i965/miptree: Drop the mt param from alloc_aux_buffer
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_meta_util.h"
40 #include "brw_state.h"
41
42 #include "main/enums.h"
43 #include "main/fbobject.h"
44 #include "main/formats.h"
45 #include "main/glformats.h"
46 #include "main/texcompress_etc.h"
47 #include "main/teximage.h"
48 #include "main/streaming-load-memcpy.h"
49
50 #include "util/format_srgb.h"
51
52 #include "x86/common_x86_asm.h"
53
54 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
55
56 static void *intel_miptree_map_raw(struct brw_context *brw,
57 struct intel_mipmap_tree *mt,
58 GLbitfield mode);
59
60 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_alloc_aux(struct brw_context *brw,
64 struct intel_mipmap_tree *mt);
65
66 static bool
67 intel_miptree_supports_mcs(struct brw_context *brw,
68 const struct intel_mipmap_tree *mt)
69 {
70 const struct gen_device_info *devinfo = &brw->screen->devinfo;
71
72 /* MCS compression only applies to multisampled miptrees */
73 if (mt->surf.samples <= 1)
74 return false;
75
76 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
77 if (devinfo->gen < 7)
78 return false;
79
80 /* See isl_surf_get_mcs_surf for details. */
81 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
82 return false;
83
84 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
85 switch (_mesa_get_format_base_format(mt->format)) {
86 case GL_DEPTH_COMPONENT:
87 case GL_STENCIL_INDEX:
88 case GL_DEPTH_STENCIL:
89 return false;
90 default:
91 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
92 *
93 * This field must be set to 0 for all SINT MSRTs when all RT channels
94 * are not written
95 *
96 * In practice this means that we have to disable MCS for all signed
97 * integer MSAA buffers. The alternative, to disable MCS only when one
98 * of the render target channels is disabled, is impractical because it
99 * would require converting between CMS and UMS MSAA layouts on the fly,
100 * which is expensive.
101 */
102 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
103 return false;
104 } else {
105 return true;
106 }
107 }
108 }
109
110 static bool
111 intel_tiling_supports_ccs(const struct brw_context *brw,
112 enum isl_tiling tiling)
113 {
114 const struct gen_device_info *devinfo = &brw->screen->devinfo;
115
116 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
117 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
118 *
119 * - Support is limited to tiled render targets.
120 *
121 * Gen9 changes the restriction to Y-tile only.
122 */
123 if (devinfo->gen >= 9)
124 return tiling == ISL_TILING_Y0;
125 else if (devinfo->gen >= 7)
126 return tiling != ISL_TILING_LINEAR;
127 else
128 return false;
129 }
130
131 /**
132 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
133 * can be used. This doesn't (and should not) inspect any of the properties of
134 * the miptree's BO.
135 *
136 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
137 * beneath the "Fast Color Clear" bullet (p326):
138 *
139 * - Support is for non-mip-mapped and non-array surface types only.
140 *
141 * And then later, on p327:
142 *
143 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
144 * 64bpp, and 128bpp.
145 *
146 * From the Skylake documentation, it is made clear that X-tiling is no longer
147 * supported:
148 *
149 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
150 * non-MSRTs only.
151 */
152 static bool
153 intel_miptree_supports_ccs(struct brw_context *brw,
154 const struct intel_mipmap_tree *mt)
155 {
156 const struct gen_device_info *devinfo = &brw->screen->devinfo;
157
158 /* MCS support does not exist prior to Gen7 */
159 if (devinfo->gen < 7)
160 return false;
161
162 /* This function applies only to non-multisampled render targets. */
163 if (mt->surf.samples > 1)
164 return false;
165
166 /* MCS is only supported for color buffers */
167 switch (_mesa_get_format_base_format(mt->format)) {
168 case GL_DEPTH_COMPONENT:
169 case GL_DEPTH_STENCIL:
170 case GL_STENCIL_INDEX:
171 return false;
172 }
173
174 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
175 return false;
176
177 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
178 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
179 mt->surf.logical_level0_px.depth > 1;
180
181 if (arrayed) {
182 /* Multisample surfaces with the CMS layout are not layered surfaces,
183 * yet still have physical_depth0 > 1. Assert that we don't
184 * accidentally reject a multisampled surface here. We should have
185 * rejected it earlier by explicitly checking the sample count.
186 */
187 assert(mt->surf.samples == 1);
188 }
189
190 /* Handle the hardware restrictions...
191 *
192 * All GENs have the following restriction: "MCS buffer for non-MSRT is
193 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
194 *
195 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
196 * Non-MultiSampler Render Target Restrictions) Support is for
197 * non-mip-mapped and non-array surface types only.
198 *
199 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
200 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
201 * surfaces are supported with MCS buffer layout with these alignments in
202 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
203 *
204 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
205 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
206 * surfaces are supported with MCS buffer layout with these alignments in
207 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
208 */
209 if (devinfo->gen < 8 && (mip_mapped || arrayed))
210 return false;
211
212 /* There's no point in using an MCS buffer if the surface isn't in a
213 * renderable format.
214 */
215 if (!brw->mesa_format_supports_render[mt->format])
216 return false;
217
218 return true;
219 }
220
221 static bool
222 intel_tiling_supports_hiz(const struct brw_context *brw,
223 enum isl_tiling tiling)
224 {
225 const struct gen_device_info *devinfo = &brw->screen->devinfo;
226
227 if (devinfo->gen < 6)
228 return false;
229
230 return tiling == ISL_TILING_Y0;
231 }
232
233 static bool
234 intel_miptree_supports_hiz(const struct brw_context *brw,
235 const struct intel_mipmap_tree *mt)
236 {
237 if (!brw->has_hiz)
238 return false;
239
240 switch (mt->format) {
241 case MESA_FORMAT_Z_FLOAT32:
242 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
243 case MESA_FORMAT_Z24_UNORM_X8_UINT:
244 case MESA_FORMAT_Z24_UNORM_S8_UINT:
245 case MESA_FORMAT_Z_UNORM16:
246 return true;
247 default:
248 return false;
249 }
250 }
251
252 /**
253 * Return true if the format that will be used to access the miptree is
254 * CCS_E-compatible with the miptree's linear/non-sRGB format.
255 *
256 * Why use the linear format? Well, although the miptree may be specified with
257 * an sRGB format, the usage of that color space/format can be toggled. Since
258 * our HW tends to support more linear formats than sRGB ones, we use this
259 * format variant for check for CCS_E compatibility.
260 */
261 static bool
262 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
263 const struct intel_mipmap_tree *mt,
264 enum isl_format access_format)
265 {
266 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
267
268 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
269 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
270 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
271 }
272
273 static bool
274 intel_miptree_supports_ccs_e(struct brw_context *brw,
275 const struct intel_mipmap_tree *mt)
276 {
277 const struct gen_device_info *devinfo = &brw->screen->devinfo;
278
279 if (devinfo->gen < 9)
280 return false;
281
282 /* For now compression is only enabled for integer formats even though
283 * there exist supported floating point formats also. This is a heuristic
284 * decision based on current public benchmarks. In none of the cases these
285 * formats provided any improvement but a few cases were seen to regress.
286 * Hence these are left to to be enabled in the future when they are known
287 * to improve things.
288 */
289 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
290 return false;
291
292 if (!intel_miptree_supports_ccs(brw, mt))
293 return false;
294
295 /* Many window system buffers are sRGB even if they are never rendered as
296 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
297 * surface is used as sRGB, we fall back to CCS_D.
298 */
299 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
300 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
301 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
302 }
303
304 /**
305 * Determine depth format corresponding to a depth+stencil format,
306 * for separate stencil.
307 */
308 mesa_format
309 intel_depth_format_for_depthstencil_format(mesa_format format) {
310 switch (format) {
311 case MESA_FORMAT_Z24_UNORM_S8_UINT:
312 return MESA_FORMAT_Z24_UNORM_X8_UINT;
313 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
314 return MESA_FORMAT_Z_FLOAT32;
315 default:
316 return format;
317 }
318 }
319
320 static bool
321 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
322 unsigned depth0, struct intel_mipmap_level *table)
323 {
324 for (unsigned level = first_level; level <= last_level; level++) {
325 const unsigned d =
326 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
327
328 table[level].slice = calloc(d, sizeof(*table[0].slice));
329 if (!table[level].slice)
330 goto unwind;
331 }
332
333 return true;
334
335 unwind:
336 for (unsigned level = first_level; level <= last_level; level++)
337 free(table[level].slice);
338
339 return false;
340 }
341
342 static bool
343 needs_separate_stencil(const struct brw_context *brw,
344 struct intel_mipmap_tree *mt,
345 mesa_format format)
346 {
347 const struct gen_device_info *devinfo = &brw->screen->devinfo;
348
349 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
350 return false;
351
352 if (devinfo->must_use_separate_stencil)
353 return true;
354
355 return brw->has_separate_stencil &&
356 intel_miptree_supports_hiz(brw, mt);
357 }
358
359 /**
360 * Choose the aux usage for this miptree. This function must be called fairly
361 * late in the miptree create process after we have a tiling.
362 */
363 static void
364 intel_miptree_choose_aux_usage(struct brw_context *brw,
365 struct intel_mipmap_tree *mt)
366 {
367 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
368
369 if (intel_miptree_supports_mcs(brw, mt)) {
370 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
371 mt->aux_usage = ISL_AUX_USAGE_MCS;
372 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
373 intel_miptree_supports_ccs(brw, mt)) {
374 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
375 intel_miptree_supports_ccs_e(brw, mt)) {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
377 } else {
378 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
379 }
380 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
381 intel_miptree_supports_hiz(brw, mt)) {
382 mt->aux_usage = ISL_AUX_USAGE_HIZ;
383 }
384
385 /* We can do fast-clear on all auxiliary surface types that are
386 * allocated through the normal texture creation paths.
387 */
388 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
389 mt->supports_fast_clear = true;
390 }
391
392
393 /**
394 * Choose an appropriate uncompressed format for a requested
395 * compressed format, if unsupported.
396 */
397 mesa_format
398 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
399 {
400 const struct gen_device_info *devinfo = &brw->screen->devinfo;
401
402 /* No need to lower ETC formats on these platforms,
403 * they are supported natively.
404 */
405 if (devinfo->gen >= 8 || devinfo->is_baytrail)
406 return format;
407
408 switch (format) {
409 case MESA_FORMAT_ETC1_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_RGB8:
412 return MESA_FORMAT_R8G8B8X8_UNORM;
413 case MESA_FORMAT_ETC2_SRGB8:
414 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
415 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
416 return MESA_FORMAT_B8G8R8A8_SRGB;
417 case MESA_FORMAT_ETC2_RGBA8_EAC:
418 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
419 return MESA_FORMAT_R8G8B8A8_UNORM;
420 case MESA_FORMAT_ETC2_R11_EAC:
421 return MESA_FORMAT_R_UNORM16;
422 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
423 return MESA_FORMAT_R_SNORM16;
424 case MESA_FORMAT_ETC2_RG11_EAC:
425 return MESA_FORMAT_R16G16_UNORM;
426 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
427 return MESA_FORMAT_R16G16_SNORM;
428 default:
429 /* Non ETC1 / ETC2 format */
430 return format;
431 }
432 }
433
434 unsigned
435 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
436 {
437 if (mt->surf.dim == ISL_SURF_DIM_3D)
438 return minify(mt->surf.logical_level0_px.depth, level);
439 else
440 return mt->surf.logical_level0_px.array_len;
441 }
442
443 UNUSED static unsigned
444 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
445 {
446 /* In case of physical dimensions one needs to consider also the layout.
447 * See isl_calc_phys_level0_extent_sa().
448 */
449 if (surf->dim != ISL_SURF_DIM_3D)
450 return surf->phys_level0_sa.array_len;
451
452 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
453 return minify(surf->phys_level0_sa.array_len, level);
454
455 return minify(surf->phys_level0_sa.depth, level);
456 }
457
458 /** \brief Assert that the level and layer are valid for the miptree. */
459 void
460 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
461 uint32_t level,
462 uint32_t layer)
463 {
464 (void) mt;
465 (void) level;
466 (void) layer;
467
468 assert(level >= mt->first_level);
469 assert(level <= mt->last_level);
470 assert(layer < get_num_phys_layers(&mt->surf, level));
471 }
472
473 static enum isl_aux_state **
474 create_aux_state_map(struct intel_mipmap_tree *mt,
475 enum isl_aux_state initial)
476 {
477 const uint32_t levels = mt->last_level + 1;
478
479 uint32_t total_slices = 0;
480 for (uint32_t level = 0; level < levels; level++)
481 total_slices += brw_get_num_logical_layers(mt, level);
482
483 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
484
485 /* We're going to allocate a single chunk of data for both the per-level
486 * reference array and the arrays of aux_state. This makes cleanup
487 * significantly easier.
488 */
489 const size_t total_size = per_level_array_size +
490 total_slices * sizeof(enum isl_aux_state);
491 void *data = malloc(total_size);
492 if (data == NULL)
493 return NULL;
494
495 enum isl_aux_state **per_level_arr = data;
496 enum isl_aux_state *s = data + per_level_array_size;
497 for (uint32_t level = 0; level < levels; level++) {
498 per_level_arr[level] = s;
499 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
500 for (uint32_t a = 0; a < level_layers; a++)
501 *(s++) = initial;
502 }
503 assert((void *)s == data + total_size);
504
505 return per_level_arr;
506 }
507
508 static void
509 free_aux_state_map(enum isl_aux_state **state)
510 {
511 free(state);
512 }
513
514 static bool
515 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
516 enum isl_tiling tiling, unsigned samples)
517 {
518 if (samples > 1)
519 return false;
520
521 if (tiling == ISL_TILING_LINEAR)
522 return false;
523
524 /* If the width is much smaller than a tile, don't bother tiling. */
525 if (row_pitch < 64)
526 return true;
527
528 if (ALIGN(row_pitch, 512) >= 32768) {
529 perf_debug("row pitch %u too large to blit, falling back to untiled",
530 row_pitch);
531 return true;
532 }
533
534 return false;
535 }
536
537 static bool
538 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
539 enum isl_tiling tiling)
540 {
541 const struct gen_device_info *devinfo = &brw->screen->devinfo;
542
543 /* If the BO is too large to fit in the aperture, we need to use the
544 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
545 * handle Y-tiling, so we need to fall back to X.
