i965: Split per miptree and per slice/level fast clear bits
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_resolve_map.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt);
53
54 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
55
56 static bool
57 intel_miptree_alloc_mcs(struct brw_context *brw,
58 struct intel_mipmap_tree *mt,
59 GLuint num_samples);
60
61 /**
62 * Determine which MSAA layout should be used by the MSAA surface being
63 * created, based on the chip generation and the surface type.
64 */
65 static enum intel_msaa_layout
66 compute_msaa_layout(struct brw_context *brw, mesa_format format,
67 bool disable_aux_buffers)
68 {
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return INTEL_MSAA_LAYOUT_IMS;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return INTEL_MSAA_LAYOUT_IMS;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
92 return INTEL_MSAA_LAYOUT_UMS;
93 } else if (disable_aux_buffers) {
94 /* We can't use the CMS layout because it uses an aux buffer, the MCS
95 * buffer. So fallback to UMS, which is identical to CMS without the
96 * MCS. */
97 return INTEL_MSAA_LAYOUT_UMS;
98 } else {
99 return INTEL_MSAA_LAYOUT_CMS;
100 }
101 }
102 }
103
104
105 /**
106 * For single-sampled render targets ("non-MSRT"), the MCS buffer is a
107 * scaled-down bitfield representation of the color buffer which is capable of
108 * recording when blocks of the color buffer are equal to the clear value.
109 * This function returns the block size that will be used by the MCS buffer
110 * corresponding to a certain color miptree.
111 *
112 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
113 * beneath the "Fast Color Clear" bullet (p327):
114 *
115 * The following table describes the RT alignment
116 *
117 * Pixels Lines
118 * TiledY RT CL
119 * bpp
120 * 32 8 4
121 * 64 4 4
122 * 128 2 4
123 * TiledX RT CL
124 * bpp
125 * 32 16 2
126 * 64 8 2
127 * 128 4 2
128 *
129 * This alignment has the following uses:
130 *
131 * - For figuring out the size of the MCS buffer. Each 4k tile in the MCS
132 * buffer contains 128 blocks horizontally and 256 blocks vertically.
133 *
134 * - For figuring out alignment restrictions for a fast clear operation. Fast
135 * clear operations must always clear aligned multiples of 16 blocks
136 * horizontally and 32 blocks vertically.
137 *
138 * - For scaling down the coordinates sent through the render pipeline during
139 * a fast clear. X coordinates must be scaled down by 8 times the block
140 * width, and Y coordinates by 16 times the block height.
141 *
142 * - For scaling down the coordinates sent through the render pipeline during
143 * a "Render Target Resolve" operation. X coordinates must be scaled down
144 * by half the block width, and Y coordinates by half the block height.
145 */
146 void
147 intel_get_non_msrt_mcs_alignment(const struct intel_mipmap_tree *mt,
148 unsigned *width_px, unsigned *height)
149 {
150 switch (mt->tiling) {
151 default:
152 unreachable("Non-MSRT MCS requires X or Y tiling");
153 /* In release builds, fall through */
154 case I915_TILING_Y:
155 *width_px = 32 / mt->cpp;
156 *height = 4;
157 break;
158 case I915_TILING_X:
159 *width_px = 64 / mt->cpp;
160 *height = 2;
161 }
162 }
163
164 bool
165 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
166 unsigned tiling)
167 {
168 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
169 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
170 *
171 * - Support is limited to tiled render targets.
172 *
173 * Gen9 changes the restriction to Y-tile only.
174 */
175 if (brw->gen >= 9)
176 return tiling == I915_TILING_Y;
177 else if (brw->gen >= 7)
178 return tiling != I915_TILING_NONE;
179 else
180 return false;
181 }
182
183 /**
184 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
185 * can be used. This doesn't (and should not) inspect any of the properties of
186 * the miptree's BO.
187 *
188 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
189 * beneath the "Fast Color Clear" bullet (p326):
190 *
191 * - Support is for non-mip-mapped and non-array surface types only.
192 *
193 * And then later, on p327:
194 *
195 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
196 * 64bpp, and 128bpp.
197 *
198 * From the Skylake documentation, it is made clear that X-tiling is no longer
199 * supported:
200 *
201 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
202 * non-MSRTs only.
203 */
204 bool
205 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
206 const struct intel_mipmap_tree *mt)
207 {
208 /* MCS support does not exist prior to Gen7 */
209 if (brw->gen < 7)
210 return false;
211
212 if (mt->disable_aux_buffers)
213 return false;
214
215 /* This function applies only to non-multisampled render targets. */
216 if (mt->num_samples > 1)
217 return false;
218
219 /* MCS is only supported for color buffers */
220 switch (_mesa_get_format_base_format(mt->format)) {
221 case GL_DEPTH_COMPONENT:
222 case GL_DEPTH_STENCIL:
223 case GL_STENCIL_INDEX:
224 return false;
225 }
226
227 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
228 return false;
229
230 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
231 const bool arrayed = mt->physical_depth0 != 1;
232
233 if (arrayed) {
234 /* Multisample surfaces with the CMS layout are not layered surfaces,
235 * yet still have physical_depth0 > 1. Assert that we don't
236 * accidentally reject a multisampled surface here. We should have
237 * rejected it earlier by explicitly checking the sample count.
238 */
239 assert(mt->num_samples <= 1);
240 }
241
242 /* Handle the hardware restrictions...
243 *
244 * All GENs have the following restriction: "MCS buffer for non-MSRT is
245 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
246 *
247 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
248 * Non-MultiSampler Render Target Restrictions) Support is for
249 * non-mip-mapped and non-array surface types only.
250 *
251 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
252 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
253 * surfaces are supported with MCS buffer layout with these alignments in
254 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
255 *
256 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
257 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
258 * surfaces are supported with MCS buffer layout with these alignments in
259 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
260 */
261 if (brw->gen < 8 && (mip_mapped || arrayed))
262 return false;
263
264 /* Not implemented yet. */
265 if (mip_mapped) {
266 perf_debug("Multi-LOD fast clear - giving up (%dx%dx%d).\n",
267 mt->logical_width0, mt->logical_height0, mt->last_level);
268 return false;
269 }
270
271 /* Not implemented yet. */
272 if (arrayed) {
273 perf_debug("Layered fast clear - giving up. (%dx%d%d)\n",
274 mt->logical_width0, mt->logical_height0,
275 mt->physical_depth0);
276 return false;
277 }
278
279 /* There's no point in using an MCS buffer if the surface isn't in a
280 * renderable format.
281 */
282 if (!brw->format_supported_as_render_target[mt->format])
283 return false;
284
285 if (brw->gen >= 9) {
286 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
287 const uint32_t brw_format = brw_format_for_mesa_format(linear_format);
288 return isl_format_supports_lossless_compression(&brw->screen->devinfo,
289 brw_format);
290 } else
291 return true;
292 }
293
294 /* On Gen9 support for color buffer compression was extended to single
295 * sampled surfaces. This is a helper considering both auxiliary buffer
296 * type and number of samples telling if the given miptree represents
297 * the new single sampled case - also called lossless compression.
298 */
299 bool
300 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
301 const struct intel_mipmap_tree *mt)
302 {
303 /* Only available from Gen9 onwards. */
304 if (brw->gen < 9)
305 return false;
306
307 /* Compression always requires auxiliary buffer. */
308 if (!mt->mcs_buf)
309 return false;
310
311 /* Single sample compression is represented re-using msaa compression
312 * layout type: "Compressed Multisampled Surfaces".
313 */
314 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
315 return false;
316
317 /* And finally distinguish between msaa and single sample case. */
318 return mt->num_samples <= 1;
319 }
320
321 bool
322 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
323 const struct intel_mipmap_tree *mt)
324 {
325 /* For now compression is only enabled for integer formats even though
326 * there exist supported floating point formats also. This is a heuristic
327 * decision based on current public benchmarks. In none of the cases these
328 * formats provided any improvement but a few cases were seen to regress.
329 * Hence these are left to to be enabled in the future when they are known
330 * to improve things.
331 */
332 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
333 return false;
334
335 /* Fast clear mechanism and lossless compression go hand in hand. */
336 if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
337 return false;
338
339 /* Fast clear can be also used to clear srgb surfaces by using equivalent
340 * linear format. This trick, however, can't be extended to be used with
341 * lossless compression and therefore a check is needed to see if the format
342 * really is linear.
343 */
344 return _mesa_get_srgb_format_linear(mt->format) == mt->format;
345 }
346
347 /**
348 * Determine depth format corresponding to a depth+stencil format,
349 * for separate stencil.
350 */
351 mesa_format
352 intel_depth_format_for_depthstencil_format(mesa_format format) {
353 switch (format) {
354 case MESA_FORMAT_Z24_UNORM_S8_UINT:
355 return MESA_FORMAT_Z24_UNORM_X8_UINT;
356 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
357 return MESA_FORMAT_Z_FLOAT32;
358 default:
359 return format;
360 }
361 }
362
363
364 /**
365 * @param for_bo Indicates that the caller is
366 * intel_miptree_create_for_bo(). If true, then do not create
367 * \c stencil_mt.
368 */
369 static struct intel_mipmap_tree *
370 intel_miptree_create_layout(struct brw_context *brw,
371 GLenum target,
372 mesa_format format,
373 GLuint first_level,
374 GLuint last_level,
375 GLuint width0,
376 GLuint height0,
377 GLuint depth0,
378 GLuint num_samples,
379 uint32_t layout_flags)
380 {
381 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
382 if (!mt)
383 return NULL;
384
385 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
386 _mesa_enum_to_string(target),
387 _mesa_get_format_name(format),
388 first_level, last_level, depth0, mt);
389
390 if (target == GL_TEXTURE_1D_ARRAY)
391 assert(height0 == 1);
392
393 mt->target = target;
394 mt->format = format;
395 mt->first_level = first_level;
396 mt->last_level = last_level;
397 mt->logical_width0 = width0;
398 mt->logical_height0 = height0;
399 mt->logical_depth0 = depth0;
400 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
401 mt->disable_aux_buffers = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0;
402 mt->no_ccs = true;
403 mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
404 exec_list_make_empty(&mt->hiz_map);
405 mt->cpp = _mesa_get_format_bytes(format);
406 mt->num_samples = num_samples;
407 mt->compressed = _mesa_is_format_compressed(format);
408 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
409 mt->refcount = 1;
410
411 int depth_multiply = 1;
412 if (num_samples > 1) {
413 /* Adjust width/height/depth for MSAA */
414 mt->msaa_layout = compute_msaa_layout(brw, format,
415 mt->disable_aux_buffers);
416 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
417 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
418 * "If the surface is multisampled and it is a depth or stencil
419 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
420 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
421 * proceeding:
422 *
423 * +----------------------------------------------------------------+
424 * | Num Multisamples | W_l = | H_l = |
425 * +----------------------------------------------------------------+
426 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
427 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
428 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
429 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
430 * +----------------------------------------------------------------+
431 * "
432 *
433 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
434 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
435 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
436 *
437 * Another more complicated explanation for these adjustments comes
438 * from the Sandybridge PRM, volume 4, part 1, page 31:
439 *
440 * "Any of the other messages (sample*, LOD, load4) used with a
441 * (4x) multisampled surface will in-effect sample a surface with
442 * double the height and width as that indicated in the surface
443 * state. Each pixel position on the original-sized surface is
444 * replaced with a 2x2 of samples with the following arrangement:
445 *
446 * sample 0 sample 2
447 * sample 1 sample 3"
448 *
449 * Thus, when sampling from a multisampled texture, it behaves as
450 * though the layout in memory for (x,y,sample) is:
451 *
452 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
453 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
454 *
455 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
456 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
457 *
458 * However, the actual layout of multisampled data in memory is:
459 *
460 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
461 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
462 *
463 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
464 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
465 *
466 * This pattern repeats for each 2x2 pixel block.
467 *
468 * As a result, when calculating the size of our 4-sample buffer for
469 * an odd width or height, we have to align before scaling up because
470 * sample 3 is in that bottom right 2x2 block.
471 */
472 switch (num_samples) {
473 case 2:
474 assert(brw->gen >= 8);
475 width0 = ALIGN(width0, 2) * 2;
476 height0 = ALIGN(height0, 2);
477 break;
478 case 4:
479 width0 = ALIGN(width0, 2) * 2;
480 height0 = ALIGN(height0, 2) * 2;
481 break;
482 case 8:
483 width0 = ALIGN(width0, 2) * 4;
484 height0 = ALIGN(height0, 2) * 2;
485 break;
486 case 16:
487 width0 = ALIGN(width0, 2) * 4;
488 height0 = ALIGN(height0, 2) * 4;
489 break;
490 default:
491 /* num_samples should already have been quantized to 0, 1, 2, 4, 8
492 * or 16.
493 */
494 unreachable("not reached");
495 }
496 } else {
497 /* Non-interleaved */
498 depth_multiply = num_samples;
499 depth0 *= depth_multiply;
500 }
501 }
502
503 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
504 * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
505 * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
506 * used on Gen8 to make it pick a qpitch value which doesn't include space
507 * for the mipmaps. On Gen9 this is not necessary because it will
508 * automatically pick a packed qpitch value whenever mt->first_level ==
509 * mt->last_level.
