i965: drop brw->must_use_separate_stencil in favor of devinfo's
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
77 switch (_mesa_get_format_base_format(mt->format)) {
78 case GL_DEPTH_COMPONENT:
79 case GL_STENCIL_INDEX:
80 case GL_DEPTH_STENCIL:
81 return false;
82 default:
83 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
84 *
85 * This field must be set to 0 for all SINT MSRTs when all RT channels
86 * are not written
87 *
88 * In practice this means that we have to disable MCS for all signed
89 * integer MSAA buffers. The alternative, to disable MCS only when one
90 * of the render target channels is disabled, is impractical because it
91 * would require converting between CMS and UMS MSAA layouts on the fly,
92 * which is expensive.
93 */
94 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
95 return false;
96 } else {
97 return true;
98 }
99 }
100 }
101
102 static bool
103 intel_tiling_supports_ccs(const struct brw_context *brw,
104 enum isl_tiling tiling)
105 {
106 const struct gen_device_info *devinfo = &brw->screen->devinfo;
107
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (devinfo->gen >= 9)
116 return tiling == ISL_TILING_Y0;
117 else if (devinfo->gen >= 7)
118 return tiling != ISL_TILING_LINEAR;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 static bool
145 intel_miptree_supports_ccs(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 const struct gen_device_info *devinfo = &brw->screen->devinfo;
149
150 /* MCS support does not exist prior to Gen7 */
151 if (devinfo->gen < 7)
152 return false;
153
154 /* This function applies only to non-multisampled render targets. */
155 if (mt->surf.samples > 1)
156 return false;
157
158 /* MCS is only supported for color buffers */
159 switch (_mesa_get_format_base_format(mt->format)) {
160 case GL_DEPTH_COMPONENT:
161 case GL_DEPTH_STENCIL:
162 case GL_STENCIL_INDEX:
163 return false;
164 }
165
166 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
167 return false;
168
169 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
170 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
171 mt->surf.logical_level0_px.depth > 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->surf.samples == 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (devinfo->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->mesa_format_supports_render[mt->format])
208 return false;
209
210 return true;
211 }
212
213 static bool
214 intel_tiling_supports_hiz(const struct brw_context *brw,
215 enum isl_tiling tiling)
216 {
217 const struct gen_device_info *devinfo = &brw->screen->devinfo;
218
219 if (devinfo->gen < 6)
220 return false;
221
222 return tiling == ISL_TILING_Y0;
223 }
224
225 static bool
226 intel_miptree_supports_hiz(const struct brw_context *brw,
227 const struct intel_mipmap_tree *mt)
228 {
229 if (!brw->has_hiz)
230 return false;
231
232 switch (mt->format) {
233 case MESA_FORMAT_Z_FLOAT32:
234 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
235 case MESA_FORMAT_Z24_UNORM_X8_UINT:
236 case MESA_FORMAT_Z24_UNORM_S8_UINT:
237 case MESA_FORMAT_Z_UNORM16:
238 return true;
239 default:
240 return false;
241 }
242 }
243
244 static bool
245 intel_miptree_supports_ccs_e(struct brw_context *brw,
246 const struct intel_mipmap_tree *mt)
247 {
248 const struct gen_device_info *devinfo = &brw->screen->devinfo;
249
250 if (devinfo->gen < 9)
251 return false;
252
253 /* For now compression is only enabled for integer formats even though
254 * there exist supported floating point formats also. This is a heuristic
255 * decision based on current public benchmarks. In none of the cases these
256 * formats provided any improvement but a few cases were seen to regress.
257 * Hence these are left to to be enabled in the future when they are known
258 * to improve things.
259 */
260 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
261 return false;
262
263 if (!intel_miptree_supports_ccs(brw, mt))
264 return false;
265
266 /* Many window system buffers are sRGB even if they are never rendered as
267 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
268 * surface is used as sRGB, we fall back to CCS_D.
269 */
270 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
271 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
272 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
273 }
274
275 /**
276 * Determine depth format corresponding to a depth+stencil format,
277 * for separate stencil.
278 */
279 mesa_format
280 intel_depth_format_for_depthstencil_format(mesa_format format) {
281 switch (format) {
282 case MESA_FORMAT_Z24_UNORM_S8_UINT:
283 return MESA_FORMAT_Z24_UNORM_X8_UINT;
284 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
285 return MESA_FORMAT_Z_FLOAT32;
286 default:
287 return format;
288 }
289 }
290
291 static bool
292 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
293 unsigned depth0, struct intel_mipmap_level *table)
294 {
295 for (unsigned level = first_level; level <= last_level; level++) {
296 const unsigned d =
297 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
298
299 table[level].slice = calloc(d, sizeof(*table[0].slice));
300 if (!table[level].slice)
301 goto unwind;
302 }
303
304 return true;
305
306 unwind:
307 for (unsigned level = first_level; level <= last_level; level++)
308 free(table[level].slice);
309
310 return false;
311 }
312
313 static bool
314 needs_separate_stencil(const struct brw_context *brw,
315 struct intel_mipmap_tree *mt,
316 mesa_format format)
317 {
318 const struct gen_device_info *devinfo = &brw->screen->devinfo;
319
320 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
321 return false;
322
323 if (devinfo->must_use_separate_stencil)
324 return true;
325
326 return brw->has_separate_stencil &&
327 intel_miptree_supports_hiz(brw, mt);
328 }
329
330 /**
331 * Choose the aux usage for this miptree. This function must be called fairly
332 * late in the miptree create process after we have a tiling.
333 */
334 static void
335 intel_miptree_choose_aux_usage(struct brw_context *brw,
336 struct intel_mipmap_tree *mt)
337 {
338 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
339
340 if (intel_miptree_supports_mcs(brw, mt)) {
341 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
342 mt->aux_usage = ISL_AUX_USAGE_MCS;
343 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
344 intel_miptree_supports_ccs(brw, mt)) {
345 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
346 intel_miptree_supports_ccs_e(brw, mt)) {
347 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
348 } else {
349 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
350 }
351 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
352 intel_miptree_supports_hiz(brw, mt)) {
353 mt->aux_usage = ISL_AUX_USAGE_HIZ;
354 }
355
356 /* We can do fast-clear on all auxiliary surface types that are
357 * allocated through the normal texture creation paths.
358 */
359 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
360 mt->supports_fast_clear = true;
361 }
362
363
364 /**
365 * Choose an appropriate uncompressed format for a requested
366 * compressed format, if unsupported.
367 */
368 mesa_format
369 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
370 {
371 const struct gen_device_info *devinfo = &brw->screen->devinfo;
372
373 /* No need to lower ETC formats on these platforms,
374 * they are supported natively.
375 */
376 if (devinfo->gen >= 8 || devinfo->is_baytrail)
377 return format;
378
379 switch (format) {
380 case MESA_FORMAT_ETC1_RGB8:
381 return MESA_FORMAT_R8G8B8X8_UNORM;
382 case MESA_FORMAT_ETC2_RGB8:
383 return MESA_FORMAT_R8G8B8X8_UNORM;
384 case MESA_FORMAT_ETC2_SRGB8:
385 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
386 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
387 return MESA_FORMAT_B8G8R8A8_SRGB;
388 case MESA_FORMAT_ETC2_RGBA8_EAC:
389 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
390 return MESA_FORMAT_R8G8B8A8_UNORM;
391 case MESA_FORMAT_ETC2_R11_EAC:
392 return MESA_FORMAT_R_UNORM16;
393 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
394 return MESA_FORMAT_R_SNORM16;
395 case MESA_FORMAT_ETC2_RG11_EAC:
396 return MESA_FORMAT_R16G16_UNORM;
397 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
398 return MESA_FORMAT_R16G16_SNORM;
399 default:
400 /* Non ETC1 / ETC2 format */
401 return format;
402 }
403 }
404
405 unsigned
406 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
407 {
408 if (mt->surf.dim == ISL_SURF_DIM_3D)
409 return minify(mt->surf.logical_level0_px.depth, level);
410 else
411 return mt->surf.logical_level0_px.array_len;
412 }
413
414 UNUSED static unsigned
415 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
416 {
417 /* In case of physical dimensions one needs to consider also the layout.
418 * See isl_calc_phys_level0_extent_sa().
419 */
420 if (surf->dim != ISL_SURF_DIM_3D)
421 return surf->phys_level0_sa.array_len;
422
423 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
424 return minify(surf->phys_level0_sa.array_len, level);
425
426 return minify(surf->phys_level0_sa.depth, level);
427 }
428
429 /** \brief Assert that the level and layer are valid for the miptree. */
430 void
431 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
432 uint32_t level,
433 uint32_t layer)
434 {
435 (void) mt;
436 (void) level;
437 (void) layer;
438
439 assert(level >= mt->first_level);
440 assert(level <= mt->last_level);
441 assert(layer < get_num_phys_layers(&mt->surf, level));
442 }
443
444 static enum isl_aux_state **
445 create_aux_state_map(struct intel_mipmap_tree *mt,
446 enum isl_aux_state initial)
447 {
448 const uint32_t levels = mt->last_level + 1;
449
450 uint32_t total_slices = 0;
451 for (uint32_t level = 0; level < levels; level++)
452 total_slices += brw_get_num_logical_layers(mt, level);
453
454 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
455
456 /* We're going to allocate a single chunk of data for both the per-level
457 * reference array and the arrays of aux_state. This makes cleanup
458 * significantly easier.
459 */
460 const size_t total_size = per_level_array_size +
461 total_slices * sizeof(enum isl_aux_state);
462 void *data = malloc(total_size);
463 if (data == NULL)
464 return NULL;
465
466 enum isl_aux_state **per_level_arr = data;
467 enum isl_aux_state *s = data + per_level_array_size;
468 for (uint32_t level = 0; level < levels; level++) {
469 per_level_arr[level] = s;
470 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
471 for (uint32_t a = 0; a < level_layers; a++)
472 *(s++) = initial;
473 }
474 assert((void *)s == data + total_size);
475
476 return per_level_arr;
477 }
478
479 static void
480 free_aux_state_map(enum isl_aux_state **state)
481 {
482 free(state);
483 }
484
485 static bool
486 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
487 enum isl_tiling tiling, unsigned samples)
488 {
489 if (samples > 1)
490 return false;
491
492 if (tiling == ISL_TILING_LINEAR)
493 return false;
494
495 /* If the width is much smaller than a tile, don't bother tiling. */
496 if (row_pitch < 64)
497 return true;
498
499 if (ALIGN(row_pitch, 512) >= 32768) {
500 perf_debug("row pitch %u too large to blit, falling back to untiled",
501 row_pitch);
502 return true;
503 }
504
505 return false;
506 }
507
508 static bool
509 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
510 enum isl_tiling tiling)
511 {
512 const struct gen_device_info *devinfo = &brw->screen->devinfo;
513
514 /* If the BO is too large to fit in the aperture, we need to use the
515 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
516 * handle Y-tiling, so we need to fall back to X.
517 */
518 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
519 tiling == ISL_TILING_Y0)
520 return true;
521
522 return false;
523 }
524
525 static struct intel_mipmap_tree *
526 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
527 unsigned first_level, unsigned last_level,
528 unsigned width0, unsigned height0, unsigned depth0,
529 unsigned num_samples, isl_tiling_flags_t tiling_flags,
530 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
531 unsigned row_pitch, struct brw_bo *bo)
532 {
533 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
534 if (!mt)
535 return NULL;
536
537 if (!create_mapping_table(target, first_level, last_level, depth0,
538 mt->level)) {
539 free(mt);
540 return NULL;
541 }
542
543 mt->refcount = 1;
544
545 if (target == GL_TEXTURE_CUBE_MAP ||
546 target == GL_TEXTURE_CUBE_MAP_ARRAY)
547 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
548
549 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
550 __func__,
551 _mesa_enum_to_string(target),
552 _mesa_get_format_name(format),
553 num_samples, width0, height0, depth0,
554 first_level, last_level, mt);
555
556 struct isl_surf_init_info init_info = {
557 .dim = get_isl_surf_dim(target),
558 .format = translate_tex_format(brw, format, false),
559 .width = width0,
560 .height = height0,
561 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
562 .levels = last_level - first_level + 1,
563 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
564 .samples = num_samples,
565 .row_pitch = row_pitch,
566 .usage = isl_usage_flags,
567 .tiling_flags = tiling_flags,
568 };
569
570 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
571 goto fail;
572
573 /* In case caller doesn't specifically request Y-tiling (needed
574 * unconditionally for depth), check for corner cases needing special
575 * treatment.
576 */
577 if (tiling_flags & ~ISL_TILING_Y0_BIT) {
578 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
579 mt->surf.tiling, mt->surf.samples)) {
580 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
581 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
582 goto fail;
583 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
584 init_info.tiling_flags = 1u << ISL_TILING_X;
585 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
586 goto fail;
587 }
588 }
589
590 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
591 * the size may not be multiple of row_pitch.
592 * See isl_apply_surface_padding().
593 */
594 if (mt->surf.tiling != ISL_TILING_LINEAR)
595 assert(mt->surf.size % mt->surf.row_pitch == 0);
596
597 if (!bo) {
598 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
599 mt->surf.size,
600 isl_tiling_to_i915_tiling(
601 mt->surf.tiling),
602 mt->surf.row_pitch, alloc_flags);
603 if (!mt->bo)
604 goto fail;
605 } else {
606 mt->bo = bo;
607 }
608
609 mt->first_level = first_level;
610 mt->last_level = last_level;
611 mt->target = target;
612 mt->format = format;
613 mt->aux_state = NULL;
614 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
615 mt->compressed = _mesa_is_format_compressed(format);
616 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
617
618 return mt;
619
620 fail:
621 intel_miptree_release(&mt);
622 return NULL;
623 }
624
625 static bool
626 make_separate_stencil_surface(struct brw_context *brw,
627 struct intel_mipmap_tree *mt)
628 {
629 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
630 0, mt->surf.levels - 1,
631 mt->surf.logical_level0_px.width,
632 mt->surf.logical_level0_px.height,
633 mt->surf.dim == ISL_SURF_DIM_3D ?