546 */
547 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
548 tiling == ISL_TILING_Y0)
549 return true;
550
551 return false;
552 }
553
554 static struct intel_mipmap_tree *
555 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
556 unsigned first_level, unsigned last_level,
557 unsigned width0, unsigned height0, unsigned depth0,
558 unsigned num_samples, isl_tiling_flags_t tiling_flags,
559 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
560 unsigned row_pitch, struct brw_bo *bo)
561 {
562 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
563 if (!mt)
564 return NULL;
565
566 if (!create_mapping_table(target, first_level, last_level, depth0,
567 mt->level)) {
568 free(mt);
569 return NULL;
570 }
571
572 mt->refcount = 1;
573
574 if (target == GL_TEXTURE_CUBE_MAP ||
575 target == GL_TEXTURE_CUBE_MAP_ARRAY)
576 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
577
578 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
579 __func__,
580 _mesa_enum_to_string(target),
581 _mesa_get_format_name(format),
582 num_samples, width0, height0, depth0,
583 first_level, last_level, mt);
584
585 struct isl_surf_init_info init_info = {
586 .dim = get_isl_surf_dim(target),
587 .format = translate_tex_format(brw, format, false),
588 .width = width0,
589 .height = height0,
590 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
591 .levels = last_level - first_level + 1,
592 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
593 .samples = num_samples,
594 .row_pitch = row_pitch,
595 .usage = isl_usage_flags,
596 .tiling_flags = tiling_flags,
597 };
598
599 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
600 goto fail;
601
602 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
603 * on gen7 platforms we also need to create Y-tiled copies of stencil for
604 * texturing since the hardware can't sample from W-tiled surfaces. For
605 * everything else, check for corner cases needing special treatment.
606 */
607 bool is_depth_stencil =
608 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
609 if (!is_depth_stencil) {
610 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
611 mt->surf.tiling, mt->surf.samples)) {
612 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
613 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
614 goto fail;
615 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
616 init_info.tiling_flags = 1u << ISL_TILING_X;
617 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
618 goto fail;
619 }
620 }
621
622 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
623 * the size may not be multiple of row_pitch.
624 * See isl_apply_surface_padding().
625 */
626 if (mt->surf.tiling != ISL_TILING_LINEAR)
627 assert(mt->surf.size % mt->surf.row_pitch == 0);
628
629 if (!bo) {
630 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
631 mt->surf.size,
632 isl_tiling_to_i915_tiling(
633 mt->surf.tiling),
634 mt->surf.row_pitch, alloc_flags);
635 if (!mt->bo)
636 goto fail;
637 } else {
638 mt->bo = bo;
639 }
640
641 mt->first_level = first_level;
642 mt->last_level = last_level;
643 mt->target = target;
644 mt->format = format;
645 mt->aux_state = NULL;
646 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
647 mt->compressed = _mesa_is_format_compressed(format);
648 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
649
650 return mt;
651
652 fail:
653 intel_miptree_release(&mt);
654 return NULL;
655 }
656
657 static bool
658 make_separate_stencil_surface(struct brw_context *brw,
659 struct intel_mipmap_tree *mt)
660 {
661 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
662 0, mt->surf.levels - 1,
663 mt->surf.logical_level0_px.width,
664 mt->surf.logical_level0_px.height,
665 mt->surf.dim == ISL_SURF_DIM_3D ?
666 mt->surf.logical_level0_px.depth :
667 mt->surf.logical_level0_px.array_len,
668 mt->surf.samples, ISL_TILING_W_BIT,
669 ISL_SURF_USAGE_STENCIL_BIT |
670 ISL_SURF_USAGE_TEXTURE_BIT,
671 BO_ALLOC_BUSY, 0, NULL);
672
673 if (!mt->stencil_mt)
674 return false;
675
676 mt->stencil_mt->r8stencil_needs_update = true;
677
678 return true;
679 }
680
681 static struct intel_mipmap_tree *
682 miptree_create(struct brw_context *brw,
683 GLenum target,
684 mesa_format format,
685 GLuint first_level,
686 GLuint last_level,
687 GLuint width0,
688 GLuint height0,
689 GLuint depth0,
690 GLuint num_samples,
691 enum intel_miptree_create_flags flags)
692 {
693 const struct gen_device_info *devinfo = &brw->screen->devinfo;
694
695 if (format == MESA_FORMAT_S_UINT8)
696 return make_surface(brw, target, format, first_level, last_level,
697 width0, height0, depth0, num_samples,
698 ISL_TILING_W_BIT,
699 ISL_SURF_USAGE_STENCIL_BIT |
700 ISL_SURF_USAGE_TEXTURE_BIT,
701 BO_ALLOC_BUSY,
702 0,
703 NULL);
704
705 const GLenum base_format = _mesa_get_format_base_format(format);
706 if ((base_format == GL_DEPTH_COMPONENT ||
707 base_format == GL_DEPTH_STENCIL) &&
708 !(flags & MIPTREE_CREATE_LINEAR)) {
709 /* Fix up the Z miptree format for how we're splitting out separate
710 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
711 */
712 const mesa_format depth_only_format =
713 intel_depth_format_for_depthstencil_format(format);
714 struct intel_mipmap_tree *mt = make_surface(
715 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
716 first_level, last_level,
717 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
718 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
719 BO_ALLOC_BUSY, 0, NULL);
720
721 if (needs_separate_stencil(brw, mt, format) &&
722 !make_separate_stencil_surface(brw, mt)) {
723 intel_miptree_release(&mt);
724 return NULL;
725 }
726
727 if (!(flags & MIPTREE_CREATE_NO_AUX))
728 intel_miptree_choose_aux_usage(brw, mt);
729
730 return mt;
731 }
732
733 mesa_format tex_format = format;
734 mesa_format etc_format = MESA_FORMAT_NONE;
735 uint32_t alloc_flags = 0;
736
737 format = intel_lower_compressed_format(brw, format);
738
739 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
740
741 if (flags & MIPTREE_CREATE_BUSY)
742 alloc_flags |= BO_ALLOC_BUSY;
743
744 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
745 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
746
747 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
748 if (devinfo->gen < 6)
749 tiling_flags &= ~ISL_TILING_Y0_BIT;
750
751 struct intel_mipmap_tree *mt = make_surface(
752 brw, target, format,
753 first_level, last_level,
754 width0, height0, depth0,
755 num_samples, tiling_flags,
756 ISL_SURF_USAGE_RENDER_TARGET_BIT |
757 ISL_SURF_USAGE_TEXTURE_BIT,
758 alloc_flags, 0, NULL);
759 if (!mt)
760 return NULL;
761
762 mt->etc_format = etc_format;
763
764 if (!(flags & MIPTREE_CREATE_NO_AUX))
765 intel_miptree_choose_aux_usage(brw, mt);
766
767 return mt;
768 }
769
770 struct intel_mipmap_tree *
771 intel_miptree_create(struct brw_context *brw,
772 GLenum target,
773 mesa_format format,
774 GLuint first_level,
775 GLuint last_level,
776 GLuint width0,
777 GLuint height0,
778 GLuint depth0,
779 GLuint num_samples,
780 enum intel_miptree_create_flags flags)
781 {
782 assert(num_samples > 0);
783
784 struct intel_mipmap_tree *mt = miptree_create(
785 brw, target, format,
786 first_level, last_level,
787 width0, height0, depth0, num_samples,
788 flags);
789 if (!mt)
790 return NULL;
791
792 mt->offset = 0;
793
794 if (!intel_miptree_alloc_aux(brw, mt)) {
795 intel_miptree_release(&mt);
796 return NULL;
797 }
798
799 return mt;
800 }
801
802 struct intel_mipmap_tree *
803 intel_miptree_create_for_bo(struct brw_context *brw,
804 struct brw_bo *bo,
805 mesa_format format,
806 uint32_t offset,
807 uint32_t width,
808 uint32_t height,
809 uint32_t depth,
810 int pitch,
811 enum isl_tiling tiling,
812 enum intel_miptree_create_flags flags)
813 {
814 const struct gen_device_info *devinfo = &brw->screen->devinfo;
815 struct intel_mipmap_tree *mt;
816 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
817 const GLenum base_format = _mesa_get_format_base_format(format);
818
819 if ((base_format == GL_DEPTH_COMPONENT ||
820 base_format == GL_DEPTH_STENCIL)) {
821 const mesa_format depth_only_format =
822 intel_depth_format_for_depthstencil_format(format);
823 mt = make_surface(brw, target,
824 devinfo->gen >= 6 ? depth_only_format : format,
825 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
826 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
827 0, pitch, bo);
828 if (!mt)
829 return NULL;
830
831 brw_bo_reference(bo);
832
833 if (!(flags & MIPTREE_CREATE_NO_AUX))
834 intel_miptree_choose_aux_usage(brw, mt);
835
836 return mt;
837 } else if (format == MESA_FORMAT_S_UINT8) {
838 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
839 0, 0, width, height, depth, 1,
840 ISL_TILING_W_BIT,
841 ISL_SURF_USAGE_STENCIL_BIT |
842 ISL_SURF_USAGE_TEXTURE_BIT,
843 0, pitch, bo);
844 if (!mt)
845 return NULL;
846
847 assert(bo->size >= mt->surf.size);
848
849 brw_bo_reference(bo);
850 return mt;
851 }
852
853 /* Nothing will be able to use this miptree with the BO if the offset isn't
854 * aligned.
855 */
856 if (tiling != ISL_TILING_LINEAR)
857 assert(offset % 4096 == 0);
858
859 /* miptrees can't handle negative pitch. If you need flipping of images,
860 * that's outside of the scope of the mt.
861 */
862 assert(pitch >= 0);
863
864 /* The BO already has a tiling format and we shouldn't confuse the lower
865 * layers by making it try to find a tiling format again.
866 */
867 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
868
869 mt = make_surface(brw, target, format,
870 0, 0, width, height, depth, 1,
871 1lu << tiling,
872 ISL_SURF_USAGE_RENDER_TARGET_BIT |
873 ISL_SURF_USAGE_TEXTURE_BIT,
874 0, pitch, bo);
875 if (!mt)
876 return NULL;
877
878 brw_bo_reference(bo);
879 mt->bo = bo;
880 mt->offset = offset;
881
882 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
883 intel_miptree_choose_aux_usage(brw, mt);
884
885 if (!intel_miptree_alloc_aux(brw, mt)) {
886 intel_miptree_release(&mt);
887 return NULL;
888 }
889 }
890
891 return mt;
892 }
893
894 static struct intel_mipmap_tree *
895 miptree_create_for_planar_image(struct brw_context *brw,
896 __DRIimage *image, GLenum target,
897 enum isl_tiling tiling)
898 {
899 const struct intel_image_format *f = image->planar_format;
900 struct intel_mipmap_tree *planar_mt = NULL;
901
902 for (int i = 0; i < f->nplanes; i++) {
903 const int index = f->planes[i].buffer_index;
904 const uint32_t dri_format = f->planes[i].dri_format;
905 const mesa_format format = driImageFormatToGLFormat(dri_format);
906 const uint32_t width = image->width >> f->planes[i].width_shift;
907 const uint32_t height = image->height >> f->planes[i].height_shift;
908
909 /* Disable creation of the texture's aux buffers because the driver
910 * exposes no EGL API to manage them. That is, there is no API for
911 * resolving the aux buffer's content to the main buffer nor for
912 * invalidating the aux buffer's content.
913 */
914 struct intel_mipmap_tree *mt =
915 intel_miptree_create_for_bo(brw, image->bo, format,
916 image->offsets[index],
917 width, height, 1,
918 image->strides[index],
919 tiling,
920 MIPTREE_CREATE_NO_AUX);
921 if (mt == NULL)
922 return NULL;
923
924 mt->target = target;
925
926 if (i == 0)
927 planar_mt = mt;
928 else
929 planar_mt->plane[i - 1] = mt;
930 }
931
932 planar_mt->drm_modifier = image->modifier;
933
934 return planar_mt;
935 }
936
937 static bool
938 create_ccs_buf_for_image(struct brw_context *brw,
939 __DRIimage *image,
940 struct intel_mipmap_tree *mt,
941 enum isl_aux_state initial_state)
942 {
943 struct isl_surf temp_ccs_surf;
944
945 /* CCS is only supported for very simple miptrees */
946 assert(image->aux_offset != 0 && image->aux_pitch != 0);
947 assert(image->tile_x == 0 && image->tile_y == 0);
948 assert(mt->surf.samples == 1);
949 assert(mt->surf.levels == 1);
950 assert(mt->surf.logical_level0_px.depth == 1);
951 assert(mt->surf.logical_level0_px.array_len == 1);
952 assert(mt->first_level == 0);
953 assert(mt->last_level == 0);
954
955 /* We shouldn't already have a CCS */
956 assert(!mt->aux_buf);
957
958 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
959 image->aux_pitch))
960 return false;
961
962 assert(image->aux_offset < image->bo->size);
963 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
964
965 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
966 if (mt->aux_buf == NULL)
967 return false;
968
969 mt->aux_state = create_aux_state_map(mt, initial_state);
970 if (!mt->aux_state) {
971 free(mt->aux_buf);
972 mt->aux_buf = NULL;
973 return false;
974 }
975
976 /* On gen10+ we start using an extra space in the aux buffer to store the
977 * indirect clear color. However, if we imported an image from the window
978 * system with CCS, we don't have the extra space at the end of the aux
979 * buffer. So create a new bo here that will store that clear color.
980 */
981 if (brw->isl_dev.ss.clear_color_state_size > 0) {
982 mt->aux_buf->clear_color_bo =
983 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
984 brw->isl_dev.ss.clear_color_state_size,
985 I915_TILING_NONE, 0, BO_ALLOC_ZEROED);
986 if (!mt->aux_buf->clear_color_bo) {
987 free(mt->aux_buf);
988 mt->aux_buf = NULL;
989 return false;
990 }
991 }
992
993 mt->aux_buf->bo = image->bo;
994 brw_bo_reference(image->bo);
995
996 mt->aux_buf->offset = image->aux_offset;
997 mt->aux_buf->surf = temp_ccs_surf;
998
999 return true;
1000 }
1001
1002 struct intel_mipmap_tree *
1003 intel_miptree_create_for_dri_image(struct brw_context *brw,
1004 __DRIimage *image, GLenum target,
1005 mesa_format format,
1006 bool is_winsys_image)
1007 {
1008 uint32_t bo_tiling, bo_swizzle;
1009 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1010
1011 const struct isl_drm_modifier_info *mod_info =
1012 isl_drm_modifier_get_info(image->modifier);
1013
1014 const enum isl_tiling tiling =
1015 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1016
1017 if (image->planar_format && image->planar_format->nplanes > 1)
1018 return miptree_create_for_planar_image(brw, image, target, tiling);
1019
1020 if (image->planar_format)
1021 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1022
1023 if (!brw->ctx.TextureFormatSupported[format]) {
1024 /* The texture storage paths in core Mesa detect if the driver does not
1025 * support the user-requested format, and then searches for a
1026 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1027 * do the fallbacks here for important formats.