510 * TODO: can we use it elsewhere?
511 * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
512 */
513 if (brw->gen >= 9) {
514 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
515 } else {
516 switch (mt->msaa_layout) {
517 case INTEL_MSAA_LAYOUT_NONE:
518 case INTEL_MSAA_LAYOUT_IMS:
519 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
520 break;
521 case INTEL_MSAA_LAYOUT_UMS:
522 case INTEL_MSAA_LAYOUT_CMS:
523 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
524 break;
525 }
526 }
527
528 if (target == GL_TEXTURE_CUBE_MAP)
529 assert(depth0 == 6 * depth_multiply);
530
531 mt->physical_width0 = width0;
532 mt->physical_height0 = height0;
533 mt->physical_depth0 = depth0;
534
535 if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
536 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
537 (brw->must_use_separate_stencil ||
538 (brw->has_separate_stencil &&
539 intel_miptree_wants_hiz_buffer(brw, mt)))) {
540 uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
541 if (brw->gen == 6) {
542 stencil_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD |
543 MIPTREE_LAYOUT_TILING_ANY;
544 }
545
546 mt->stencil_mt = intel_miptree_create(brw,
547 mt->target,
548 MESA_FORMAT_S_UINT8,
549 mt->first_level,
550 mt->last_level,
551 mt->logical_width0,
552 mt->logical_height0,
553 mt->logical_depth0,
554 num_samples,
555 stencil_flags);
556
557 if (!mt->stencil_mt) {
558 intel_miptree_release(&mt);
559 return NULL;
560 }
561 mt->stencil_mt->r8stencil_needs_update = true;
562
563 /* Fix up the Z miptree format for how we're splitting out separate
564 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
565 */
566 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
567 mt->cpp = 4;
568
569 if (format == mt->format) {
570 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
571 _mesa_get_format_name(mt->format));
572 }
573 }
574
575 if (layout_flags & MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD)
576 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
577
578 /*
579 * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
580 * multisampled or have an AUX buffer attached to it.
581 *
582 * GEN | MSRT | AUX_CCS_* or AUX_MCS
583 * -------------------------------------------
584 * 9 | HALIGN_16 | HALIGN_16
585 * 8 | HALIGN_ANY | HALIGN_16
586 * 7 | ? | ?
587 * 6 | ? | ?
588 */
589 if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
590 if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
591 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
592 } else if (brw->gen >= 9 && num_samples > 1) {
593 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
594 } else {
595 const UNUSED bool is_lossless_compressed_aux =
596 brw->gen >= 9 && num_samples == 1 &&
597 mt->format == MESA_FORMAT_R_UINT32;
598
599 /* For now, nothing else has this requirement */
600 assert(is_lossless_compressed_aux ||
601 (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
602 }
603
604 brw_miptree_layout(brw, mt, layout_flags);
605
606 if (mt->disable_aux_buffers)
607 assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
608
609 return mt;
610 }
611
612
613 /**
614 * Choose an appropriate uncompressed format for a requested
615 * compressed format, if unsupported.
616 */
617 mesa_format
618 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
619 {
620 /* No need to lower ETC formats on these platforms,
621 * they are supported natively.
622 */
623 if (brw->gen >= 8 || brw->is_baytrail)
624 return format;
625
626 switch (format) {
627 case MESA_FORMAT_ETC1_RGB8:
628 return MESA_FORMAT_R8G8B8X8_UNORM;
629 case MESA_FORMAT_ETC2_RGB8:
630 return MESA_FORMAT_R8G8B8X8_UNORM;
631 case MESA_FORMAT_ETC2_SRGB8:
632 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
633 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
634 return MESA_FORMAT_B8G8R8A8_SRGB;
635 case MESA_FORMAT_ETC2_RGBA8_EAC:
636 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
637 return MESA_FORMAT_R8G8B8A8_UNORM;
638 case MESA_FORMAT_ETC2_R11_EAC:
639 return MESA_FORMAT_R_UNORM16;
640 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
641 return MESA_FORMAT_R_SNORM16;
642 case MESA_FORMAT_ETC2_RG11_EAC:
643 return MESA_FORMAT_R16G16_UNORM;
644 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
645 return MESA_FORMAT_R16G16_SNORM;
646 default:
647 /* Non ETC1 / ETC2 format */
648 return format;
649 }
650 }
651
652 /* This function computes Yf/Ys tiled bo size, alignment and pitch. */
653 static unsigned long
654 intel_get_yf_ys_bo_size(struct intel_mipmap_tree *mt, unsigned *alignment,
655 unsigned long *pitch)
656 {
657 uint32_t tile_width, tile_height;
658 unsigned long stride, size, aligned_y;
659
660 assert(mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE);
661 intel_get_tile_dims(mt->tiling, mt->tr_mode, mt->cpp,
662 &tile_width, &tile_height);
663
664 aligned_y = ALIGN(mt->total_height, tile_height);
665 stride = mt->total_width * mt->cpp;
666 stride = ALIGN(stride, tile_width);
667 size = stride * aligned_y;
668
669 if (mt->tr_mode == INTEL_MIPTREE_TRMODE_YF) {
670 assert(size % 4096 == 0);
671 *alignment = 4096;
672 } else {
673 assert(size % (64 * 1024) == 0);
674 *alignment = 64 * 1024;
675 }
676 *pitch = stride;
677 return size;
678 }
679
680 static struct intel_mipmap_tree *
681 miptree_create(struct brw_context *brw,
682 GLenum target,
683 mesa_format format,
684 GLuint first_level,
685 GLuint last_level,
686 GLuint width0,
687 GLuint height0,
688 GLuint depth0,
689 GLuint num_samples,
690 uint32_t layout_flags)
691 {
692 struct intel_mipmap_tree *mt;
693 mesa_format tex_format = format;
694 mesa_format etc_format = MESA_FORMAT_NONE;
695 uint32_t alloc_flags = 0;
696
697 format = intel_lower_compressed_format(brw, format);
698
699 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
700
701 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
702 mt = intel_miptree_create_layout(brw, target, format,
703 first_level, last_level, width0,
704 height0, depth0, num_samples,
705 layout_flags);
706 /*
707 * pitch == 0 || height == 0 indicates the null texture
708 */
709 if (!mt || !mt->total_width || !mt->total_height) {
710 intel_miptree_release(&mt);
711 return NULL;
712 }
713
714 if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
715 mt->tiling = I915_TILING_Y;
716
717 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
718 alloc_flags |= BO_ALLOC_FOR_RENDER;
719
720 unsigned long pitch;
721 mt->etc_format = etc_format;
722
723 if (mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) {
724 unsigned alignment = 0;
725 unsigned long size;
726 size = intel_get_yf_ys_bo_size(mt, &alignment, &pitch);
727 assert(size);
728 mt->bo = drm_intel_bo_alloc_for_render(brw->bufmgr, "miptree",
729 size, alignment);
730 } else {
731 if (format == MESA_FORMAT_S_UINT8) {
732 /* Align to size of W tile, 64x64. */
733 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
734 ALIGN(mt->total_width, 64),
735 ALIGN(mt->total_height, 64),
736 mt->cpp, &mt->tiling, &pitch,
737 alloc_flags);
738 } else {
739 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
740 mt->total_width, mt->total_height,
741 mt->cpp, &mt->tiling, &pitch,
742 alloc_flags);
743 }
744 }
745
746 mt->pitch = pitch;
747
748 return mt;
749 }
750
751 struct intel_mipmap_tree *
752 intel_miptree_create(struct brw_context *brw,
753 GLenum target,
754 mesa_format format,
755 GLuint first_level,
756 GLuint last_level,
757 GLuint width0,
758 GLuint height0,
759 GLuint depth0,
760 GLuint num_samples,
761 uint32_t layout_flags)
762 {
763 struct intel_mipmap_tree *mt = miptree_create(
764 brw, target, format,
765 first_level, last_level,
766 width0, height0, depth0, num_samples,
767 layout_flags);
768
769 /* If the BO is too large to fit in the aperture, we need to use the
770 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
771 * handle Y-tiling, so we need to fall back to X.
772 */
773 if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
774 mt->tiling == I915_TILING_Y) {
775 unsigned long pitch = mt->pitch;
776 const uint32_t alloc_flags =
777 (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
778 BO_ALLOC_FOR_RENDER : 0;
779 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
780 mt->total_width, mt->total_height);
781
782 mt->tiling = I915_TILING_X;
783 drm_intel_bo_unreference(mt->bo);
784 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
785 mt->total_width, mt->total_height, mt->cpp,
786 &mt->tiling, &pitch, alloc_flags);
787 mt->pitch = pitch;
788 }
789
790 mt->offset = 0;
791
792 if (!mt->bo) {
793 intel_miptree_release(&mt);
794 return NULL;
795 }
796
797
798 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
799 assert(mt->num_samples > 1);
800 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
801 intel_miptree_release(&mt);
802 return NULL;
803 }
804 }
805
806 /* If this miptree is capable of supporting fast color clears, set
807 * fast_clear_state appropriately to ensure that fast clears will occur.
808 * Allocation of the MCS miptree will be deferred until the first fast
809 * clear actually occurs or when compressed single sampled buffer is
810 * written by the GPU for the first time.
811 */
812 if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
813 intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
814 mt->no_ccs = false;
815 assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
816
817 /* On Gen9+ clients are not currently capable of consuming compressed
818 * single-sampled buffers. Disabling compression allows us to skip
819 * resolves.
820 */
821 const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
822 const bool is_lossless_compressed =
823 unlikely(!lossless_compression_disabled) &&
824 brw->gen >= 9 && !mt->is_scanout &&
825 intel_miptree_supports_lossless_compressed(brw, mt);
826
827 if (is_lossless_compressed) {
828 intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
829 }
830 }
831
832 return mt;
833 }
834
835 struct intel_mipmap_tree *
836 intel_miptree_create_for_bo(struct brw_context *brw,
837 drm_intel_bo *bo,
838 mesa_format format,
839 uint32_t offset,
840 uint32_t width,
841 uint32_t height,
842 uint32_t depth,
843 int pitch,
844 uint32_t layout_flags)
845 {
846 struct intel_mipmap_tree *mt;
847 uint32_t tiling, swizzle;
848 GLenum target;
849
850 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
851
852 /* Nothing will be able to use this miptree with the BO if the offset isn't
853 * aligned.
854 */
855 if (tiling != I915_TILING_NONE)
856 assert(offset % 4096 == 0);
857
858 /* miptrees can't handle negative pitch. If you need flipping of images,
859 * that's outside of the scope of the mt.
860 */
861 assert(pitch >= 0);
862
863 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
864
865 /* The BO already has a tiling format and we shouldn't confuse the lower
866 * layers by making it try to find a tiling format again.
867 */
868 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
869 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
870
871 layout_flags |= MIPTREE_LAYOUT_FOR_BO;
872 mt = intel_miptree_create_layout(brw, target, format,
873 0, 0,
874 width, height, depth, 0,
875 layout_flags);
876 if (!mt)
877 return NULL;
878
879 drm_intel_bo_reference(bo);
880 mt->bo = bo;
881 mt->pitch = pitch;
882 mt->offset = offset;
883 mt->tiling = tiling;
884
885 return mt;
886 }
887
888 /**
889 * For a singlesample renderbuffer, this simply wraps the given BO with a
890 * miptree.
891 *
892 * For a multisample renderbuffer, this wraps the window system's
893 * (singlesample) BO with a singlesample miptree attached to the
894 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
895 * that will contain the actual rendering (which is lazily resolved to
896 * irb->singlesample_mt).
897 */
898 void
899 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
900 struct intel_renderbuffer *irb,
901 drm_intel_bo *bo,
902 uint32_t width, uint32_t height,
903 uint32_t pitch)
904 {
905 struct intel_mipmap_tree *singlesample_mt = NULL;
906 struct intel_mipmap_tree *multisample_mt = NULL;
907 struct gl_renderbuffer *rb = &irb->Base.Base;
908 mesa_format format = rb->Format;
909 int num_samples = rb->NumSamples;
910
911 /* Only the front and back buffers, which are color buffers, are allocated
912 * through the image loader.
913 */
914 assert(_mesa_get_format_base_format(format) == GL_RGB ||
915 _mesa_get_format_base_format(format) == GL_RGBA);
916
917 singlesample_mt = intel_miptree_create_for_bo(intel,
918 bo,
919 format,
920 0,
921 width,
922 height,
923 1,
924 pitch,
925 MIPTREE_LAYOUT_FOR_SCANOUT);
926 if (!singlesample_mt)
927 goto fail;
928
929 /* If this miptree is capable of supporting fast color clears, set
930 * mcs_state appropriately to ensure that fast clears will occur.
931 * Allocation of the MCS miptree will be deferred until the first fast
932 * clear actually occurs.