634 mt->surf.logical_level0_px.depth :
635 mt->surf.logical_level0_px.array_len,
636 mt->surf.samples, ISL_TILING_W_BIT,
637 ISL_SURF_USAGE_STENCIL_BIT |
638 ISL_SURF_USAGE_TEXTURE_BIT,
639 BO_ALLOC_BUSY, 0, NULL);
640
641 if (!mt->stencil_mt)
642 return false;
643
644 mt->stencil_mt->r8stencil_needs_update = true;
645
646 return true;
647 }
648
649 static struct intel_mipmap_tree *
650 miptree_create(struct brw_context *brw,
651 GLenum target,
652 mesa_format format,
653 GLuint first_level,
654 GLuint last_level,
655 GLuint width0,
656 GLuint height0,
657 GLuint depth0,
658 GLuint num_samples,
659 enum intel_miptree_create_flags flags)
660 {
661 const struct gen_device_info *devinfo = &brw->screen->devinfo;
662
663 if (format == MESA_FORMAT_S_UINT8)
664 return make_surface(brw, target, format, first_level, last_level,
665 width0, height0, depth0, num_samples,
666 ISL_TILING_W_BIT,
667 ISL_SURF_USAGE_STENCIL_BIT |
668 ISL_SURF_USAGE_TEXTURE_BIT,
669 BO_ALLOC_BUSY,
670 0,
671 NULL);
672
673 const GLenum base_format = _mesa_get_format_base_format(format);
674 if ((base_format == GL_DEPTH_COMPONENT ||
675 base_format == GL_DEPTH_STENCIL) &&
676 !(flags & MIPTREE_CREATE_LINEAR)) {
677 /* Fix up the Z miptree format for how we're splitting out separate
678 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
679 */
680 const mesa_format depth_only_format =
681 intel_depth_format_for_depthstencil_format(format);
682 struct intel_mipmap_tree *mt = make_surface(
683 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
684 first_level, last_level,
685 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
686 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
687 BO_ALLOC_BUSY, 0, NULL);
688
689 if (needs_separate_stencil(brw, mt, format) &&
690 !make_separate_stencil_surface(brw, mt)) {
691 intel_miptree_release(&mt);
692 return NULL;
693 }
694
695 if (!(flags & MIPTREE_CREATE_NO_AUX))
696 intel_miptree_choose_aux_usage(brw, mt);
697
698 return mt;
699 }
700
701 mesa_format tex_format = format;
702 mesa_format etc_format = MESA_FORMAT_NONE;
703 uint32_t alloc_flags = 0;
704
705 format = intel_lower_compressed_format(brw, format);
706
707 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
708
709 if (flags & MIPTREE_CREATE_BUSY)
710 alloc_flags |= BO_ALLOC_BUSY;
711
712 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
713 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
714
715 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
716 if (devinfo->gen < 6)
717 tiling_flags &= ~ISL_TILING_Y0_BIT;
718
719 struct intel_mipmap_tree *mt = make_surface(
720 brw, target, format,
721 first_level, last_level,
722 width0, height0, depth0,
723 num_samples, tiling_flags,
724 ISL_SURF_USAGE_RENDER_TARGET_BIT |
725 ISL_SURF_USAGE_TEXTURE_BIT,
726 alloc_flags, 0, NULL);
727 if (!mt)
728 return NULL;
729
730 mt->etc_format = etc_format;
731
732 if (!(flags & MIPTREE_CREATE_NO_AUX))
733 intel_miptree_choose_aux_usage(brw, mt);
734
735 return mt;
736 }
737
738 struct intel_mipmap_tree *
739 intel_miptree_create(struct brw_context *brw,
740 GLenum target,
741 mesa_format format,
742 GLuint first_level,
743 GLuint last_level,
744 GLuint width0,
745 GLuint height0,
746 GLuint depth0,
747 GLuint num_samples,
748 enum intel_miptree_create_flags flags)
749 {
750 assert(num_samples > 0);
751
752 struct intel_mipmap_tree *mt = miptree_create(
753 brw, target, format,
754 first_level, last_level,
755 width0, height0, depth0, num_samples,
756 flags);
757 if (!mt)
758 return NULL;
759
760 mt->offset = 0;
761
762 if (!intel_miptree_alloc_aux(brw, mt)) {
763 intel_miptree_release(&mt);
764 return NULL;
765 }
766
767 return mt;
768 }
769
770 struct intel_mipmap_tree *
771 intel_miptree_create_for_bo(struct brw_context *brw,
772 struct brw_bo *bo,
773 mesa_format format,
774 uint32_t offset,
775 uint32_t width,
776 uint32_t height,
777 uint32_t depth,
778 int pitch,
779 enum intel_miptree_create_flags flags)
780 {
781 const struct gen_device_info *devinfo = &brw->screen->devinfo;
782 struct intel_mipmap_tree *mt;
783 uint32_t tiling, swizzle;
784 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
785 const GLenum base_format = _mesa_get_format_base_format(format);
786
787 if ((base_format == GL_DEPTH_COMPONENT ||
788 base_format == GL_DEPTH_STENCIL)) {
789 const mesa_format depth_only_format =
790 intel_depth_format_for_depthstencil_format(format);
791 mt = make_surface(brw, target,
792 devinfo->gen >= 6 ? depth_only_format : format,
793 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
794 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
795 BO_ALLOC_BUSY, pitch, bo);
796 if (!mt)
797 return NULL;
798
799 brw_bo_reference(bo);
800
801 if (!(flags & MIPTREE_CREATE_NO_AUX))
802 intel_miptree_choose_aux_usage(brw, mt);
803
804 return mt;
805 } else if (format == MESA_FORMAT_S_UINT8) {
806 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
807 0, 0, width, height, depth, 1,
808 ISL_TILING_W_BIT,
809 ISL_SURF_USAGE_STENCIL_BIT |
810 ISL_SURF_USAGE_TEXTURE_BIT,
811 BO_ALLOC_BUSY, pitch, bo);
812 if (!mt)
813 return NULL;
814
815 assert(bo->size >= mt->surf.size);
816
817 brw_bo_reference(bo);
818 return mt;
819 }
820
821 brw_bo_get_tiling(bo, &tiling, &swizzle);
822
823 /* Nothing will be able to use this miptree with the BO if the offset isn't
824 * aligned.
825 */
826 if (tiling != I915_TILING_NONE)
827 assert(offset % 4096 == 0);
828
829 /* miptrees can't handle negative pitch. If you need flipping of images,
830 * that's outside of the scope of the mt.
831 */
832 assert(pitch >= 0);
833
834 /* The BO already has a tiling format and we shouldn't confuse the lower
835 * layers by making it try to find a tiling format again.
836 */
837 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
838
839 mt = make_surface(brw, target, format,
840 0, 0, width, height, depth, 1,
841 1lu << isl_tiling_from_i915_tiling(tiling),
842 ISL_SURF_USAGE_RENDER_TARGET_BIT |
843 ISL_SURF_USAGE_TEXTURE_BIT,
844 0, pitch, bo);
845 if (!mt)
846 return NULL;
847
848 brw_bo_reference(bo);
849 mt->bo = bo;
850 mt->offset = offset;
851
852 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
853 intel_miptree_choose_aux_usage(brw, mt);
854
855 if (!intel_miptree_alloc_aux(brw, mt)) {
856 intel_miptree_release(&mt);
857 return NULL;
858 }
859 }
860
861 return mt;
862 }
863
864 static struct intel_mipmap_tree *
865 miptree_create_for_planar_image(struct brw_context *brw,
866 __DRIimage *image, GLenum target)
867 {
868 const struct intel_image_format *f = image->planar_format;
869 struct intel_mipmap_tree *planar_mt = NULL;
870
871 for (int i = 0; i < f->nplanes; i++) {
872 const int index = f->planes[i].buffer_index;
873 const uint32_t dri_format = f->planes[i].dri_format;
874 const mesa_format format = driImageFormatToGLFormat(dri_format);
875 const uint32_t width = image->width >> f->planes[i].width_shift;
876 const uint32_t height = image->height >> f->planes[i].height_shift;
877
878 /* Disable creation of the texture's aux buffers because the driver
879 * exposes no EGL API to manage them. That is, there is no API for
880 * resolving the aux buffer's content to the main buffer nor for
881 * invalidating the aux buffer's content.
882 */
883 struct intel_mipmap_tree *mt =
884 intel_miptree_create_for_bo(brw, image->bo, format,
885 image->offsets[index],
886 width, height, 1,
887 image->strides[index],
888 MIPTREE_CREATE_NO_AUX);
889 if (mt == NULL)
890 return NULL;
891
892 mt->target = target;
893
894 if (i == 0)
895 planar_mt = mt;
896 else
897 planar_mt->plane[i - 1] = mt;
898 }
899
900 planar_mt->drm_modifier = image->modifier;
901
902 return planar_mt;
903 }
904
905 static bool
906 create_ccs_buf_for_image(struct brw_context *brw,
907 __DRIimage *image,
908 struct intel_mipmap_tree *mt,
909 enum isl_aux_state initial_state)
910 {
911 struct isl_surf temp_ccs_surf;
912
913 /* CCS is only supported for very simple miptrees */
914 assert(image->aux_offset != 0 && image->aux_pitch != 0);
915 assert(image->tile_x == 0 && image->tile_y == 0);
916 assert(mt->surf.samples == 1);
917 assert(mt->surf.levels == 1);
918 assert(mt->surf.logical_level0_px.depth == 1);
919 assert(mt->surf.logical_level0_px.array_len == 1);
920 assert(mt->first_level == 0);
921 assert(mt->last_level == 0);
922
923 /* We shouldn't already have a CCS */
924 assert(!mt->mcs_buf);
925
926 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
927 image->aux_pitch))
928 return false;
929
930 assert(image->aux_offset < image->bo->size);
931 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
932
933 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
934 if (mt->mcs_buf == NULL)
935 return false;
936
937 mt->aux_state = create_aux_state_map(mt, initial_state);
938 if (!mt->aux_state) {
939 free(mt->mcs_buf);
940 mt->mcs_buf = NULL;
941 return false;
942 }
943
944 mt->mcs_buf->bo = image->bo;
945 brw_bo_reference(image->bo);
946
947 mt->mcs_buf->offset = image->aux_offset;
948 mt->mcs_buf->size = image->bo->size - image->aux_offset;
949 mt->mcs_buf->pitch = image->aux_pitch;
950 mt->mcs_buf->qpitch = 0;
951 mt->mcs_buf->surf = temp_ccs_surf;
952
953 return true;
954 }
955
956 struct intel_mipmap_tree *
957 intel_miptree_create_for_dri_image(struct brw_context *brw,
958 __DRIimage *image, GLenum target,
959 enum isl_colorspace colorspace,
960 bool is_winsys_image)
961 {
962 if (image->planar_format && image->planar_format->nplanes > 1) {
963 assert(colorspace == ISL_COLORSPACE_NONE ||
964 colorspace == ISL_COLORSPACE_YUV);
965 return miptree_create_for_planar_image(brw, image, target);
966 }
967
968 if (image->planar_format)
969 assert(image->planar_format->planes[0].dri_format == image->dri_format);
970
971 mesa_format format = image->format;
972 switch (colorspace) {
973 case ISL_COLORSPACE_NONE:
974 /* Keep the image format unmodified */
975 break;
976
977 case ISL_COLORSPACE_LINEAR:
978 format =_mesa_get_srgb_format_linear(format);
979 break;
980
981 case ISL_COLORSPACE_SRGB:
982 format =_mesa_get_linear_format_srgb(format);
983 break;
984
985 default:
986 unreachable("Inalid colorspace for non-planar image");
987 }
988
989 if (!brw->ctx.TextureFormatSupported[format]) {
990 /* The texture storage paths in core Mesa detect if the driver does not
991 * support the user-requested format, and then searches for a
992 * fallback format. The DRIimage code bypasses core Mesa, though. So we
993 * do the fallbacks here for important formats.
994 *
995 * We must support DRM_FOURCC_XBGR8888 textures because the Android
996 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
997 * the Chrome OS compositor consumes as dma_buf EGLImages.
998 */
999 format = _mesa_format_fallback_rgbx_to_rgba(format);
1000 }
1001
1002 if (!brw->ctx.TextureFormatSupported[format])
1003 return NULL;
1004
1005 const struct isl_drm_modifier_info *mod_info =
1006 isl_drm_modifier_get_info(image->modifier);
1007
1008 enum intel_miptree_create_flags mt_create_flags = 0;
1009
1010 /* If this image comes in from a window system, we have different
1011 * requirements than if it comes in via an EGL import operation. Window
1012 * system images can use any form of auxiliary compression we wish because
1013 * they get "flushed" before being handed off to the window system and we
1014 * have the opportunity to do resolves. Non window-system images, on the
1015 * other hand, have no resolve point so we can't have aux without a
1016 * modifier.
1017 */
1018 if (!is_winsys_image)
1019 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1020
1021 /* If we have a modifier which specifies aux, don't create one yet */
1022 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1023 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1024
1025 /* Disable creation of the texture's aux buffers because the driver exposes
1026 * no EGL API to manage them. That is, there is no API for resolving the aux
1027 * buffer's content to the main buffer nor for invalidating the aux buffer's
1028 * content.
