surf.phys_level0_sa.depth, level) :
2845 src->surf.phys_level0_sa.array_len;
2846
2847 for (unsigned layer = 0; layer < depth; layer++) {
2848 brw_blorp_copy_miptrees(brw,
2849 src, level, layer,
2850 dst, level, layer,
2851 0, 0, 0, 0,
2852 minify(src->surf.logical_level0_px.width,
2853 level),
2854 minify(src->surf.logical_level0_px.height,
2855 level));
2856 }
2857 }
2858
2859 brw_render_cache_set_check_flush(brw, dst->bo);
2860 src->r8stencil_needs_update = false;
2861 }
2862
2863 static void *
2864 intel_miptree_map_raw(struct brw_context *brw,
2865 struct intel_mipmap_tree *mt,
2866 GLbitfield mode)
2867 {
2868 struct brw_bo *bo = mt->bo;
2869
2870 if (brw_batch_references(&brw->batch, bo))
2871 intel_batchbuffer_flush(brw);
2872
2873 return brw_bo_map(brw, bo, mode);
2874 }
2875
2876 static void
2877 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2878 {
2879 brw_bo_unmap(mt->bo);
2880 }
2881
2882 static void
2883 intel_miptree_map_gtt(struct brw_context *brw,
2884 struct intel_mipmap_tree *mt,
2885 struct intel_miptree_map *map,
2886 unsigned int level, unsigned int slice)
2887 {
2888 unsigned int bw, bh;
2889 void *base;
2890 unsigned int image_x, image_y;
2891 intptr_t x = map->x;
2892 intptr_t y = map->y;
2893
2894 /* For compressed formats, the stride is the number of bytes per
2895 * row of blocks. intel_miptree_get_image_offset() already does
2896 * the divide.
2897 */
2898 _mesa_get_format_block_size(mt->format, &bw, &bh);
2899 assert(y % bh == 0);
2900 assert(x % bw == 0);
2901 y /= bh;
2902 x /= bw;
2903
2904 base = intel_miptree_map_raw(brw, mt, map->mode);
2905
2906 if (base == NULL)
2907 map->ptr = NULL;
2908 else {
2909 base += mt->offset;
2910
2911 /* Note that in the case of cube maps, the caller must have passed the
2912 * slice number referencing the face.
2913 */
2914 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2915 x += image_x;
2916 y += image_y;
2917
2918 map->stride = mt->surf.row_pitch;
2919 map->ptr = base + y * map->stride + x * mt->cpp;
2920 }
2921
2922 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2923 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2924 map->x, map->y, map->w, map->h,
2925 mt, _mesa_get_format_name(mt->format),
2926 x, y, map->ptr, map->stride);
2927 }
2928
2929 static void
2930 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2931 {
2932 intel_miptree_unmap_raw(mt);
2933 }
2934
2935 static void
2936 intel_miptree_map_blit(struct brw_context *brw,
2937 struct intel_mipmap_tree *mt,
2938 struct intel_miptree_map *map,
2939 unsigned int level, unsigned int slice)
2940 {
2941 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2942 /* first_level */ 0,
2943 /* last_level */ 0,
2944 map->w, map->h, 1,
2945 /* samples */ 1,
2946 MIPTREE_CREATE_LINEAR);
2947
2948 if (!map->linear_mt) {
2949 fprintf(stderr, "Failed to allocate blit temporary\n");
2950 goto fail;
2951 }
2952 map->stride = map->linear_mt->surf.row_pitch;
2953
2954 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2955 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2956 * invalidate is set, since we'll be writing the whole rectangle from our
2957 * temporary buffer back out.