933 */
934 if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
935 intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
936 singlesample_mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
937 }
938
939 if (num_samples == 0) {
940 intel_miptree_release(&irb->mt);
941 irb->mt = singlesample_mt;
942
943 assert(!irb->singlesample_mt);
944 } else {
945 intel_miptree_release(&irb->singlesample_mt);
946 irb->singlesample_mt = singlesample_mt;
947
948 if (!irb->mt ||
949 irb->mt->logical_width0 != width ||
950 irb->mt->logical_height0 != height) {
951 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
952 format,
953 width,
954 height,
955 num_samples);
956 if (!multisample_mt)
957 goto fail;
958
959 irb->need_downsample = false;
960 intel_miptree_release(&irb->mt);
961 irb->mt = multisample_mt;
962 }
963 }
964 return;
965
966 fail:
967 intel_miptree_release(&irb->singlesample_mt);
968 intel_miptree_release(&irb->mt);
969 return;
970 }
971
972 struct intel_mipmap_tree*
973 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
974 mesa_format format,
975 uint32_t width,
976 uint32_t height,
977 uint32_t num_samples)
978 {
979 struct intel_mipmap_tree *mt;
980 uint32_t depth = 1;
981 bool ok;
982 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
983 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
984 MIPTREE_LAYOUT_TILING_ANY |
985 MIPTREE_LAYOUT_FOR_SCANOUT;
986
987 mt = intel_miptree_create(brw, target, format, 0, 0,
988 width, height, depth, num_samples,
989 layout_flags);
990 if (!mt)
991 goto fail;
992
993 if (intel_miptree_wants_hiz_buffer(brw, mt)) {
994 ok = intel_miptree_alloc_hiz(brw, mt);
995 if (!ok)
996 goto fail;
997 }
998
999 return mt;
1000
1001 fail:
1002 intel_miptree_release(&mt);
1003 return NULL;
1004 }
1005
1006 void
1007 intel_miptree_reference(struct intel_mipmap_tree **dst,
1008 struct intel_mipmap_tree *src)
1009 {
1010 if (*dst == src)
1011 return;
1012
1013 intel_miptree_release(dst);
1014
1015 if (src) {
1016 src->refcount++;
1017 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1018 }
1019
1020 *dst = src;
1021 }
1022
1023
1024 void
1025 intel_miptree_release(struct intel_mipmap_tree **mt)
1026 {
1027 if (!*mt)
1028 return;
1029
1030 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1031 if (--(*mt)->refcount <= 0) {
1032 GLuint i;
1033
1034 DBG("%s deleting %p\n", __func__, *mt);
1035
1036 drm_intel_bo_unreference((*mt)->bo);
1037 intel_miptree_release(&(*mt)->stencil_mt);
1038 intel_miptree_release(&(*mt)->r8stencil_mt);
1039 if ((*mt)->hiz_buf) {
1040 if ((*mt)->hiz_buf->mt)
1041 intel_miptree_release(&(*mt)->hiz_buf->mt);
1042 else
1043 drm_intel_bo_unreference((*mt)->hiz_buf->aux_base.bo);
1044 free((*mt)->hiz_buf);
1045 }
1046 if ((*mt)->mcs_buf) {
1047 drm_intel_bo_unreference((*mt)->mcs_buf->bo);
1048 free((*mt)->mcs_buf);
1049 }
1050 intel_resolve_map_clear(&(*mt)->hiz_map);
1051
1052 intel_miptree_release(&(*mt)->plane[0]);
1053 intel_miptree_release(&(*mt)->plane[1]);
1054
1055 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1056 free((*mt)->level[i].slice);
1057 }
1058
1059 free(*mt);
1060 }
1061 *mt = NULL;
1062 }
1063
1064
1065 void
1066 intel_get_image_dims(struct gl_texture_image *image,
1067 int *width, int *height, int *depth)
1068 {
1069 switch (image->TexObject->Target) {
1070 case GL_TEXTURE_1D_ARRAY:
1071 /* For a 1D Array texture the OpenGL API will treat the image height as
1072 * the number of array slices. For Intel hardware, we treat the 1D array
1073 * as a 2D Array with a height of 1. So, here we want to swap image
1074 * height and depth.
1075 */
1076 assert(image->Depth == 1);
1077 *width = image->Width;
1078 *height = 1;
1079 *depth = image->Height;
1080 break;
1081 case GL_TEXTURE_CUBE_MAP:
1082 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1083 * though we really have 6 slices.
1084 */
1085 assert(image->Depth == 1);
1086 *width = image->Width;
1087 *height = image->Height;
1088 *depth = 6;
1089 break;
1090 default:
1091 *width = image->Width;
1092 *height = image->Height;
1093 *depth = image->Depth;
1094 break;
1095 }
1096 }
1097
1098 /**
1099 * Can the image be pulled into a unified mipmap tree? This mirrors
1100 * the completeness test in a lot of ways.
1101 *
1102 * Not sure whether I want to pass gl_texture_image here.
1103 */
1104 bool
1105 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1106 struct gl_texture_image *image)
1107 {
1108 struct intel_texture_image *intelImage = intel_texture_image(image);
1109 GLuint level = intelImage->base.Base.Level;
1110 int width, height, depth;
1111
1112 /* glTexImage* choose the texture object based on the target passed in, and
1113 * objects can't change targets over their lifetimes, so this should be
1114 * true.
1115 */
1116 assert(image->TexObject->Target == mt->target);
1117
1118 mesa_format mt_format = mt->format;
1119 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1120 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1121 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1122 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1123 if (mt->etc_format != MESA_FORMAT_NONE)
1124 mt_format = mt->etc_format;
1125
1126 if (image->TexFormat != mt_format)
1127 return false;
1128
1129 intel_get_image_dims(image, &width, &height, &depth);
1130
1131 if (mt->target == GL_TEXTURE_CUBE_MAP)
1132 depth = 6;
1133
1134 int level_depth = mt->level[level].depth;
1135 if (mt->num_samples > 1) {
1136 switch (mt->msaa_layout) {
1137 case INTEL_MSAA_LAYOUT_NONE:
1138 case INTEL_MSAA_LAYOUT_IMS:
1139 break;
1140 case INTEL_MSAA_LAYOUT_UMS:
1141 case INTEL_MSAA_LAYOUT_CMS:
1142 level_depth /= mt->num_samples;
1143 break;
1144 }
1145 }
1146
1147 /* Test image dimensions against the base level image adjusted for
1148 * minification. This will also catch images not present in the
1149 * tree, changed targets, etc.
1150 */
1151 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1152 height != minify(mt->logical_height0, level - mt->first_level) ||
1153 depth != level_depth) {
1154 return false;
1155 }
1156
1157 if (image->NumSamples != mt->num_samples)
1158 return false;
1159
1160 return true;
1161 }
1162
1163
1164 void
1165 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1166 GLuint level,
1167 GLuint x, GLuint y, GLuint d)
1168 {
1169 mt->level[level].depth = d;
1170 mt->level[level].level_x = x;
1171 mt->level[level].level_y = y;
1172
1173 DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1174 level, d, x, y);
1175
1176 assert(mt->level[level].slice == NULL);
1177
1178 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1179 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1180 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1181 }
1182
1183
1184 void
1185 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1186 GLuint level, GLuint img,
1187 GLuint x, GLuint y)
1188 {
1189 if (img == 0 && level == 0)
1190 assert(x == 0 && y == 0);
1191
1192 assert(img < mt->level[level].depth);
1193
1194 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1195 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1196
1197 DBG("%s level %d img %d pos %d,%d\n",
1198 __func__, level, img,
1199 mt->level[level].slice[img].x_offset,
1200 mt->level[level].slice[img].y_offset);
1201 }
1202
1203 void
1204 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1205 GLuint level, GLuint slice,
1206 GLuint *x, GLuint *y)
1207 {
1208 assert(slice < mt->level[level].depth);
1209
1210 *x = mt->level[level].slice[slice].x_offset;
1211 *y = mt->level[level].slice[slice].y_offset;
1212 }
1213
1214
1215 /**
1216 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1217 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1218 * and tile_h is set to 1.
1219 */
1220 void
1221 intel_get_tile_dims(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1222 uint32_t *tile_w, uint32_t *tile_h)
1223 {
1224 if (tr_mode == INTEL_MIPTREE_TRMODE_NONE) {
1225 switch (tiling) {
1226 case I915_TILING_X:
1227 *tile_w = 512;
1228 *tile_h = 8;
1229 break;
1230 case I915_TILING_Y:
1231 *tile_w = 128;
1232 *tile_h = 32;
1233 break;
1234 case I915_TILING_NONE:
1235 *tile_w = cpp;
1236 *tile_h = 1;
1237 break;
1238 default:
1239 unreachable("not reached");
1240 }
1241 } else {
1242 uint32_t aspect_ratio = 1;
1243 assert(_mesa_is_pow_two(cpp));
1244
1245 switch (cpp) {
1246 case 1:
1247 *tile_h = 64;
1248 break;
1249 case 2:
1250 case 4:
1251 *tile_h = 32;
1252 break;
1253 case 8:
1254 case 16:
1255 *tile_h = 16;
1256 break;
1257 default:
1258 unreachable("not reached");
1259 }
1260
1261 if (cpp == 2 || cpp == 8)
1262 aspect_ratio = 2;
1263
1264 if (tr_mode == INTEL_MIPTREE_TRMODE_YS)
1265 *tile_h *= 4;
1266
1267 *tile_w = *tile_h * aspect_ratio * cpp;
1268 }
1269 }
1270
1271
1272 /**
1273 * This function computes masks that may be used to select the bits of the X
1274 * and Y coordinates that indicate the offset within a tile. If the BO is
1275 * untiled, the masks are set to 0.
1276 */
1277 void
1278 intel_get_tile_masks(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1279 uint32_t *mask_x, uint32_t *mask_y)
1280 {
1281 uint32_t tile_w_bytes, tile_h;
1282
1283 intel_get_tile_dims(tiling, tr_mode, cpp, &tile_w_bytes, &tile_h);
1284
1285 *mask_x = tile_w_bytes / cpp - 1;
1286 *mask_y = tile_h - 1;
1287 }
1288
1289 /**
1290 * Compute the offset (in bytes) from the start of the BO to the given x
1291 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1292 * multiples of the tile size.
1293 */
1294 uint32_t
1295 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1296 uint32_t x, uint32_t y)
1297 {
1298 int cpp = mt->cpp;
1299 uint32_t pitch = mt->pitch;
1300 uint32_t tiling = mt->tiling;
1301
1302 switch (tiling) {
1303 default:
1304 unreachable("not reached");
1305 case I915_TILING_NONE:
1306 return y * pitch + x * cpp;
1307 case I915_TILING_X:
1308 assert((x % (512 / cpp)) == 0);
1309 assert((y % 8) == 0);
1310 return y * pitch + x / (512 / cpp) * 4096;
1311 case I915_TILING_Y:
1312 assert((x % (128 / cpp)) == 0);
1313 assert((y % 32) == 0);
1314 return y * pitch + x / (128 / cpp) * 4096;
1315 }
1316 }
1317
1318 /**
1319 * Rendering with tiled buffers requires that the base address of the buffer
1320 * be aligned to a page boundary. For renderbuffers, and sometimes with
1321 * textures, we may want the surface to point at a texture image level that
1322 * isn't at a page boundary.
1323 *
1324 * This function returns an appropriately-aligned base offset
1325 * according to the tiling restrictions, plus any required x/y offset
1326 * from there.
1327 */
1328 uint32_t
1329 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1330 GLuint level, GLuint slice,
1331 uint32_t *tile_x,
1332 uint32_t *tile_y)
1333 {
1334 uint32_t x, y;
1335 uint32_t mask_x, mask_y;
1336
1337 intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp, &mask_x, &mask_y);
1338 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1339
1340 *tile_x = x & mask_x;
1341 *tile_y = y & mask_y;
1342
1343 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1344 }
1345
1346 static void
1347 intel_miptree_copy_slice_sw(struct brw_context *brw,
1348 struct intel_mipmap_tree *dst_mt,
1349 struct intel_mipmap_tree *src_mt,
1350 int level,
1351 int slice,
1352 int width,
1353 int height)
1354 {
1355 void *src, *dst;
1356 ptrdiff_t src_stride, dst_stride;
1357 int cpp = dst_mt->cpp;
1358
1359 intel_miptree_map(brw, src_mt,
1360 level, slice,
1361 0, 0,
1362 width, height,
1363 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1364 &src, &src_stride);
1365
1366 intel_miptree_map(brw, dst_mt,
1367 level, slice,
1368 0, 0,
1369 width, height,
1370 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1371 BRW_MAP_DIRECT_BIT,
1372 &dst, &dst_stride);
1373
1374 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1375 _mesa_get_format_name(src_mt->format),
1376 src_mt, src, src_stride,
1377 _mesa_get_format_name(dst_mt->format),
1378 dst_mt, dst, dst_stride,
1379 width, height);
1380
1381 int row_size = cpp * width;
1382 if (src_stride == row_size &&
1383 dst_stride == row_size) {
1384 memcpy(dst, src, row_size * height);
1385 } else {
1386 for (int i = 0; i < height; i++) {
1387 memcpy(dst, src, row_size);
1388 dst += dst_stride;
1389 src += src_stride;
1390 }
1391 }
1392
1393 intel_miptree_unmap(brw, dst_mt, level, slice);
1394 intel_miptree_unmap(brw, src_mt, level, slice);
1395
1396 /* Don't forget to copy the stencil data over, too. We could have skipped
1397 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1398 * shuffling the two data sources in/out of temporary storage instead of
1399 * the direct mapping we get this way.