1029 */
1030 struct intel_mipmap_tree *mt =
1031 intel_miptree_create_for_bo(brw, image->bo, format,
1032 image->offset, image->width, image->height, 1,
1033 image->pitch, mt_create_flags);
1034 if (mt == NULL)
1035 return NULL;
1036
1037 mt->target = target;
1038 mt->level[0].level_x = image->tile_x;
1039 mt->level[0].level_y = image->tile_y;
1040 mt->drm_modifier = image->modifier;
1041
1042 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1043 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1044 * trouble resolving back to destination image due to alignment issues.
1045 */
1046 if (!brw->has_surface_tile_offset) {
1047 uint32_t draw_x, draw_y;
1048 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1049
1050 if (draw_x != 0 || draw_y != 0) {
1051 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1052 intel_miptree_release(&mt);
1053 return NULL;
1054 }
1055 }
1056
1057 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1058 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1059
1060 mt->aux_usage = mod_info->aux_usage;
1061 /* If we are a window system buffer, then we can support fast-clears
1062 * even if the modifier doesn't support them by doing a partial resolve
1063 * as part of the flush operation.
1064 */
1065 mt->supports_fast_clear =
1066 is_winsys_image || mod_info->supports_clear_color;
1067
1068 /* We don't know the actual state of the surface when we get it but we
1069 * can make a pretty good guess based on the modifier. What we do know
1070 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1071 * a worst case of compression.
1072 */
1073 enum isl_aux_state initial_state =
1074 mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR :
1075 ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
1076
1077 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1078 intel_miptree_release(&mt);
1079 return NULL;
1080 }
1081 }
1082
1083 /* Don't assume coherency for imported EGLimages. We don't know what
1084 * external clients are going to do with it. They may scan it out.
1085 */
1086 image->bo->cache_coherent = false;
1087
1088 return mt;
1089 }
1090
1091 /**
1092 * For a singlesample renderbuffer, this simply wraps the given BO with a
1093 * miptree.
1094 *
1095 * For a multisample renderbuffer, this wraps the window system's
1096 * (singlesample) BO with a singlesample miptree attached to the
1097 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1098 * that will contain the actual rendering (which is lazily resolved to
1099 * irb->singlesample_mt).
1100 */
1101 bool
1102 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1103 struct intel_renderbuffer *irb,
1104 struct intel_mipmap_tree *singlesample_mt,
1105 uint32_t width, uint32_t height,
1106 uint32_t pitch)
1107 {
1108 struct intel_mipmap_tree *multisample_mt = NULL;
1109 struct gl_renderbuffer *rb = &irb->Base.Base;
1110 mesa_format format = rb->Format;
1111 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1112
1113 /* Only the front and back buffers, which are color buffers, are allocated
1114 * through the image loader.
1115 */
1116 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1117 _mesa_get_format_base_format(format) == GL_RGBA);
1118
1119 assert(singlesample_mt);
1120
1121 if (num_samples == 1) {
1122 intel_miptree_release(&irb->mt);
1123 irb->mt = singlesample_mt;
1124
1125 assert(!irb->singlesample_mt);
1126 } else {
1127 intel_miptree_release(&irb->singlesample_mt);
1128 irb->singlesample_mt = singlesample_mt;
1129
1130 if (!irb->mt ||
1131 irb->mt->surf.logical_level0_px.width != width ||
1132 irb->mt->surf.logical_level0_px.height != height) {
1133 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1134 format,
1135 width,
1136 height,
1137 num_samples);
1138 if (!multisample_mt)
1139 goto fail;
1140
1141 irb->need_downsample = false;
1142 intel_miptree_release(&irb->mt);
1143 irb->mt = multisample_mt;
1144 }
1145 }
1146 return true;
1147
1148 fail:
1149 intel_miptree_release(&irb->mt);
1150 return false;
1151 }
1152
1153 struct intel_mipmap_tree*
1154 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1155 mesa_format format,
1156 uint32_t width,
1157 uint32_t height,
1158 uint32_t num_samples)
1159 {
1160 struct intel_mipmap_tree *mt;
1161 uint32_t depth = 1;
1162 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1163
1164 mt = intel_miptree_create(brw, target, format, 0, 0,
1165 width, height, depth, num_samples,
1166 MIPTREE_CREATE_BUSY);
1167 if (!mt)
1168 goto fail;
1169
1170 return mt;
1171
1172 fail:
1173 intel_miptree_release(&mt);
1174 return NULL;
1175 }
1176
1177 void
1178 intel_miptree_reference(struct intel_mipmap_tree **dst,
1179 struct intel_mipmap_tree *src)
1180 {
1181 if (*dst == src)
1182 return;
1183
1184 intel_miptree_release(dst);
1185
1186 if (src) {
1187 src->refcount++;
1188 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1189 }
1190
1191 *dst = src;
1192 }
1193
1194 static void
1195 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1196 {
1197 if (aux_buf == NULL)
1198 return;
1199
1200 brw_bo_unreference(aux_buf->bo);
1201
1202 free(aux_buf);
1203 }
1204
1205 void
1206 intel_miptree_release(struct intel_mipmap_tree **mt)
1207 {
1208 if (!*mt)
1209 return;
1210
1211 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1212 if (--(*mt)->refcount <= 0) {
1213 GLuint i;
1214
1215 DBG("%s deleting %p\n", __func__, *mt);
1216
1217 brw_bo_unreference((*mt)->bo);
1218 intel_miptree_release(&(*mt)->stencil_mt);
1219 intel_miptree_release(&(*mt)->r8stencil_mt);
1220 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1221 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1222 free_aux_state_map((*mt)->aux_state);
1223
1224 intel_miptree_release(&(*mt)->plane[0]);
1225 intel_miptree_release(&(*mt)->plane[1]);
1226
1227 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1228 free((*mt)->level[i].slice);
1229 }
1230
1231 free(*mt);
1232 }
1233 *mt = NULL;
1234 }
1235
1236
1237 void
1238 intel_get_image_dims(struct gl_texture_image *image,
1239 int *width, int *height, int *depth)
1240 {
1241 switch (image->TexObject->Target) {
1242 case GL_TEXTURE_1D_ARRAY:
1243 /* For a 1D Array texture the OpenGL API will treat the image height as
1244 * the number of array slices. For Intel hardware, we treat the 1D array
1245 * as a 2D Array with a height of 1. So, here we want to swap image
1246 * height and depth.
1247 */
1248 assert(image->Depth == 1);
1249 *width = image->Width;
1250 *height = 1;
1251 *depth = image->Height;
1252 break;
1253 case GL_TEXTURE_CUBE_MAP:
1254 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1255 * though we really have 6 slices.
1256 */
1257 assert(image->Depth == 1);
1258 *width = image->Width;
1259 *height = image->Height;
1260 *depth = 6;
1261 break;
1262 default:
1263 *width = image->Width;
1264 *height = image->Height;
1265 *depth = image->Depth;
1266 break;
1267 }
1268 }
1269
1270 /**
1271 * Can the image be pulled into a unified mipmap tree? This mirrors
1272 * the completeness test in a lot of ways.
1273 *
1274 * Not sure whether I want to pass gl_texture_image here.
1275 */
1276 bool
1277 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1278 struct gl_texture_image *image)
1279 {
1280 struct intel_texture_image *intelImage = intel_texture_image(image);
1281 GLuint level = intelImage->base.Base.Level;
1282 int width, height, depth;
1283
1284 /* glTexImage* choose the texture object based on the target passed in, and
1285 * objects can't change targets over their lifetimes, so this should be
1286 * true.
1287 */
1288 assert(image->TexObject->Target == mt->target);
1289
1290 mesa_format mt_format = mt->format;
1291 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1292 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1293 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1294 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1295 if (mt->etc_format != MESA_FORMAT_NONE)
1296 mt_format = mt->etc_format;
1297
1298 if (image->TexFormat != mt_format)
1299 return false;
1300
1301 intel_get_image_dims(image, &width, &height, &depth);
1302
1303 if (mt->target == GL_TEXTURE_CUBE_MAP)
1304 depth = 6;
1305
1306 if (level >= mt->surf.levels)
1307 return false;
1308
1309 const unsigned level_depth =
1310 mt->surf.dim == ISL_SURF_DIM_3D ?
1311 minify(mt->surf.logical_level0_px.depth, level) :
1312 mt->surf.logical_level0_px.array_len;
1313
1314 return width == minify(mt->surf.logical_level0_px.width, level) &&
1315 height == minify(mt->surf.logical_level0_px.height, level) &&
1316 depth == level_depth &&
1317 MAX2(image->NumSamples, 1) == mt->surf.samples;
1318 }
1319
1320 void
1321 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1322 GLuint level, GLuint slice,
1323 GLuint *x, GLuint *y)
1324 {
1325 if (level == 0 && slice == 0) {
1326 *x = mt->level[0].level_x;
1327 *y = mt->level[0].level_y;
1328 return;
1329 }
1330
1331 uint32_t x_offset_sa, y_offset_sa;
1332
1333 /* Miptree itself can have an offset only if it represents a single
1334 * slice in an imported buffer object.
1335 * See intel_miptree_create_for_dri_image().
1336 */
1337 assert(mt->level[0].level_x == 0);
1338 assert(mt->level[0].level_y == 0);
1339
1340 /* Given level is relative to level zero while the miptree may be
1341 * represent just a subset of all levels starting from 'first_level'.
1342 */
1343 assert(level >= mt->first_level);
1344 level -= mt->first_level;
1345
1346 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1347 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1348 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1349 &x_offset_sa, &y_offset_sa);
1350
1351 *x = x_offset_sa;
1352 *y = y_offset_sa;
1353 }
1354
1355
1356 /**
1357 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1358 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1359 * and tile_h is set to 1.
1360 */
1361 void
1362 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1363 uint32_t *tile_w, uint32_t *tile_h)
1364 {
1365 switch (tiling) {
1366 case ISL_TILING_X:
1367 *tile_w = 512;
1368 *tile_h = 8;
1369 break;
1370 case ISL_TILING_Y0:
1371 *tile_w = 128;
1372 *tile_h = 32;
1373 break;
1374 case ISL_TILING_LINEAR:
1375 *tile_w = cpp;
1376 *tile_h = 1;
1377 break;
1378 default:
1379 unreachable("not reached");
1380 }
1381 }
1382
1383
1384 /**
1385 * This function computes masks that may be used to select the bits of the X
1386 * and Y coordinates that indicate the offset within a tile. If the BO is
1387 * untiled, the masks are set to 0.
1388 */
1389 void
1390 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1391 uint32_t *mask_x, uint32_t *mask_y)
1392 {
1393 uint32_t tile_w_bytes, tile_h;
1394
1395 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1396
1397 *mask_x = tile_w_bytes / cpp - 1;
1398 *mask_y = tile_h - 1;
1399 }
1400
1401 /**
1402 * Compute the offset (in bytes) from the start of the BO to the given x
1403 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1404 * multiples of the tile size.
1405 */
1406 uint32_t
1407 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1408 uint32_t x, uint32_t y)
1409 {
1410 int cpp = mt->cpp;
1411 uint32_t pitch = mt->surf.row_pitch;
1412
1413 switch (mt->surf.tiling) {
1414 default:
1415 unreachable("not reached");
1416 case ISL_TILING_LINEAR:
1417 return y * pitch + x * cpp;
1418 case ISL_TILING_X:
1419 assert((x % (512 / cpp)) == 0);
1420 assert((y % 8) == 0);
1421 return y * pitch + x / (512 / cpp) * 4096;
1422 case ISL_TILING_Y0:
1423 assert((x % (128 / cpp)) == 0);
1424 assert((y % 32) == 0);
1425 return y * pitch + x / (128 / cpp) * 4096;
1426 }
1427 }
1428
1429 /**
1430 * Rendering with tiled buffers requires that the base address of the buffer
1431 * be aligned to a page boundary. For renderbuffers, and sometimes with
1432 * textures, we may want the surface to point at a texture image level that
1433 * isn't at a page boundary.
1434 *
1435 * This function returns an appropriately-aligned base offset
1436 * according to the tiling restrictions, plus any required x/y offset
1437 * from there.
1438 */
1439 uint32_t
1440 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1441 GLuint level, GLuint slice,
1442 uint32_t *tile_x,
1443 uint32_t *tile_y)
1444 {
1445 uint32_t x, y;
1446 uint32_t mask_x, mask_y;
1447
1448 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1449 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1450
1451 *tile_x = x & mask_x;
1452 *tile_y = y & mask_y;
1453
1454 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1455 }
1456
1457 static void
1458 intel_miptree_copy_slice_sw(struct brw_context *brw,
1459 struct intel_mipmap_tree *src_mt,
1460 unsigned src_level, unsigned src_layer,
1461 struct intel_mipmap_tree *dst_mt,
1462 unsigned dst_level, unsigned dst_layer,
1463 unsigned width, unsigned height)
1464 {
1465 void *src, *dst;
1466 ptrdiff_t src_stride, dst_stride;
1467 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1468
1469 intel_miptree_map(brw, src_mt,
1470 src_level, src_layer,
1471 0, 0,
1472 width, height,
1473 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1474 &src, &src_stride);
1475
1476 intel_miptree_map(brw, dst_mt,
1477 dst_level, dst_layer,
1478 0, 0,
1479 width, height,
1480 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1481 BRW_MAP_DIRECT_BIT,
1482 &dst, &dst_stride);
1483
1484 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1485 _mesa_get_format_name(src_mt->format),
1486 src_mt, src, src_stride,
1487 _mesa_get_format_name(dst_mt->format),
1488 dst_mt, dst, dst_stride,
1489 width, height);
1490
1491 int row_size = cpp * width;
1492 if (src_stride == row_size &&
1493 dst_stride == row_size) {
1494 memcpy(dst, src, row_size * height);
1495 } else {
1496 for (int i = 0; i < height; i++) {
1497 memcpy(dst, src, row_size);
1498 dst += dst_stride;
1499 src += src_stride;
1500 }
1501 }
1502
1503 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1504 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1505
1506 /* Don't forget to copy the stencil data over, too. We could have skipped
1507 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1508 * shuffling the two data sources in/out of temporary storage instead of
1509 * the direct mapping we get this way.