2958 */
2959 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2960 if (!intel_miptree_copy(brw,
2961 mt, level, slice, map->x, map->y,
2962 map->linear_mt, 0, 0, 0, 0,
2963 map->w, map->h)) {
2964 fprintf(stderr, "Failed to blit\n");
2965 goto fail;
2966 }
2967 }
2968
2969 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
2970
2971 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2972 map->x, map->y, map->w, map->h,
2973 mt, _mesa_get_format_name(mt->format),
2974 level, slice, map->ptr, map->stride);
2975
2976 return;
2977
2978 fail:
2979 intel_miptree_release(&map->linear_mt);
2980 map->ptr = NULL;
2981 map->stride = 0;
2982 }
2983
2984 static void
2985 intel_miptree_unmap_blit(struct brw_context *brw,
2986 struct intel_mipmap_tree *mt,
2987 struct intel_miptree_map *map,
2988 unsigned int level,
2989 unsigned int slice)
2990 {
2991 struct gl_context *ctx = &brw->ctx;
2992
2993 intel_miptree_unmap_raw(map->linear_mt);
2994
2995 if (map->mode & GL_MAP_WRITE_BIT) {
2996 bool ok = intel_miptree_copy(brw,
2997 map->linear_mt, 0, 0, 0, 0,
2998 mt, level, slice, map->x, map->y,
2999 map->w, map->h);
3000 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3001 }
3002
3003 intel_miptree_release(&map->linear_mt);
3004 }
3005
3006 /**
3007 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3008 */
3009 #if defined(USE_SSE41)
3010 static void
3011 intel_miptree_map_movntdqa(struct brw_context *brw,
3012 struct intel_mipmap_tree *mt,
3013 struct intel_miptree_map *map,
3014 unsigned int level, unsigned int slice)
3015 {
3016 assert(map->mode & GL_MAP_READ_BIT);
3017 assert(!(map->mode & GL_MAP_WRITE_BIT));
3018
3019 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3020 map->x, map->y, map->w, map->h,
3021 mt, _mesa_get_format_name(mt->format),
3022 level, slice, map->ptr, map->stride);
3023
3024 /* Map the original image */
3025 uint32_t image_x;
3026 uint32_t image_y;
3027 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3028 image_x += map->x;
3029 image_y += map->y;
3030
3031 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3032 if (!src)
3033 return;
3034
3035 src += mt->offset;
3036
3037 src += image_y * mt->surf.row_pitch;
3038 src += image_x * mt->cpp;
3039
3040 /* Due to the pixel offsets for the particular image being mapped, our
3041 * src pointer may not be 16-byte aligned. However, if the pitch is
3042 * divisible by 16, then the amount by which it's misaligned will remain
3043 * consistent from row to row.
3044 */
3045 assert((mt->surf.row_pitch % 16) == 0);
3046 const int misalignment = ((uintptr_t) src) & 15;
3047
3048 /* Create an untiled temporary buffer for the mapping. */
3049 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3050
3051 map->stride = ALIGN(misalignment + width_bytes, 16);
3052
3053 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3054 /* Offset the destination so it has the same misalignment as src. */
3055 map->ptr = map->buffer + misalignment;
3056
3057 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3058
3059 for (uint32_t y = 0; y < map->h; y++) {
3060 void *dst_ptr = map->ptr + y * map->stride;
3061 void *src_ptr = src + y * mt->surf.row_pitch;
3062
3063 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3064 }
3065
3066 intel_miptree_unmap_raw(mt);
3067 }
3068
3069 static void
3070 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3071 struct intel_mipmap_tree *mt,
3072 struct intel_miptree_map *map,
3073 unsigned int level,
3074 unsigned int slice)
3075 {
3076 _mesa_align_free(map->buffer);
3077 map->buffer = NULL;
3078 map->ptr = NULL;
3079 }
3080 #endif
3081
3082 static void
3083 intel_miptree_map_s8(struct brw_context *brw,
3084 struct intel_mipmap_tree *mt,
3085 struct intel_miptree_map *map,
3086 unsigned int level, unsigned int slice)
3087 {
3088 map->stride = map->w;
3089 map->buffer = map->ptr = malloc(map->stride * map->h);
3090 if (!map->buffer)
3091 return;
3092
3093 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3094 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3095 * invalidate is set, since we'll be writing the whole rectangle from our
3096 * temporary buffer back out.