1400 */
1401 if (dst_mt->stencil_mt) {
1402 assert(src_mt->stencil_mt);
1403 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1404 level, slice, width, height);
1405 }
1406 }
1407
1408 static void
1409 intel_miptree_copy_slice(struct brw_context *brw,
1410 struct intel_mipmap_tree *dst_mt,
1411 struct intel_mipmap_tree *src_mt,
1412 int level,
1413 int face,
1414 int depth)
1415
1416 {
1417 mesa_format format = src_mt->format;
1418 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1419 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1420 int slice;
1421
1422 if (face > 0)
1423 slice = face;
1424 else
1425 slice = depth;
1426
1427 assert(depth < src_mt->level[level].depth);
1428 assert(src_mt->format == dst_mt->format);
1429
1430 if (dst_mt->compressed) {
1431 unsigned int i, j;
1432 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1433 height = ALIGN_NPOT(height, j) / j;
1434 width = ALIGN_NPOT(width, i) / i;
1435 }
1436
1437 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1438 * below won't apply since we can't do the depth's Y tiling or the
1439 * stencil's W tiling in the blitter.
1440 */
1441 if (src_mt->stencil_mt) {
1442 intel_miptree_copy_slice_sw(brw,
1443 dst_mt, src_mt,
1444 level, slice,
1445 width, height);
1446 return;
1447 }
1448
1449 uint32_t dst_x, dst_y, src_x, src_y;
1450 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1451 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1452
1453 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1454 _mesa_get_format_name(src_mt->format),
1455 src_mt, src_x, src_y, src_mt->pitch,
1456 _mesa_get_format_name(dst_mt->format),
1457 dst_mt, dst_x, dst_y, dst_mt->pitch,
1458 width, height);
1459
1460 if (!intel_miptree_blit(brw,
1461 src_mt, level, slice, 0, 0, false,
1462 dst_mt, level, slice, 0, 0, false,
1463 width, height, GL_COPY)) {
1464 perf_debug("miptree validate blit for %s failed\n",
1465 _mesa_get_format_name(format));
1466
1467 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1468 width, height);
1469 }
1470 }
1471
1472 /**
1473 * Copies the image's current data to the given miptree, and associates that
1474 * miptree with the image.
1475 *
1476 * If \c invalidate is true, then the actual image data does not need to be
1477 * copied, but the image still needs to be associated to the new miptree (this
1478 * is set to true if we're about to clear the image).
1479 */
1480 void
1481 intel_miptree_copy_teximage(struct brw_context *brw,
1482 struct intel_texture_image *intelImage,
1483 struct intel_mipmap_tree *dst_mt,
1484 bool invalidate)
1485 {
1486 struct intel_mipmap_tree *src_mt = intelImage->mt;
1487 struct intel_texture_object *intel_obj =
1488 intel_texture_object(intelImage->base.Base.TexObject);
1489 int level = intelImage->base.Base.Level;
1490 int face = intelImage->base.Base.Face;
1491
1492 GLuint depth;
1493 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1494 depth = intelImage->base.Base.Height;
1495 else
1496 depth = intelImage->base.Base.Depth;
1497
1498 if (!invalidate) {
1499 for (int slice = 0; slice < depth; slice++) {
1500 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1501 }
1502 }
1503
1504 intel_miptree_reference(&intelImage->mt, dst_mt);
1505 intel_obj->needs_validate = true;
1506 }
1507
1508 static void
1509 intel_miptree_init_mcs(struct brw_context *brw,
1510 struct intel_mipmap_tree *mt,
1511 int init_value)
1512 {
1513 assert(mt->mcs_buf != NULL);
1514
1515 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1516 *
1517 * When MCS buffer is enabled and bound to MSRT, it is required that it
1518 * is cleared prior to any rendering.
1519 *
1520 * Since we don't use the MCS buffer for any purpose other than rendering,
1521 * it makes sense to just clear it immediately upon allocation.
1522 *
1523 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1524 */
1525 const int ret = brw_bo_map_gtt(brw, mt->mcs_buf->bo, "miptree");
1526 if (unlikely(ret)) {
1527 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1528 drm_intel_bo_unreference(mt->mcs_buf->bo);
1529 free(mt->mcs_buf);
1530 return;
1531 }
1532 void *data = mt->mcs_buf->bo->virtual;
1533 memset(data, init_value, mt->mcs_buf->size);
1534 drm_intel_bo_unmap(mt->mcs_buf->bo);
1535 }
1536
1537 static struct intel_miptree_aux_buffer *
1538 intel_mcs_miptree_buf_create(struct brw_context *brw,
1539 struct intel_mipmap_tree *mt,
1540 mesa_format format,
1541 unsigned mcs_width,
1542 unsigned mcs_height,
1543 uint32_t layout_flags)
1544 {
1545 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1546 struct intel_mipmap_tree *temp_mt;
1547
1548 if (!buf)
1549 return NULL;
1550
1551 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1552 *
1553 * "The MCS surface must be stored as Tile Y."
1554 */
1555 layout_flags |= MIPTREE_LAYOUT_TILING_Y;
1556 temp_mt = miptree_create(brw,
1557 mt->target,
1558 format,
1559 mt->first_level,
1560 mt->last_level,
1561 mcs_width,
1562 mcs_height,
1563 mt->logical_depth0,
1564 0 /* num_samples */,
1565 layout_flags);
1566 if (!temp_mt) {
1567 free(buf);
1568 return NULL;
1569 }
1570
1571 buf->bo = temp_mt->bo;
1572 buf->offset = temp_mt->offset;
1573 buf->size = temp_mt->total_height * temp_mt->pitch;
1574 buf->pitch = temp_mt->pitch;
1575 buf->qpitch = temp_mt->qpitch;
1576
1577 /* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
1578 * structure should go away. We use miptree create simply as a means to make
1579 * sure all the constraints for the buffer are satisfied.
1580 */
1581 drm_intel_bo_reference(temp_mt->bo);
1582 intel_miptree_release(&temp_mt);
1583
1584 return buf;
1585 }
1586
1587 static bool
1588 intel_miptree_alloc_mcs(struct brw_context *brw,
1589 struct intel_mipmap_tree *mt,
1590 GLuint num_samples)
1591 {
1592 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1593 assert(mt->mcs_buf == NULL);
1594 assert(!mt->disable_aux_buffers);
1595
1596 /* Choose the correct format for the MCS buffer. All that really matters
1597 * is that we allocate the right buffer size, since we'll always be
1598 * accessing this miptree using MCS-specific hardware mechanisms, which
1599 * infer the correct format based on num_samples.
1600 */
1601 mesa_format format;
1602 switch (num_samples) {
1603 case 2:
1604 case 4:
1605 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1606 * each sample).
1607 */
1608 format = MESA_FORMAT_R_UNORM8;
1609 break;
1610 case 8:
1611 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1612 * for each sample, plus 8 padding bits).
1613 */
1614 format = MESA_FORMAT_R_UINT32;
1615 break;
1616 case 16:
1617 /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
1618 * for each sample).
1619 */
1620 format = MESA_FORMAT_RG_UINT32;
1621 break;
1622 default:
1623 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1624 };
1625
1626 mt->mcs_buf =
1627 intel_mcs_miptree_buf_create(brw, mt,
1628 format,
1629 mt->logical_width0,
1630 mt->logical_height0,
1631 MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
1632 if (!mt->mcs_buf)
1633 return false;
1634
1635 intel_miptree_init_mcs(brw, mt, 0xFF);
1636 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
1637
1638 return true;
1639 }
1640
1641
1642 bool
1643 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1644 struct intel_mipmap_tree *mt,
1645 bool is_lossless_compressed)
1646 {
1647 assert(mt->mcs_buf == NULL);
1648 assert(!mt->disable_aux_buffers);
1649 assert(!mt->no_ccs);
1650
1651 /* The format of the MCS buffer is opaque to the driver; all that matters
1652 * is that we get its size and pitch right. We'll pretend that the format
1653 * is R32. Since an MCS tile covers 128 blocks horizontally, and a Y-tiled
1654 * R32 buffer is 32 pixels across, we'll need to scale the width down by
1655 * the block width and then a further factor of 4. Since an MCS tile
1656 * covers 256 blocks vertically, and a Y-tiled R32 buffer is 32 rows high,
1657 * we'll need to scale the height down by the block height and then a
1658 * further factor of 8.
1659 */
1660 const mesa_format format = MESA_FORMAT_R_UINT32;
1661 unsigned block_width_px;
1662 unsigned block_height;
1663 intel_get_non_msrt_mcs_alignment(mt, &block_width_px, &block_height);
1664 unsigned width_divisor = block_width_px * 4;
1665 unsigned height_divisor = block_height * 8;
1666
1667 /* The Skylake MCS is twice as tall as the Broadwell MCS.
1668 *
1669 * In pre-Skylake, each bit in the MCS contained the state of 2 cachelines
1670 * in the main surface. In Skylake, it's two bits. The extra bit
1671 * doubles the MCS height, not width, because in Skylake the MCS is always
1672 * Y-tiled.
1673 */
1674 if (brw->gen >= 9)
1675 height_divisor /= 2;
1676
1677 unsigned mcs_width =
1678 ALIGN(mt->logical_width0, width_divisor) / width_divisor;
1679 unsigned mcs_height =
1680 ALIGN(mt->logical_height0, height_divisor) / height_divisor;
1681 assert(mt->logical_depth0 == 1);
1682
1683 uint32_t layout_flags =
1684 (brw->gen >= 8) ? MIPTREE_LAYOUT_FORCE_HALIGN16 : 0;
1685 /* In case of compression mcs buffer needs to be initialised requiring the
1686 * buffer to be immediately mapped to cpu space for writing. Therefore do
1687 * not use the gpu access flag which can cause an unnecessary delay if the
1688 * backing pages happened to be just used by the GPU.
1689 */
1690 if (!is_lossless_compressed)
1691 layout_flags |= MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1692
1693 mt->mcs_buf = intel_mcs_miptree_buf_create(brw, mt,
1694 format,
1695 mcs_width,
1696 mcs_height,
1697 layout_flags);
1698 if (!mt->mcs_buf)
1699 return false;
1700
1701 /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1702 * used for lossless compression which requires similar initialisation
1703 * as multi-sample compression.
1704 */
1705 if (is_lossless_compressed) {
1706 /* Hardware sets the auxiliary buffer to all zeroes when it does full
1707 * resolve. Initialize it accordingly in case the first renderer is
1708 * cpu (or other none compression aware party).
1709 *
1710 * This is also explicitly stated in the spec (MCS Buffer for Render
1711 * Target(s)):
1712 * "If Software wants to enable Color Compression without Fast clear,
1713 * Software needs to initialize MCS with zeros."
1714 */
1715 intel_miptree_init_mcs(brw, mt, 0);
1716 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
1717 mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1718 }
1719
1720 return true;
1721 }
1722
1723 /**
1724 * Helper for intel_miptree_alloc_hiz() that sets
1725 * \c mt->level[level].has_hiz. Return true if and only if
1726 * \c has_hiz was set.
1727 */
1728 static bool
1729 intel_miptree_level_enable_hiz(struct brw_context *brw,
1730 struct intel_mipmap_tree *mt,
1731 uint32_t level)
1732 {
1733 assert(mt->hiz_buf);
1734
1735 if (brw->gen >= 8 || brw->is_haswell) {
1736 uint32_t width = minify(mt->physical_width0, level);
1737 uint32_t height = minify(mt->physical_height0, level);
1738
1739 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1740 * and the height is 4 aligned. This allows our HiZ support
1741 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1742 * we can grow the width & height to allow the HiZ op to
1743 * force the proper size alignments.
1744 */
1745 if (level > 0 && ((width & 7) || (height & 3))) {
1746 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1747 return false;
1748 }
1749 }
1750
1751 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1752 mt->level[level].has_hiz = true;
1753 return true;
1754 }
1755
1756
1757 /**
1758 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1759 * buffer dimensions and allocates a bo for the hiz buffer.
1760 */
1761 static struct intel_miptree_hiz_buffer *
1762 intel_gen7_hiz_buf_create(struct brw_context *brw,
1763 struct intel_mipmap_tree *mt)
1764 {
1765 unsigned z_width = mt->logical_width0;
1766 unsigned z_height = mt->logical_height0;
1767 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1768 unsigned hz_width, hz_height;
1769 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1770
1771 if (!buf)
1772 return NULL;
1773
1774 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1775 * adjustments required for Z_Height and Z_Width based on multisampling.