1028 *
1029 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1030 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1031 * the Chrome OS compositor consumes as dma_buf EGLImages.
1032 */
1033 format = _mesa_format_fallback_rgbx_to_rgba(format);
1034 }
1035
1036 if (!brw->ctx.TextureFormatSupported[format])
1037 return NULL;
1038
1039 enum intel_miptree_create_flags mt_create_flags = 0;
1040
1041 /* If this image comes in from a window system, we have different
1042 * requirements than if it comes in via an EGL import operation. Window
1043 * system images can use any form of auxiliary compression we wish because
1044 * they get "flushed" before being handed off to the window system and we
1045 * have the opportunity to do resolves. Non window-system images, on the
1046 * other hand, have no resolve point so we can't have aux without a
1047 * modifier.
1048 */
1049 if (!is_winsys_image)
1050 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1051
1052 /* If we have a modifier which specifies aux, don't create one yet */
1053 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1054 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1055
1056 /* Disable creation of the texture's aux buffers because the driver exposes
1057 * no EGL API to manage them. That is, there is no API for resolving the aux
1058 * buffer's content to the main buffer nor for invalidating the aux buffer's
1059 * content.
1060 */
1061 struct intel_mipmap_tree *mt =
1062 intel_miptree_create_for_bo(brw, image->bo, format,
1063 image->offset, image->width, image->height, 1,
1064 image->pitch, tiling, mt_create_flags);
1065 if (mt == NULL)
1066 return NULL;
1067
1068 mt->target = target;
1069 mt->level[0].level_x = image->tile_x;
1070 mt->level[0].level_y = image->tile_y;
1071 mt->drm_modifier = image->modifier;
1072
1073 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1074 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1075 * trouble resolving back to destination image due to alignment issues.
1076 */
1077 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1078 if (!devinfo->has_surface_tile_offset) {
1079 uint32_t draw_x, draw_y;
1080 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1081
1082 if (draw_x != 0 || draw_y != 0) {
1083 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1084 intel_miptree_release(&mt);
1085 return NULL;
1086 }
1087 }
1088
1089 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1090 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1091
1092 mt->aux_usage = mod_info->aux_usage;
1093 /* If we are a window system buffer, then we can support fast-clears
1094 * even if the modifier doesn't support them by doing a partial resolve
1095 * as part of the flush operation.
1096 */
1097 mt->supports_fast_clear =
1098 is_winsys_image || mod_info->supports_clear_color;
1099
1100 /* We don't know the actual state of the surface when we get it but we
1101 * can make a pretty good guess based on the modifier. What we do know
1102 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1103 * a worst case of compression.
1104 */
1105 enum isl_aux_state initial_state =
1106 isl_drm_modifier_get_default_aux_state(image->modifier);
1107
1108 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1109 intel_miptree_release(&mt);
1110 return NULL;
1111 }
1112 }
1113
1114 /* Don't assume coherency for imported EGLimages. We don't know what
1115 * external clients are going to do with it. They may scan it out.
1116 */
1117 image->bo->cache_coherent = false;
1118
1119 return mt;
1120 }
1121
1122 /**
1123 * For a singlesample renderbuffer, this simply wraps the given BO with a
1124 * miptree.
1125 *
1126 * For a multisample renderbuffer, this wraps the window system's
1127 * (singlesample) BO with a singlesample miptree attached to the
1128 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1129 * that will contain the actual rendering (which is lazily resolved to
1130 * irb->singlesample_mt).
1131 */
1132 bool
1133 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1134 struct intel_renderbuffer *irb,
1135 struct intel_mipmap_tree *singlesample_mt,
1136 uint32_t width, uint32_t height,
1137 uint32_t pitch)
1138 {
1139 struct intel_mipmap_tree *multisample_mt = NULL;
1140 struct gl_renderbuffer *rb = &irb->Base.Base;
1141 mesa_format format = rb->Format;
1142 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1143
1144 /* Only the front and back buffers, which are color buffers, are allocated
1145 * through the image loader.
1146 */
1147 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1148 _mesa_get_format_base_format(format) == GL_RGBA);
1149
1150 assert(singlesample_mt);
1151
1152 if (num_samples == 1) {
1153 intel_miptree_release(&irb->mt);
1154 irb->mt = singlesample_mt;
1155
1156 assert(!irb->singlesample_mt);
1157 } else {
1158 intel_miptree_release(&irb->singlesample_mt);
1159 irb->singlesample_mt = singlesample_mt;
1160
1161 if (!irb->mt ||
1162 irb->mt->surf.logical_level0_px.width != width ||
1163 irb->mt->surf.logical_level0_px.height != height) {
1164 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1165 format,
1166 width,
1167 height,
1168 num_samples);
1169 if (!multisample_mt)
1170 goto fail;
1171
1172 irb->need_downsample = false;
1173 intel_miptree_release(&irb->mt);
1174 irb->mt = multisample_mt;
1175 }
1176 }
1177 return true;
1178
1179 fail:
1180 intel_miptree_release(&irb->mt);
1181 return false;
1182 }
1183
1184 struct intel_mipmap_tree*
1185 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1186 mesa_format format,
1187 uint32_t width,
1188 uint32_t height,
1189 uint32_t num_samples)
1190 {
1191 struct intel_mipmap_tree *mt;
1192 uint32_t depth = 1;
1193 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1194
1195 mt = intel_miptree_create(brw, target, format, 0, 0,
1196 width, height, depth, num_samples,
1197 MIPTREE_CREATE_BUSY);
1198 if (!mt)
1199 goto fail;
1200
1201 return mt;
1202
1203 fail:
1204 intel_miptree_release(&mt);
1205 return NULL;
1206 }
1207
1208 void
1209 intel_miptree_reference(struct intel_mipmap_tree **dst,
1210 struct intel_mipmap_tree *src)
1211 {
1212 if (*dst == src)
1213 return;
1214
1215 intel_miptree_release(dst);
1216
1217 if (src) {
1218 src->refcount++;
1219 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1220 }
1221
1222 *dst = src;
1223 }
1224
1225 static void
1226 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1227 {
1228 if (aux_buf == NULL)
1229 return;
1230
1231 brw_bo_unreference(aux_buf->bo);
1232 brw_bo_unreference(aux_buf->clear_color_bo);
1233
1234 free(aux_buf);
1235 }
1236
1237 void
1238 intel_miptree_release(struct intel_mipmap_tree **mt)
1239 {
1240 if (!*mt)
1241 return;
1242
1243 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1244 if (--(*mt)->refcount <= 0) {
1245 GLuint i;
1246
1247 DBG("%s deleting %p\n", __func__, *mt);
1248
1249 brw_bo_unreference((*mt)->bo);
1250 intel_miptree_release(&(*mt)->stencil_mt);
1251 intel_miptree_release(&(*mt)->r8stencil_mt);
1252 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1253 free_aux_state_map((*mt)->aux_state);
1254
1255 intel_miptree_release(&(*mt)->plane[0]);
1256 intel_miptree_release(&(*mt)->plane[1]);
1257
1258 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1259 free((*mt)->level[i].slice);
1260 }
1261
1262 free(*mt);
1263 }
1264 *mt = NULL;
1265 }
1266
1267
1268 void
1269 intel_get_image_dims(struct gl_texture_image *image,
1270 int *width, int *height, int *depth)
1271 {
1272 switch (image->TexObject->Target) {
1273 case GL_TEXTURE_1D_ARRAY:
1274 /* For a 1D Array texture the OpenGL API will treat the image height as
1275 * the number of array slices. For Intel hardware, we treat the 1D array
1276 * as a 2D Array with a height of 1. So, here we want to swap image
1277 * height and depth.
1278 */
1279 assert(image->Depth == 1);
1280 *width = image->Width;
1281 *height = 1;
1282 *depth = image->Height;
1283 break;
1284 case GL_TEXTURE_CUBE_MAP:
1285 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1286 * though we really have 6 slices.
1287 */
1288 assert(image->Depth == 1);
1289 *width = image->Width;
1290 *height = image->Height;
1291 *depth = 6;
1292 break;
1293 default:
1294 *width = image->Width;
1295 *height = image->Height;
1296 *depth = image->Depth;
1297 break;
1298 }
1299 }
1300
1301 /**
1302 * Can the image be pulled into a unified mipmap tree? This mirrors
1303 * the completeness test in a lot of ways.
1304 *
1305 * Not sure whether I want to pass gl_texture_image here.
1306 */
1307 bool
1308 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1309 struct gl_texture_image *image)
1310 {
1311 struct intel_texture_image *intelImage = intel_texture_image(image);
1312 GLuint level = intelImage->base.Base.Level;
1313 int width, height, depth;
1314
1315 /* glTexImage* choose the texture object based on the target passed in, and
1316 * objects can't change targets over their lifetimes, so this should be
1317 * true.
1318 */
1319 assert(image->TexObject->Target == mt->target);
1320
1321 mesa_format mt_format = mt->format;
1322 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1323 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1324 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1325 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1326 if (mt->etc_format != MESA_FORMAT_NONE)
1327 mt_format = mt->etc_format;
1328
1329 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1330 _mesa_get_srgb_format_linear(mt_format))
1331 return false;
1332
1333 intel_get_image_dims(image, &width, &height, &depth);
1334
1335 if (mt->target == GL_TEXTURE_CUBE_MAP)
1336 depth = 6;
1337
1338 if (level >= mt->surf.levels)
1339 return false;
1340
1341 const unsigned level_depth =
1342 mt->surf.dim == ISL_SURF_DIM_3D ?
1343 minify(mt->surf.logical_level0_px.depth, level) :
1344 mt->surf.logical_level0_px.array_len;
1345
1346 return width == minify(mt->surf.logical_level0_px.width, level) &&
1347 height == minify(mt->surf.logical_level0_px.height, level) &&
1348 depth == level_depth &&
1349 MAX2(image->NumSamples, 1) == mt->surf.samples;
1350 }
1351
1352 void
1353 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1354 GLuint level, GLuint slice,
1355 GLuint *x, GLuint *y)
1356 {
1357 if (level == 0 && slice == 0) {
1358 *x = mt->level[0].level_x;
1359 *y = mt->level[0].level_y;
1360 return;
1361 }
1362
1363 uint32_t x_offset_sa, y_offset_sa;
1364
1365 /* Miptree itself can have an offset only if it represents a single
1366 * slice in an imported buffer object.
1367 * See intel_miptree_create_for_dri_image().
1368 */
1369 assert(mt->level[0].level_x == 0);
1370 assert(mt->level[0].level_y == 0);
1371
1372 /* Given level is relative to level zero while the miptree may be
1373 * represent just a subset of all levels starting from 'first_level'.
1374 */
1375 assert(level >= mt->first_level);
1376 level -= mt->first_level;
1377
1378 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1379 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1380 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1381 &x_offset_sa, &y_offset_sa);
1382
1383 *x = x_offset_sa;
1384 *y = y_offset_sa;
1385 }
1386
1387
1388 /**
1389 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1390 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1391 * and tile_h is set to 1.
1392 */
1393 void
1394 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1395 uint32_t *tile_w, uint32_t *tile_h)
1396 {
1397 switch (tiling) {
1398 case ISL_TILING_X:
1399 *tile_w = 512;
1400 *tile_h = 8;
1401 break;
1402 case ISL_TILING_Y0:
1403 *tile_w = 128;
1404 *tile_h = 32;
1405 break;
1406 case ISL_TILING_LINEAR:
1407 *tile_w = cpp;
1408 *tile_h = 1;
1409 break;
1410 default:
1411 unreachable("not reached");
1412 }
1413 }
1414
1415
1416 /**
1417 * This function computes masks that may be used to select the bits of the X
1418 * and Y coordinates that indicate the offset within a tile. If the BO is
1419 * untiled, the masks are set to 0.
1420 */
1421 void
1422 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1423 uint32_t *mask_x, uint32_t *mask_y)
1424 {
1425 uint32_t tile_w_bytes, tile_h;
1426
1427 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1428
1429 *mask_x = tile_w_bytes / cpp - 1;
1430 *mask_y = tile_h - 1;
1431 }
1432
1433 /**
1434 * Compute the offset (in bytes) from the start of the BO to the given x
1435 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1436 * multiples of the tile size.
1437 */
1438 uint32_t
1439 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1440 uint32_t x, uint32_t y)
1441 {
1442 int cpp = mt->cpp;
1443 uint32_t pitch = mt->surf.row_pitch;
1444
1445 switch (mt->surf.tiling) {
1446 default:
1447 unreachable("not reached");
1448 case ISL_TILING_LINEAR:
1449 return y * pitch + x * cpp;
1450 case ISL_TILING_X:
1451 assert((x % (512 / cpp)) == 0);
1452 assert((y % 8) == 0);
1453 return y * pitch + x / (512 / cpp) * 4096;
1454 case ISL_TILING_Y0:
1455 assert((x % (128 / cpp)) == 0);
1456 assert((y % 32) == 0);
1457 return y * pitch + x / (128 / cpp) * 4096;
1458 }
1459 }
1460
1461 /**
1462 * Rendering with tiled buffers requires that the base address of the buffer
1463 * be aligned to a page boundary. For renderbuffers, and sometimes with
1464 * textures, we may want the surface to point at a texture image level that
1465 * isn't at a page boundary.
1466 *
1467 * This function returns an appropriately-aligned base offset
1468 * according to the tiling restrictions, plus any required x/y offset
1469 * from there.