3097 */
3098 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3099 uint8_t *untiled_s8_map = map->ptr;
3100 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3101 unsigned int image_x, image_y;
3102
3103 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3104
3105 for (uint32_t y = 0; y < map->h; y++) {
3106 for (uint32_t x = 0; x < map->w; x++) {
3107 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3108 x + image_x + map->x,
3109 y + image_y + map->y,
3110 brw->has_swizzling);
3111 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3112 }
3113 }
3114
3115 intel_miptree_unmap_raw(mt);
3116
3117 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3118 map->x, map->y, map->w, map->h,
3119 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3120 } else {
3121 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3122 map->x, map->y, map->w, map->h,
3123 mt, map->ptr, map->stride);
3124 }
3125 }
3126
3127 static void
3128 intel_miptree_unmap_s8(struct brw_context *brw,
3129 struct intel_mipmap_tree *mt,
3130 struct intel_miptree_map *map,
3131 unsigned int level,
3132 unsigned int slice)
3133 {
3134 if (map->mode & GL_MAP_WRITE_BIT) {
3135 unsigned int image_x, image_y;
3136 uint8_t *untiled_s8_map = map->ptr;
3137 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3138
3139 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3140
3141 for (uint32_t y = 0; y < map->h; y++) {
3142 for (uint32_t x = 0; x < map->w; x++) {
3143 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3144 image_x + x + map->x,
3145 image_y + y + map->y,
3146 brw->has_swizzling);
3147 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3148 }
3149 }
3150
3151 intel_miptree_unmap_raw(mt);
3152 }
3153
3154 free(map->buffer);
3155 }
3156
3157 static void
3158 intel_miptree_map_etc(struct brw_context *brw,
3159 struct intel_mipmap_tree *mt,
3160 struct intel_miptree_map *map,
3161 unsigned int level,
3162 unsigned int slice)
3163 {
3164 assert(mt->etc_format != MESA_FORMAT_NONE);
3165 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3166 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3167 }
3168
3169 assert(map->mode & GL_MAP_WRITE_BIT);
3170 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3171
3172 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3173 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3174 map->w, map->h, 1));
3175 map->ptr = map->buffer;
3176 }
3177
3178 static void
3179 intel_miptree_unmap_etc(struct brw_context *brw,
3180 struct intel_mipmap_tree *mt,
3181 struct intel_miptree_map *map,
3182 unsigned int level,
3183 unsigned int slice)
3184 {
3185 uint32_t image_x;
3186 uint32_t image_y;
3187 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3188
3189 image_x += map->x;
3190 image_y += map->y;
3191
3192 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3193 + image_y * mt->surf.row_pitch
3194 + image_x * mt->cpp;
3195
3196 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3197 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3198 map->ptr, map->stride,
3199 map->w, map->h);
3200 else
3201 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3202 map->ptr, map->stride,
3203 map->w, map->h, mt->etc_format);
3204
3205 intel_miptree_unmap_raw(mt);
3206 free(map->buffer);
3207 }
3208
3209 /**
3210 * Mapping function for packed depth/stencil miptrees backed by real separate
3211 * miptrees for depth and stencil.
3212 *
3213 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3214 * separate from the depth buffer. Yet at the GL API level, we have to expose
3215 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3216 * be able to map that memory for texture storage and glReadPixels-type
3217 * operations. We give Mesa core that access by mallocing a temporary and
3218 * copying the data between the actual backing store and the temporary.
3219 */
3220 static void
3221 intel_miptree_map_depthstencil(struct brw_context *brw,
3222 struct intel_mipmap_tree *mt,
3223 struct intel_miptree_map *map,
3224 unsigned int level, unsigned int slice)
3225 {
3226 struct intel_mipmap_tree *z_mt = mt;
3227 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3228 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3229 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3230
3231 map->stride = map->w * packed_bpp;
3232 map->buffer = map->ptr = malloc(map->stride * map->h);
3233 if (!map->buffer)
3234 return;
3235
3236 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3237 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3238 * invalidate is set, since we'll be writing the whole rectangle from our
3239 * temporary buffer back out.