1776 */
1777 switch (mt->num_samples) {
1778 case 0:
1779 case 1:
1780 break;
1781 case 2:
1782 case 4:
1783 z_width *= 2;
1784 z_height *= 2;
1785 break;
1786 case 8:
1787 z_width *= 4;
1788 z_height *= 2;
1789 break;
1790 default:
1791 unreachable("unsupported sample count");
1792 }
1793
1794 const unsigned vertical_align = 8; /* 'j' in the docs */
1795 const unsigned H0 = z_height;
1796 const unsigned h0 = ALIGN(H0, vertical_align);
1797 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1798 const unsigned Z0 = z_depth;
1799
1800 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1801 hz_width = ALIGN(z_width, 16);
1802
1803 if (mt->target == GL_TEXTURE_3D) {
1804 unsigned H_i = H0;
1805 unsigned Z_i = Z0;
1806 hz_height = 0;
1807 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1808 unsigned h_i = ALIGN(H_i, vertical_align);
1809 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1810 hz_height += h_i * Z_i;
1811 H_i = minify(H_i, 1);
1812 Z_i = minify(Z_i, 1);
1813 }
1814 /* HZ_Height =
1815 * (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1816 */
1817 hz_height = DIV_ROUND_UP(hz_height, 2);
1818 } else {
1819 const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1820 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1821 hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1822 }
1823
1824 unsigned long pitch;
1825 uint32_t tiling = I915_TILING_Y;
1826 buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1827 hz_width, hz_height, 1,
1828 &tiling, &pitch,
1829 BO_ALLOC_FOR_RENDER);
1830 if (!buf->aux_base.bo) {
1831 free(buf);
1832 return NULL;
1833 } else if (tiling != I915_TILING_Y) {
1834 drm_intel_bo_unreference(buf->aux_base.bo);
1835 free(buf);
1836 return NULL;
1837 }
1838
1839 buf->aux_base.size = hz_width * hz_height;
1840 buf->aux_base.pitch = pitch;
1841
1842 return buf;
1843 }
1844
1845
1846 /**
1847 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1848 * buffer dimensions and allocates a bo for the hiz buffer.
1849 */
1850 static struct intel_miptree_hiz_buffer *
1851 intel_gen8_hiz_buf_create(struct brw_context *brw,
1852 struct intel_mipmap_tree *mt)
1853 {
1854 unsigned z_width = mt->logical_width0;
1855 unsigned z_height = mt->logical_height0;
1856 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1857 unsigned hz_width, hz_height;
1858 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1859
1860 if (!buf)
1861 return NULL;
1862
1863 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1864 * adjustments required for Z_Height and Z_Width based on multisampling.
1865 */
1866 if (brw->gen < 9) {
1867 switch (mt->num_samples) {
1868 case 0:
1869 case 1:
1870 break;
1871 case 2:
1872 case 4:
1873 z_width *= 2;
1874 z_height *= 2;
1875 break;
1876 case 8:
1877 z_width *= 4;
1878 z_height *= 2;
1879 break;
1880 default:
1881 unreachable("unsupported sample count");
1882 }
1883 }
1884
1885 const unsigned vertical_align = 8; /* 'j' in the docs */
1886 const unsigned H0 = z_height;
1887 const unsigned h0 = ALIGN(H0, vertical_align);
1888 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1889 const unsigned Z0 = z_depth;
1890
1891 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1892 hz_width = ALIGN(z_width, 16);
1893
1894 unsigned H_i = H0;
1895 unsigned Z_i = Z0;
1896 unsigned sum_h_i = 0;
1897 unsigned hz_height_3d_sum = 0;
1898 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1899 unsigned i = level - mt->first_level;
1900 unsigned h_i = ALIGN(H_i, vertical_align);
1901 /* sum(i=2 to m; h_i) */
1902 if (i >= 2) {
1903 sum_h_i += h_i;
1904 }
1905 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1906 hz_height_3d_sum += h_i * Z_i;
1907 H_i = minify(H_i, 1);
1908 Z_i = minify(Z_i, 1);
1909 }
1910 /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1911 buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
1912
1913 if (mt->target == GL_TEXTURE_3D) {
1914 /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1915 hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1916 } else {
1917 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1918 hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
1919 }
1920
1921 unsigned long pitch;
1922 uint32_t tiling = I915_TILING_Y;
1923 buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1924 hz_width, hz_height, 1,
1925 &tiling, &pitch,
1926 BO_ALLOC_FOR_RENDER);
1927 if (!buf->aux_base.bo) {
1928 free(buf);
1929 return NULL;
1930 } else if (tiling != I915_TILING_Y) {
1931 drm_intel_bo_unreference(buf->aux_base.bo);
1932 free(buf);
1933 return NULL;
1934 }
1935
1936 buf->aux_base.size = hz_width * hz_height;
1937 buf->aux_base.pitch = pitch;
1938
1939 return buf;
1940 }
1941
1942
1943 static struct intel_miptree_hiz_buffer *
1944 intel_hiz_miptree_buf_create(struct brw_context *brw,
1945 struct intel_mipmap_tree *mt)
1946 {
1947 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1948 uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1949
1950 if (brw->gen == 6)
1951 layout_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD;
1952
1953 if (!buf)
1954 return NULL;
1955
1956 layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
1957 buf->mt = intel_miptree_create(brw,
1958 mt->target,
1959 mt->format,
1960 mt->first_level,
1961 mt->last_level,
1962 mt->logical_width0,
1963 mt->logical_height0,
1964 mt->logical_depth0,
1965 mt->num_samples,
1966 layout_flags);
1967 if (!buf->mt) {
1968 free(buf);
1969 return NULL;
1970 }
1971
1972 buf->aux_base.bo = buf->mt->bo;
1973 buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
1974 buf->aux_base.pitch = buf->mt->pitch;
1975 buf->aux_base.qpitch = buf->mt->qpitch;
1976
1977 return buf;
1978 }
1979
1980 bool
1981 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1982 struct intel_mipmap_tree *mt)
1983 {
1984 if (!brw->has_hiz)
1985 return false;
1986
1987 if (mt->hiz_buf != NULL)
1988 return false;
1989
1990 if (mt->disable_aux_buffers)
1991 return false;
1992
1993 switch (mt->format) {
1994 case MESA_FORMAT_Z_FLOAT32:
1995 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1996 case MESA_FORMAT_Z24_UNORM_X8_UINT:
1997 case MESA_FORMAT_Z24_UNORM_S8_UINT:
1998 case MESA_FORMAT_Z_UNORM16:
1999 return true;
2000 default:
2001 return false;
2002 }
2003 }
2004
2005 bool
2006 intel_miptree_alloc_hiz(struct brw_context *brw,
2007 struct intel_mipmap_tree *mt)
2008 {
2009 assert(mt->hiz_buf == NULL);
2010 assert(!mt->disable_aux_buffers);
2011
2012 if (brw->gen == 7) {
2013 mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
2014 } else if (brw->gen >= 8) {
2015 mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
2016 } else {
2017 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
2018 }
2019
2020 if (!mt->hiz_buf)
2021 return false;
2022
2023 /* Mark that all slices need a HiZ resolve. */
2024 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
2025 if (!intel_miptree_level_enable_hiz(brw, mt, level))
2026 continue;
2027
2028 for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
2029 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
2030 exec_node_init(&m->link);
2031 m->level = level;
2032 m->layer = layer;
2033 m->need = BLORP_HIZ_OP_HIZ_RESOLVE;
2034
2035 exec_list_push_tail(&mt->hiz_map, &m->link);
2036 }
2037 }
2038
2039 return true;
2040 }
2041
2042 /**
2043 * Can the miptree sample using the hiz buffer?
2044 */
2045 bool
2046 intel_miptree_sample_with_hiz(struct brw_context *brw,
2047 struct intel_mipmap_tree *mt)
2048 {
2049 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
2050 * so keep things conservative for now and never enable it unless we're SKL+.
2051 */
2052 if (brw->gen < 9) {
2053 return false;
2054 }
2055
2056 if (!mt->hiz_buf) {
2057 return false;
2058 }
2059
2060 /* It seems the hardware won't fallback to the depth buffer if some of the
2061 * mipmap levels aren't available in the HiZ buffer. So we need all levels
2062 * of the texture to be HiZ enabled.
2063 */
2064 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
2065 if (!intel_miptree_level_has_hiz(mt, level))
2066 return false;
2067 }
2068
2069 /* If compressed multisampling is enabled, then we use it for the auxiliary
2070 * buffer instead.
2071 *
2072 * From the BDW PRM (Volume 2d: Command Reference: Structures
2073 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
2074 *
2075 * "If this field is set to AUX_HIZ, Number of Multisamples must be
2076 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
2077 *
2078 * There is no such blurb for 1D textures, but there is sufficient evidence
2079 * that this is broken on SKL+.
2080 */
2081 return (mt->num_samples <= 1 &&
2082 mt->target != GL_TEXTURE_3D &&
2083 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
2084 }
2085
2086 /**
2087 * Does the miptree slice have hiz enabled?
2088 */
2089 bool
2090 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
2091 {
2092 intel_miptree_check_level_layer(mt, level, 0);
2093 return mt->level[level].has_hiz;
2094 }
2095
2096 void
2097 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
2098 uint32_t level,
2099 uint32_t layer)
2100 {
2101 if (!intel_miptree_level_has_hiz(mt, level))
2102 return;
2103
2104 intel_resolve_map_set(&mt->hiz_map,
2105 level, layer, BLORP_HIZ_OP_HIZ_RESOLVE);
2106 }
2107
2108
2109 void
2110 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
2111 uint32_t level,
2112 uint32_t layer)
2113 {
2114 if (!intel_miptree_level_has_hiz(mt, level))
2115 return;
2116
2117 intel_resolve_map_set(&mt->hiz_map,
2118 level, layer, BLORP_HIZ_OP_DEPTH_RESOLVE);
2119 }
2120
2121 void
2122 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
2123 uint32_t level)
2124 {
2125 uint32_t layer;
2126 uint32_t end_layer = mt->level[level].depth;
2127
2128 for (layer = 0; layer < end_layer; layer++) {
2129 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
2130 }
2131 }
2132
2133 static bool
2134 intel_miptree_slice_resolve(struct brw_context *brw,
2135 struct intel_mipmap_tree *mt,
2136 uint32_t level,
2137 uint32_t layer,
2138 enum blorp_hiz_op need)
2139 {
2140 intel_miptree_check_level_layer(mt, level, layer);
2141
2142 struct intel_resolve_map *item =
2143 intel_resolve_map_get(&mt->hiz_map, level, layer);
2144
2145 if (!item || item->need != need)
2146 return false;
2147
2148 intel_hiz_exec(brw, mt, level, layer, need);
2149 intel_resolve_map_remove(item);
2150 return true;
2151 }
2152
2153 bool
2154 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
2155 struct intel_mipmap_tree *mt,
2156 uint32_t level,
2157 uint32_t layer)
2158 {
2159 return intel_miptree_slice_resolve(brw, mt, level, layer,
2160 BLORP_HIZ_OP_HIZ_RESOLVE);
2161 }
2162
2163 bool
2164 intel_miptree_slice_resolve_depth(struct brw_context *brw,
2165 struct intel_mipmap_tree *mt,
2166 uint32_t level,
2167 uint32_t layer)
2168 {
2169 return intel_miptree_slice_resolve(brw, mt, level, layer,
2170 BLORP_HIZ_OP_DEPTH_RESOLVE);
2171 }
2172
2173 static bool
2174 intel_miptree_all_slices_resolve(struct brw_context *brw,
2175 struct intel_mipmap_tree *mt,
2176 enum blorp_hiz_op need)
2177 {
2178 bool did_resolve = false;
2179
2180 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
2181 if (map->need != need)
2182 continue;
2183
2184 intel_hiz_exec(brw, mt, map->level, map->layer, need);
2185 intel_resolve_map_remove(map);
2186 did_resolve = true;
2187 }
2188
2189 return did_resolve;
2190 }
2191
2192 bool
2193 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
2194 struct intel_mipmap_tree *mt)
2195 {
2196 return intel_miptree_all_slices_resolve(brw, mt,
2197 BLORP_HIZ_OP_HIZ_RESOLVE);
2198 }
2199
2200 bool
2201 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
2202 struct intel_mipmap_tree *mt)
2203 {
2204 return intel_miptree_all_slices_resolve(brw, mt,
2205 BLORP_HIZ_OP_DEPTH_RESOLVE);
2206 }
2207
2208 static void
2209 intel_miptree_check_color_resolve(const struct intel_mipmap_tree *mt,
2210 unsigned level, unsigned layer)
2211 {
2212 if (mt->no_ccs || !mt->mcs_buf)
2213 return;
2214
2215 /* Fast color clear is not supported for mipmapped surfaces. */
2216 assert(level == 0 && mt->first_level == 0 && mt->last_level == 0);
2217
2218 /* Compression of arrayed msaa surfaces is supported. */
2219 if (mt->num_samples > 1)
2220 return;
2221
2222 /* Fast color clear is not supported for non-msaa arrays. */
2223 assert(layer == 0 && mt->logical_depth0 == 1);
2224
2225 (void)level;
2226 (void)layer;
2227 }
2228
2229 bool
2230 intel_miptree_resolve_color(struct brw_context *brw,
2231 struct intel_mipmap_tree *mt, unsigned level,
2232 unsigned start_layer, unsigned num_layers,
2233 int flags)
2234 {
2235 intel_miptree_check_color_resolve(mt, level, start_layer);
2236
2237 /* From gen9 onwards there is new compression scheme for single sampled
2238 * surfaces called "lossless compressed". These don't need to be always
2239 * resolved.