1510 */
1511 if (dst_mt->stencil_mt) {
1512 assert(src_mt->stencil_mt);
1513 intel_miptree_copy_slice_sw(brw,
1514 src_mt->stencil_mt, src_level, src_layer,
1515 dst_mt->stencil_mt, dst_level, dst_layer,
1516 width, height);
1517 }
1518 }
1519
1520 void
1521 intel_miptree_copy_slice(struct brw_context *brw,
1522 struct intel_mipmap_tree *src_mt,
1523 unsigned src_level, unsigned src_layer,
1524 struct intel_mipmap_tree *dst_mt,
1525 unsigned dst_level, unsigned dst_layer)
1526
1527 {
1528 mesa_format format = src_mt->format;
1529 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1530 src_level - src_mt->first_level);
1531 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1532 src_level - src_mt->first_level);
1533
1534 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1535 src_level - src_mt->first_level));
1536
1537 assert(src_mt->format == dst_mt->format);
1538
1539 if (dst_mt->compressed) {
1540 unsigned int i, j;
1541 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1542 height = ALIGN_NPOT(height, j) / j;
1543 width = ALIGN_NPOT(width, i) / i;
1544 }
1545
1546 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1547 * below won't apply since we can't do the depth's Y tiling or the
1548 * stencil's W tiling in the blitter.
1549 */
1550 if (src_mt->stencil_mt) {
1551 intel_miptree_copy_slice_sw(brw,
1552 src_mt, src_level, src_layer,
1553 dst_mt, dst_level, dst_layer,
1554 width, height);
1555 return;
1556 }
1557
1558 uint32_t dst_x, dst_y, src_x, src_y;
1559 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1560 &dst_x, &dst_y);
1561 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1562 &src_x, &src_y);
1563
1564 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1565 _mesa_get_format_name(src_mt->format),
1566 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1567 _mesa_get_format_name(dst_mt->format),
1568 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1569 width, height);
1570
1571 if (!intel_miptree_blit(brw,
1572 src_mt, src_level, src_layer, 0, 0, false,
1573 dst_mt, dst_level, dst_layer, 0, 0, false,
1574 width, height, GL_COPY)) {
1575 perf_debug("miptree validate blit for %s failed\n",
1576 _mesa_get_format_name(format));
1577
1578 intel_miptree_copy_slice_sw(brw,
1579 src_mt, src_level, src_layer,
1580 dst_mt, dst_level, dst_layer,
1581 width, height);
1582 }
1583 }
1584
1585 /**
1586 * Copies the image's current data to the given miptree, and associates that
1587 * miptree with the image.
1588 *
1589 * If \c invalidate is true, then the actual image data does not need to be
1590 * copied, but the image still needs to be associated to the new miptree (this
1591 * is set to true if we're about to clear the image).
1592 */
1593 void
1594 intel_miptree_copy_teximage(struct brw_context *brw,
1595 struct intel_texture_image *intelImage,
1596 struct intel_mipmap_tree *dst_mt,
1597 bool invalidate)
1598 {
1599 struct intel_mipmap_tree *src_mt = intelImage->mt;
1600 struct intel_texture_object *intel_obj =
1601 intel_texture_object(intelImage->base.Base.TexObject);
1602 int level = intelImage->base.Base.Level;
1603 const unsigned face = intelImage->base.Base.Face;
1604 unsigned start_layer, end_layer;
1605
1606 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1607 assert(face == 0);
1608 assert(intelImage->base.Base.Height);
1609 start_layer = 0;
1610 end_layer = intelImage->base.Base.Height - 1;
1611 } else if (face > 0) {
1612 start_layer = face;
1613 end_layer = face;
1614 } else {
1615 assert(intelImage->base.Base.Depth);
1616 start_layer = 0;
1617 end_layer = intelImage->base.Base.Depth - 1;
1618 }
1619
1620 if (!invalidate) {
1621 for (unsigned i = start_layer; i <= end_layer; i++) {
1622 intel_miptree_copy_slice(brw,
1623 src_mt, level, i,
1624 dst_mt, level, i);
1625 }
1626 }
1627
1628 intel_miptree_reference(&intelImage->mt, dst_mt);
1629 intel_obj->needs_validate = true;
1630 }
1631
1632 static void
1633 intel_miptree_init_mcs(struct brw_context *brw,
1634 struct intel_mipmap_tree *mt,
1635 int init_value)
1636 {
1637 assert(mt->mcs_buf != NULL);
1638
1639 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1640 *
1641 * When MCS buffer is enabled and bound to MSRT, it is required that it
1642 * is cleared prior to any rendering.
1643 *
1644 * Since we don't use the MCS buffer for any purpose other than rendering,
1645 * it makes sense to just clear it immediately upon allocation.
1646 *
1647 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1648 */
1649 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1650 if (unlikely(map == NULL)) {
1651 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1652 brw_bo_unreference(mt->mcs_buf->bo);
1653 free(mt->mcs_buf);
1654 return;
1655 }
1656 void *data = map;
1657 memset(data, init_value, mt->mcs_buf->size);
1658 brw_bo_unmap(mt->mcs_buf->bo);
1659 }
1660
1661 static struct intel_miptree_aux_buffer *
1662 intel_alloc_aux_buffer(struct brw_context *brw,
1663 const char *name,
1664 const struct isl_surf *aux_surf,
1665 uint32_t alloc_flags,
1666 struct intel_mipmap_tree *mt)
1667 {
1668 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1669 if (!buf)
1670 return false;
1671
1672 buf->size = aux_surf->size;
1673 buf->pitch = aux_surf->row_pitch;
1674 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1675
1676 /* ISL has stricter set of alignment rules then the drm allocator.
1677 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1678 * trying to recalculate based on different format block sizes.
1679 */
1680 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1681 I915_TILING_Y, buf->pitch, alloc_flags);
1682 if (!buf->bo) {
1683 free(buf);
1684 return NULL;
1685 }
1686
1687 buf->surf = *aux_surf;
1688
1689 return buf;
1690 }
1691
1692 static bool
1693 intel_miptree_alloc_mcs(struct brw_context *brw,
1694 struct intel_mipmap_tree *mt,
1695 GLuint num_samples)
1696 {
1697 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1698
1699 assert(devinfo->gen >= 7); /* MCS only used on Gen7+ */
1700 assert(mt->mcs_buf == NULL);
1701 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1702
1703 /* Multisampled miptrees are only supported for single level. */
1704 assert(mt->first_level == 0);
1705 enum isl_aux_state **aux_state =
1706 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1707 if (!aux_state)
1708 return false;
1709
1710 struct isl_surf temp_mcs_surf;
1711
1712 MAYBE_UNUSED bool ok =
1713 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1714 assert(ok);
1715
1716 /* Buffer needs to be initialised requiring the buffer to be immediately
1717 * mapped to cpu space for writing. Therefore do not use the gpu access
1718 * flag which can cause an unnecessary delay if the backing pages happened
1719 * to be just used by the GPU.
1720 */
1721 const uint32_t alloc_flags = 0;
1722 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1723 &temp_mcs_surf, alloc_flags, mt);
1724 if (!mt->mcs_buf) {
1725 free(aux_state);
1726 return false;
1727 }
1728
1729 mt->aux_state = aux_state;
1730
1731 intel_miptree_init_mcs(brw, mt, 0xFF);
1732
1733 return true;
1734 }
1735
1736 bool
1737 intel_miptree_alloc_ccs(struct brw_context *brw,
1738 struct intel_mipmap_tree *mt)
1739 {
1740 assert(mt->mcs_buf == NULL);
1741 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1742 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1743
1744 struct isl_surf temp_ccs_surf;
1745
1746 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1747 return false;
1748
1749 assert(temp_ccs_surf.size &&
1750 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1751
1752 enum isl_aux_state **aux_state =
1753 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1754 if (!aux_state)
1755 return false;
1756
1757 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1758 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1759 *
1760 * "If Software wants to enable Color Compression without Fast clear,
1761 * Software needs to initialize MCS with zeros."
1762 *
1763 * A CCS value of 0 indicates that the corresponding block is in the
1764 * pass-through state which is what we want.
1765 *
1766 * For CCS_D, on the other hand, we don't care as we're about to perform a
1767 * fast-clear operation. In that case, being hot in caches more useful.
1768 */
1769 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1770 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1771 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1772 &temp_ccs_surf, alloc_flags, mt);
1773 if (!mt->mcs_buf) {
1774 free(aux_state);
1775 return false;
1776 }
1777
1778 mt->aux_state = aux_state;
1779
1780 return true;
1781 }
1782
1783 /**
1784 * Helper for intel_miptree_alloc_hiz() that sets
1785 * \c mt->level[level].has_hiz. Return true if and only if
1786 * \c has_hiz was set.
1787 */
1788 static bool
1789 intel_miptree_level_enable_hiz(struct brw_context *brw,
1790 struct intel_mipmap_tree *mt,
1791 uint32_t level)
1792 {
1793 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1794
1795 assert(mt->hiz_buf);
1796 assert(mt->surf.size > 0);
1797
1798 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1799 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1800 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1801
1802 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1803 * and the height is 4 aligned. This allows our HiZ support
1804 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1805 * we can grow the width & height to allow the HiZ op to
1806 * force the proper size alignments.
1807 */
1808 if (level > 0 && ((width & 7) || (height & 3))) {
1809 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1810 return false;
1811 }
1812 }
1813
1814 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1815 mt->level[level].has_hiz = true;
1816 return true;
1817 }
1818
1819 bool
1820 intel_miptree_alloc_hiz(struct brw_context *brw,
1821 struct intel_mipmap_tree *mt)
1822 {
1823 assert(mt->hiz_buf == NULL);
1824 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1825
1826 enum isl_aux_state **aux_state =
1827 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1828 if (!aux_state)
1829 return false;
1830
1831 struct isl_surf temp_hiz_surf;
1832
1833 MAYBE_UNUSED bool ok =
1834 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1835 assert(ok);
1836
1837 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1838 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1839 &temp_hiz_surf, alloc_flags, mt);
1840
1841 if (!mt->hiz_buf) {
1842 free(aux_state);
1843 return false;
1844 }
1845
1846 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1847 intel_miptree_level_enable_hiz(brw, mt, level);
1848
1849 mt->aux_state = aux_state;
1850
1851 return true;
1852 }
1853
1854
1855 /**
1856 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1857 *
1858 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1859 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1860 * compress clear color so we wait until an actual fast-clear to allocate it.
1861 */
1862 static bool
1863 intel_miptree_alloc_aux(struct brw_context *brw,
1864 struct intel_mipmap_tree *mt)
1865 {
1866 switch (mt->aux_usage) {
1867 case ISL_AUX_USAGE_NONE:
1868 return true;
1869
1870 case ISL_AUX_USAGE_HIZ:
1871 assert(!_mesa_is_format_color_format(mt->format));
1872 if (!intel_miptree_alloc_hiz(brw, mt))
1873 return false;
1874 return true;
1875
1876 case ISL_AUX_USAGE_MCS:
1877 assert(_mesa_is_format_color_format(mt->format));
1878 assert(mt->surf.samples > 1);
1879 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1880 return false;
1881 return true;
1882
1883 case ISL_AUX_USAGE_CCS_D:
1884 /* Since CCS_D can only compress clear color so we wait until an actual
1885 * fast-clear to allocate it.
1886 */
1887 return true;
1888
1889 case ISL_AUX_USAGE_CCS_E:
1890 assert(_mesa_is_format_color_format(mt->format));
1891 assert(mt->surf.samples == 1);
1892 if (!intel_miptree_alloc_ccs(brw, mt))
1893 return false;
1894 return true;
1895 }
1896
1897 unreachable("Invalid aux usage");
1898 }
1899
1900
1901 /**
1902 * Can the miptree sample using the hiz buffer?
1903 */
1904 bool
1905 intel_miptree_sample_with_hiz(struct brw_context *brw,
1906 struct intel_mipmap_tree *mt)
1907 {
1908 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1909
1910 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1911 * so keep things conservative for now and never enable it unless we're SKL+.
1912 */
1913 if (devinfo->gen < 9) {
1914 return false;
1915 }
1916
1917 if (!mt->hiz_buf) {
1918 return false;
1919 }
1920
1921 /* It seems the hardware won't fallback to the depth buffer if some of the
1922 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1923 * of the texture to be HiZ enabled.
1924 */
1925 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1926 if (!intel_miptree_level_has_hiz(mt, level))
1927 return false;
1928 }
1929
1930 /* If compressed multisampling is enabled, then we use it for the auxiliary
1931 * buffer instead.
1932 *
1933 * From the BDW PRM (Volume 2d: Command Reference: Structures
1934 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1935 *
1936 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1937 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1938 *
1939 * There is no such blurb for 1D textures, but there is sufficient evidence
1940 * that this is broken on SKL+.
1941 */
1942 return (mt->surf.samples == 1 &&
1943 mt->target != GL_TEXTURE_3D &&
1944 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1945 }
1946
1947 /**
1948 * Does the miptree slice have hiz enabled?
