i965: Make get_ccs_surf succeed in alloc_aux
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50
51 #include "x86/common_x86_asm.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
54
55 static void *intel_miptree_map_raw(struct brw_context *brw,
56 struct intel_mipmap_tree *mt,
57 GLbitfield mode);
58
59 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 const struct gen_device_info *devinfo = &brw->screen->devinfo;
66
67 /* MCS compression only applies to multisampled miptrees */
68 if (mt->surf.samples <= 1)
69 return false;
70
71 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
72 if (devinfo->gen < 7)
73 return false;
74
75 /* See isl_surf_get_mcs_surf for details. */
76 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
77 return false;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(mt->format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return false;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
98 return false;
99 } else {
100 return true;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw,
107 enum isl_tiling tiling)
108 {
109 const struct gen_device_info *devinfo = &brw->screen->devinfo;
110
111 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
112 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
113 *
114 * - Support is limited to tiled render targets.
115 *
116 * Gen9 changes the restriction to Y-tile only.
117 */
118 if (devinfo->gen >= 9)
119 return tiling == ISL_TILING_Y0;
120 else if (devinfo->gen >= 7)
121 return tiling != ISL_TILING_LINEAR;
122 else
123 return false;
124 }
125
126 /**
127 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
128 * can be used. This doesn't (and should not) inspect any of the properties of
129 * the miptree's BO.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p326):
133 *
134 * - Support is for non-mip-mapped and non-array surface types only.
135 *
136 * And then later, on p327:
137 *
138 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
139 * 64bpp, and 128bpp.
140 *
141 * From the Skylake documentation, it is made clear that X-tiling is no longer
142 * supported:
143 *
144 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
145 * non-MSRTs only.
146 */
147 static bool
148 intel_miptree_supports_ccs(struct brw_context *brw,
149 const struct intel_mipmap_tree *mt)
150 {
151 const struct gen_device_info *devinfo = &brw->screen->devinfo;
152
153 /* MCS support does not exist prior to Gen7 */
154 if (devinfo->gen < 7)
155 return false;
156
157 /* This function applies only to non-multisampled render targets. */
158 if (mt->surf.samples > 1)
159 return false;
160
161 /* MCS is only supported for color buffers */
162 switch (_mesa_get_format_base_format(mt->format)) {
163 case GL_DEPTH_COMPONENT:
164 case GL_DEPTH_STENCIL:
165 case GL_STENCIL_INDEX:
166 return false;
167 }
168
169 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
170 return false;
171
172 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
173 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
174 mt->surf.logical_level0_px.depth > 1;
175
176 if (arrayed) {
177 /* Multisample surfaces with the CMS layout are not layered surfaces,
178 * yet still have physical_depth0 > 1. Assert that we don't
179 * accidentally reject a multisampled surface here. We should have
180 * rejected it earlier by explicitly checking the sample count.
181 */
182 assert(mt->surf.samples == 1);
183 }
184
185 /* Handle the hardware restrictions...
186 *
187 * All GENs have the following restriction: "MCS buffer for non-MSRT is
188 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
189 *
190 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
191 * Non-MultiSampler Render Target Restrictions) Support is for
192 * non-mip-mapped and non-array surface types only.
193 *
194 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
195 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
196 * surfaces are supported with MCS buffer layout with these alignments in
197 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
198 *
199 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
200 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
201 * surfaces are supported with MCS buffer layout with these alignments in
202 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
203 */
204 if (devinfo->gen < 8 && (mip_mapped || arrayed))
205 return false;
206
207 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
208 * work for 3D textures until gen9 where the layout of 3D textures changes
209 * to match 2D array textures.
210 */
211 if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
212 return false;
213
214 /* There's no point in using an MCS buffer if the surface isn't in a
215 * renderable format.
216 */
217 if (!brw->mesa_format_supports_render[mt->format])
218 return false;
219
220 return true;
221 }
222
223 static bool
224 intel_tiling_supports_hiz(const struct brw_context *brw,
225 enum isl_tiling tiling)
226 {
227 const struct gen_device_info *devinfo = &brw->screen->devinfo;
228
229 if (devinfo->gen < 6)
230 return false;
231
232 return tiling == ISL_TILING_Y0;
233 }
234
235 static bool
236 intel_miptree_supports_hiz(const struct brw_context *brw,
237 const struct intel_mipmap_tree *mt)
238 {
239 if (!brw->has_hiz)
240 return false;
241
242 switch (mt->format) {
243 case MESA_FORMAT_Z_FLOAT32:
244 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
245 case MESA_FORMAT_Z24_UNORM_X8_UINT:
246 case MESA_FORMAT_Z24_UNORM_S8_UINT:
247 case MESA_FORMAT_Z_UNORM16:
248 return true;
249 default:
250 return false;
251 }
252 }
253
254 /**
255 * Return true if the format that will be used to access the miptree is
256 * CCS_E-compatible with the miptree's linear/non-sRGB format.
257 *
258 * Why use the linear format? Well, although the miptree may be specified with
259 * an sRGB format, the usage of that color space/format can be toggled. Since
260 * our HW tends to support more linear formats than sRGB ones, we use this
261 * format variant for check for CCS_E compatibility.
262 */
263 static bool
264 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
265 const struct intel_mipmap_tree *mt,
266 enum isl_format access_format)
267 {
268 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
269
270 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
271 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
272 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
273 }
274
275 static bool
276 intel_miptree_supports_ccs_e(struct brw_context *brw,
277 const struct intel_mipmap_tree *mt)
278 {
279 const struct gen_device_info *devinfo = &brw->screen->devinfo;
280
281 if (devinfo->gen < 9)
282 return false;
283
284 /* For now compression is only enabled for integer formats even though
285 * there exist supported floating point formats also. This is a heuristic
286 * decision based on current public benchmarks. In none of the cases these
287 * formats provided any improvement but a few cases were seen to regress.