2240 */
2241 if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) &&
2242 intel_miptree_is_lossless_compressed(brw, mt))
2243 return false;
2244
2245 switch (mt->fast_clear_state) {
2246 case INTEL_FAST_CLEAR_STATE_RESOLVED:
2247 /* No resolve needed */
2248 return false;
2249 case INTEL_FAST_CLEAR_STATE_UNRESOLVED:
2250 case INTEL_FAST_CLEAR_STATE_CLEAR:
2251 /* For now arrayed fast clear is not supported. */
2252 assert(num_layers == 1);
2253
2254 /* Fast color clear resolves only make sense for non-MSAA buffers. */
2255 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE ||
2256 intel_miptree_is_lossless_compressed(brw, mt)) {
2257 brw_blorp_resolve_color(brw, mt, level, start_layer);
2258 return true;
2259 } else {
2260 return false;
2261 }
2262 default:
2263 unreachable("Invalid fast clear state");
2264 }
2265 }
2266
2267 void
2268 intel_miptree_all_slices_resolve_color(struct brw_context *brw,
2269 struct intel_mipmap_tree *mt,
2270 int flags)
2271 {
2272 intel_miptree_resolve_color(brw, mt, 0, 0, 1, flags);
2273 }
2274
2275 /**
2276 * Make it possible to share the BO backing the given miptree with another
2277 * process or another miptree.
2278 *
2279 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2280 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2281 * ensure that no MCS buffer gets allocated in the future.
2282 */
2283 void
2284 intel_miptree_make_shareable(struct brw_context *brw,
2285 struct intel_mipmap_tree *mt)
2286 {
2287 /* MCS buffers are also used for multisample buffers, but we can't resolve
2288 * away a multisample MCS buffer because it's an integral part of how the
2289 * pixel data is stored. Fortunately this code path should never be
2290 * reached for multisample buffers.
2291 */
2292 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE);
2293
2294 if (mt->mcs_buf) {
2295 intel_miptree_all_slices_resolve_color(brw, mt, 0);
2296 mt->no_ccs = true;
2297 }
2298 }
2299
2300
2301 /**
2302 * \brief Get pointer offset into stencil buffer.
2303 *
2304 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2305 * must decode the tile's layout in software.
2306 *
2307 * See
2308 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2309 * Format.
2310 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2311 *
2312 * Even though the returned offset is always positive, the return type is
2313 * signed due to
2314 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2315 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2316 */
2317 static intptr_t
2318 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2319 {
2320 uint32_t tile_size = 4096;
2321 uint32_t tile_width = 64;
2322 uint32_t tile_height = 64;
2323 uint32_t row_size = 64 * stride;
2324
2325 uint32_t tile_x = x / tile_width;
2326 uint32_t tile_y = y / tile_height;
2327
2328 /* The byte's address relative to the tile's base addres. */
2329 uint32_t byte_x = x % tile_width;
2330 uint32_t byte_y = y % tile_height;
2331
2332 uintptr_t u = tile_y * row_size
2333 + tile_x * tile_size
2334 + 512 * (byte_x / 8)
2335 + 64 * (byte_y / 8)
2336 + 32 * ((byte_y / 4) % 2)
2337 + 16 * ((byte_x / 4) % 2)
2338 + 8 * ((byte_y / 2) % 2)
2339 + 4 * ((byte_x / 2) % 2)
2340 + 2 * (byte_y % 2)
2341 + 1 * (byte_x % 2);
2342
2343 if (swizzled) {
2344 /* adjust for bit6 swizzling */
2345 if (((byte_x / 8) % 2) == 1) {
2346 if (((byte_y / 8) % 2) == 0) {
2347 u += 64;
2348 } else {
2349 u -= 64;
2350 }
2351 }
2352 }
2353
2354 return u;
2355 }
2356
2357 void
2358 intel_miptree_updownsample(struct brw_context *brw,
2359 struct intel_mipmap_tree *src,
2360 struct intel_mipmap_tree *dst)
2361 {
2362 brw_blorp_blit_miptrees(brw,
2363 src, 0 /* level */, 0 /* layer */,
2364 src->format, SWIZZLE_XYZW,
2365 dst, 0 /* level */, 0 /* layer */, dst->format,
2366 0, 0,
2367 src->logical_width0, src->logical_height0,
2368 0, 0,
2369 dst->logical_width0, dst->logical_height0,
2370 GL_NEAREST, false, false /*mirror x, y*/,
2371 false, false);
2372
2373 if (src->stencil_mt) {
2374 brw_blorp_blit_miptrees(brw,
2375 src->stencil_mt, 0 /* level */, 0 /* layer */,
2376 src->stencil_mt->format, SWIZZLE_XYZW,
2377 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2378 dst->stencil_mt->format,
2379 0, 0,
2380 src->logical_width0, src->logical_height0,
2381 0, 0,
2382 dst->logical_width0, dst->logical_height0,
2383 GL_NEAREST, false, false /*mirror x, y*/,
2384 false, false /* decode/encode srgb */);
2385 }
2386 }
2387
2388 void
2389 intel_update_r8stencil(struct brw_context *brw,
2390 struct intel_mipmap_tree *mt)
2391 {
2392 assert(brw->gen >= 7);
2393 struct intel_mipmap_tree *src =
2394 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2395 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2396 return;
2397
2398 if (!mt->r8stencil_mt) {
2399 const uint32_t r8stencil_flags =
2400 MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2401 MIPTREE_LAYOUT_DISABLE_AUX;
2402 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD */
2403 mt->r8stencil_mt = intel_miptree_create(brw,
2404 src->target,
2405 MESA_FORMAT_R_UINT8,
2406 src->first_level,
2407 src->last_level,
2408 src->logical_width0,
2409 src->logical_height0,
2410 src->logical_depth0,
2411 src->num_samples,
2412 r8stencil_flags);
2413 assert(mt->r8stencil_mt);
2414 }
2415
2416 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2417
2418 for (int level = src->first_level; level <= src->last_level; level++) {
2419 const unsigned depth = src->level[level].depth;
2420 const int layers_per_blit =
2421 (dst->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
2422 dst->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
2423 dst->num_samples : 1;
2424
2425 for (unsigned layer = 0; layer < depth; layer++) {
2426 brw_blorp_blit_miptrees(brw,
2427 src, level, layer,
2428 src->format, SWIZZLE_X,
2429 dst, level, layers_per_blit * layer,
2430 MESA_FORMAT_R_UNORM8,
2431 0, 0,
2432 minify(src->logical_width0, level),
2433 minify(src->logical_height0, level),
2434 0, 0,
2435 minify(dst->logical_width0, level),
2436 minify(dst->logical_height0, level),
2437 GL_NEAREST, false, false /*mirror x, y*/,
2438 false, false /* decode/encode srgb */);
2439 }
2440 }
2441
2442 brw_render_cache_set_check_flush(brw, dst->bo);
2443 src->r8stencil_needs_update = false;
2444 }
2445
2446 static void *
2447 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
2448 {
2449 /* CPU accesses to color buffers don't understand fast color clears, so
2450 * resolve any pending fast color clears before we map.
2451 */
2452 intel_miptree_all_slices_resolve_color(brw, mt, 0);
2453
2454 drm_intel_bo *bo = mt->bo;
2455
2456 if (drm_intel_bo_references(brw->batch.bo, bo))
2457 intel_batchbuffer_flush(brw);
2458
2459 if (mt->tiling != I915_TILING_NONE)
2460 brw_bo_map_gtt(brw, bo, "miptree");
2461 else
2462 brw_bo_map(brw, bo, true, "miptree");
2463
2464 return bo->virtual;
2465 }
2466
2467 static void
2468 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2469 {
2470 drm_intel_bo_unmap(mt->bo);
2471 }
2472
2473 static void
2474 intel_miptree_map_gtt(struct brw_context *brw,
2475 struct intel_mipmap_tree *mt,
2476 struct intel_miptree_map *map,
2477 unsigned int level, unsigned int slice)
2478 {
2479 unsigned int bw, bh;
2480 void *base;
2481 unsigned int image_x, image_y;
2482 intptr_t x = map->x;
2483 intptr_t y = map->y;
2484
2485 /* For compressed formats, the stride is the number of bytes per
2486 * row of blocks. intel_miptree_get_image_offset() already does
2487 * the divide.
2488 */
2489 _mesa_get_format_block_size(mt->format, &bw, &bh);
2490 assert(y % bh == 0);
2491 assert(x % bw == 0);
2492 y /= bh;
2493 x /= bw;
2494
2495 base = intel_miptree_map_raw(brw, mt) + mt->offset;
2496
2497 if (base == NULL)
2498 map->ptr = NULL;
2499 else {
2500 /* Note that in the case of cube maps, the caller must have passed the
2501 * slice number referencing the face.
2502 */
2503 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2504 x += image_x;
2505 y += image_y;
2506
2507 map->stride = mt->pitch;
2508 map->ptr = base + y * map->stride + x * mt->cpp;
2509 }
2510
2511 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2512 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2513 map->x, map->y, map->w, map->h,
2514 mt, _mesa_get_format_name(mt->format),
2515 x, y, map->ptr, map->stride);
2516 }
2517
2518 static void
2519 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2520 {
2521 intel_miptree_unmap_raw(mt);
2522 }
2523
2524 static void
2525 intel_miptree_map_blit(struct brw_context *brw,
2526 struct intel_mipmap_tree *mt,
2527 struct intel_miptree_map *map,
2528 unsigned int level, unsigned int slice)
2529 {
2530 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2531 /* first_level */ 0,
2532 /* last_level */ 0,
2533 map->w, map->h, 1,
2534 /* samples */ 0,
2535 MIPTREE_LAYOUT_TILING_NONE);
2536
2537 if (!map->linear_mt) {
2538 fprintf(stderr, "Failed to allocate blit temporary\n");
2539 goto fail;
2540 }
2541 map->stride = map->linear_mt->pitch;
2542
2543 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2544 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2545 * invalidate is set, since we'll be writing the whole rectangle from our
2546 * temporary buffer back out.
2547 */
2548 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2549 if (!intel_miptree_blit(brw,
2550 mt, level, slice,
2551 map->x, map->y, false,
2552 map->linear_mt, 0, 0,
2553 0, 0, false,
2554 map->w, map->h, GL_COPY)) {
2555 fprintf(stderr, "Failed to blit\n");
2556 goto fail;
2557 }
2558 }
2559
2560 map->ptr = intel_miptree_map_raw(brw, map->linear_mt);
2561
2562 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2563 map->x, map->y, map->w, map->h,
2564 mt, _mesa_get_format_name(mt->format),
2565 level, slice, map->ptr, map->stride);
2566
2567 return;
2568
2569 fail:
2570 intel_miptree_release(&map->linear_mt);
2571 map->ptr = NULL;
2572 map->stride = 0;
2573 }
2574
2575 static void
2576 intel_miptree_unmap_blit(struct brw_context *brw,
2577 struct intel_mipmap_tree *mt,
2578 struct intel_miptree_map *map,
2579 unsigned int level,
2580 unsigned int slice)
2581 {
2582 struct gl_context *ctx = &brw->ctx;
2583
2584 intel_miptree_unmap_raw(map->linear_mt);
2585
2586 if (map->mode & GL_MAP_WRITE_BIT) {
2587 bool ok = intel_miptree_blit(brw,
2588 map->linear_mt, 0, 0,
2589 0, 0, false,
2590 mt, level, slice,
2591 map->x, map->y, false,
2592 map->w, map->h, GL_COPY);
2593 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2594 }
2595
2596 intel_miptree_release(&map->linear_mt);
2597 }
2598
2599 /**
2600 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2601 */
2602 #if defined(USE_SSE41)
2603 static void
2604 intel_miptree_map_movntdqa(struct brw_context *brw,
2605 struct intel_mipmap_tree *mt,
2606 struct intel_miptree_map *map,
2607 unsigned int level, unsigned int slice)
2608 {
2609 assert(map->mode & GL_MAP_READ_BIT);
2610 assert(!(map->mode & GL_MAP_WRITE_BIT));
2611
2612 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2613 map->x, map->y, map->w, map->h,
2614 mt, _mesa_get_format_name(mt->format),
2615 level, slice, map->ptr, map->stride);
2616
2617 /* Map the original image */
2618 uint32_t image_x;
2619 uint32_t image_y;
2620 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2621 image_x += map->x;
2622 image_y += map->y;
2623
2624 void *src = intel_miptree_map_raw(brw, mt);
2625 if (!src)
2626 return;
2627
2628 src += mt->offset;
2629
2630 src += image_y * mt->pitch;
2631 src += image_x * mt->cpp;
2632
2633 /* Due to the pixel offsets for the particular image being mapped, our
2634 * src pointer may not be 16-byte aligned. However, if the pitch is
2635 * divisible by 16, then the amount by which it's misaligned will remain
2636 * consistent from row to row.
2637 */
2638 assert((mt->pitch % 16) == 0);
2639 const int misalignment = ((uintptr_t) src) & 15;
2640
2641 /* Create an untiled temporary buffer for the mapping. */
2642 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2643
2644 map->stride = ALIGN(misalignment + width_bytes, 16);
2645
2646 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2647 /* Offset the destination so it has the same misalignment as src. */
2648 map->ptr = map->buffer + misalignment;
2649
2650 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2651
2652 for (uint32_t y = 0; y < map->h; y++) {
2653 void *dst_ptr = map->ptr + y * map->stride;
2654 void *src_ptr = src + y * mt->pitch;
2655
2656 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2657 }
2658
2659 intel_miptree_unmap_raw(mt);
2660 }
2661
2662 static void
2663 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2664 struct intel_mipmap_tree *mt,
2665 struct intel_miptree_map *map,
2666 unsigned int level,
2667 unsigned int slice)
2668 {
2669 _mesa_align_free(map->buffer);
2670 map->buffer = NULL;
2671 map->ptr = NULL;
2672 }
2673 #endif
2674
2675 static void
2676 intel_miptree_map_s8(struct brw_context *brw,
2677 struct intel_mipmap_tree *mt,
2678 struct intel_miptree_map *map,
2679 unsigned int level, unsigned int slice)
2680 {
2681 map->stride = map->w;
2682 map->buffer = map->ptr = malloc(map->stride * map->h);
2683 if (!map->buffer)
2684 return;
2685
2686 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2687 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2688 * invalidate is set, since we'll be writing the whole rectangle from our
2689 * temporary buffer back out.