1470 */
1471 uint32_t
1472 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1473 GLuint level, GLuint slice,
1474 uint32_t *tile_x,
1475 uint32_t *tile_y)
1476 {
1477 uint32_t x, y;
1478 uint32_t mask_x, mask_y;
1479
1480 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1481 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1482
1483 *tile_x = x & mask_x;
1484 *tile_y = y & mask_y;
1485
1486 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1487 }
1488
1489 static void
1490 intel_miptree_copy_slice_sw(struct brw_context *brw,
1491 struct intel_mipmap_tree *src_mt,
1492 unsigned src_level, unsigned src_layer,
1493 struct intel_mipmap_tree *dst_mt,
1494 unsigned dst_level, unsigned dst_layer,
1495 unsigned width, unsigned height)
1496 {
1497 void *src, *dst;
1498 ptrdiff_t src_stride, dst_stride;
1499 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1500
1501 intel_miptree_map(brw, src_mt,
1502 src_level, src_layer,
1503 0, 0,
1504 width, height,
1505 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1506 &src, &src_stride);
1507
1508 intel_miptree_map(brw, dst_mt,
1509 dst_level, dst_layer,
1510 0, 0,
1511 width, height,
1512 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1513 BRW_MAP_DIRECT_BIT,
1514 &dst, &dst_stride);
1515
1516 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1517 _mesa_get_format_name(src_mt->format),
1518 src_mt, src, src_stride,
1519 _mesa_get_format_name(dst_mt->format),
1520 dst_mt, dst, dst_stride,
1521 width, height);
1522
1523 int row_size = cpp * width;
1524 if (src_stride == row_size &&
1525 dst_stride == row_size) {
1526 memcpy(dst, src, row_size * height);
1527 } else {
1528 for (int i = 0; i < height; i++) {
1529 memcpy(dst, src, row_size);
1530 dst += dst_stride;
1531 src += src_stride;
1532 }
1533 }
1534
1535 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1536 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1537
1538 /* Don't forget to copy the stencil data over, too. We could have skipped
1539 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1540 * shuffling the two data sources in/out of temporary storage instead of
1541 * the direct mapping we get this way.
1542 */
1543 if (dst_mt->stencil_mt) {
1544 assert(src_mt->stencil_mt);
1545 intel_miptree_copy_slice_sw(brw,
1546 src_mt->stencil_mt, src_level, src_layer,
1547 dst_mt->stencil_mt, dst_level, dst_layer,
1548 width, height);
1549 }
1550 }
1551
1552 void
1553 intel_miptree_copy_slice(struct brw_context *brw,
1554 struct intel_mipmap_tree *src_mt,
1555 unsigned src_level, unsigned src_layer,
1556 struct intel_mipmap_tree *dst_mt,
1557 unsigned dst_level, unsigned dst_layer)
1558
1559 {
1560 mesa_format format = src_mt->format;
1561 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1562 src_level - src_mt->first_level);
1563 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1564 src_level - src_mt->first_level);
1565
1566 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1567 src_level - src_mt->first_level));
1568
1569 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1570 _mesa_get_srgb_format_linear(dst_mt->format));
1571
1572 if (dst_mt->compressed) {
1573 unsigned int i, j;
1574 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1575 height = ALIGN_NPOT(height, j) / j;
1576 width = ALIGN_NPOT(width, i) / i;
1577 }
1578
1579 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1580 * below won't apply since we can't do the depth's Y tiling or the
1581 * stencil's W tiling in the blitter.
1582 */
1583 if (src_mt->stencil_mt) {
1584 intel_miptree_copy_slice_sw(brw,
1585 src_mt, src_level, src_layer,
1586 dst_mt, dst_level, dst_layer,
1587 width, height);
1588 return;
1589 }
1590
1591 uint32_t dst_x, dst_y, src_x, src_y;
1592 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1593 &dst_x, &dst_y);
1594 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1595 &src_x, &src_y);
1596
1597 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1598 _mesa_get_format_name(src_mt->format),
1599 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1600 _mesa_get_format_name(dst_mt->format),
1601 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1602 width, height);
1603
1604 if (!intel_miptree_blit(brw,
1605 src_mt, src_level, src_layer, 0, 0, false,
1606 dst_mt, dst_level, dst_layer, 0, 0, false,
1607 width, height, COLOR_LOGICOP_COPY)) {
1608 perf_debug("miptree validate blit for %s failed\n",
1609 _mesa_get_format_name(format));
1610
1611 intel_miptree_copy_slice_sw(brw,
1612 src_mt, src_level, src_layer,
1613 dst_mt, dst_level, dst_layer,
1614 width, height);
1615 }
1616 }
1617
1618 /**
1619 * Copies the image's current data to the given miptree, and associates that
1620 * miptree with the image.
1621 */
1622 void
1623 intel_miptree_copy_teximage(struct brw_context *brw,
1624 struct intel_texture_image *intelImage,
1625 struct intel_mipmap_tree *dst_mt)
1626 {
1627 struct intel_mipmap_tree *src_mt = intelImage->mt;
1628 struct intel_texture_object *intel_obj =
1629 intel_texture_object(intelImage->base.Base.TexObject);
1630 int level = intelImage->base.Base.Level;
1631 const unsigned face = intelImage->base.Base.Face;
1632 unsigned start_layer, end_layer;
1633
1634 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1635 assert(face == 0);
1636 assert(intelImage->base.Base.Height);
1637 start_layer = 0;
1638 end_layer = intelImage->base.Base.Height - 1;
1639 } else if (face > 0) {
1640 start_layer = face;
1641 end_layer = face;
1642 } else {
1643 assert(intelImage->base.Base.Depth);
1644 start_layer = 0;
1645 end_layer = intelImage->base.Base.Depth - 1;
1646 }
1647
1648 for (unsigned i = start_layer; i <= end_layer; i++) {
1649 intel_miptree_copy_slice(brw,
1650 src_mt, level, i,
1651 dst_mt, level, i);
1652 }
1653
1654 intel_miptree_reference(&intelImage->mt, dst_mt);
1655 intel_obj->needs_validate = true;
1656 }
1657
1658 static struct intel_miptree_aux_buffer *
1659 intel_alloc_aux_buffer(struct brw_context *brw,
1660 const struct isl_surf *aux_surf,
1661 bool wants_memset,
1662 uint8_t memset_value)
1663 {
1664 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1665 if (!buf)
1666 return false;
1667
1668 uint64_t size = aux_surf->size;
1669
1670 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1671 if (has_indirect_clear) {
1672 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1673 * will set a pointer to a dword somewhere that contains the color. So,
1674 * allocate the space for the clear color value here on the aux buffer.
1675 */
1676 buf->clear_color_offset = size;
1677 size += brw->isl_dev.ss.clear_color_state_size;
1678 }
1679
1680 /* If the buffer needs to be initialised (requiring the buffer to be
1681 * immediately mapped to cpu space for writing), do not use the gpu access
1682 * flag which can cause an unnecessary delay if the backing pages happened
1683 * to be just used by the GPU.
1684 */
1685 const bool alloc_zeroed = wants_memset && memset_value == 0;
1686 const bool needs_memset =
1687 !alloc_zeroed && (wants_memset || has_indirect_clear);
1688 const uint32_t alloc_flags =
1689 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1690
1691 /* ISL has stricter set of alignment rules then the drm allocator.
1692 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1693 * trying to recalculate based on different format block sizes.
1694 */
1695 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1696 I915_TILING_Y, aux_surf->row_pitch,
1697 alloc_flags);
1698 if (!buf->bo) {
1699 free(buf);
1700 return NULL;
1701 }
1702
1703 /* Initialize the bo to the desired value */
1704 if (needs_memset) {
1705 assert(!(alloc_flags & BO_ALLOC_BUSY));
1706
1707 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1708 if (map == NULL) {
1709 intel_miptree_aux_buffer_free(buf);
1710 return NULL;
1711 }
1712
1713 /* Memset the aux_surf portion of the BO. */
1714 if (wants_memset)
1715 memset(map, memset_value, aux_surf->size);
1716
1717 /* Zero the indirect clear color to match ::fast_clear_color. */
1718 if (has_indirect_clear) {
1719 memset((char *)map + buf->clear_color_offset, 0,
1720 brw->isl_dev.ss.clear_color_state_size);
1721 }
1722
1723 brw_bo_unmap(buf->bo);
1724 }
1725
1726 if (has_indirect_clear) {
1727 buf->clear_color_bo = buf->bo;
1728 brw_bo_reference(buf->clear_color_bo);
1729 }
1730
1731 buf->surf = *aux_surf;
1732
1733 return buf;
1734 }
1735
1736 static bool
1737 intel_miptree_alloc_mcs(struct brw_context *brw,
1738 struct intel_mipmap_tree *mt,
1739 GLuint num_samples)
1740 {
1741 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1742 assert(mt->aux_buf == NULL);
1743 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1744
1745 /* Multisampled miptrees are only supported for single level. */
1746 assert(mt->first_level == 0);
1747 enum isl_aux_state **aux_state =
1748 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1749 if (!aux_state)
1750 return false;
1751
1752 struct isl_surf temp_mcs_surf;
1753
1754 MAYBE_UNUSED bool ok =
1755 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1756 assert(ok);
1757
1758 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1759 *
1760 * When MCS buffer is enabled and bound to MSRT, it is required that it
1761 * is cleared prior to any rendering.
1762 *
1763 * Since we don't use the MCS buffer for any purpose other than rendering,
1764 * it makes sense to just clear it immediately upon allocation.
1765 *
1766 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1767 */
1768 mt->aux_buf = intel_alloc_aux_buffer(brw, &temp_mcs_surf, true, 0xFF);
1769 if (!mt->aux_buf) {
1770 free(aux_state);
1771 return false;
1772 }
1773
1774 mt->aux_state = aux_state;
1775
1776 return true;
1777 }
1778
1779 bool
1780 intel_miptree_alloc_ccs(struct brw_context *brw,
1781 struct intel_mipmap_tree *mt)
1782 {
1783 assert(mt->aux_buf == NULL);
1784 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1785 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1786
1787 struct isl_surf temp_ccs_surf;
1788
1789 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1790 return false;
1791
1792 assert(temp_ccs_surf.size &&
1793 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1794
1795 enum isl_aux_state **aux_state =
1796 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1797 if (!aux_state)
1798 return false;
1799
1800 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1801 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1802 *
1803 * "If Software wants to enable Color Compression without Fast clear,
1804 * Software needs to initialize MCS with zeros."
1805 *
1806 * A CCS value of 0 indicates that the corresponding block is in the
1807 * pass-through state which is what we want.
1808 *
1809 * For CCS_D, do the same thing. On gen9+, this avoids having any undefined
1810 * bits in the aux buffer.
1811 */
1812 mt->aux_buf = intel_alloc_aux_buffer(brw, &temp_ccs_surf, true, 0);
1813 if (!mt->aux_buf) {
1814 free(aux_state);
1815 return false;
1816 }
1817
1818 mt->aux_state = aux_state;
1819
1820 return true;
1821 }
1822
1823 /**
1824 * Helper for intel_miptree_alloc_hiz() that sets
1825 * \c mt->level[level].has_hiz. Return true if and only if
1826 * \c has_hiz was set.
1827 */
1828 static bool
1829 intel_miptree_level_enable_hiz(struct brw_context *brw,
1830 struct intel_mipmap_tree *mt,
1831 uint32_t level)
1832 {
1833 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1834
1835 assert(mt->aux_buf);
1836 assert(mt->surf.size > 0);
1837
1838 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1839 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1840 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1841
1842 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1843 * and the height is 4 aligned. This allows our HiZ support
1844 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1845 * we can grow the width & height to allow the HiZ op to
1846 * force the proper size alignments.
1847 */
1848 if (level > 0 && ((width & 7) || (height & 3))) {
1849 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1850 return false;
1851 }
1852 }
1853
1854 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1855 mt->level[level].has_hiz = true;
1856 return true;
1857 }
1858
1859 bool
1860 intel_miptree_alloc_hiz(struct brw_context *brw,
1861 struct intel_mipmap_tree *mt)
1862 {
1863 assert(mt->aux_buf == NULL);
1864 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1865
1866 enum isl_aux_state **aux_state =
1867 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1868 if (!aux_state)
1869 return false;
1870
1871 struct isl_surf temp_hiz_surf;
1872
1873 MAYBE_UNUSED bool ok =
1874 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1875 assert(ok);
1876
1877 mt->aux_buf = intel_alloc_aux_buffer(brw, &temp_hiz_surf, false, 0);
1878
1879 if (!mt->aux_buf) {
1880 free(aux_state);
1881 return false;
1882 }
1883
1884 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1885 intel_miptree_level_enable_hiz(brw, mt, level);
1886
1887 mt->aux_state = aux_state;
1888
1889 return true;
1890 }
1891
1892
1893 /**
1894 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1895 *
1896 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1897 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1898 * compress clear color so we wait until an actual fast-clear to allocate it.
1899 */
1900 static bool
1901 intel_miptree_alloc_aux(struct brw_context *brw,
1902 struct intel_mipmap_tree *mt)
1903 {
1904 switch (mt->aux_usage) {
1905 case ISL_AUX_USAGE_NONE:
1906 return true;
1907
1908 case ISL_AUX_USAGE_HIZ:
1909 assert(!_mesa_is_format_color_format(mt->format));
1910 if (!intel_miptree_alloc_hiz(brw, mt))
1911 return false;
1912 return true;
1913
1914 case ISL_AUX_USAGE_MCS:
1915 assert(_mesa_is_format_color_format(mt->format));
1916 assert(mt->surf.samples > 1);
1917 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1918 return false;
1919 return true;
1920
1921 case ISL_AUX_USAGE_CCS_D:
1922 /* Since CCS_D can only compress clear color so we wait until an actual
1923 * fast-clear to allocate it.
1924 */
1925 return true;
1926
1927 case ISL_AUX_USAGE_CCS_E:
1928 assert(_mesa_is_format_color_format(mt->format));
1929 assert(mt->surf.samples == 1);
1930 if (!intel_miptree_alloc_ccs(brw, mt))
1931 return false;
1932 return true;
1933 }
1934
1935 unreachable("Invalid aux usage");
1936 }
1937
1938
1939 /**
1940 * Can the miptree sample using the hiz buffer?
1941 */
1942 bool
1943 intel_miptree_sample_with_hiz(struct brw_context *brw,
1944 struct intel_mipmap_tree *mt)
1945 {
1946 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1947
1948 if (!devinfo->has_sample_with_hiz) {
1949 return false;
1950 }
1951
1952 if (!mt->aux_buf) {
1953 return false;
1954 }
1955
1956 /* It seems the hardware won't fallback to the depth buffer if some of the
1957 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1958 * of the texture to be HiZ enabled.