3240 */
3241 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3242 uint32_t *packed_map = map->ptr;
3243 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3244 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3245 unsigned int s_image_x, s_image_y;
3246 unsigned int z_image_x, z_image_y;
3247
3248 intel_miptree_get_image_offset(s_mt, level, slice,
3249 &s_image_x, &s_image_y);
3250 intel_miptree_get_image_offset(z_mt, level, slice,
3251 &z_image_x, &z_image_y);
3252
3253 for (uint32_t y = 0; y < map->h; y++) {
3254 for (uint32_t x = 0; x < map->w; x++) {
3255 int map_x = map->x + x, map_y = map->y + y;
3256 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3257 map_x + s_image_x,
3258 map_y + s_image_y,
3259 brw->has_swizzling);
3260 ptrdiff_t z_offset = ((map_y + z_image_y) *
3261 (z_mt->surf.row_pitch / 4) +
3262 (map_x + z_image_x));
3263 uint8_t s = s_map[s_offset];
3264 uint32_t z = z_map[z_offset];
3265
3266 if (map_z32f_x24s8) {
3267 packed_map[(y * map->w + x) * 2 + 0] = z;
3268 packed_map[(y * map->w + x) * 2 + 1] = s;
3269 } else {
3270 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3271 }
3272 }
3273 }
3274
3275 intel_miptree_unmap_raw(s_mt);
3276 intel_miptree_unmap_raw(z_mt);
3277
3278 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3279 __func__,
3280 map->x, map->y, map->w, map->h,
3281 z_mt, map->x + z_image_x, map->y + z_image_y,
3282 s_mt, map->x + s_image_x, map->y + s_image_y,
3283 map->ptr, map->stride);
3284 } else {
3285 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3286 map->x, map->y, map->w, map->h,
3287 mt, map->ptr, map->stride);
3288 }
3289 }
3290
3291 static void
3292 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3293 struct intel_mipmap_tree *mt,
3294 struct intel_miptree_map *map,
3295 unsigned int level,
3296 unsigned int slice)
3297 {
3298 struct intel_mipmap_tree *z_mt = mt;
3299 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3300 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3301
3302 if (map->mode & GL_MAP_WRITE_BIT) {
3303 uint32_t *packed_map = map->ptr;
3304 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3305 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3306 unsigned int s_image_x, s_image_y;
3307 unsigned int z_image_x, z_image_y;
3308
3309 intel_miptree_get_image_offset(s_mt, level, slice,
3310 &s_image_x, &s_image_y);
3311 intel_miptree_get_image_offset(z_mt, level, slice,
3312 &z_image_x, &z_image_y);
3313
3314 for (uint32_t y = 0; y < map->h; y++) {
3315 for (uint32_t x = 0; x < map->w; x++) {
3316 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3317 x + s_image_x + map->x,
3318 y + s_image_y + map->y,
3319 brw->has_swizzling);
3320 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3321 (z_mt->surf.row_pitch / 4) +
3322 (x + z_image_x + map->x));
3323
3324 if (map_z32f_x24s8) {
3325 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3326 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3327 } else {
3328 uint32_t packed = packed_map[y * map->w + x];
3329 s_map[s_offset] = packed >> 24;
3330 z_map[z_offset] = packed;
3331 }
3332 }
3333 }
3334
3335 intel_miptree_unmap_raw(s_mt);
3336 intel_miptree_unmap_raw(z_mt);
3337
3338 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3339 __func__,
3340 map->x, map->y, map->w, map->h,
3341 z_mt, _mesa_get_format_name(z_mt->format),
3342 map->x + z_image_x, map->y + z_image_y,
3343 s_mt, map->x + s_image_x, map->y + s_image_y,
3344 map->ptr, map->stride);
3345 }
3346
3347 free(map->buffer);
3348 }
3349
3350 /**
3351 * Create and attach a map to the miptree at (level, slice). Return the
3352 * attached map.