2690 */
2691 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2692 uint8_t *untiled_s8_map = map->ptr;
2693 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2694 unsigned int image_x, image_y;
2695
2696 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2697
2698 for (uint32_t y = 0; y < map->h; y++) {
2699 for (uint32_t x = 0; x < map->w; x++) {
2700 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2701 x + image_x + map->x,
2702 y + image_y + map->y,
2703 brw->has_swizzling);
2704 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2705 }
2706 }
2707
2708 intel_miptree_unmap_raw(mt);
2709
2710 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2711 map->x, map->y, map->w, map->h,
2712 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2713 } else {
2714 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2715 map->x, map->y, map->w, map->h,
2716 mt, map->ptr, map->stride);
2717 }
2718 }
2719
2720 static void
2721 intel_miptree_unmap_s8(struct brw_context *brw,
2722 struct intel_mipmap_tree *mt,
2723 struct intel_miptree_map *map,
2724 unsigned int level,
2725 unsigned int slice)
2726 {
2727 if (map->mode & GL_MAP_WRITE_BIT) {
2728 unsigned int image_x, image_y;
2729 uint8_t *untiled_s8_map = map->ptr;
2730 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2731
2732 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2733
2734 for (uint32_t y = 0; y < map->h; y++) {
2735 for (uint32_t x = 0; x < map->w; x++) {
2736 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2737 image_x + x + map->x,
2738 image_y + y + map->y,
2739 brw->has_swizzling);
2740 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2741 }
2742 }
2743
2744 intel_miptree_unmap_raw(mt);
2745 }
2746
2747 free(map->buffer);
2748 }
2749
2750 static void
2751 intel_miptree_map_etc(struct brw_context *brw,
2752 struct intel_mipmap_tree *mt,
2753 struct intel_miptree_map *map,
2754 unsigned int level,
2755 unsigned int slice)
2756 {
2757 assert(mt->etc_format != MESA_FORMAT_NONE);
2758 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2759 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2760 }
2761
2762 assert(map->mode & GL_MAP_WRITE_BIT);
2763 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2764
2765 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2766 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2767 map->w, map->h, 1));
2768 map->ptr = map->buffer;
2769 }
2770
2771 static void
2772 intel_miptree_unmap_etc(struct brw_context *brw,
2773 struct intel_mipmap_tree *mt,
2774 struct intel_miptree_map *map,
2775 unsigned int level,
2776 unsigned int slice)
2777 {
2778 uint32_t image_x;
2779 uint32_t image_y;
2780 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2781
2782 image_x += map->x;
2783 image_y += map->y;
2784
2785 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2786 + image_y * mt->pitch
2787 + image_x * mt->cpp;
2788
2789 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2790 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2791 map->ptr, map->stride,
2792 map->w, map->h);
2793 else
2794 _mesa_unpack_etc2_format(dst, mt->pitch,
2795 map->ptr, map->stride,
2796 map->w, map->h, mt->etc_format);
2797
2798 intel_miptree_unmap_raw(mt);
2799 free(map->buffer);
2800 }
2801
2802 /**
2803 * Mapping function for packed depth/stencil miptrees backed by real separate
2804 * miptrees for depth and stencil.
2805 *
2806 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2807 * separate from the depth buffer. Yet at the GL API level, we have to expose
2808 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2809 * be able to map that memory for texture storage and glReadPixels-type
2810 * operations. We give Mesa core that access by mallocing a temporary and
2811 * copying the data between the actual backing store and the temporary.
2812 */
2813 static void
2814 intel_miptree_map_depthstencil(struct brw_context *brw,
2815 struct intel_mipmap_tree *mt,
2816 struct intel_miptree_map *map,
2817 unsigned int level, unsigned int slice)
2818 {
2819 struct intel_mipmap_tree *z_mt = mt;
2820 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2821 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2822 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2823
2824 map->stride = map->w * packed_bpp;
2825 map->buffer = map->ptr = malloc(map->stride * map->h);
2826 if (!map->buffer)
2827 return;
2828
2829 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2830 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2831 * invalidate is set, since we'll be writing the whole rectangle from our
2832 * temporary buffer back out.
2833 */
2834 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2835 uint32_t *packed_map = map->ptr;
2836 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2837 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2838 unsigned int s_image_x, s_image_y;
2839 unsigned int z_image_x, z_image_y;
2840
2841 intel_miptree_get_image_offset(s_mt, level, slice,
2842 &s_image_x, &s_image_y);
2843 intel_miptree_get_image_offset(z_mt, level, slice,
2844 &z_image_x, &z_image_y);
2845
2846 for (uint32_t y = 0; y < map->h; y++) {
2847 for (uint32_t x = 0; x < map->w; x++) {
2848 int map_x = map->x + x, map_y = map->y + y;
2849 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2850 map_x + s_image_x,
2851 map_y + s_image_y,
2852 brw->has_swizzling);
2853 ptrdiff_t z_offset = ((map_y + z_image_y) *
2854 (z_mt->pitch / 4) +
2855 (map_x + z_image_x));
2856 uint8_t s = s_map[s_offset];
2857 uint32_t z = z_map[z_offset];
2858
2859 if (map_z32f_x24s8) {
2860 packed_map[(y * map->w + x) * 2 + 0] = z;
2861 packed_map[(y * map->w + x) * 2 + 1] = s;
2862 } else {
2863 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2864 }
2865 }
2866 }
2867
2868 intel_miptree_unmap_raw(s_mt);
2869 intel_miptree_unmap_raw(z_mt);
2870
2871 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2872 __func__,
2873 map->x, map->y, map->w, map->h,
2874 z_mt, map->x + z_image_x, map->y + z_image_y,
2875 s_mt, map->x + s_image_x, map->y + s_image_y,
2876 map->ptr, map->stride);
2877 } else {
2878 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2879 map->x, map->y, map->w, map->h,
2880 mt, map->ptr, map->stride);
2881 }
2882 }
2883
2884 static void
2885 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2886 struct intel_mipmap_tree *mt,
2887 struct intel_miptree_map *map,
2888 unsigned int level,
2889 unsigned int slice)
2890 {
2891 struct intel_mipmap_tree *z_mt = mt;
2892 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2893 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2894
2895 if (map->mode & GL_MAP_WRITE_BIT) {
2896 uint32_t *packed_map = map->ptr;
2897 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2898 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2899 unsigned int s_image_x, s_image_y;
2900 unsigned int z_image_x, z_image_y;
2901
2902 intel_miptree_get_image_offset(s_mt, level, slice,
2903 &s_image_x, &s_image_y);
2904 intel_miptree_get_image_offset(z_mt, level, slice,
2905 &z_image_x, &z_image_y);
2906
2907 for (uint32_t y = 0; y < map->h; y++) {
2908 for (uint32_t x = 0; x < map->w; x++) {
2909 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2910 x + s_image_x + map->x,
2911 y + s_image_y + map->y,
2912 brw->has_swizzling);
2913 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2914 (z_mt->pitch / 4) +
2915 (x + z_image_x + map->x));
2916
2917 if (map_z32f_x24s8) {
2918 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2919 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2920 } else {
2921 uint32_t packed = packed_map[y * map->w + x];
2922 s_map[s_offset] = packed >> 24;
2923 z_map[z_offset] = packed;
2924 }
2925 }
2926 }
2927
2928 intel_miptree_unmap_raw(s_mt);
2929 intel_miptree_unmap_raw(z_mt);
2930
2931 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2932 __func__,
2933 map->x, map->y, map->w, map->h,
2934 z_mt, _mesa_get_format_name(z_mt->format),
2935 map->x + z_image_x, map->y + z_image_y,
2936 s_mt, map->x + s_image_x, map->y + s_image_y,
2937 map->ptr, map->stride);
2938 }
2939
2940 free(map->buffer);
2941 }
2942
2943 /**
2944 * Create and attach a map to the miptree at (level, slice). Return the
2945 * attached map.
2946 */
2947 static struct intel_miptree_map*
2948 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2949 unsigned int level,
2950 unsigned int slice,
2951 unsigned int x,
2952 unsigned int y,
2953 unsigned int w,
2954 unsigned int h,
2955 GLbitfield mode)
2956 {
2957 struct intel_miptree_map *map = calloc(1, sizeof(*map));
2958
2959 if (!map)
2960 return NULL;
2961
2962 assert(mt->level[level].slice[slice].map == NULL);
2963 mt->level[level].slice[slice].map = map;
2964
2965 map->mode = mode;
2966 map->x = x;
2967 map->y = y;
2968 map->w = w;
2969 map->h = h;
2970
2971 return map;
2972 }
2973
2974 /**
2975 * Release the map at (level, slice).
2976 */
2977 static void
2978 intel_miptree_release_map(struct intel_mipmap_tree *mt,
2979 unsigned int level,
2980 unsigned int slice)
2981 {
2982 struct intel_miptree_map **map;
2983
2984 map = &mt->level[level].slice[slice].map;
2985 free(*map);
2986 *map = NULL;
2987 }
2988
2989 static bool
2990 can_blit_slice(struct intel_mipmap_tree *mt,
2991 unsigned int level, unsigned int slice)
2992 {
2993 /* See intel_miptree_blit() for details on the 32k pitch limit. */
2994 if (mt->pitch >= 32768)
2995 return false;
2996
2997 return true;
2998 }
2999
3000 static bool
3001 use_intel_mipree_map_blit(struct brw_context *brw,
3002 struct intel_mipmap_tree *mt,
3003 GLbitfield mode,
3004 unsigned int level,
3005 unsigned int slice)
3006 {
3007 if (brw->has_llc &&
3008 /* It's probably not worth swapping to the blit ring because of
3009 * all the overhead involved. But, we must use blitter for the
3010 * surfaces with INTEL_MIPTREE_TRMODE_{YF,YS}.
3011 */
3012 (!(mode & GL_MAP_WRITE_BIT) ||
3013 mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) &&
3014 !mt->compressed &&
3015 (mt->tiling == I915_TILING_X ||
3016 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3017 (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3018 /* Fast copy blit on skl+ supports all tiling formats. */
3019 brw->gen >= 9) &&
3020 can_blit_slice(mt, level, slice))
3021 return true;
3022
3023 if (mt->tiling != I915_TILING_NONE &&
3024 mt->bo->size >= brw->max_gtt_map_object_size) {
3025 assert(can_blit_slice(mt, level, slice));
3026 return true;
3027 }
3028
3029 return false;
3030 }
3031
3032 /**
3033 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3034 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3035 * arithmetic overflow.
3036 *
3037 * If you call this function and use \a out_stride, then you're doing pointer
3038 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3039 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3040 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3041 * which usually have type uint32_t or GLuint.