1959 */
1960 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1961 if (!intel_miptree_level_has_hiz(mt, level))
1962 return false;
1963 }
1964
1965 /* If compressed multisampling is enabled, then we use it for the auxiliary
1966 * buffer instead.
1967 *
1968 * From the BDW PRM (Volume 2d: Command Reference: Structures
1969 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1970 *
1971 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1972 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1973 *
1974 * There is no such blurb for 1D textures, but there is sufficient evidence
1975 * that this is broken on SKL+.
1976 */
1977 return (mt->surf.samples == 1 &&
1978 mt->target != GL_TEXTURE_3D &&
1979 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1980 }
1981
1982 /**
1983 * Does the miptree slice have hiz enabled?
1984 */
1985 bool
1986 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1987 {
1988 intel_miptree_check_level_layer(mt, level, 0);
1989 return mt->level[level].has_hiz;
1990 }
1991
1992 static inline uint32_t
1993 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1994 uint32_t start_level, uint32_t num_levels)
1995 {
1996 assert(start_level >= mt->first_level);
1997 assert(start_level <= mt->last_level);
1998
1999 if (num_levels == INTEL_REMAINING_LAYERS)
2000 num_levels = mt->last_level - start_level + 1;
2001 /* Check for overflow */
2002 assert(start_level + num_levels >= start_level);
2003 assert(start_level + num_levels <= mt->last_level + 1);
2004
2005 return num_levels;
2006 }
2007
2008 static inline uint32_t
2009 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
2010 uint32_t start_layer, uint32_t num_layers)
2011 {
2012 assert(level <= mt->last_level);
2013
2014 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
2015 assert(start_layer < total_num_layers);
2016 if (num_layers == INTEL_REMAINING_LAYERS)
2017 num_layers = total_num_layers - start_layer;
2018 /* Check for overflow */
2019 assert(start_layer + num_layers >= start_layer);
2020 assert(start_layer + num_layers <= total_num_layers);
2021
2022 return num_layers;
2023 }
2024
2025 bool
2026 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2027 unsigned start_level, unsigned num_levels,
2028 unsigned start_layer, unsigned num_layers)
2029 {
2030 assert(_mesa_is_format_color_format(mt->format));
2031
2032 if (!mt->aux_buf)
2033 return false;
2034
2035 /* Clamp the level range to fit the miptree */
2036 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2037
2038 for (uint32_t l = 0; l < num_levels; l++) {
2039 const uint32_t level = start_level + l;
2040 const uint32_t level_layers =
2041 miptree_layer_range_length(mt, level, start_layer, num_layers);
2042 for (unsigned a = 0; a < level_layers; a++) {
2043 enum isl_aux_state aux_state =
2044 intel_miptree_get_aux_state(mt, level, start_layer + a);
2045 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2046 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2047 return true;
2048 }
2049 }
2050
2051 return false;
2052 }
2053
2054 static void
2055 intel_miptree_check_color_resolve(const struct brw_context *brw,
2056 const struct intel_mipmap_tree *mt,
2057 unsigned level, unsigned layer)
2058 {
2059 if (!mt->aux_buf)
2060 return;
2061
2062 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2063 assert(brw->screen->devinfo.gen >= 8 ||
2064 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2065
2066 /* Compression of arrayed msaa surfaces is supported. */
2067 if (mt->surf.samples > 1)
2068 return;
2069
2070 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2071 assert(brw->screen->devinfo.gen >= 8 ||
2072 (layer == 0 &&
2073 mt->surf.logical_level0_px.depth == 1 &&
2074 mt->surf.logical_level0_px.array_len == 1));
2075
2076 (void)level;
2077 (void)layer;
2078 }
2079
2080 static enum isl_aux_op
2081 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2082 enum isl_aux_usage aux_usage,
2083 bool fast_clear_supported)
2084 {
2085 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2086
2087 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2088
2089 assert(ccs_supported == fast_clear_supported);
2090
2091 switch (aux_state) {
2092 case ISL_AUX_STATE_CLEAR:
2093 case ISL_AUX_STATE_PARTIAL_CLEAR:
2094 if (!ccs_supported)
2095 return ISL_AUX_OP_FULL_RESOLVE;
2096 else
2097 return ISL_AUX_OP_NONE;
2098
2099 case ISL_AUX_STATE_PASS_THROUGH:
2100 return ISL_AUX_OP_NONE;
2101
2102 case ISL_AUX_STATE_RESOLVED:
2103 case ISL_AUX_STATE_AUX_INVALID:
2104 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2105 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2106 break;
2107 }
2108
2109 unreachable("Invalid aux state for CCS_D");
2110 }
2111
2112 static enum isl_aux_op
2113 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2114 enum isl_aux_usage aux_usage,
2115 bool fast_clear_supported)
2116 {
2117 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2118 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2119 aux_usage == ISL_AUX_USAGE_CCS_D ||
2120 aux_usage == ISL_AUX_USAGE_CCS_E);
2121
2122 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2123 assert(fast_clear_supported);
2124
2125 switch (aux_state) {
2126 case ISL_AUX_STATE_CLEAR:
2127 case ISL_AUX_STATE_PARTIAL_CLEAR:
2128 if (fast_clear_supported)
2129 return ISL_AUX_OP_NONE;
2130 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2131 return ISL_AUX_OP_PARTIAL_RESOLVE;
2132 else
2133 return ISL_AUX_OP_FULL_RESOLVE;
2134
2135 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2136 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2137 return ISL_AUX_OP_FULL_RESOLVE;
2138 else if (!fast_clear_supported)
2139 return ISL_AUX_OP_PARTIAL_RESOLVE;
2140 else
2141 return ISL_AUX_OP_NONE;
2142
2143 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2144 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2145 return ISL_AUX_OP_FULL_RESOLVE;
2146 else
2147 return ISL_AUX_OP_NONE;
2148
2149 case ISL_AUX_STATE_PASS_THROUGH:
2150 return ISL_AUX_OP_NONE;
2151
2152 case ISL_AUX_STATE_RESOLVED:
2153 case ISL_AUX_STATE_AUX_INVALID:
2154 break;
2155 }
2156
2157 unreachable("Invalid aux state for CCS_E");
2158 }
2159
2160 static void
2161 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2162 struct intel_mipmap_tree *mt,
2163 uint32_t level, uint32_t layer,
2164 enum isl_aux_usage aux_usage,
2165 bool fast_clear_supported)
2166 {
2167 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2168
2169 enum isl_aux_op resolve_op;
2170 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2171 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2172 fast_clear_supported);
2173 } else {
2174 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2175 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2176 fast_clear_supported);
2177 }
2178
2179 if (resolve_op != ISL_AUX_OP_NONE) {
2180 intel_miptree_check_color_resolve(brw, mt, level, layer);
2181 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2182
2183 switch (resolve_op) {
2184 case ISL_AUX_OP_FULL_RESOLVE:
2185 /* The CCS full resolve operation destroys the CCS and sets it to the
2186 * pass-through state. (You can also think of this as being both a
2187 * resolve and an ambiguate in one operation.)
2188 */
2189 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2190 ISL_AUX_STATE_PASS_THROUGH);
2191 break;
2192
2193 case ISL_AUX_OP_PARTIAL_RESOLVE:
2194 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2195 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2196 break;
2197
2198 default:
2199 unreachable("Invalid resolve op");
2200 }
2201 }
2202 }
2203
2204 static void
2205 intel_miptree_finish_ccs_write(struct brw_context *brw,
2206 struct intel_mipmap_tree *mt,
2207 uint32_t level, uint32_t layer,
2208 enum isl_aux_usage aux_usage)
2209 {
2210 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2211 aux_usage == ISL_AUX_USAGE_CCS_D ||
2212 aux_usage == ISL_AUX_USAGE_CCS_E);
2213
2214 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2215
2216 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2217 switch (aux_state) {
2218 case ISL_AUX_STATE_CLEAR:
2219 case ISL_AUX_STATE_PARTIAL_CLEAR:
2220 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2221 aux_usage == ISL_AUX_USAGE_CCS_D);
2222
2223 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2224 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2225 ISL_AUX_STATE_COMPRESSED_CLEAR);
2226 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2227 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2228 ISL_AUX_STATE_PARTIAL_CLEAR);
2229 }
2230 break;
2231
2232 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2233 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2234 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2235 break; /* Nothing to do */
2236
2237 case ISL_AUX_STATE_PASS_THROUGH:
2238 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2239 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2240 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2241 } else {
2242 /* Nothing to do */
2243 }
2244 break;
2245
2246 case ISL_AUX_STATE_RESOLVED:
2247 case ISL_AUX_STATE_AUX_INVALID:
2248 unreachable("Invalid aux state for CCS_E");
2249 }
2250 } else {
2251 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2252 /* CCS_D is a bit simpler */
2253 switch (aux_state) {
2254 case ISL_AUX_STATE_CLEAR:
2255 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2256 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2257 ISL_AUX_STATE_PARTIAL_CLEAR);
2258 break;
2259
2260 case ISL_AUX_STATE_PARTIAL_CLEAR:
2261 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2262 break; /* Nothing to do */
2263
2264 case ISL_AUX_STATE_PASS_THROUGH:
2265 /* Nothing to do */
2266 break;
2267
2268 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2269 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2270 case ISL_AUX_STATE_RESOLVED:
2271 case ISL_AUX_STATE_AUX_INVALID:
2272 unreachable("Invalid aux state for CCS_D");
2273 }
2274 }
2275 }
2276
2277 static void
2278 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2279 struct intel_mipmap_tree *mt,
2280 uint32_t layer,
2281 enum isl_aux_usage aux_usage,
2282 bool fast_clear_supported)
2283 {
2284 assert(aux_usage == ISL_AUX_USAGE_MCS);
2285
2286 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2287 case ISL_AUX_STATE_CLEAR:
2288 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2289 if (!fast_clear_supported) {
2290 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2291 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2292 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2293 }
2294 break;
2295
2296 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2297 break; /* Nothing to do */
2298
2299 case ISL_AUX_STATE_RESOLVED:
2300 case ISL_AUX_STATE_PASS_THROUGH:
2301 case ISL_AUX_STATE_AUX_INVALID:
2302 case ISL_AUX_STATE_PARTIAL_CLEAR:
2303 unreachable("Invalid aux state for MCS");
2304 }
2305 }
2306
2307 static void
2308 intel_miptree_finish_mcs_write(struct brw_context *brw,
2309 struct intel_mipmap_tree *mt,
2310 uint32_t layer,
2311 enum isl_aux_usage aux_usage)
2312 {
2313 assert(aux_usage == ISL_AUX_USAGE_MCS);
2314
2315 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2316 case ISL_AUX_STATE_CLEAR:
2317 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2318 ISL_AUX_STATE_COMPRESSED_CLEAR);
2319 break;
2320
2321 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2322 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2323 break; /* Nothing to do */
2324
2325 case ISL_AUX_STATE_RESOLVED:
2326 case ISL_AUX_STATE_PASS_THROUGH:
2327 case ISL_AUX_STATE_AUX_INVALID:
2328 case ISL_AUX_STATE_PARTIAL_CLEAR:
2329 unreachable("Invalid aux state for MCS");
2330 }
2331 }
2332
2333 static void
2334 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2335 struct intel_mipmap_tree *mt,
2336 uint32_t level, uint32_t layer,
2337 enum isl_aux_usage aux_usage,
2338 bool fast_clear_supported)
2339 {
2340 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2341
2342 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2343 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2344 case ISL_AUX_STATE_CLEAR:
2345 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2346 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2347 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2348 break;
2349
2350 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2351 if (aux_usage != ISL_AUX_USAGE_HIZ)
2352 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2353 break;
2354
2355 case ISL_AUX_STATE_PASS_THROUGH:
2356 case ISL_AUX_STATE_RESOLVED:
2357 break;
2358
2359 case ISL_AUX_STATE_AUX_INVALID:
2360 if (aux_usage == ISL_AUX_USAGE_HIZ)
2361 hiz_op = ISL_AUX_OP_AMBIGUATE;
2362 break;
2363
2364 case ISL_AUX_STATE_PARTIAL_CLEAR:
2365 unreachable("Invalid HiZ state");
2366 }
2367
2368 if (hiz_op != ISL_AUX_OP_NONE) {
2369 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2370
2371 switch (hiz_op) {
2372 case ISL_AUX_OP_FULL_RESOLVE:
2373 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2374 ISL_AUX_STATE_RESOLVED);
2375 break;
2376
2377 case ISL_AUX_OP_AMBIGUATE:
2378 /* The HiZ resolve operation is actually an ambiguate */
2379 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2380 ISL_AUX_STATE_PASS_THROUGH);
2381 break;
2382
2383 default:
2384 unreachable("Invalid HiZ op");
2385 }
2386 }
2387 }
2388
2389 static void
2390 intel_miptree_finish_hiz_write(struct brw_context *brw,
2391 struct intel_mipmap_tree *mt,
2392 uint32_t level, uint32_t layer,
2393 enum isl_aux_usage aux_usage)
2394 {
2395 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2396
2397 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2398 case ISL_AUX_STATE_CLEAR:
2399 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2400 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2401 ISL_AUX_STATE_COMPRESSED_CLEAR);
2402 break;
2403
2404 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2405 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2406 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2407 break; /* Nothing to do */
2408
2409 case ISL_AUX_STATE_RESOLVED:
2410 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2411 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2412 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2413 } else {
2414 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2415 ISL_AUX_STATE_AUX_INVALID);
2416 }
2417 break;
2418
2419 case ISL_AUX_STATE_PASS_THROUGH:
2420 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2421 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2422 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2423 }
2424 break;
2425
2426 case ISL_AUX_STATE_AUX_INVALID:
2427 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2428 break;
2429
2430 case ISL_AUX_STATE_PARTIAL_CLEAR:
2431 unreachable("Invalid HiZ state");