3353 */
3354 static struct intel_miptree_map*
3355 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3356 unsigned int level,
3357 unsigned int slice,
3358 unsigned int x,
3359 unsigned int y,
3360 unsigned int w,
3361 unsigned int h,
3362 GLbitfield mode)
3363 {
3364 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3365
3366 if (!map)
3367 return NULL;
3368
3369 assert(mt->level[level].slice[slice].map == NULL);
3370 mt->level[level].slice[slice].map = map;
3371
3372 map->mode = mode;
3373 map->x = x;
3374 map->y = y;
3375 map->w = w;
3376 map->h = h;
3377
3378 return map;
3379 }
3380
3381 /**
3382 * Release the map at (level, slice).
3383 */
3384 static void
3385 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3386 unsigned int level,
3387 unsigned int slice)
3388 {
3389 struct intel_miptree_map **map;
3390
3391 map = &mt->level[level].slice[slice].map;
3392 free(*map);
3393 *map = NULL;
3394 }
3395
3396 static bool
3397 can_blit_slice(struct intel_mipmap_tree *mt,
3398 unsigned int level, unsigned int slice)
3399 {
3400 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3401 if (mt->surf.row_pitch >= 32768)
3402 return false;
3403
3404 return true;
3405 }
3406
3407 static bool
3408 use_intel_mipree_map_blit(struct brw_context *brw,
3409 struct intel_mipmap_tree *mt,
3410 GLbitfield mode,
3411 unsigned int level,
3412 unsigned int slice)
3413 {
3414 if (brw->has_llc &&
3415 /* It's probably not worth swapping to the blit ring because of
3416 * all the overhead involved.
3417 */
3418 !(mode & GL_MAP_WRITE_BIT) &&
3419 !mt->compressed &&
3420 (mt->surf.tiling == ISL_TILING_X ||
3421 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3422 (brw->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3423 /* Fast copy blit on skl+ supports all tiling formats. */
3424 brw->gen >= 9) &&
3425 can_blit_slice(mt, level, slice))
3426 return true;
3427
3428 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3429 mt->bo->size >= brw->max_gtt_map_object_size) {
3430 assert(can_blit_slice(mt, level, slice));
3431 return true;
3432 }
3433
3434 return false;
3435 }
3436
3437 /**
3438 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3439 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3440 * arithmetic overflow.
3441 *
3442 * If you call this function and use \a out_stride, then you're doing pointer
3443 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3444 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3445 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3446 * which usually have type uint32_t or GLuint.
3447 */
3448 void
3449 intel_miptree_map(struct brw_context *brw,
3450 struct intel_mipmap_tree *mt,
3451 unsigned int level,
3452 unsigned int slice,
3453 unsigned int x,
3454 unsigned int y,
3455 unsigned int w,
3456 unsigned int h,
3457 GLbitfield mode,
3458 void **out_ptr,
3459 ptrdiff_t *out_stride)
3460 {
3461 struct intel_miptree_map *map;
3462
3463 assert(mt->surf.samples == 1);
3464
3465 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3466 if (!map){
3467 *out_ptr = NULL;
3468 *out_stride = 0;
3469 return;
3470 }
3471
3472 intel_miptree_access_raw(brw, mt, level, slice,
3473 map->mode & GL_MAP_WRITE_BIT);
3474
3475 if (mt->format == MESA_FORMAT_S_UINT8) {
3476 intel_miptree_map_s8(brw, mt, map, level, slice);
3477 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3478 !(mode & BRW_MAP_DIRECT_BIT)) {
3479 intel_miptree_map_etc(brw, mt, map, level, slice);
3480 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3481 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3482 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3483 intel_miptree_map_blit(brw, mt, map, level, slice);