3042 */
3043 void
3044 intel_miptree_map(struct brw_context *brw,
3045 struct intel_mipmap_tree *mt,
3046 unsigned int level,
3047 unsigned int slice,
3048 unsigned int x,
3049 unsigned int y,
3050 unsigned int w,
3051 unsigned int h,
3052 GLbitfield mode,
3053 void **out_ptr,
3054 ptrdiff_t *out_stride)
3055 {
3056 struct intel_miptree_map *map;
3057
3058 assert(mt->num_samples <= 1);
3059
3060 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3061 if (!map){
3062 *out_ptr = NULL;
3063 *out_stride = 0;
3064 return;
3065 }
3066
3067 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
3068 if (map->mode & GL_MAP_WRITE_BIT) {
3069 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
3070 }
3071
3072 if (mt->format == MESA_FORMAT_S_UINT8) {
3073 intel_miptree_map_s8(brw, mt, map, level, slice);
3074 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3075 !(mode & BRW_MAP_DIRECT_BIT)) {
3076 intel_miptree_map_etc(brw, mt, map, level, slice);
3077 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3078 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3079 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3080 intel_miptree_map_blit(brw, mt, map, level, slice);
3081 #if defined(USE_SSE41)
3082 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3083 !mt->compressed && cpu_has_sse4_1 &&
3084 (mt->pitch % 16 == 0)) {
3085 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3086 #endif
3087 } else {
3088 /* intel_miptree_map_gtt() doesn't support surfaces with Yf/Ys tiling. */
3089 assert(mt->tr_mode == INTEL_MIPTREE_TRMODE_NONE);
3090 intel_miptree_map_gtt(brw, mt, map, level, slice);
3091 }
3092
3093 *out_ptr = map->ptr;
3094 *out_stride = map->stride;
3095
3096 if (map->ptr == NULL)
3097 intel_miptree_release_map(mt, level, slice);
3098 }
3099
3100 void
3101 intel_miptree_unmap(struct brw_context *brw,
3102 struct intel_mipmap_tree *mt,
3103 unsigned int level,
3104 unsigned int slice)
3105 {
3106 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3107
3108 assert(mt->num_samples <= 1);
3109
3110 if (!map)
3111 return;
3112
3113 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3114 mt, _mesa_get_format_name(mt->format), level, slice);
3115
3116 if (mt->format == MESA_FORMAT_S_UINT8) {
3117 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3118 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3119 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3120 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3121 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3122 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3123 } else if (map->linear_mt) {
3124 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3125 #if defined(USE_SSE41)
3126 } else if (map->buffer && cpu_has_sse4_1) {
3127 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3128 #endif
3129 } else {
3130 intel_miptree_unmap_gtt(mt);
3131 }
3132
3133 intel_miptree_release_map(mt, level, slice);
3134 }
3135
3136 enum isl_surf_dim
3137 get_isl_surf_dim(GLenum target)
3138 {
3139 switch (target) {
3140 case GL_TEXTURE_1D:
3141 case GL_TEXTURE_1D_ARRAY:
3142 return ISL_SURF_DIM_1D;
3143
3144 case GL_TEXTURE_2D:
3145 case GL_TEXTURE_2D_ARRAY:
3146 case GL_TEXTURE_RECTANGLE:
3147 case GL_TEXTURE_CUBE_MAP:
3148 case GL_TEXTURE_CUBE_MAP_ARRAY:
3149 case GL_TEXTURE_2D_MULTISAMPLE:
3150 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3151 case GL_TEXTURE_EXTERNAL_OES:
3152 return ISL_SURF_DIM_2D;
3153
3154 case GL_TEXTURE_3D:
3155 return ISL_SURF_DIM_3D;
3156 }
3157
3158 unreachable("Invalid texture target");
3159 }
3160
3161 enum isl_dim_layout
3162 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3163 GLenum target)
3164 {
3165 switch (target) {
3166 case GL_TEXTURE_1D:
3167 case GL_TEXTURE_1D_ARRAY:
3168 return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3169 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3170
3171 case GL_TEXTURE_2D:
3172 case GL_TEXTURE_2D_ARRAY:
3173 case GL_TEXTURE_RECTANGLE:
3174 case GL_TEXTURE_2D_MULTISAMPLE:
3175 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3176 case GL_TEXTURE_EXTERNAL_OES:
3177 return ISL_DIM_LAYOUT_GEN4_2D;
3178
3179 case GL_TEXTURE_CUBE_MAP:
3180 case GL_TEXTURE_CUBE_MAP_ARRAY:
3181 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3182 ISL_DIM_LAYOUT_GEN4_2D);
3183
3184 case GL_TEXTURE_3D:
3185 return (devinfo->gen >= 9 ?
3186 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3187 }
3188
3189 unreachable("Invalid texture target");
3190 }
3191
3192 enum isl_tiling
3193 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3194 {
3195 if (mt->format == MESA_FORMAT_S_UINT8) {
3196 return ISL_TILING_W;
3197 } else {
3198 switch (mt->tiling) {
3199 case I915_TILING_NONE:
3200 return ISL_TILING_LINEAR;
3201 case I915_TILING_X:
3202 return ISL_TILING_X;
3203 case I915_TILING_Y:
3204 switch (mt->tr_mode) {
3205 case INTEL_MIPTREE_TRMODE_NONE:
3206 return ISL_TILING_Y0;
3207 case INTEL_MIPTREE_TRMODE_YF:
3208 return ISL_TILING_Yf;
3209 case INTEL_MIPTREE_TRMODE_YS:
3210 return ISL_TILING_Ys;
3211 default:
3212 unreachable("Invalid tiled resource mode");
3213 }
3214 default:
3215 unreachable("Invalid tiling mode");
3216 }
3217 }
3218 }
3219
3220 void
3221 intel_miptree_get_isl_surf(struct brw_context *brw,
3222 const struct intel_mipmap_tree *mt,
3223 struct isl_surf *surf)
3224 {
3225 surf->dim = get_isl_surf_dim(mt->target);
3226 surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3227 mt->tiling, mt->target);
3228
3229 if (mt->num_samples > 1) {
3230 switch (mt->msaa_layout) {
3231 case INTEL_MSAA_LAYOUT_IMS:
3232 surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3233 break;
3234 case INTEL_MSAA_LAYOUT_UMS:
3235 case INTEL_MSAA_LAYOUT_CMS:
3236 surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3237 break;
3238 default:
3239 unreachable("Invalid MSAA layout");
3240 }
3241 } else {
3242 surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3243 }
3244
3245 surf->tiling = intel_miptree_get_isl_tiling(mt);
3246
3247 if (mt->format == MESA_FORMAT_S_UINT8) {
3248 /* The ISL definition of row_pitch matches the surface state pitch field
3249 * a bit better than intel_mipmap_tree. In particular, ISL incorporates
3250 * the factor of 2 for W-tiling in row_pitch.
3251 */
3252 surf->row_pitch = 2 * mt->pitch;
3253 } else {
3254 surf->row_pitch = mt->pitch;
3255 }
3256
3257 surf->format = translate_tex_format(brw, mt->format, false);
3258
3259 if (brw->gen >= 9) {
3260 if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3261 /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3262 surf->image_alignment_el = isl_extent3d(64, 1, 1);
3263 } else {
3264 /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3265 * alignment in terms of surface elements like we want.
3266 */
3267 surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3268 }
3269 } else {
3270 /* On earlier gens it's stored in pixels. */
3271 unsigned bw, bh;
3272 _mesa_get_format_block_size(mt->format, &bw, &bh);
3273 surf->image_alignment_el =
3274 isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3275 }
3276
3277 surf->logical_level0_px.width = mt->logical_width0;
3278 surf->logical_level0_px.height = mt->logical_height0;
3279 if (surf->dim == ISL_SURF_DIM_3D) {
3280 surf->logical_level0_px.depth = mt->logical_depth0;
3281 surf->logical_level0_px.array_len = 1;
3282 } else {
3283 surf->logical_level0_px.depth = 1;
3284 surf->logical_level0_px.array_len = mt->logical_depth0;
3285 }
3286
3287 surf->phys_level0_sa.width = mt->physical_width0;
3288 surf->phys_level0_sa.height = mt->physical_height0;
3289 if (surf->dim == ISL_SURF_DIM_3D) {
3290 surf->phys_level0_sa.depth = mt->physical_depth0;
3291 surf->phys_level0_sa.array_len = 1;
3292 } else {
3293 surf->phys_level0_sa.depth = 1;
3294 surf->phys_level0_sa.array_len = mt->physical_depth0;
3295 }
3296
3297 surf->levels = mt->last_level + 1;
3298 surf->samples = MAX2(mt->num_samples, 1);
3299
3300 surf->size = 0; /* TODO */
3301 surf->alignment = 0; /* TODO */
3302
3303 switch (surf->dim_layout) {
3304 case ISL_DIM_LAYOUT_GEN4_2D:
3305 case ISL_DIM_LAYOUT_GEN4_3D:
3306 if (brw->gen >= 9) {
3307 surf->array_pitch_el_rows = mt->qpitch;
3308 } else {
3309 unsigned bw, bh;
3310 _mesa_get_format_block_size(mt->format, &bw, &bh);
3311 assert(mt->qpitch % bh == 0);
3312 surf->array_pitch_el_rows = mt->qpitch / bh;
3313 }
3314 break;
3315 case ISL_DIM_LAYOUT_GEN9_1D:
3316 surf->array_pitch_el_rows = 1;
3317 break;
3318 }
3319
3320 switch (mt->array_layout) {
3321 case ALL_LOD_IN_EACH_SLICE:
3322 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3323 break;
3324 case ALL_SLICES_AT_EACH_LOD:
3325 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3326 break;
3327 default:
3328 unreachable("Invalid array layout");
3329 }
3330
3331 GLenum base_format = _mesa_get_format_base_format(mt->format);
3332 switch (base_format) {
3333 case GL_DEPTH_COMPONENT:
3334 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3335 break;
3336 case GL_STENCIL_INDEX:
3337 surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3338 if (brw->gen >= 8)
3339 surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3340 break;
3341 case GL_DEPTH_STENCIL:
3342 /* In this case we only texture from the depth part */
3343 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3344 ISL_SURF_USAGE_TEXTURE_BIT;
3345 break;
3346 default:
3347 surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3348 if (brw->format_supported_as_render_target[mt->format])
3349 surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3350 break;
3351 }
3352
3353 if (_mesa_is_cube_map_texture(mt->target))
3354 surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3355 }
3356
3357 /* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
3358 * USED FOR ANY REAL CALCULATIONS. THE ONLY VALID USE OF SUCH A SURFACE IS TO
3359 * PASS IT INTO isl_surf_fill_state.
3360 */
3361 void
3362 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
3363 const struct intel_mipmap_tree *mt,
3364 struct isl_surf *surf,
3365 enum isl_aux_usage *usage)
3366 {
3367 uint32_t aux_pitch, aux_qpitch;
3368 if (mt->mcs_buf) {
3369 aux_pitch = mt->mcs_buf->pitch;
3370 aux_qpitch = mt->mcs_buf->qpitch;
3371
3372 if (mt->num_samples > 1) {
3373 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
3374 *usage = ISL_AUX_USAGE_MCS;
3375 } else if (intel_miptree_is_lossless_compressed(brw, mt)) {
3376 assert(brw->gen >= 9);
3377 *usage = ISL_AUX_USAGE_CCS_E;
3378 } else if (!mt->no_ccs) {
3379 *usage = ISL_AUX_USAGE_CCS_D;
3380 } else {
3381 unreachable("Invalid MCS miptree");
3382 }
3383 } else if (mt->hiz_buf) {
3384 if (mt->hiz_buf->mt) {
3385 aux_pitch = mt->hiz_buf->mt->pitch;
3386 aux_qpitch = mt->hiz_buf->mt->qpitch;
3387 } else {
3388 aux_pitch = mt->hiz_buf->aux_base.pitch;
3389 aux_qpitch = mt->hiz_buf->aux_base.qpitch;
3390 }
3391
3392 *usage = ISL_AUX_USAGE_HIZ;
3393 } else {
3394 *usage = ISL_AUX_USAGE_NONE;
3395 return;
3396 }
3397
3398 /* Start with a copy of the original surface. */
3399 intel_miptree_get_isl_surf(brw, mt, surf);
3400
3401 /* Figure out the format and tiling of the auxiliary surface */
3402 switch (*usage) {
3403 case ISL_AUX_USAGE_NONE:
3404 unreachable("Invalid auxiliary usage");
3405
3406 case ISL_AUX_USAGE_HIZ:
3407 isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
3408 break;
3409
3410 case ISL_AUX_USAGE_MCS:
3411 /*
3412 * From the SKL PRM:
3413 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3414 * HALIGN 16 must be used."
3415 */
3416 if (brw->gen >= 9)
3417 assert(mt->halign == 16);
3418
3419 isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
3420 break;
3421
3422 case ISL_AUX_USAGE_CCS_D:
3423 case ISL_AUX_USAGE_CCS_E:
3424 /*
3425 * From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
3426 *
3427 * "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
3428 *
3429 * From the hardware spec for GEN9:
3430 *
3431 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3432 * HALIGN 16 must be used."
3433 */
3434 assert(mt->num_samples <= 1);
3435 if (brw->gen >= 8)
3436 assert(mt->halign == 16);
3437
3438 isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
3439 break;
3440 }
3441
3442 /* We want the pitch of the actual aux buffer. */
3443 surf->row_pitch = aux_pitch;
3444
3445 /* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
3446 * is in elements. This doesn't match intel_mipmap_tree::qpitch which is
3447 * in elements of the primary color surface so we have to divide by the
3448 * compression block height.
3449 */
3450 surf->array_pitch_el_rows =
3451 aux_qpitch / isl_format_get_layout(surf->format)->bh;
3452 }
3453
3454 union isl_color_value
3455 intel_miptree_get_isl_clear_color(struct brw_context *brw,
3456 const struct intel_mipmap_tree *mt)
3457 {
3458 union isl_color_value clear_color;
3459
3460 if (_mesa_get_format_base_format(mt->format) == GL_DEPTH_COMPONENT) {
3461 clear_color.i32[0] = mt->depth_clear_value;
3462 clear_color.i32[1] = 0;
3463 clear_color.i32[2] = 0;
3464 clear_color.i32[3] = 0;
3465 } else if (brw->gen >= 9) {
3466 clear_color.i32[0] = mt->gen9_fast_clear_color.i[0];
3467 clear_color.i32[1] = mt->gen9_fast_clear_color.i[1];
3468 clear_color.i32[2] = mt->gen9_fast_clear_color.i[2];
3469 clear_color.i32[3] = mt->gen9_fast_clear_color.i[3];
3470 } else if (_mesa_is_format_integer(mt->format)) {
3471 clear_color.i32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3472 clear_color.i32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3473 clear_color.i32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3474 clear_color.i32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3475 } else {
3476 clear_color.f32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3477 clear_color.f32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3478 clear_color.f32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3479 clear_color.f32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3480 }
3481
3482 return clear_color;
3483 }