2432 }
2433 }
2434
2435 void
2436 intel_miptree_prepare_access(struct brw_context *brw,
2437 struct intel_mipmap_tree *mt,
2438 uint32_t start_level, uint32_t num_levels,
2439 uint32_t start_layer, uint32_t num_layers,
2440 enum isl_aux_usage aux_usage,
2441 bool fast_clear_supported)
2442 {
2443 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2444
2445 switch (mt->aux_usage) {
2446 case ISL_AUX_USAGE_NONE:
2447 /* Nothing to do */
2448 break;
2449
2450 case ISL_AUX_USAGE_MCS:
2451 assert(mt->aux_buf);
2452 assert(start_level == 0 && num_levels == 1);
2453 const uint32_t level_layers =
2454 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2455 for (uint32_t a = 0; a < level_layers; a++) {
2456 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2457 aux_usage, fast_clear_supported);
2458 }
2459 break;
2460
2461 case ISL_AUX_USAGE_CCS_D:
2462 case ISL_AUX_USAGE_CCS_E:
2463 if (!mt->aux_buf)
2464 return;
2465
2466 for (uint32_t l = 0; l < num_levels; l++) {
2467 const uint32_t level = start_level + l;
2468 const uint32_t level_layers =
2469 miptree_layer_range_length(mt, level, start_layer, num_layers);
2470 for (uint32_t a = 0; a < level_layers; a++) {
2471 intel_miptree_prepare_ccs_access(brw, mt, level,
2472 start_layer + a,
2473 aux_usage, fast_clear_supported);
2474 }
2475 }
2476 break;
2477
2478 case ISL_AUX_USAGE_HIZ:
2479 assert(mt->aux_buf);
2480 for (uint32_t l = 0; l < num_levels; l++) {
2481 const uint32_t level = start_level + l;
2482 if (!intel_miptree_level_has_hiz(mt, level))
2483 continue;
2484
2485 const uint32_t level_layers =
2486 miptree_layer_range_length(mt, level, start_layer, num_layers);
2487 for (uint32_t a = 0; a < level_layers; a++) {
2488 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2489 aux_usage, fast_clear_supported);
2490 }
2491 }
2492 break;
2493
2494 default:
2495 unreachable("Invalid aux usage");
2496 }
2497 }
2498
2499 void
2500 intel_miptree_finish_write(struct brw_context *brw,
2501 struct intel_mipmap_tree *mt, uint32_t level,
2502 uint32_t start_layer, uint32_t num_layers,
2503 enum isl_aux_usage aux_usage)
2504 {
2505 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2506
2507 switch (mt->aux_usage) {
2508 case ISL_AUX_USAGE_NONE:
2509 /* Nothing to do */
2510 break;
2511
2512 case ISL_AUX_USAGE_MCS:
2513 assert(mt->aux_buf);
2514 for (uint32_t a = 0; a < num_layers; a++) {
2515 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2516 aux_usage);
2517 }
2518 break;
2519
2520 case ISL_AUX_USAGE_CCS_D:
2521 case ISL_AUX_USAGE_CCS_E:
2522 if (!mt->aux_buf)
2523 return;
2524
2525 for (uint32_t a = 0; a < num_layers; a++) {
2526 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2527 aux_usage);
2528 }
2529 break;
2530
2531 case ISL_AUX_USAGE_HIZ:
2532 if (!intel_miptree_level_has_hiz(mt, level))
2533 return;
2534
2535 for (uint32_t a = 0; a < num_layers; a++) {
2536 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2537 aux_usage);
2538 }
2539 break;
2540
2541 default:
2542 unreachable("Invavlid aux usage");
2543 }
2544 }
2545
2546 enum isl_aux_state
2547 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2548 uint32_t level, uint32_t layer)
2549 {
2550 intel_miptree_check_level_layer(mt, level, layer);
2551
2552 if (_mesa_is_format_color_format(mt->format)) {
2553 assert(mt->aux_buf != NULL);
2554 assert(mt->surf.samples == 1 ||
2555 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2556 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2557 unreachable("Cannot get aux state for stencil");
2558 } else {
2559 assert(intel_miptree_level_has_hiz(mt, level));
2560 }
2561
2562 return mt->aux_state[level][layer];
2563 }
2564
2565 void
2566 intel_miptree_set_aux_state(struct brw_context *brw,
2567 struct intel_mipmap_tree *mt, uint32_t level,
2568 uint32_t start_layer, uint32_t num_layers,
2569 enum isl_aux_state aux_state)
2570 {
2571 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2572
2573 if (_mesa_is_format_color_format(mt->format)) {
2574 assert(mt->aux_buf != NULL);
2575 assert(mt->surf.samples == 1 ||
2576 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2577 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2578 unreachable("Cannot get aux state for stencil");
2579 } else {
2580 assert(intel_miptree_level_has_hiz(mt, level));
2581 }
2582
2583 for (unsigned a = 0; a < num_layers; a++) {
2584 if (mt->aux_state[level][start_layer + a] != aux_state) {
2585 mt->aux_state[level][start_layer + a] = aux_state;
2586 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2587 }
2588 }
2589 }
2590
2591 /* On Gen9 color buffers may be compressed by the hardware (lossless
2592 * compression). There are, however, format restrictions and care needs to be
2593 * taken that the sampler engine is capable for re-interpreting a buffer with
2594 * format different the buffer was originally written with.
2595 *
2596 * For example, SRGB formats are not compressible and the sampler engine isn't
2597 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2598 * color buffer needs to be resolved so that the sampling surface can be
2599 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2600 * set).
2601 */
2602 static bool
2603 can_texture_with_ccs(struct brw_context *brw,
2604 struct intel_mipmap_tree *mt,
2605 enum isl_format view_format)
2606 {
2607 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2608 return false;
2609
2610 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2611 mt, view_format)) {
2612 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2613 isl_format_get_layout(view_format)->name,
2614 _mesa_get_format_name(mt->format));
2615 return false;
2616 }
2617
2618 return true;
2619 }
2620
2621 enum isl_aux_usage
2622 intel_miptree_texture_aux_usage(struct brw_context *brw,
2623 struct intel_mipmap_tree *mt,
2624 enum isl_format view_format)
2625 {
2626 switch (mt->aux_usage) {
2627 case ISL_AUX_USAGE_HIZ:
2628 if (intel_miptree_sample_with_hiz(brw, mt))
2629 return ISL_AUX_USAGE_HIZ;
2630 break;
2631
2632 case ISL_AUX_USAGE_MCS:
2633 return ISL_AUX_USAGE_MCS;
2634
2635 case ISL_AUX_USAGE_CCS_D:
2636 case ISL_AUX_USAGE_CCS_E:
2637 if (!mt->aux_buf) {
2638 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2639 return ISL_AUX_USAGE_NONE;
2640 }
2641
2642 /* If we don't have any unresolved color, report an aux usage of
2643 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2644 * aux surface and we can save some bandwidth.
2645 */
2646 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2647 0, INTEL_REMAINING_LAYERS))
2648 return ISL_AUX_USAGE_NONE;
2649
2650 if (can_texture_with_ccs(brw, mt, view_format))
2651 return ISL_AUX_USAGE_CCS_E;
2652 break;
2653
2654 default:
2655 break;
2656 }
2657
2658 return ISL_AUX_USAGE_NONE;
2659 }
2660
2661 static bool
2662 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2663 {
2664 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2665 * values so sRGB curve application was a no-op for all fast-clearable
2666 * formats.
2667 *
2668 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2669 * values, the hardware interprets the floats, not as what would be
2670 * returned from the sampler (or written by the shader), but as being
2671 * between format conversion and sRGB curve application. This means that
2672 * we can switch between sRGB and UNORM without having to whack the clear
2673 * color.
2674 */
2675 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2676 }
2677
2678 void
2679 intel_miptree_prepare_texture(struct brw_context *brw,
2680 struct intel_mipmap_tree *mt,
2681 enum isl_format view_format,
2682 uint32_t start_level, uint32_t num_levels,
2683 uint32_t start_layer, uint32_t num_layers)
2684 {
2685 enum isl_aux_usage aux_usage =
2686 intel_miptree_texture_aux_usage(brw, mt, view_format);
2687 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2688
2689 /* Clear color is specified as ints or floats and the conversion is done by
2690 * the sampler. If we have a texture view, we would have to perform the
2691 * clear color conversion manually. Just disable clear color.
2692 */
2693 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2694 clear_supported = false;
2695
2696 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2697 start_layer, num_layers,
2698 aux_usage, clear_supported);
2699 }
2700
2701 void
2702 intel_miptree_prepare_image(struct brw_context *brw,
2703 struct intel_mipmap_tree *mt)
2704 {
2705 /* The data port doesn't understand any compression */
2706 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2707 0, INTEL_REMAINING_LAYERS,
2708 ISL_AUX_USAGE_NONE, false);
2709 }
2710
2711 enum isl_aux_usage
2712 intel_miptree_render_aux_usage(struct brw_context *brw,
2713 struct intel_mipmap_tree *mt,
2714 enum isl_format render_format,
2715 bool blend_enabled,
2716 bool draw_aux_disabled)
2717 {
2718 struct gen_device_info *devinfo = &brw->screen->devinfo;
2719
2720 if (draw_aux_disabled)
2721 return ISL_AUX_USAGE_NONE;
2722
2723 switch (mt->aux_usage) {
2724 case ISL_AUX_USAGE_MCS:
2725 assert(mt->aux_buf);
2726 return ISL_AUX_USAGE_MCS;
2727
2728 case ISL_AUX_USAGE_CCS_D:
2729 case ISL_AUX_USAGE_CCS_E:
2730 if (!mt->aux_buf) {
2731 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2732 return ISL_AUX_USAGE_NONE;
2733 }
2734
2735 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2736 * formats. However, there are issues with blending where it doesn't
2737 * properly apply the sRGB curve to the clear color when blending.
2738 */
2739 if (devinfo->gen >= 9 && blend_enabled &&
2740 isl_format_is_srgb(render_format) &&
2741 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2742 return ISL_AUX_USAGE_NONE;
2743
2744 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2745 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2746 mt, render_format))
2747 return ISL_AUX_USAGE_CCS_E;
2748
2749 /* Otherwise, we have to fall back to CCS_D */
2750 return ISL_AUX_USAGE_CCS_D;
2751
2752 default:
2753 return ISL_AUX_USAGE_NONE;
2754 }
2755 }
2756
2757 void
2758 intel_miptree_prepare_render(struct brw_context *brw,
2759 struct intel_mipmap_tree *mt, uint32_t level,
2760 uint32_t start_layer, uint32_t layer_count,
2761 enum isl_aux_usage aux_usage)
2762 {
2763 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2764 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2765 }
2766
2767 void
2768 intel_miptree_finish_render(struct brw_context *brw,
2769 struct intel_mipmap_tree *mt, uint32_t level,
2770 uint32_t start_layer, uint32_t layer_count,
2771 enum isl_aux_usage aux_usage)
2772 {
2773 assert(_mesa_is_format_color_format(mt->format));
2774
2775 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2776 aux_usage);
2777 }
2778
2779 void
2780 intel_miptree_prepare_depth(struct brw_context *brw,
2781 struct intel_mipmap_tree *mt, uint32_t level,
2782 uint32_t start_layer, uint32_t layer_count)
2783 {
2784 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2785 mt->aux_usage, mt->aux_buf != NULL);
2786 }
2787
2788 void
2789 intel_miptree_finish_depth(struct brw_context *brw,
2790 struct intel_mipmap_tree *mt, uint32_t level,
2791 uint32_t start_layer, uint32_t layer_count,
2792 bool depth_written)
2793 {
2794 if (depth_written) {
2795 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2796 mt->aux_buf != NULL);
2797 }
2798 }
2799
2800 void
2801 intel_miptree_prepare_external(struct brw_context *brw,
2802 struct intel_mipmap_tree *mt)
2803 {
2804 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2805 bool supports_fast_clear = false;
2806
2807 const struct isl_drm_modifier_info *mod_info =
2808 isl_drm_modifier_get_info(mt->drm_modifier);
2809
2810 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2811 /* CCS_E is the only supported aux for external images and it's only
2812 * supported on very simple images.
2813 */
2814 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2815 assert(_mesa_is_format_color_format(mt->format));
2816 assert(mt->first_level == 0 && mt->last_level == 0);
2817 assert(mt->surf.logical_level0_px.depth == 1);
2818 assert(mt->surf.logical_level0_px.array_len == 1);
2819 assert(mt->surf.samples == 1);
2820 assert(mt->aux_buf != NULL);
2821
2822 aux_usage = mod_info->aux_usage;
2823 supports_fast_clear = mod_info->supports_clear_color;
2824 }
2825
2826 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2827 0, INTEL_REMAINING_LAYERS,
2828 aux_usage, supports_fast_clear);
2829 }
2830
2831 void
2832 intel_miptree_finish_external(struct brw_context *brw,
2833 struct intel_mipmap_tree *mt)
2834 {
2835 if (!mt->aux_buf)
2836 return;
2837
2838 /* We don't know the actual aux state of the aux surface. The previous
2839 * owner could have given it to us in a number of different states.
2840 * Because we don't know the aux state, we reset the aux state to the
2841 * least common denominator of possible valid states.
2842 */
2843 enum isl_aux_state default_aux_state =
2844 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2845 assert(mt->last_level == mt->first_level);
2846 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2847 default_aux_state);
2848 }
2849
2850 /**
2851 * Make it possible to share the BO backing the given miptree with another
2852 * process or another miptree.
2853 *
2854 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2855 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2856 * ensure that no MCS buffer gets allocated in the future.
2857 *
2858 * HiZ is similarly unsafe with shared buffers.
2859 */
2860 void
2861 intel_miptree_make_shareable(struct brw_context *brw,
2862 struct intel_mipmap_tree *mt)
2863 {
2864 /* MCS buffers are also used for multisample buffers, but we can't resolve
2865 * away a multisample MCS buffer because it's an integral part of how the
2866 * pixel data is stored. Fortunately this code path should never be
2867 * reached for multisample buffers.
2868 */
2869 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2870 mt->surf.samples == 1);
2871
2872 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2873 0, INTEL_REMAINING_LAYERS,
2874 ISL_AUX_USAGE_NONE, false);
2875
2876 if (mt->aux_buf) {
2877 intel_miptree_aux_buffer_free(mt->aux_buf);
2878 mt->aux_buf = NULL;
2879
2880 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2881 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2882 mt->level[l].has_hiz = false;
2883 }
2884
2885 free(mt->aux_state);
2886 mt->aux_state = NULL;
2887 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2888 }
2889
2890 mt->aux_usage = ISL_AUX_USAGE_NONE;
2891 mt->supports_fast_clear = false;
2892 }
2893
2894
2895 /**
2896 * \brief Get pointer offset into stencil buffer.
2897 *
2898 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2899 * must decode the tile's layout in software.
2900 *
2901 * See
2902 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2903 * Format.