3484 #if defined(USE_SSE41)
3485 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3486 !mt->compressed && cpu_has_sse4_1 &&
3487 (mt->surf.row_pitch % 16 == 0)) {
3488 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3489 #endif
3490 } else {
3491 intel_miptree_map_gtt(brw, mt, map, level, slice);
3492 }
3493
3494 *out_ptr = map->ptr;
3495 *out_stride = map->stride;
3496
3497 if (map->ptr == NULL)
3498 intel_miptree_release_map(mt, level, slice);
3499 }
3500
3501 void
3502 intel_miptree_unmap(struct brw_context *brw,
3503 struct intel_mipmap_tree *mt,
3504 unsigned int level,
3505 unsigned int slice)
3506 {
3507 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3508
3509 assert(mt->surf.samples == 1);
3510
3511 if (!map)
3512 return;
3513
3514 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3515 mt, _mesa_get_format_name(mt->format), level, slice);
3516
3517 if (mt->format == MESA_FORMAT_S_UINT8) {
3518 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3519 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3520 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3521 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3522 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3523 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3524 } else if (map->linear_mt) {
3525 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3526 #if defined(USE_SSE41)
3527 } else if (map->buffer && cpu_has_sse4_1) {
3528 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3529 #endif
3530 } else {
3531 intel_miptree_unmap_gtt(mt);
3532 }
3533
3534 intel_miptree_release_map(mt, level, slice);
3535 }
3536
3537 enum isl_surf_dim
3538 get_isl_surf_dim(GLenum target)
3539 {
3540 switch (target) {
3541 case GL_TEXTURE_1D:
3542 case GL_TEXTURE_1D_ARRAY:
3543 return ISL_SURF_DIM_1D;
3544
3545 case GL_TEXTURE_2D:
3546 case GL_TEXTURE_2D_ARRAY:
3547 case GL_TEXTURE_RECTANGLE:
3548 case GL_TEXTURE_CUBE_MAP:
3549 case GL_TEXTURE_CUBE_MAP_ARRAY:
3550 case GL_TEXTURE_2D_MULTISAMPLE:
3551 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3552 case GL_TEXTURE_EXTERNAL_OES:
3553 return ISL_SURF_DIM_2D;
3554
3555 case GL_TEXTURE_3D:
3556 return ISL_SURF_DIM_3D;
3557 }
3558
3559 unreachable("Invalid texture target");
3560 }
3561
3562 enum isl_dim_layout
3563 get_isl_dim_layout(const struct gen_device_info *devinfo,
3564 enum isl_tiling tiling, GLenum target)
3565 {
3566 switch (target) {
3567 case GL_TEXTURE_1D:
3568 case GL_TEXTURE_1D_ARRAY:
3569 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3570 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3571
3572 case GL_TEXTURE_2D:
3573 case GL_TEXTURE_2D_ARRAY:
3574 case GL_TEXTURE_RECTANGLE:
3575 case GL_TEXTURE_2D_MULTISAMPLE:
3576 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3577 case GL_TEXTURE_EXTERNAL_OES:
3578 return ISL_DIM_LAYOUT_GEN4_2D;
3579
3580 case GL_TEXTURE_CUBE_MAP:
3581 case GL_TEXTURE_CUBE_MAP_ARRAY:
3582 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3583 ISL_DIM_LAYOUT_GEN4_2D);
3584
3585 case GL_TEXTURE_3D:
3586 return (devinfo->gen >= 9 ?
3587 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3588 }
3589
3590 unreachable("Invalid texture target");
3591 }
3592
3593 enum isl_aux_usage
3594 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3595 const struct intel_mipmap_tree *mt)
3596 {
3597 if (mt->hiz_buf)
3598 return ISL_AUX_USAGE_HIZ;
3599
3600 if (!mt->mcs_buf)
3601 return ISL_AUX_USAGE_NONE;
3602
3603 return mt->aux_usage;
3604 }