1949 */
1950 bool
1951 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1952 {
1953 intel_miptree_check_level_layer(mt, level, 0);
1954 return mt->level[level].has_hiz;
1955 }
1956
1957 static inline uint32_t
1958 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1959 uint32_t start_level, uint32_t num_levels)
1960 {
1961 assert(start_level >= mt->first_level);
1962 assert(start_level <= mt->last_level);
1963
1964 if (num_levels == INTEL_REMAINING_LAYERS)
1965 num_levels = mt->last_level - start_level + 1;
1966 /* Check for overflow */
1967 assert(start_level + num_levels >= start_level);
1968 assert(start_level + num_levels <= mt->last_level + 1);
1969
1970 return num_levels;
1971 }
1972
1973 static inline uint32_t
1974 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1975 uint32_t start_layer, uint32_t num_layers)
1976 {
1977 assert(level <= mt->last_level);
1978
1979 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1980 assert(start_layer < total_num_layers);
1981 if (num_layers == INTEL_REMAINING_LAYERS)
1982 num_layers = total_num_layers - start_layer;
1983 /* Check for overflow */
1984 assert(start_layer + num_layers >= start_layer);
1985 assert(start_layer + num_layers <= total_num_layers);
1986
1987 return num_layers;
1988 }
1989
1990 bool
1991 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1992 unsigned start_level, unsigned num_levels,
1993 unsigned start_layer, unsigned num_layers)
1994 {
1995 assert(_mesa_is_format_color_format(mt->format));
1996
1997 if (!mt->mcs_buf)
1998 return false;
1999
2000 /* Clamp the level range to fit the miptree */
2001 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2002
2003 for (uint32_t l = 0; l < num_levels; l++) {
2004 const uint32_t level = start_level + l;
2005 const uint32_t level_layers =
2006 miptree_layer_range_length(mt, level, start_layer, num_layers);
2007 for (unsigned a = 0; a < level_layers; a++) {
2008 enum isl_aux_state aux_state =
2009 intel_miptree_get_aux_state(mt, level, start_layer + a);
2010 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2011 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2012 return true;
2013 }
2014 }
2015
2016 return false;
2017 }
2018
2019 static void
2020 intel_miptree_check_color_resolve(const struct brw_context *brw,
2021 const struct intel_mipmap_tree *mt,
2022 unsigned level, unsigned layer)
2023 {
2024 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2025
2026 if (!mt->mcs_buf)
2027 return;
2028
2029 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2030 assert(devinfo->gen >= 8 ||
2031 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2032
2033 /* Compression of arrayed msaa surfaces is supported. */
2034 if (mt->surf.samples > 1)
2035 return;
2036
2037 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2038 assert(devinfo->gen >= 8 ||
2039 (layer == 0 &&
2040 mt->surf.logical_level0_px.depth == 1 &&
2041 mt->surf.logical_level0_px.array_len == 1));
2042
2043 (void)level;
2044 (void)layer;
2045 }
2046
2047 static enum blorp_fast_clear_op
2048 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2049 enum isl_aux_usage aux_usage,
2050 bool fast_clear_supported)
2051 {
2052 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2053
2054 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2055
2056 assert(ccs_supported == fast_clear_supported);
2057
2058 switch (aux_state) {
2059 case ISL_AUX_STATE_CLEAR:
2060 case ISL_AUX_STATE_PARTIAL_CLEAR:
2061 if (!ccs_supported)
2062 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2063 else
2064 return BLORP_FAST_CLEAR_OP_NONE;
2065
2066 case ISL_AUX_STATE_PASS_THROUGH:
2067 return BLORP_FAST_CLEAR_OP_NONE;
2068
2069 case ISL_AUX_STATE_RESOLVED:
2070 case ISL_AUX_STATE_AUX_INVALID:
2071 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2072 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2073 break;
2074 }
2075
2076 unreachable("Invalid aux state for CCS_D");
2077 }
2078
2079 static enum blorp_fast_clear_op
2080 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2081 enum isl_aux_usage aux_usage,
2082 bool fast_clear_supported)
2083 {
2084 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2085 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2086 aux_usage == ISL_AUX_USAGE_CCS_D ||
2087 aux_usage == ISL_AUX_USAGE_CCS_E);
2088
2089 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2090 assert(fast_clear_supported);
2091
2092 switch (aux_state) {
2093 case ISL_AUX_STATE_CLEAR:
2094 case ISL_AUX_STATE_PARTIAL_CLEAR:
2095 if (fast_clear_supported)
2096 return BLORP_FAST_CLEAR_OP_NONE;
2097 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2098 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2099 else
2100 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2101
2102 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2103 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2104 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2105 else if (!fast_clear_supported)
2106 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2107 else
2108 return BLORP_FAST_CLEAR_OP_NONE;
2109
2110 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2111 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2112 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2113 else
2114 return BLORP_FAST_CLEAR_OP_NONE;
2115
2116 case ISL_AUX_STATE_PASS_THROUGH:
2117 return BLORP_FAST_CLEAR_OP_NONE;
2118
2119 case ISL_AUX_STATE_RESOLVED:
2120 case ISL_AUX_STATE_AUX_INVALID:
2121 break;
2122 }
2123
2124 unreachable("Invalid aux state for CCS_E");
2125 }
2126
2127 static void
2128 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2129 struct intel_mipmap_tree *mt,
2130 uint32_t level, uint32_t layer,
2131 enum isl_aux_usage aux_usage,
2132 bool fast_clear_supported)
2133 {
2134 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2135
2136 enum blorp_fast_clear_op resolve_op;
2137 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2138 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2139 fast_clear_supported);
2140 } else {
2141 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2142 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2143 fast_clear_supported);
2144 }
2145
2146 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2147 intel_miptree_check_color_resolve(brw, mt, level, layer);
2148 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2149
2150 switch (resolve_op) {
2151 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2152 /* The CCS full resolve operation destroys the CCS and sets it to the
2153 * pass-through state. (You can also think of this as being both a
2154 * resolve and an ambiguate in one operation.)
2155 */
2156 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2157 ISL_AUX_STATE_PASS_THROUGH);
2158 break;
2159
2160 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2161 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2162 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2163 break;
2164
2165 default:
2166 unreachable("Invalid resolve op");
2167 }
2168 }
2169 }
2170
2171 static void
2172 intel_miptree_finish_ccs_write(struct brw_context *brw,
2173 struct intel_mipmap_tree *mt,
2174 uint32_t level, uint32_t layer,
2175 enum isl_aux_usage aux_usage)
2176 {
2177 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2178 aux_usage == ISL_AUX_USAGE_CCS_D ||
2179 aux_usage == ISL_AUX_USAGE_CCS_E);
2180
2181 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2182
2183 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2184 switch (aux_state) {
2185 case ISL_AUX_STATE_CLEAR:
2186 case ISL_AUX_STATE_PARTIAL_CLEAR:
2187 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2188 aux_usage == ISL_AUX_USAGE_CCS_D);
2189
2190 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2191 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2192 ISL_AUX_STATE_COMPRESSED_CLEAR);
2193 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2194 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2195 ISL_AUX_STATE_PARTIAL_CLEAR);
2196 }
2197 break;
2198
2199 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2200 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2201 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2202 break; /* Nothing to do */
2203
2204 case ISL_AUX_STATE_PASS_THROUGH:
2205 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2206 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2207 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2208 } else {
2209 /* Nothing to do */
2210 }
2211 break;
2212
2213 case ISL_AUX_STATE_RESOLVED:
2214 case ISL_AUX_STATE_AUX_INVALID:
2215 unreachable("Invalid aux state for CCS_E");
2216 }
2217 } else {
2218 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2219 /* CCS_D is a bit simpler */
2220 switch (aux_state) {
2221 case ISL_AUX_STATE_CLEAR:
2222 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2223 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2224 ISL_AUX_STATE_PARTIAL_CLEAR);
2225 break;
2226
2227 case ISL_AUX_STATE_PARTIAL_CLEAR:
2228 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2229 break; /* Nothing to do */
2230
2231 case ISL_AUX_STATE_PASS_THROUGH:
2232 /* Nothing to do */
2233 break;
2234
2235 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2236 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2237 case ISL_AUX_STATE_RESOLVED:
2238 case ISL_AUX_STATE_AUX_INVALID:
2239 unreachable("Invalid aux state for CCS_D");
2240 }
2241 }
2242 }
2243
2244 static void
2245 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2246 struct intel_mipmap_tree *mt,
2247 uint32_t layer,
2248 enum isl_aux_usage aux_usage,
2249 bool fast_clear_supported)
2250 {
2251 assert(aux_usage == ISL_AUX_USAGE_MCS);
2252
2253 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2254 case ISL_AUX_STATE_CLEAR:
2255 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2256 if (!fast_clear_supported) {
2257 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2258 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2259 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2260 }
2261 break;
2262
2263 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2264 break; /* Nothing to do */
2265
2266 case ISL_AUX_STATE_RESOLVED:
2267 case ISL_AUX_STATE_PASS_THROUGH:
2268 case ISL_AUX_STATE_AUX_INVALID:
2269 case ISL_AUX_STATE_PARTIAL_CLEAR:
2270 unreachable("Invalid aux state for MCS");
2271 }
2272 }
2273
2274 static void
2275 intel_miptree_finish_mcs_write(struct brw_context *brw,
2276 struct intel_mipmap_tree *mt,
2277 uint32_t layer,
2278 enum isl_aux_usage aux_usage)
2279 {
2280 assert(aux_usage == ISL_AUX_USAGE_MCS);
2281
2282 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2283 case ISL_AUX_STATE_CLEAR:
2284 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2285 ISL_AUX_STATE_COMPRESSED_CLEAR);
2286 break;
2287
2288 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2289 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2290 break; /* Nothing to do */
2291
2292 case ISL_AUX_STATE_RESOLVED:
2293 case ISL_AUX_STATE_PASS_THROUGH:
2294 case ISL_AUX_STATE_AUX_INVALID:
2295 case ISL_AUX_STATE_PARTIAL_CLEAR:
2296 unreachable("Invalid aux state for MCS");
2297 }
2298 }
2299
2300 static void
2301 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2302 struct intel_mipmap_tree *mt,
2303 uint32_t level, uint32_t layer,
2304 enum isl_aux_usage aux_usage,
2305 bool fast_clear_supported)
2306 {
2307 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2308
2309 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2310 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2311 case ISL_AUX_STATE_CLEAR:
2312 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2313 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2314 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2315 break;
2316
2317 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2318 if (aux_usage != ISL_AUX_USAGE_HIZ)
2319 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2320 break;
2321
2322 case ISL_AUX_STATE_PASS_THROUGH:
2323 case ISL_AUX_STATE_RESOLVED:
2324 break;
2325
2326 case ISL_AUX_STATE_AUX_INVALID:
2327 if (aux_usage == ISL_AUX_USAGE_HIZ)
2328 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2329 break;
2330
2331 case ISL_AUX_STATE_PARTIAL_CLEAR:
2332 unreachable("Invalid HiZ state");
2333 }
2334
2335 if (hiz_op != BLORP_HIZ_OP_NONE) {
2336 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2337
2338 switch (hiz_op) {
2339 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2340 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2341 ISL_AUX_STATE_RESOLVED);
2342 break;
2343
2344 case BLORP_HIZ_OP_HIZ_RESOLVE:
2345 /* The HiZ resolve operation is actually an ambiguate */
2346 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2347 ISL_AUX_STATE_PASS_THROUGH);
2348 break;
2349
2350 default:
2351 unreachable("Invalid HiZ op");
2352 }
2353 }
2354 }
2355
2356 static void
2357 intel_miptree_finish_hiz_write(struct brw_context *brw,
2358 struct intel_mipmap_tree *mt,
2359 uint32_t level, uint32_t layer,
2360 enum isl_aux_usage aux_usage)
2361 {
2362 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2363
2364 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2365 case ISL_AUX_STATE_CLEAR:
2366 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2367 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2368 ISL_AUX_STATE_COMPRESSED_CLEAR);
2369 break;
2370
2371 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2372 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2373 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2374 break; /* Nothing to do */
2375
2376 case ISL_AUX_STATE_RESOLVED:
2377 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2378 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2379 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2380 } else {
2381 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2382 ISL_AUX_STATE_AUX_INVALID);
2383 }
2384 break;
2385
2386 case ISL_AUX_STATE_PASS_THROUGH:
2387 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2388 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2389 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2390 }
2391 break;
2392
2393 case ISL_AUX_STATE_AUX_INVALID:
2394 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2395 break;
2396
2397 case ISL_AUX_STATE_PARTIAL_CLEAR:
2398 unreachable("Invalid HiZ state");
2399 }
2400 }
2401
2402 void
2403 intel_miptree_prepare_access(struct brw_context *brw,
2404 struct intel_mipmap_tree *mt,
2405 uint32_t start_level, uint32_t num_levels,
2406 uint32_t start_layer, uint32_t num_layers,
2407 enum isl_aux_usage aux_usage,
2408 bool fast_clear_supported)
2409 {
2410 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2411
2412 switch (mt->aux_usage) {
2413 case ISL_AUX_USAGE_NONE:
2414 /* Nothing to do */
2415 break;
2416
2417 case ISL_AUX_USAGE_MCS:
2418 assert(mt->mcs_buf);
2419 assert(start_level == 0 && num_levels == 1);
2420 const uint32_t level_layers =
2421 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2422 for (uint32_t a = 0; a < level_layers; a++) {
2423 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2424 aux_usage, fast_clear_supported);
2425 }
2426 break;
2427
2428 case ISL_AUX_USAGE_CCS_D:
2429 case ISL_AUX_USAGE_CCS_E:
2430 if (!mt->mcs_buf)
2431 return;
2432
2433 for (uint32_t l = 0; l < num_levels; l++) {
2434 const uint32_t level = start_level + l;
2435 const uint32_t level_layers =
2436 miptree_layer_range_length(mt, level, start_layer, num_layers);
2437 for (uint32_t a = 0; a < level_layers; a++) {
2438 intel_miptree_prepare_ccs_access(brw, mt, level,
2439 start_layer + a,
2440 aux_usage, fast_clear_supported);
2441 }
2442 }
2443 break;
2444
2445 case ISL_AUX_USAGE_HIZ:
2446 assert(mt->hiz_buf);
2447 for (uint32_t l = 0; l < num_levels; l++) {
2448 const uint32_t level = start_level + l;
2449 if (!intel_miptree_level_has_hiz(mt, level))
2450 continue;
2451
2452 const uint32_t level_layers =
2453 miptree_layer_range_length(mt, level, start_layer, num_layers);
2454 for (uint32_t a = 0; a < level_layers; a++) {
2455 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2456 aux_usage, fast_clear_supported);
2457 }
2458 }
2459 break;
2460
2461 default:
2462 unreachable("Invalid aux usage");
2463 }
2464 }
2465
2466 void
2467 intel_miptree_finish_write(struct brw_context *brw,
2468 struct intel_mipmap_tree *mt, uint32_t level,
2469 uint32_t start_layer, uint32_t num_layers,
2470 enum isl_aux_usage aux_usage)
2471 {
2472 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2473
2474 switch (mt->aux_usage) {
2475 case ISL_AUX_USAGE_NONE:
2476 /* Nothing to do */
2477 break;
2478
2479 case ISL_AUX_USAGE_MCS:
2480 assert(mt->mcs_buf);
2481 for (uint32_t a = 0; a < num_layers; a++) {
2482 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2483 aux_usage);
2484 }
2485 break;
2486
2487 case ISL_AUX_USAGE_CCS_D:
2488 case ISL_AUX_USAGE_CCS_E:
2489 if (!mt->mcs_buf)
2490 return;
2491
2492 for (uint32_t a = 0; a < num_layers; a++) {
2493 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2494 aux_usage);
2495 }
2496 break;
2497
2498 case ISL_AUX_USAGE_HIZ:
2499 if (!intel_miptree_level_has_hiz(mt, level))
2500 return;
2501
2502 for (uint32_t a = 0; a < num_layers; a++) {
2503 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2504 aux_usage);
2505 }
2506 break;
2507
2508 default:
2509 unreachable("Invavlid aux usage");
2510 }
2511 }
2512
2513 enum isl_aux_state
2514 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2515 uint32_t level, uint32_t layer)
2516 {
2517 intel_miptree_check_level_layer(mt, level, layer);
2518
2519 if (_mesa_is_format_color_format(mt->format)) {
2520 assert(mt->mcs_buf != NULL);
2521 assert(mt->surf.samples == 1 ||
2522 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2523 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2524 unreachable("Cannot get aux state for stencil");
2525 } else {
2526 assert(intel_miptree_level_has_hiz(mt, level));
2527 }
2528
2529 return mt->aux_state[level][layer];
2530 }
2531
2532 void
2533 intel_miptree_set_aux_state(struct brw_context *brw,
2534 struct intel_mipmap_tree *mt, uint32_t level,
2535 uint32_t start_layer, uint32_t num_layers,
2536 enum isl_aux_state aux_state)
2537 {
2538 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2539
2540 if (_mesa_is_format_color_format(mt->format)) {
2541 assert(mt->mcs_buf != NULL);
2542 assert(mt->surf.samples == 1 ||
2543 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2544 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2545 unreachable("Cannot get aux state for stencil");
2546 } else {
2547 assert(intel_miptree_level_has_hiz(mt, level));
2548 }
2549
2550 for (unsigned a = 0; a < num_layers; a++)
2551 mt->aux_state[level][start_layer + a] = aux_state;
2552 }
2553
2554 /* On Gen9 color buffers may be compressed by the hardware (lossless
2555 * compression). There are, however, format restrictions and care needs to be
2556 * taken that the sampler engine is capable for re-interpreting a buffer with
2557 * format different the buffer was originally written with.