2904 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2905 *
2906 * Even though the returned offset is always positive, the return type is
2907 * signed due to
2908 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2909 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2910 */
2911 static intptr_t
2912 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2913 {
2914 uint32_t tile_size = 4096;
2915 uint32_t tile_width = 64;
2916 uint32_t tile_height = 64;
2917 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2918
2919 uint32_t tile_x = x / tile_width;
2920 uint32_t tile_y = y / tile_height;
2921
2922 /* The byte's address relative to the tile's base addres. */
2923 uint32_t byte_x = x % tile_width;
2924 uint32_t byte_y = y % tile_height;
2925
2926 uintptr_t u = tile_y * row_size
2927 + tile_x * tile_size
2928 + 512 * (byte_x / 8)
2929 + 64 * (byte_y / 8)
2930 + 32 * ((byte_y / 4) % 2)
2931 + 16 * ((byte_x / 4) % 2)
2932 + 8 * ((byte_y / 2) % 2)
2933 + 4 * ((byte_x / 2) % 2)
2934 + 2 * (byte_y % 2)
2935 + 1 * (byte_x % 2);
2936
2937 if (swizzled) {
2938 /* adjust for bit6 swizzling */
2939 if (((byte_x / 8) % 2) == 1) {
2940 if (((byte_y / 8) % 2) == 0) {
2941 u += 64;
2942 } else {
2943 u -= 64;
2944 }
2945 }
2946 }
2947
2948 return u;
2949 }
2950
2951 void
2952 intel_miptree_updownsample(struct brw_context *brw,
2953 struct intel_mipmap_tree *src,
2954 struct intel_mipmap_tree *dst)
2955 {
2956 unsigned src_w = src->surf.logical_level0_px.width;
2957 unsigned src_h = src->surf.logical_level0_px.height;
2958 unsigned dst_w = dst->surf.logical_level0_px.width;
2959 unsigned dst_h = dst->surf.logical_level0_px.height;
2960
2961 brw_blorp_blit_miptrees(brw,
2962 src, 0 /* level */, 0 /* layer */,
2963 src->format, SWIZZLE_XYZW,
2964 dst, 0 /* level */, 0 /* layer */, dst->format,
2965 0, 0, src_w, src_h,
2966 0, 0, dst_w, dst_h,
2967 GL_NEAREST, false, false /*mirror x, y*/,
2968 false, false);
2969
2970 if (src->stencil_mt) {
2971 src_w = src->stencil_mt->surf.logical_level0_px.width;
2972 src_h = src->stencil_mt->surf.logical_level0_px.height;
2973 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2974 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2975
2976 brw_blorp_blit_miptrees(brw,
2977 src->stencil_mt, 0 /* level */, 0 /* layer */,
2978 src->stencil_mt->format, SWIZZLE_XYZW,
2979 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2980 dst->stencil_mt->format,
2981 0, 0, src_w, src_h,
2982 0, 0, dst_w, dst_h,
2983 GL_NEAREST, false, false /*mirror x, y*/,
2984 false, false /* decode/encode srgb */);
2985 }
2986 }
2987
2988 void
2989 intel_update_r8stencil(struct brw_context *brw,
2990 struct intel_mipmap_tree *mt)
2991 {
2992 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2993
2994 assert(devinfo->gen >= 7);
2995 struct intel_mipmap_tree *src =
2996 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2997 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2998 return;
2999
3000 assert(src->surf.size > 0);
3001
3002 if (!mt->r8stencil_mt) {
3003 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
3004 mt->r8stencil_mt = make_surface(
3005 brw,
3006 src->target,
3007 MESA_FORMAT_R_UINT8,
3008 src->first_level, src->last_level,
3009 src->surf.logical_level0_px.width,
3010 src->surf.logical_level0_px.height,
3011 src->surf.dim == ISL_SURF_DIM_3D ?
3012 src->surf.logical_level0_px.depth :
3013 src->surf.logical_level0_px.array_len,
3014 src->surf.samples,
3015 ISL_TILING_Y0_BIT,
3016 ISL_SURF_USAGE_TEXTURE_BIT,
3017 BO_ALLOC_BUSY, 0, NULL);
3018 assert(mt->r8stencil_mt);
3019 }
3020
3021 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3022
3023 for (int level = src->first_level; level <= src->last_level; level++) {
3024 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3025 minify(src->surf.phys_level0_sa.depth, level) :
3026 src->surf.phys_level0_sa.array_len;
3027
3028 for (unsigned layer = 0; layer < depth; layer++) {
3029 brw_blorp_copy_miptrees(brw,
3030 src, level, layer,
3031 dst, level, layer,
3032 0, 0, 0, 0,
3033 minify(src->surf.logical_level0_px.width,
3034 level),
3035 minify(src->surf.logical_level0_px.height,
3036 level));
3037 }
3038 }
3039
3040 brw_cache_flush_for_read(brw, dst->bo);
3041 src->r8stencil_needs_update = false;
3042 }
3043
3044 static void *
3045 intel_miptree_map_raw(struct brw_context *brw,
3046 struct intel_mipmap_tree *mt,
3047 GLbitfield mode)
3048 {
3049 struct brw_bo *bo = mt->bo;
3050
3051 if (brw_batch_references(&brw->batch, bo))
3052 intel_batchbuffer_flush(brw);
3053
3054 return brw_bo_map(brw, bo, mode);
3055 }
3056
3057 static void
3058 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3059 {
3060 brw_bo_unmap(mt->bo);
3061 }
3062
3063 static void
3064 intel_miptree_unmap_gtt(struct brw_context *brw,
3065 struct intel_mipmap_tree *mt,
3066 struct intel_miptree_map *map,
3067 unsigned int level, unsigned int slice)
3068 {
3069 intel_miptree_unmap_raw(mt);
3070 }
3071
3072 static void
3073 intel_miptree_map_gtt(struct brw_context *brw,
3074 struct intel_mipmap_tree *mt,
3075 struct intel_miptree_map *map,
3076 unsigned int level, unsigned int slice)
3077 {
3078 unsigned int bw, bh;
3079 void *base;
3080 unsigned int image_x, image_y;
3081 intptr_t x = map->x;
3082 intptr_t y = map->y;
3083
3084 /* For compressed formats, the stride is the number of bytes per
3085 * row of blocks. intel_miptree_get_image_offset() already does
3086 * the divide.
3087 */
3088 _mesa_get_format_block_size(mt->format, &bw, &bh);
3089 assert(y % bh == 0);
3090 assert(x % bw == 0);
3091 y /= bh;
3092 x /= bw;
3093
3094 base = intel_miptree_map_raw(brw, mt, map->mode);
3095
3096 if (base == NULL)
3097 map->ptr = NULL;
3098 else {
3099 base += mt->offset;
3100
3101 /* Note that in the case of cube maps, the caller must have passed the
3102 * slice number referencing the face.
3103 */
3104 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3105 x += image_x;
3106 y += image_y;
3107
3108 map->stride = mt->surf.row_pitch;
3109 map->ptr = base + y * map->stride + x * mt->cpp;
3110 }
3111
3112 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3113 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3114 map->x, map->y, map->w, map->h,
3115 mt, _mesa_get_format_name(mt->format),
3116 x, y, map->ptr, map->stride);
3117
3118 map->unmap = intel_miptree_unmap_gtt;
3119 }
3120
3121 static void
3122 intel_miptree_unmap_blit(struct brw_context *brw,
3123 struct intel_mipmap_tree *mt,
3124 struct intel_miptree_map *map,
3125 unsigned int level,
3126 unsigned int slice)
3127 {
3128 struct gl_context *ctx = &brw->ctx;
3129
3130 intel_miptree_unmap_raw(map->linear_mt);
3131
3132 if (map->mode & GL_MAP_WRITE_BIT) {
3133 bool ok = intel_miptree_copy(brw,
3134 map->linear_mt, 0, 0, 0, 0,
3135 mt, level, slice, map->x, map->y,
3136 map->w, map->h);
3137 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3138 }
3139
3140 intel_miptree_release(&map->linear_mt);
3141 }
3142
3143 static void
3144 intel_miptree_map_blit(struct brw_context *brw,
3145 struct intel_mipmap_tree *mt,
3146 struct intel_miptree_map *map,
3147 unsigned int level, unsigned int slice)
3148 {
3149 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3150 /* first_level */ 0,
3151 /* last_level */ 0,
3152 map->w, map->h, 1,
3153 /* samples */ 1,
3154 MIPTREE_CREATE_LINEAR);
3155
3156 if (!map->linear_mt) {
3157 fprintf(stderr, "Failed to allocate blit temporary\n");
3158 goto fail;
3159 }
3160 map->stride = map->linear_mt->surf.row_pitch;
3161
3162 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3163 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3164 * invalidate is set, since we'll be writing the whole rectangle from our
3165 * temporary buffer back out.
3166 */
3167 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3168 if (!intel_miptree_copy(brw,
3169 mt, level, slice, map->x, map->y,
3170 map->linear_mt, 0, 0, 0, 0,
3171 map->w, map->h)) {
3172 fprintf(stderr, "Failed to blit\n");
3173 goto fail;
3174 }
3175 }
3176
3177 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3178
3179 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3180 map->x, map->y, map->w, map->h,
3181 mt, _mesa_get_format_name(mt->format),
3182 level, slice, map->ptr, map->stride);
3183
3184 map->unmap = intel_miptree_unmap_blit;
3185 return;
3186
3187 fail:
3188 intel_miptree_release(&map->linear_mt);
3189 map->ptr = NULL;
3190 map->stride = 0;
3191 }
3192
3193 /**
3194 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3195 */
3196 #if defined(USE_SSE41)
3197 static void
3198 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3199 struct intel_mipmap_tree *mt,
3200 struct intel_miptree_map *map,
3201 unsigned int level,
3202 unsigned int slice)
3203 {
3204 _mesa_align_free(map->buffer);
3205 map->buffer = NULL;
3206 map->ptr = NULL;
3207 }
3208
3209 static void
3210 intel_miptree_map_movntdqa(struct brw_context *brw,
3211 struct intel_mipmap_tree *mt,
3212 struct intel_miptree_map *map,
3213 unsigned int level, unsigned int slice)
3214 {
3215 assert(map->mode & GL_MAP_READ_BIT);
3216 assert(!(map->mode & GL_MAP_WRITE_BIT));
3217
3218 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3219 map->x, map->y, map->w, map->h,
3220 mt, _mesa_get_format_name(mt->format),
3221 level, slice, map->ptr, map->stride);
3222
3223 /* Map the original image */
3224 uint32_t image_x;
3225 uint32_t image_y;
3226 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3227 image_x += map->x;
3228 image_y += map->y;
3229
3230 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3231 if (!src)
3232 return;
3233
3234 src += mt->offset;
3235
3236 src += image_y * mt->surf.row_pitch;
3237 src += image_x * mt->cpp;
3238
3239 /* Due to the pixel offsets for the particular image being mapped, our
3240 * src pointer may not be 16-byte aligned. However, if the pitch is
3241 * divisible by 16, then the amount by which it's misaligned will remain
3242 * consistent from row to row.
3243 */
3244 assert((mt->surf.row_pitch % 16) == 0);
3245 const int misalignment = ((uintptr_t) src) & 15;
3246
3247 /* Create an untiled temporary buffer for the mapping. */
3248 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3249
3250 map->stride = ALIGN(misalignment + width_bytes, 16);
3251
3252 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3253 /* Offset the destination so it has the same misalignment as src. */
3254 map->ptr = map->buffer + misalignment;
3255
3256 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3257
3258 for (uint32_t y = 0; y < map->h; y++) {
3259 void *dst_ptr = map->ptr + y * map->stride;
3260 void *src_ptr = src + y * mt->surf.row_pitch;
3261
3262 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3263 }
3264
3265 intel_miptree_unmap_raw(mt);
3266
3267 map->unmap = intel_miptree_unmap_movntdqa;
3268 }
3269 #endif
3270
3271 static void
3272 intel_miptree_unmap_s8(struct brw_context *brw,
3273 struct intel_mipmap_tree *mt,
3274 struct intel_miptree_map *map,
3275 unsigned int level,
3276 unsigned int slice)
3277 {
3278 if (map->mode & GL_MAP_WRITE_BIT) {
3279 unsigned int image_x, image_y;
3280 uint8_t *untiled_s8_map = map->ptr;
3281 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3282
3283 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3284
3285 for (uint32_t y = 0; y < map->h; y++) {
3286 for (uint32_t x = 0; x < map->w; x++) {
3287 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3288 image_x + x + map->x,
3289 image_y + y + map->y,
3290 brw->has_swizzling);
3291 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3292 }
3293 }
3294
3295 intel_miptree_unmap_raw(mt);
3296 }
3297
3298 free(map->buffer);
3299 }
3300
3301 static void
3302 intel_miptree_map_s8(struct brw_context *brw,
3303 struct intel_mipmap_tree *mt,
3304 struct intel_miptree_map *map,
3305 unsigned int level, unsigned int slice)
3306 {
3307 map->stride = map->w;
3308 map->buffer = map->ptr = malloc(map->stride * map->h);
3309 if (!map->buffer)
3310 return;
3311
3312 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3313 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3314 * invalidate is set, since we'll be writing the whole rectangle from our
3315 * temporary buffer back out.
3316 */
3317 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3318 uint8_t *untiled_s8_map = map->ptr;
3319 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3320 unsigned int image_x, image_y;
3321
3322 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3323
3324 for (uint32_t y = 0; y < map->h; y++) {
3325 for (uint32_t x = 0; x < map->w; x++) {
3326 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3327 x + image_x + map->x,
3328 y + image_y + map->y,
3329 brw->has_swizzling);
3330 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3331 }
3332 }
3333
3334 intel_miptree_unmap_raw(mt);
3335
3336 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3337 map->x, map->y, map->w, map->h,
3338 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3339 } else {
3340 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3341 map->x, map->y, map->w, map->h,
3342 mt, map->ptr, map->stride);
3343 }
3344
3345 map->unmap = intel_miptree_unmap_s8;
3346 }
3347
3348 static void
3349 intel_miptree_unmap_etc(struct brw_context *brw,
3350 struct intel_mipmap_tree *mt,
3351 struct intel_miptree_map *map,
3352 unsigned int level,
3353 unsigned int slice)
3354 {
3355 uint32_t image_x;
3356 uint32_t image_y;
3357 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3358
3359 image_x += map->x;
3360 image_y += map->y;
3361
3362 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3363 + image_y * mt->surf.row_pitch
3364 + image_x * mt->cpp;
3365
3366 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3367 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3368 map->ptr, map->stride,
3369 map->w, map->h);
3370 else
3371 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3372 map->ptr, map->stride,
3373 map->w, map->h, mt->etc_format);
3374
3375 intel_miptree_unmap_raw(mt);
3376 free(map->buffer);
3377 }
3378
3379 static void
3380 intel_miptree_map_etc(struct brw_context *brw,
3381 struct intel_mipmap_tree *mt,
3382 struct intel_miptree_map *map,
3383 unsigned int level,
3384 unsigned int slice)
3385 {
3386 assert(mt->etc_format != MESA_FORMAT_NONE);
3387 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3388 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3389 }
3390
3391 assert(map->mode & GL_MAP_WRITE_BIT);
3392 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3393
3394 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3395 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3396 map->w, map->h, 1));
3397 map->ptr = map->buffer;
3398 map->unmap = intel_miptree_unmap_etc;
3399 }
3400
3401 /**
3402 * Mapping functions for packed depth/stencil miptrees backed by real separate
3403 * miptrees for depth and stencil.