2558 *
2559 * For example, SRGB formats are not compressible and the sampler engine isn't
2560 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2561 * color buffer needs to be resolved so that the sampling surface can be
2562 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2563 * set).
2564 */
2565 static bool
2566 can_texture_with_ccs(struct brw_context *brw,
2567 struct intel_mipmap_tree *mt,
2568 enum isl_format view_format)
2569 {
2570 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2571 return false;
2572
2573 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2574 mt->surf.format, view_format)) {
2575 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2576 isl_format_get_layout(view_format)->name,
2577 _mesa_get_format_name(mt->format));
2578 return false;
2579 }
2580
2581 return true;
2582 }
2583
2584 enum isl_aux_usage
2585 intel_miptree_texture_aux_usage(struct brw_context *brw,
2586 struct intel_mipmap_tree *mt,
2587 enum isl_format view_format)
2588 {
2589 switch (mt->aux_usage) {
2590 case ISL_AUX_USAGE_HIZ:
2591 if (intel_miptree_sample_with_hiz(brw, mt))
2592 return ISL_AUX_USAGE_HIZ;
2593 break;
2594
2595 case ISL_AUX_USAGE_MCS:
2596 return ISL_AUX_USAGE_MCS;
2597
2598 case ISL_AUX_USAGE_CCS_D:
2599 case ISL_AUX_USAGE_CCS_E:
2600 if (!mt->mcs_buf) {
2601 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2602 return ISL_AUX_USAGE_NONE;
2603 }
2604
2605 /* If we don't have any unresolved color, report an aux usage of
2606 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2607 * aux surface and we can save some bandwidth.
2608 */
2609 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2610 0, INTEL_REMAINING_LAYERS))
2611 return ISL_AUX_USAGE_NONE;
2612
2613 if (can_texture_with_ccs(brw, mt, view_format))
2614 return ISL_AUX_USAGE_CCS_E;
2615 break;
2616
2617 default:
2618 break;
2619 }
2620
2621 return ISL_AUX_USAGE_NONE;
2622 }
2623
2624 static bool
2625 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2626 {
2627 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2628 * values so sRGB curve application was a no-op for all fast-clearable
2629 * formats.
2630 *
2631 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2632 * values, the hardware interprets the floats, not as what would be
2633 * returned from the sampler (or written by the shader), but as being
2634 * between format conversion and sRGB curve application. This means that
2635 * we can switch between sRGB and UNORM without having to whack the clear
2636 * color.
2637 */
2638 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2639 }
2640
2641 static void
2642 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2643 struct intel_mipmap_tree *mt,
2644 enum isl_format view_format,
2645 uint32_t start_level, uint32_t num_levels,
2646 uint32_t start_layer, uint32_t num_layers,
2647 bool *aux_supported_out)
2648 {
2649 enum isl_aux_usage aux_usage =
2650 intel_miptree_texture_aux_usage(brw, mt, view_format);
2651 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2652
2653 /* Clear color is specified as ints or floats and the conversion is done by
2654 * the sampler. If we have a texture view, we would have to perform the
2655 * clear color conversion manually. Just disable clear color.
2656 */
2657 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2658 clear_supported = false;
2659
2660 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2661 start_layer, num_layers,
2662 aux_usage, clear_supported);
2663 if (aux_supported_out)
2664 *aux_supported_out = aux_usage != ISL_AUX_USAGE_NONE;
2665 }
2666
2667 void
2668 intel_miptree_prepare_texture(struct brw_context *brw,
2669 struct intel_mipmap_tree *mt,
2670 enum isl_format view_format,
2671 bool *aux_supported_out)
2672 {
2673 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2674 0, INTEL_REMAINING_LEVELS,
2675 0, INTEL_REMAINING_LAYERS,
2676 aux_supported_out);
2677 }
2678
2679 void
2680 intel_miptree_prepare_image(struct brw_context *brw,
2681 struct intel_mipmap_tree *mt)
2682 {
2683 /* The data port doesn't understand any compression */
2684 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2685 0, INTEL_REMAINING_LAYERS,
2686 ISL_AUX_USAGE_NONE, false);
2687 }
2688
2689 void
2690 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2691 struct intel_mipmap_tree *mt, uint32_t level,
2692 uint32_t start_layer, uint32_t num_layers)
2693 {
2694 intel_miptree_prepare_texture_slices(brw, mt, mt->surf.format, level, 1,
2695 start_layer, num_layers, NULL);
2696 }
2697
2698 enum isl_aux_usage
2699 intel_miptree_render_aux_usage(struct brw_context *brw,
2700 struct intel_mipmap_tree *mt,
2701 bool srgb_enabled, bool blend_enabled)
2702 {
2703 switch (mt->aux_usage) {
2704 case ISL_AUX_USAGE_MCS:
2705 assert(mt->mcs_buf);
2706 return ISL_AUX_USAGE_MCS;
2707
2708 case ISL_AUX_USAGE_CCS_D:
2709 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2710
2711 case ISL_AUX_USAGE_CCS_E: {
2712 mesa_format mesa_format =
2713 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2714 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2715
2716 /* If the format supports CCS_E, then we can just use it */
2717 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2718 return ISL_AUX_USAGE_CCS_E;
2719
2720 /* Otherwise, we have to fall back to CCS_D */
2721
2722 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2723 * formats. However, there are issues with blending where it doesn't
2724 * properly apply the sRGB curve to the clear color when blending.
2725 */
2726 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2727 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2728 return ISL_AUX_USAGE_NONE;
2729
2730 return ISL_AUX_USAGE_CCS_D;
2731 }
2732
2733 default:
2734 return ISL_AUX_USAGE_NONE;
2735 }
2736 }
2737
2738 void
2739 intel_miptree_prepare_render(struct brw_context *brw,
2740 struct intel_mipmap_tree *mt, uint32_t level,
2741 uint32_t start_layer, uint32_t layer_count,
2742 bool srgb_enabled, bool blend_enabled)
2743 {
2744 enum isl_aux_usage aux_usage =
2745 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2746 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2747 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2748 }
2749
2750 void
2751 intel_miptree_finish_render(struct brw_context *brw,
2752 struct intel_mipmap_tree *mt, uint32_t level,
2753 uint32_t start_layer, uint32_t layer_count,
2754 bool srgb_enabled, bool blend_enabled)
2755 {
2756 assert(_mesa_is_format_color_format(mt->format));
2757
2758 enum isl_aux_usage aux_usage =
2759 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2760 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2761 aux_usage);
2762 }
2763
2764 void
2765 intel_miptree_prepare_depth(struct brw_context *brw,
2766 struct intel_mipmap_tree *mt, uint32_t level,
2767 uint32_t start_layer, uint32_t layer_count)
2768 {
2769 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2770 mt->aux_usage, mt->hiz_buf != NULL);
2771 }
2772
2773 void
2774 intel_miptree_finish_depth(struct brw_context *brw,
2775 struct intel_mipmap_tree *mt, uint32_t level,
2776 uint32_t start_layer, uint32_t layer_count,
2777 bool depth_written)
2778 {
2779 if (depth_written) {
2780 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2781 mt->hiz_buf != NULL);
2782 }
2783 }
2784
2785 void
2786 intel_miptree_prepare_external(struct brw_context *brw,
2787 struct intel_mipmap_tree *mt)
2788 {
2789 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2790 bool supports_fast_clear = false;
2791
2792 const struct isl_drm_modifier_info *mod_info =
2793 isl_drm_modifier_get_info(mt->drm_modifier);
2794
2795 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2796 /* CCS_E is the only supported aux for external images and it's only
2797 * supported on very simple images.
2798 */
2799 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2800 assert(_mesa_is_format_color_format(mt->format));
2801 assert(mt->first_level == 0 && mt->last_level == 0);
2802 assert(mt->surf.logical_level0_px.depth == 1);
2803 assert(mt->surf.logical_level0_px.array_len == 1);
2804 assert(mt->surf.samples == 1);
2805 assert(mt->mcs_buf != NULL);
2806
2807 aux_usage = mod_info->aux_usage;
2808 supports_fast_clear = mod_info->supports_clear_color;
2809 }
2810
2811 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2812 0, INTEL_REMAINING_LAYERS,
2813 aux_usage, supports_fast_clear);
2814 }
2815
2816 /**
2817 * Make it possible to share the BO backing the given miptree with another
2818 * process or another miptree.
2819 *
2820 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2821 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2822 * ensure that no MCS buffer gets allocated in the future.
2823 *
2824 * HiZ is similarly unsafe with shared buffers.
2825 */
2826 void
2827 intel_miptree_make_shareable(struct brw_context *brw,
2828 struct intel_mipmap_tree *mt)
2829 {
2830 /* MCS buffers are also used for multisample buffers, but we can't resolve
2831 * away a multisample MCS buffer because it's an integral part of how the
2832 * pixel data is stored. Fortunately this code path should never be
2833 * reached for multisample buffers.
2834 */
2835 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2836 mt->surf.samples == 1);
2837
2838 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2839 0, INTEL_REMAINING_LAYERS,
2840 ISL_AUX_USAGE_NONE, false);
2841
2842 if (mt->mcs_buf) {
2843 brw_bo_unreference(mt->mcs_buf->bo);
2844 free(mt->mcs_buf);
2845 mt->mcs_buf = NULL;
2846
2847 /* Any pending MCS/CCS operations are no longer needed. Trying to
2848 * execute any will likely crash due to the missing aux buffer. So let's
2849 * delete all pending ops.
2850 */
2851 free(mt->aux_state);
2852 mt->aux_state = NULL;
2853 }
2854
2855 if (mt->hiz_buf) {
2856 intel_miptree_aux_buffer_free(mt->hiz_buf);
2857 mt->hiz_buf = NULL;
2858
2859 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2860 mt->level[l].has_hiz = false;
2861 }
2862
2863 /* Any pending HiZ operations are no longer needed. Trying to execute
2864 * any will likely crash due to the missing aux buffer. So let's delete
2865 * all pending ops.
2866 */
2867 free(mt->aux_state);
2868 mt->aux_state = NULL;
2869 }
2870
2871 mt->aux_usage = ISL_AUX_USAGE_NONE;
2872 mt->supports_fast_clear = false;
2873 }
2874
2875
2876 /**
2877 * \brief Get pointer offset into stencil buffer.
2878 *
2879 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2880 * must decode the tile's layout in software.
2881 *
2882 * See
2883 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2884 * Format.
2885 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2886 *
2887 * Even though the returned offset is always positive, the return type is
2888 * signed due to
2889 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2890 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2891 */
2892 static intptr_t
2893 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2894 {
2895 uint32_t tile_size = 4096;
2896 uint32_t tile_width = 64;
2897 uint32_t tile_height = 64;
2898 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2899
2900 uint32_t tile_x = x / tile_width;
2901 uint32_t tile_y = y / tile_height;
2902
2903 /* The byte's address relative to the tile's base addres. */
2904 uint32_t byte_x = x % tile_width;
2905 uint32_t byte_y = y % tile_height;
2906
2907 uintptr_t u = tile_y * row_size
2908 + tile_x * tile_size
2909 + 512 * (byte_x / 8)
2910 + 64 * (byte_y / 8)
2911 + 32 * ((byte_y / 4) % 2)
2912 + 16 * ((byte_x / 4) % 2)
2913 + 8 * ((byte_y / 2) % 2)
2914 + 4 * ((byte_x / 2) % 2)
2915 + 2 * (byte_y % 2)
2916 + 1 * (byte_x % 2);
2917
2918 if (swizzled) {
2919 /* adjust for bit6 swizzling */
2920 if (((byte_x / 8) % 2) == 1) {
2921 if (((byte_y / 8) % 2) == 0) {
2922 u += 64;
2923 } else {
2924 u -= 64;
2925 }
2926 }
2927 }
2928
2929 return u;
2930 }
2931
2932 void
2933 intel_miptree_updownsample(struct brw_context *brw,
2934 struct intel_mipmap_tree *src,
2935 struct intel_mipmap_tree *dst)
2936 {
2937 unsigned src_w = src->surf.logical_level0_px.width;
2938 unsigned src_h = src->surf.logical_level0_px.height;
2939 unsigned dst_w = dst->surf.logical_level0_px.width;
2940 unsigned dst_h = dst->surf.logical_level0_px.height;
2941
2942 brw_blorp_blit_miptrees(brw,
2943 src, 0 /* level */, 0 /* layer */,
2944 src->format, SWIZZLE_XYZW,
2945 dst, 0 /* level */, 0 /* layer */, dst->format,
2946 0, 0, src_w, src_h,
2947 0, 0, dst_w, dst_h,
2948 GL_NEAREST, false, false /*mirror x, y*/,
2949 false, false);
2950
2951 if (src->stencil_mt) {
2952 src_w = src->stencil_mt->surf.logical_level0_px.width;
2953 src_h = src->stencil_mt->surf.logical_level0_px.height;
2954 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2955 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2956
2957 brw_blorp_blit_miptrees(brw,
2958 src->stencil_mt, 0 /* level */, 0 /* layer */,
2959 src->stencil_mt->format, SWIZZLE_XYZW,
2960 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2961 dst->stencil_mt->format,
2962 0, 0, src_w, src_h,
2963 0, 0, dst_w, dst_h,
2964 GL_NEAREST, false, false /*mirror x, y*/,
2965 false, false /* decode/encode srgb */);
2966 }
2967 }
2968
2969 void
2970 intel_update_r8stencil(struct brw_context *brw,
2971 struct intel_mipmap_tree *mt)
2972 {
2973 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2974
2975 assert(devinfo->gen >= 7);
2976 struct intel_mipmap_tree *src =
2977 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2978 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2979 return;
2980
2981 assert(src->surf.size > 0);
2982
2983 if (!mt->r8stencil_mt) {
2984 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2985 mt->r8stencil_mt = make_surface(
2986 brw,
2987 src->target,
2988 MESA_FORMAT_R_UINT8,
2989 src->first_level, src->last_level,
2990 src->surf.logical_level0_px.width,
2991 src->surf.logical_level0_px.height,
2992 src->surf.dim == ISL_SURF_DIM_3D ?
2993 src->surf.logical_level0_px.depth :
2994 src->surf.logical_level0_px.array_len,
2995 src->surf.samples,
2996 ISL_TILING_Y0_BIT,
2997 ISL_SURF_USAGE_TEXTURE_BIT,
2998 BO_ALLOC_BUSY, 0, NULL);
2999 assert(mt->r8stencil_mt);
3000 }
3001
3002 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3003
3004 for (int level = src->first_level; level <= src->last_level; level++) {
3005 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3006 minify(src->surf.phys_level0_sa.depth, level) :
3007 src->surf.phys_level0_sa.array_len;
3008
3009 for (unsigned layer = 0; layer < depth; layer++) {
3010 brw_blorp_copy_miptrees(brw,
3011 src, level, layer,
3012 dst, level, layer,
3013 0, 0, 0, 0,
3014 minify(src->surf.logical_level0_px.width,
3015 level),
3016 minify(src->surf.logical_level0_px.height,
3017 level));
3018 }
3019 }
3020
3021 brw_render_cache_set_check_flush(brw, dst->bo);
3022 src->r8stencil_needs_update = false;
3023 }
3024
3025 static void *
3026 intel_miptree_map_raw(struct brw_context *brw,
3027 struct intel_mipmap_tree *mt,
3028 GLbitfield mode)
3029 {
3030 struct brw_bo *bo = mt->bo;
3031
3032 if (brw_batch_references(&brw->batch, bo))
3033 intel_batchbuffer_flush(brw);
3034
3035 return brw_bo_map(brw, bo, mode);
3036 }
3037
3038 static void
3039 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3040 {
3041 brw_bo_unmap(mt->bo);
3042 }
3043
3044 static void
3045 intel_miptree_map_gtt(struct brw_context *brw,
3046 struct intel_mipmap_tree *mt,
3047 struct intel_miptree_map *map,
3048 unsigned int level, unsigned int slice)
3049 {
3050 unsigned int bw, bh;
3051 void *base;
3052 unsigned int image_x, image_y;
3053 intptr_t x = map->x;
3054 intptr_t y = map->y;
3055
3056 /* For compressed formats, the stride is the number of bytes per
3057 * row of blocks. intel_miptree_get_image_offset() already does
3058 * the divide.
3059 */
3060 _mesa_get_format_block_size(mt->format, &bw, &bh);
3061 assert(y % bh == 0);
3062 assert(x % bw == 0);
3063 y /= bh;
3064 x /= bw;
3065
3066 base = intel_miptree_map_raw(brw, mt, map->mode);
3067
3068 if (base == NULL)
3069 map->ptr = NULL;
3070 else {
3071 base += mt->offset;
3072
3073 /* Note that in the case of cube maps, the caller must have passed the
3074 * slice number referencing the face.
3075 */
3076 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3077 x += image_x;
3078 y += image_y;
3079
3080 map->stride = mt->surf.row_pitch;
3081 map->ptr = base + y * map->stride + x * mt->cpp;
3082 }
3083
3084 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3085 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3086 map->x, map->y, map->w, map->h,
3087 mt, _mesa_get_format_name(mt->format),
3088 x, y, map->ptr, map->stride);
3089 }
3090
3091 static void
3092 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3093 {
3094 intel_miptree_unmap_raw(mt);
3095 }
3096
3097 static void
3098 intel_miptree_map_blit(struct brw_context *brw,
3099 struct intel_mipmap_tree *mt,
3100 struct intel_miptree_map *map,
3101 unsigned int level, unsigned int slice)
3102 {
3103 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3104 /* first_level */ 0,
3105 /* last_level */ 0,
3106 map->w, map->h, 1,
3107 /* samples */ 1,
3108 MIPTREE_CREATE_LINEAR);
3109
3110 if (!map->linear_mt) {
3111 fprintf(stderr, "Failed to allocate blit temporary\n");
3112 goto fail;
3113 }
3114 map->stride = map->linear_mt->surf.row_pitch;
3115
3116 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3117 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3118 * invalidate is set, since we'll be writing the whole rectangle from our
3119 * temporary buffer back out.
3120 */
3121 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3122 if (!intel_miptree_copy(brw,
3123 mt, level, slice, map->x, map->y,
3124 map->linear_mt, 0, 0, 0, 0,
3125 map->w, map->h)) {
3126 fprintf(stderr, "Failed to blit\n");
3127 goto fail;
3128 }
3129 }
3130
3131 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3132
3133 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3134 map->x, map->y, map->w, map->h,
3135 mt, _mesa_get_format_name(mt->format),
3136 level, slice, map->ptr, map->stride);
3137
3138 return;
3139
3140 fail:
3141 intel_miptree_release(&map->linear_mt);
3142 map->ptr = NULL;
3143 map->stride = 0;
3144 }
3145
3146 static void
3147 intel_miptree_unmap_blit(struct brw_context *brw,
3148 struct intel_mipmap_tree *mt,
3149 struct intel_miptree_map *map,
3150 unsigned int level,
3151 unsigned int slice)
3152 {
3153 struct gl_context *ctx = &brw->ctx;
3154
3155 intel_miptree_unmap_raw(map->linear_mt);
3156
3157 if (map->mode & GL_MAP_WRITE_BIT) {
3158 bool ok = intel_miptree_copy(brw,
3159 map->linear_mt, 0, 0, 0, 0,
3160 mt, level, slice, map->x, map->y,
3161 map->w, map->h);
3162 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3163 }
3164
3165 intel_miptree_release(&map->linear_mt);
3166 }
3167
3168 /**
3169 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3170 */
3171 #if defined(USE_SSE41)
3172 static void
3173 intel_miptree_map_movntdqa(struct brw_context *brw,
3174 struct intel_mipmap_tree *mt,
3175 struct intel_miptree_map *map,
3176 unsigned int level, unsigned int slice)
3177 {
3178 assert(map->mode & GL_MAP_READ_BIT);
3179 assert(!(map->mode & GL_MAP_WRITE_BIT));
3180
3181 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3182 map->x, map->y, map->w, map->h,
3183 mt, _mesa_get_format_name(mt->format),
3184 level, slice, map->ptr, map->stride);
3185
3186 /* Map the original image */
3187 uint32_t image_x;
3188 uint32_t image_y;
3189 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3190 image_x += map->x;
3191 image_y += map->y;
3192
3193 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3194 if (!src)
3195 return;
3196
3197 src += mt->offset;
3198
3199 src += image_y * mt->surf.row_pitch;
3200 src += image_x * mt->cpp;
3201
3202 /* Due to the pixel offsets for the particular image being mapped, our
3203 * src pointer may not be 16-byte aligned. However, if the pitch is
3204 * divisible by 16, then the amount by which it's misaligned will remain
3205 * consistent from row to row.
3206 */
3207 assert((mt->surf.row_pitch % 16) == 0);
3208 const int misalignment = ((uintptr_t) src) & 15;
3209
3210 /* Create an untiled temporary buffer for the mapping. */
3211 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3212
3213 map->stride = ALIGN(misalignment + width_bytes, 16);
3214
3215 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3216 /* Offset the destination so it has the same misalignment as src. */
3217 map->ptr = map->buffer + misalignment;
3218
3219 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3220
3221 for (uint32_t y = 0; y < map->h; y++) {
3222 void *dst_ptr = map->ptr + y * map->stride;
3223 void *src_ptr = src + y * mt->surf.row_pitch;
3224
3225 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3226 }
3227
3228 intel_miptree_unmap_raw(mt);
3229 }
3230
3231 static void
3232 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3233 struct intel_mipmap_tree *mt,
3234 struct intel_miptree_map *map,
3235 unsigned int level,
3236 unsigned int slice)
3237 {
3238 _mesa_align_free(map->buffer);
3239 map->buffer = NULL;
3240 map->ptr = NULL;
3241 }
3242 #endif
3243
3244 static void
3245 intel_miptree_map_s8(struct brw_context *brw,
3246 struct intel_mipmap_tree *mt,
3247 struct intel_miptree_map *map,
3248 unsigned int level, unsigned int slice)
3249 {
3250 map->stride = map->w;
3251 map->buffer = map->ptr = malloc(map->stride * map->h);
3252 if (!map->buffer)
3253 return;
3254
3255 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3256 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3257 * invalidate is set, since we'll be writing the whole rectangle from our
3258 * temporary buffer back out.