3404 *
3405 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3406 * separate from the depth buffer. Yet at the GL API level, we have to expose
3407 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3408 * be able to map that memory for texture storage and glReadPixels-type
3409 * operations. We give Mesa core that access by mallocing a temporary and
3410 * copying the data between the actual backing store and the temporary.
3411 */
3412 static void
3413 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3414 struct intel_mipmap_tree *mt,
3415 struct intel_miptree_map *map,
3416 unsigned int level,
3417 unsigned int slice)
3418 {
3419 struct intel_mipmap_tree *z_mt = mt;
3420 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3421 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3422
3423 if (map->mode & GL_MAP_WRITE_BIT) {
3424 uint32_t *packed_map = map->ptr;
3425 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3426 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3427 unsigned int s_image_x, s_image_y;
3428 unsigned int z_image_x, z_image_y;
3429
3430 intel_miptree_get_image_offset(s_mt, level, slice,
3431 &s_image_x, &s_image_y);
3432 intel_miptree_get_image_offset(z_mt, level, slice,
3433 &z_image_x, &z_image_y);
3434
3435 for (uint32_t y = 0; y < map->h; y++) {
3436 for (uint32_t x = 0; x < map->w; x++) {
3437 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3438 x + s_image_x + map->x,
3439 y + s_image_y + map->y,
3440 brw->has_swizzling);
3441 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3442 (z_mt->surf.row_pitch / 4) +
3443 (x + z_image_x + map->x));
3444
3445 if (map_z32f_x24s8) {
3446 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3447 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3448 } else {
3449 uint32_t packed = packed_map[y * map->w + x];
3450 s_map[s_offset] = packed >> 24;
3451 z_map[z_offset] = packed;
3452 }
3453 }
3454 }
3455
3456 intel_miptree_unmap_raw(s_mt);
3457 intel_miptree_unmap_raw(z_mt);
3458
3459 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3460 __func__,
3461 map->x, map->y, map->w, map->h,
3462 z_mt, _mesa_get_format_name(z_mt->format),
3463 map->x + z_image_x, map->y + z_image_y,
3464 s_mt, map->x + s_image_x, map->y + s_image_y,
3465 map->ptr, map->stride);
3466 }
3467
3468 free(map->buffer);
3469 }
3470
3471 static void
3472 intel_miptree_map_depthstencil(struct brw_context *brw,
3473 struct intel_mipmap_tree *mt,
3474 struct intel_miptree_map *map,
3475 unsigned int level, unsigned int slice)
3476 {
3477 struct intel_mipmap_tree *z_mt = mt;
3478 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3479 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3480 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3481
3482 map->stride = map->w * packed_bpp;
3483 map->buffer = map->ptr = malloc(map->stride * map->h);
3484 if (!map->buffer)
3485 return;
3486
3487 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3488 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3489 * invalidate is set, since we'll be writing the whole rectangle from our
3490 * temporary buffer back out.
3491 */
3492 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3493 uint32_t *packed_map = map->ptr;
3494 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3495 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3496 unsigned int s_image_x, s_image_y;
3497 unsigned int z_image_x, z_image_y;
3498
3499 intel_miptree_get_image_offset(s_mt, level, slice,
3500 &s_image_x, &s_image_y);
3501 intel_miptree_get_image_offset(z_mt, level, slice,
3502 &z_image_x, &z_image_y);
3503
3504 for (uint32_t y = 0; y < map->h; y++) {
3505 for (uint32_t x = 0; x < map->w; x++) {
3506 int map_x = map->x + x, map_y = map->y + y;
3507 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3508 map_x + s_image_x,
3509 map_y + s_image_y,
3510 brw->has_swizzling);
3511 ptrdiff_t z_offset = ((map_y + z_image_y) *
3512 (z_mt->surf.row_pitch / 4) +
3513 (map_x + z_image_x));
3514 uint8_t s = s_map[s_offset];
3515 uint32_t z = z_map[z_offset];
3516
3517 if (map_z32f_x24s8) {
3518 packed_map[(y * map->w + x) * 2 + 0] = z;
3519 packed_map[(y * map->w + x) * 2 + 1] = s;
3520 } else {
3521 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3522 }
3523 }
3524 }
3525
3526 intel_miptree_unmap_raw(s_mt);
3527 intel_miptree_unmap_raw(z_mt);
3528
3529 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3530 __func__,
3531 map->x, map->y, map->w, map->h,
3532 z_mt, map->x + z_image_x, map->y + z_image_y,
3533 s_mt, map->x + s_image_x, map->y + s_image_y,
3534 map->ptr, map->stride);
3535 } else {
3536 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3537 map->x, map->y, map->w, map->h,
3538 mt, map->ptr, map->stride);
3539 }
3540
3541 map->unmap = intel_miptree_unmap_depthstencil;
3542 }
3543
3544 /**
3545 * Create and attach a map to the miptree at (level, slice). Return the
3546 * attached map.
3547 */
3548 static struct intel_miptree_map*
3549 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3550 unsigned int level,
3551 unsigned int slice,
3552 unsigned int x,
3553 unsigned int y,
3554 unsigned int w,
3555 unsigned int h,
3556 GLbitfield mode)
3557 {
3558 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3559
3560 if (!map)
3561 return NULL;
3562
3563 assert(mt->level[level].slice[slice].map == NULL);
3564 mt->level[level].slice[slice].map = map;
3565
3566 map->mode = mode;
3567 map->x = x;
3568 map->y = y;
3569 map->w = w;
3570 map->h = h;
3571
3572 return map;
3573 }
3574
3575 /**
3576 * Release the map at (level, slice).
3577 */
3578 static void
3579 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3580 unsigned int level,
3581 unsigned int slice)
3582 {
3583 struct intel_miptree_map **map;
3584
3585 map = &mt->level[level].slice[slice].map;
3586 free(*map);
3587 *map = NULL;
3588 }
3589
3590 static bool
3591 can_blit_slice(struct intel_mipmap_tree *mt,
3592 unsigned int level, unsigned int slice)
3593 {
3594 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3595 if (mt->surf.row_pitch >= 32768)
3596 return false;
3597
3598 return true;
3599 }
3600
3601 static bool
3602 use_intel_mipree_map_blit(struct brw_context *brw,
3603 struct intel_mipmap_tree *mt,
3604 GLbitfield mode,
3605 unsigned int level,
3606 unsigned int slice)
3607 {
3608 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3609
3610 if (devinfo->has_llc &&
3611 /* It's probably not worth swapping to the blit ring because of
3612 * all the overhead involved.
3613 */
3614 !(mode & GL_MAP_WRITE_BIT) &&
3615 !mt->compressed &&
3616 (mt->surf.tiling == ISL_TILING_X ||
3617 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3618 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3619 /* Fast copy blit on skl+ supports all tiling formats. */
3620 devinfo->gen >= 9) &&
3621 can_blit_slice(mt, level, slice))
3622 return true;
3623
3624 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3625 mt->bo->size >= brw->max_gtt_map_object_size) {
3626 assert(can_blit_slice(mt, level, slice));
3627 return true;
3628 }
3629
3630 return false;
3631 }
3632
3633 /**
3634 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3635 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3636 * arithmetic overflow.
3637 *
3638 * If you call this function and use \a out_stride, then you're doing pointer
3639 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3640 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3641 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3642 * which usually have type uint32_t or GLuint.
3643 */
3644 void
3645 intel_miptree_map(struct brw_context *brw,
3646 struct intel_mipmap_tree *mt,
3647 unsigned int level,
3648 unsigned int slice,
3649 unsigned int x,
3650 unsigned int y,
3651 unsigned int w,
3652 unsigned int h,
3653 GLbitfield mode,
3654 void **out_ptr,
3655 ptrdiff_t *out_stride)
3656 {
3657 struct intel_miptree_map *map;
3658
3659 assert(mt->surf.samples == 1);
3660
3661 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3662 if (!map){
3663 *out_ptr = NULL;
3664 *out_stride = 0;
3665 return;
3666 }
3667
3668 intel_miptree_access_raw(brw, mt, level, slice,
3669 map->mode & GL_MAP_WRITE_BIT);
3670
3671 if (mt->format == MESA_FORMAT_S_UINT8) {
3672 intel_miptree_map_s8(brw, mt, map, level, slice);
3673 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3674 !(mode & BRW_MAP_DIRECT_BIT)) {
3675 intel_miptree_map_etc(brw, mt, map, level, slice);
3676 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3677 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3678 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3679 intel_miptree_map_blit(brw, mt, map, level, slice);
3680 #if defined(USE_SSE41)
3681 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3682 !mt->compressed && cpu_has_sse4_1 &&
3683 (mt->surf.row_pitch % 16 == 0)) {
3684 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3685 #endif
3686 } else {
3687 intel_miptree_map_gtt(brw, mt, map, level, slice);
3688 }
3689
3690 *out_ptr = map->ptr;
3691 *out_stride = map->stride;
3692
3693 if (map->ptr == NULL)
3694 intel_miptree_release_map(mt, level, slice);
3695 }
3696
3697 void
3698 intel_miptree_unmap(struct brw_context *brw,
3699 struct intel_mipmap_tree *mt,
3700 unsigned int level,
3701 unsigned int slice)
3702 {
3703 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3704
3705 assert(mt->surf.samples == 1);
3706
3707 if (!map)
3708 return;
3709
3710 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3711 mt, _mesa_get_format_name(mt->format), level, slice);
3712
3713 if (map->unmap)
3714 map->unmap(brw, mt, map, level, slice);
3715
3716 intel_miptree_release_map(mt, level, slice);
3717 }
3718
3719 enum isl_surf_dim
3720 get_isl_surf_dim(GLenum target)
3721 {
3722 switch (target) {
3723 case GL_TEXTURE_1D:
3724 case GL_TEXTURE_1D_ARRAY:
3725 return ISL_SURF_DIM_1D;
3726
3727 case GL_TEXTURE_2D:
3728 case GL_TEXTURE_2D_ARRAY:
3729 case GL_TEXTURE_RECTANGLE:
3730 case GL_TEXTURE_CUBE_MAP:
3731 case GL_TEXTURE_CUBE_MAP_ARRAY:
3732 case GL_TEXTURE_2D_MULTISAMPLE:
3733 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3734 case GL_TEXTURE_EXTERNAL_OES:
3735 return ISL_SURF_DIM_2D;
3736
3737 case GL_TEXTURE_3D:
3738 return ISL_SURF_DIM_3D;
3739 }
3740
3741 unreachable("Invalid texture target");
3742 }
3743
3744 enum isl_dim_layout
3745 get_isl_dim_layout(const struct gen_device_info *devinfo,
3746 enum isl_tiling tiling, GLenum target)
3747 {
3748 switch (target) {
3749 case GL_TEXTURE_1D:
3750 case GL_TEXTURE_1D_ARRAY:
3751 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3752 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3753
3754 case GL_TEXTURE_2D:
3755 case GL_TEXTURE_2D_ARRAY:
3756 case GL_TEXTURE_RECTANGLE:
3757 case GL_TEXTURE_2D_MULTISAMPLE:
3758 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3759 case GL_TEXTURE_EXTERNAL_OES:
3760 return ISL_DIM_LAYOUT_GEN4_2D;
3761
3762 case GL_TEXTURE_CUBE_MAP:
3763 case GL_TEXTURE_CUBE_MAP_ARRAY:
3764 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3765 ISL_DIM_LAYOUT_GEN4_2D);
3766
3767 case GL_TEXTURE_3D:
3768 return (devinfo->gen >= 9 ?
3769 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3770 }
3771
3772 unreachable("Invalid texture target");
3773 }
3774
3775 bool
3776 intel_miptree_set_clear_color(struct brw_context *brw,
3777 struct intel_mipmap_tree *mt,
3778 const union gl_color_union *color)
3779 {
3780 const union isl_color_value clear_color =
3781 brw_meta_convert_fast_clear_color(brw, mt, color);
3782
3783 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3784 mt->fast_clear_color = clear_color;
3785 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3786 return true;
3787 }
3788 return false;
3789 }
3790
3791 bool
3792 intel_miptree_set_depth_clear_value(struct brw_context *brw,
3793 struct intel_mipmap_tree *mt,
3794 float clear_value)
3795 {
3796 if (mt->fast_clear_color.f32[0] != clear_value) {
3797 mt->fast_clear_color.f32[0] = clear_value;
3798 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3799 return true;
3800 }
3801 return false;
3802 }
3803
3804 union isl_color_value
3805 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3806 const struct intel_mipmap_tree *mt,
3807 enum isl_format view_format, bool sampling,
3808 struct brw_bo **clear_color_bo,
3809 uint32_t *clear_color_offset)
3810 {
3811 assert(mt->aux_buf);
3812
3813 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3814 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3815 * we switch to using the inline clear color and do the sRGB color
3816 * conversion process defined in the OpenGL spec. The red, green, and
3817 * blue channels take part in gamma correction, while the alpha channel
3818 * is unchanged.
3819 */
3820 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3821 for (unsigned i = 0; i < 3; i++) {
3822 srgb_decoded_value.f32[i] =
3823 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3824 }
3825 *clear_color_bo = 0;
3826 *clear_color_offset = 0;
3827 return srgb_decoded_value;
3828 } else {
3829 *clear_color_bo = mt->aux_buf->clear_color_bo;
3830 *clear_color_offset = mt->aux_buf->clear_color_offset;
3831 return mt->fast_clear_color;
3832 }
3833 }