3259 */
3260 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3261 uint8_t *untiled_s8_map = map->ptr;
3262 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3263 unsigned int image_x, image_y;
3264
3265 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3266
3267 for (uint32_t y = 0; y < map->h; y++) {
3268 for (uint32_t x = 0; x < map->w; x++) {
3269 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3270 x + image_x + map->x,
3271 y + image_y + map->y,
3272 brw->has_swizzling);
3273 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3274 }
3275 }
3276
3277 intel_miptree_unmap_raw(mt);
3278
3279 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3280 map->x, map->y, map->w, map->h,
3281 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3282 } else {
3283 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3284 map->x, map->y, map->w, map->h,
3285 mt, map->ptr, map->stride);
3286 }
3287 }
3288
3289 static void
3290 intel_miptree_unmap_s8(struct brw_context *brw,
3291 struct intel_mipmap_tree *mt,
3292 struct intel_miptree_map *map,
3293 unsigned int level,
3294 unsigned int slice)
3295 {
3296 if (map->mode & GL_MAP_WRITE_BIT) {
3297 unsigned int image_x, image_y;
3298 uint8_t *untiled_s8_map = map->ptr;
3299 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3300
3301 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3302
3303 for (uint32_t y = 0; y < map->h; y++) {
3304 for (uint32_t x = 0; x < map->w; x++) {
3305 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3306 image_x + x + map->x,
3307 image_y + y + map->y,
3308 brw->has_swizzling);
3309 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3310 }
3311 }
3312
3313 intel_miptree_unmap_raw(mt);
3314 }
3315
3316 free(map->buffer);
3317 }
3318
3319 static void
3320 intel_miptree_map_etc(struct brw_context *brw,
3321 struct intel_mipmap_tree *mt,
3322 struct intel_miptree_map *map,
3323 unsigned int level,
3324 unsigned int slice)
3325 {
3326 assert(mt->etc_format != MESA_FORMAT_NONE);
3327 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3328 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3329 }
3330
3331 assert(map->mode & GL_MAP_WRITE_BIT);
3332 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3333
3334 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3335 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3336 map->w, map->h, 1));
3337 map->ptr = map->buffer;
3338 }
3339
3340 static void
3341 intel_miptree_unmap_etc(struct brw_context *brw,
3342 struct intel_mipmap_tree *mt,
3343 struct intel_miptree_map *map,
3344 unsigned int level,
3345 unsigned int slice)
3346 {
3347 uint32_t image_x;
3348 uint32_t image_y;
3349 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3350
3351 image_x += map->x;
3352 image_y += map->y;
3353
3354 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3355 + image_y * mt->surf.row_pitch
3356 + image_x * mt->cpp;
3357
3358 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3359 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3360 map->ptr, map->stride,
3361 map->w, map->h);
3362 else
3363 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3364 map->ptr, map->stride,
3365 map->w, map->h, mt->etc_format);
3366
3367 intel_miptree_unmap_raw(mt);
3368 free(map->buffer);
3369 }
3370
3371 /**
3372 * Mapping function for packed depth/stencil miptrees backed by real separate
3373 * miptrees for depth and stencil.
3374 *
3375 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3376 * separate from the depth buffer. Yet at the GL API level, we have to expose
3377 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3378 * be able to map that memory for texture storage and glReadPixels-type
3379 * operations. We give Mesa core that access by mallocing a temporary and
3380 * copying the data between the actual backing store and the temporary.
3381 */
3382 static void
3383 intel_miptree_map_depthstencil(struct brw_context *brw,
3384 struct intel_mipmap_tree *mt,
3385 struct intel_miptree_map *map,
3386 unsigned int level, unsigned int slice)
3387 {
3388 struct intel_mipmap_tree *z_mt = mt;
3389 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3390 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3391 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3392
3393 map->stride = map->w * packed_bpp;
3394 map->buffer = map->ptr = malloc(map->stride * map->h);
3395 if (!map->buffer)
3396 return;
3397
3398 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3399 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3400 * invalidate is set, since we'll be writing the whole rectangle from our
3401 * temporary buffer back out.
3402 */
3403 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3404 uint32_t *packed_map = map->ptr;
3405 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3406 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3407 unsigned int s_image_x, s_image_y;
3408 unsigned int z_image_x, z_image_y;
3409
3410 intel_miptree_get_image_offset(s_mt, level, slice,
3411 &s_image_x, &s_image_y);
3412 intel_miptree_get_image_offset(z_mt, level, slice,
3413 &z_image_x, &z_image_y);
3414
3415 for (uint32_t y = 0; y < map->h; y++) {
3416 for (uint32_t x = 0; x < map->w; x++) {
3417 int map_x = map->x + x, map_y = map->y + y;
3418 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3419 map_x + s_image_x,
3420 map_y + s_image_y,
3421 brw->has_swizzling);
3422 ptrdiff_t z_offset = ((map_y + z_image_y) *
3423 (z_mt->surf.row_pitch / 4) +
3424 (map_x + z_image_x));
3425 uint8_t s = s_map[s_offset];
3426 uint32_t z = z_map[z_offset];
3427
3428 if (map_z32f_x24s8) {
3429 packed_map[(y * map->w + x) * 2 + 0] = z;
3430 packed_map[(y * map->w + x) * 2 + 1] = s;
3431 } else {
3432 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3433 }
3434 }
3435 }
3436
3437 intel_miptree_unmap_raw(s_mt);
3438 intel_miptree_unmap_raw(z_mt);
3439
3440 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3441 __func__,
3442 map->x, map->y, map->w, map->h,
3443 z_mt, map->x + z_image_x, map->y + z_image_y,
3444 s_mt, map->x + s_image_x, map->y + s_image_y,
3445 map->ptr, map->stride);
3446 } else {
3447 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3448 map->x, map->y, map->w, map->h,
3449 mt, map->ptr, map->stride);
3450 }
3451 }
3452
3453 static void
3454 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3455 struct intel_mipmap_tree *mt,
3456 struct intel_miptree_map *map,
3457 unsigned int level,
3458 unsigned int slice)
3459 {
3460 struct intel_mipmap_tree *z_mt = mt;
3461 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3462 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3463
3464 if (map->mode & GL_MAP_WRITE_BIT) {
3465 uint32_t *packed_map = map->ptr;
3466 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3467 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3468 unsigned int s_image_x, s_image_y;
3469 unsigned int z_image_x, z_image_y;
3470
3471 intel_miptree_get_image_offset(s_mt, level, slice,
3472 &s_image_x, &s_image_y);
3473 intel_miptree_get_image_offset(z_mt, level, slice,
3474 &z_image_x, &z_image_y);
3475
3476 for (uint32_t y = 0; y < map->h; y++) {
3477 for (uint32_t x = 0; x < map->w; x++) {
3478 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3479 x + s_image_x + map->x,
3480 y + s_image_y + map->y,
3481 brw->has_swizzling);
3482 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3483 (z_mt->surf.row_pitch / 4) +
3484 (x + z_image_x + map->x));
3485
3486 if (map_z32f_x24s8) {
3487 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3488 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3489 } else {
3490 uint32_t packed = packed_map[y * map->w + x];
3491 s_map[s_offset] = packed >> 24;
3492 z_map[z_offset] = packed;
3493 }
3494 }
3495 }
3496
3497 intel_miptree_unmap_raw(s_mt);
3498 intel_miptree_unmap_raw(z_mt);
3499
3500 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3501 __func__,
3502 map->x, map->y, map->w, map->h,
3503 z_mt, _mesa_get_format_name(z_mt->format),
3504 map->x + z_image_x, map->y + z_image_y,
3505 s_mt, map->x + s_image_x, map->y + s_image_y,
3506 map->ptr, map->stride);
3507 }
3508
3509 free(map->buffer);
3510 }
3511
3512 /**
3513 * Create and attach a map to the miptree at (level, slice). Return the
3514 * attached map.
3515 */
3516 static struct intel_miptree_map*
3517 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3518 unsigned int level,
3519 unsigned int slice,
3520 unsigned int x,
3521 unsigned int y,
3522 unsigned int w,
3523 unsigned int h,
3524 GLbitfield mode)
3525 {
3526 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3527
3528 if (!map)
3529 return NULL;
3530
3531 assert(mt->level[level].slice[slice].map == NULL);
3532 mt->level[level].slice[slice].map = map;
3533
3534 map->mode = mode;
3535 map->x = x;
3536 map->y = y;
3537 map->w = w;
3538 map->h = h;
3539
3540 return map;
3541 }
3542
3543 /**
3544 * Release the map at (level, slice).
3545 */
3546 static void
3547 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3548 unsigned int level,
3549 unsigned int slice)
3550 {
3551 struct intel_miptree_map **map;
3552
3553 map = &mt->level[level].slice[slice].map;
3554 free(*map);
3555 *map = NULL;
3556 }
3557
3558 static bool
3559 can_blit_slice(struct intel_mipmap_tree *mt,
3560 unsigned int level, unsigned int slice)
3561 {
3562 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3563 if (mt->surf.row_pitch >= 32768)
3564 return false;
3565
3566 return true;
3567 }
3568
3569 static bool
3570 use_intel_mipree_map_blit(struct brw_context *brw,
3571 struct intel_mipmap_tree *mt,
3572 GLbitfield mode,
3573 unsigned int level,
3574 unsigned int slice)
3575 {
3576 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3577
3578 if (devinfo->has_llc &&
3579 /* It's probably not worth swapping to the blit ring because of
3580 * all the overhead involved.
3581 */
3582 !(mode & GL_MAP_WRITE_BIT) &&
3583 !mt->compressed &&
3584 (mt->surf.tiling == ISL_TILING_X ||
3585 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3586 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3587 /* Fast copy blit on skl+ supports all tiling formats. */
3588 devinfo->gen >= 9) &&
3589 can_blit_slice(mt, level, slice))
3590 return true;
3591
3592 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3593 mt->bo->size >= brw->max_gtt_map_object_size) {
3594 assert(can_blit_slice(mt, level, slice));
3595 return true;
3596 }
3597
3598 return false;
3599 }
3600
3601 /**
3602 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3603 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3604 * arithmetic overflow.
3605 *
3606 * If you call this function and use \a out_stride, then you're doing pointer
3607 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3608 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3609 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3610 * which usually have type uint32_t or GLuint.
3611 */
3612 void
3613 intel_miptree_map(struct brw_context *brw,
3614 struct intel_mipmap_tree *mt,
3615 unsigned int level,
3616 unsigned int slice,
3617 unsigned int x,
3618 unsigned int y,
3619 unsigned int w,
3620 unsigned int h,
3621 GLbitfield mode,
3622 void **out_ptr,
3623 ptrdiff_t *out_stride)
3624 {
3625 struct intel_miptree_map *map;
3626
3627 assert(mt->surf.samples == 1);
3628
3629 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3630 if (!map){
3631 *out_ptr = NULL;
3632 *out_stride = 0;
3633 return;
3634 }
3635
3636 intel_miptree_access_raw(brw, mt, level, slice,
3637 map->mode & GL_MAP_WRITE_BIT);
3638
3639 if (mt->format == MESA_FORMAT_S_UINT8) {
3640 intel_miptree_map_s8(brw, mt, map, level, slice);
3641 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3642 !(mode & BRW_MAP_DIRECT_BIT)) {
3643 intel_miptree_map_etc(brw, mt, map, level, slice);
3644 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3645 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3646 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3647 intel_miptree_map_blit(brw, mt, map, level, slice);
3648 #if defined(USE_SSE41)
3649 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3650 !mt->compressed && cpu_has_sse4_1 &&
3651 (mt->surf.row_pitch % 16 == 0)) {
3652 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3653 #endif
3654 } else {
3655 intel_miptree_map_gtt(brw, mt, map, level, slice);
3656 }
3657
3658 *out_ptr = map->ptr;
3659 *out_stride = map->stride;
3660
3661 if (map->ptr == NULL)
3662 intel_miptree_release_map(mt, level, slice);
3663 }
3664
3665 void
3666 intel_miptree_unmap(struct brw_context *brw,
3667 struct intel_mipmap_tree *mt,
3668 unsigned int level,
3669 unsigned int slice)
3670 {
3671 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3672
3673 assert(mt->surf.samples == 1);
3674
3675 if (!map)
3676 return;
3677
3678 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3679 mt, _mesa_get_format_name(mt->format), level, slice);
3680
3681 if (mt->format == MESA_FORMAT_S_UINT8) {
3682 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3683 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3684 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3685 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3686 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3687 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3688 } else if (map->linear_mt) {
3689 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3690 #if defined(USE_SSE41)
3691 } else if (map->buffer && cpu_has_sse4_1) {
3692 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3693 #endif
3694 } else {
3695 intel_miptree_unmap_gtt(mt);
3696 }
3697
3698 intel_miptree_release_map(mt, level, slice);
3699 }
3700
3701 enum isl_surf_dim
3702 get_isl_surf_dim(GLenum target)
3703 {
3704 switch (target) {
3705 case GL_TEXTURE_1D:
3706 case GL_TEXTURE_1D_ARRAY:
3707 return ISL_SURF_DIM_1D;
3708
3709 case GL_TEXTURE_2D:
3710 case GL_TEXTURE_2D_ARRAY:
3711 case GL_TEXTURE_RECTANGLE:
3712 case GL_TEXTURE_CUBE_MAP:
3713 case GL_TEXTURE_CUBE_MAP_ARRAY:
3714 case GL_TEXTURE_2D_MULTISAMPLE:
3715 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3716 case GL_TEXTURE_EXTERNAL_OES:
3717 return ISL_SURF_DIM_2D;
3718
3719 case GL_TEXTURE_3D:
3720 return ISL_SURF_DIM_3D;
3721 }
3722
3723 unreachable("Invalid texture target");
3724 }
3725
3726 enum isl_dim_layout
3727 get_isl_dim_layout(const struct gen_device_info *devinfo,
3728 enum isl_tiling tiling, GLenum target)
3729 {
3730 switch (target) {
3731 case GL_TEXTURE_1D:
3732 case GL_TEXTURE_1D_ARRAY:
3733 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3734 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3735
3736 case GL_TEXTURE_2D:
3737 case GL_TEXTURE_2D_ARRAY:
3738 case GL_TEXTURE_RECTANGLE:
3739 case GL_TEXTURE_2D_MULTISAMPLE:
3740 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3741 case GL_TEXTURE_EXTERNAL_OES:
3742 return ISL_DIM_LAYOUT_GEN4_2D;
3743
3744 case GL_TEXTURE_CUBE_MAP:
3745 case GL_TEXTURE_CUBE_MAP_ARRAY:
3746 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3747 ISL_DIM_LAYOUT_GEN4_2D);
3748
3749 case GL_TEXTURE_3D:
3750 return (devinfo->gen >= 9 ?
3751 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3752 }
3753
3754 unreachable("Invalid texture target");
3755 }
3756
3757 enum isl_aux_usage
3758 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3759 const struct intel_mipmap_tree *mt)
3760 {
3761 if (mt->hiz_buf)
3762 return ISL_AUX_USAGE_HIZ;
3763
3764 if (!mt->mcs_buf)
3765 return ISL_AUX_USAGE_NONE;
3766
3767 return mt->aux_usage;
3768 }