288 * Hence these are left to to be enabled in the future when they are known
289 * to improve things.
290 */
291 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
292 return false;
293
294 if (!intel_miptree_supports_ccs(brw, mt))
295 return false;
296
297 /* Many window system buffers are sRGB even if they are never rendered as
298 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
299 * surface is used as sRGB, we fall back to CCS_D.
300 */
301 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
302 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
303 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
304 }
305
306 /**
307 * Determine depth format corresponding to a depth+stencil format,
308 * for separate stencil.
309 */
310 mesa_format
311 intel_depth_format_for_depthstencil_format(mesa_format format) {
312 switch (format) {
313 case MESA_FORMAT_Z24_UNORM_S8_UINT:
314 return MESA_FORMAT_Z24_UNORM_X8_UINT;
315 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
316 return MESA_FORMAT_Z_FLOAT32;
317 default:
318 return format;
319 }
320 }
321
322 static bool
323 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
324 unsigned depth0, struct intel_mipmap_level *table)
325 {
326 for (unsigned level = first_level; level <= last_level; level++) {
327 const unsigned d =
328 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
329
330 table[level].slice = calloc(d, sizeof(*table[0].slice));
331 if (!table[level].slice)
332 goto unwind;
333 }
334
335 return true;
336
337 unwind:
338 for (unsigned level = first_level; level <= last_level; level++)
339 free(table[level].slice);
340
341 return false;
342 }
343
344 static bool
345 needs_separate_stencil(const struct brw_context *brw,
346 struct intel_mipmap_tree *mt,
347 mesa_format format)
348 {
349 const struct gen_device_info *devinfo = &brw->screen->devinfo;
350
351 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
352 return false;
353
354 if (devinfo->must_use_separate_stencil)
355 return true;
356
357 return brw->has_separate_stencil &&
358 intel_miptree_supports_hiz(brw, mt);
359 }
360
361 /**
362 * Choose the aux usage for this miptree. This function must be called fairly
363 * late in the miptree create process after we have a tiling.
364 */
365 static void
366 intel_miptree_choose_aux_usage(struct brw_context *brw,
367 struct intel_mipmap_tree *mt)
368 {
369 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
370
371 if (intel_miptree_supports_mcs(brw, mt)) {
372 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
373 mt->aux_usage = ISL_AUX_USAGE_MCS;
374 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
375 intel_miptree_supports_ccs(brw, mt)) {
376 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
377 intel_miptree_supports_ccs_e(brw, mt)) {
378 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
379 } else {
380 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
381 }
382 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
383 intel_miptree_supports_hiz(brw, mt)) {
384 mt->aux_usage = ISL_AUX_USAGE_HIZ;
385 }
386
387 /* We can do fast-clear on all auxiliary surface types that are
388 * allocated through the normal texture creation paths.
389 */
390 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
391 mt->supports_fast_clear = true;
392 }
393
394
395 /**
396 * Choose an appropriate uncompressed format for a requested
397 * compressed format, if unsupported.
398 */
399 mesa_format
400 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
401 {
402 const struct gen_device_info *devinfo = &brw->screen->devinfo;
403
404 /* No need to lower ETC formats on these platforms,
405 * they are supported natively.
406 */
407 if (devinfo->gen >= 8 || devinfo->is_baytrail)
408 return format;
409
410 switch (format) {
411 case MESA_FORMAT_ETC1_RGB8:
412 return MESA_FORMAT_R8G8B8X8_UNORM;
413 case MESA_FORMAT_ETC2_RGB8:
414 return MESA_FORMAT_R8G8B8X8_UNORM;
415 case MESA_FORMAT_ETC2_SRGB8:
416 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
417 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
418 return MESA_FORMAT_B8G8R8A8_SRGB;
419 case MESA_FORMAT_ETC2_RGBA8_EAC:
420 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
421 return MESA_FORMAT_R8G8B8A8_UNORM;
422 case MESA_FORMAT_ETC2_R11_EAC:
423 return MESA_FORMAT_R_UNORM16;
424 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
425 return MESA_FORMAT_R_SNORM16;
426 case MESA_FORMAT_ETC2_RG11_EAC:
427 return MESA_FORMAT_R16G16_UNORM;
428 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
429 return MESA_FORMAT_R16G16_SNORM;
430 default:
431 /* Non ETC1 / ETC2 format */
432 return format;
433 }
434 }
435
436 unsigned
437 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
438 {
439 if (mt->surf.dim == ISL_SURF_DIM_3D)
440 return minify(mt->surf.logical_level0_px.depth, level);
441 else
442 return mt->surf.logical_level0_px.array_len;
443 }
444
445 UNUSED static unsigned
446 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
447 {
448 /* In case of physical dimensions one needs to consider also the layout.
449 * See isl_calc_phys_level0_extent_sa().
450 */
451 if (surf->dim != ISL_SURF_DIM_3D)
452 return surf->phys_level0_sa.array_len;
453
454 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
455 return minify(surf->phys_level0_sa.array_len, level);
456
457 return minify(surf->phys_level0_sa.depth, level);
458 }
459
460 /** \brief Assert that the level and layer are valid for the miptree. */
461 void
462 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
463 uint32_t level,
464 uint32_t layer)
465 {
466 (void) mt;
467 (void) level;
468 (void) layer;
469
470 assert(level >= mt->first_level);
471 assert(level <= mt->last_level);
472 assert(layer < get_num_phys_layers(&mt->surf, level));
473 }
474
475 static enum isl_aux_state **
476 create_aux_state_map(struct intel_mipmap_tree *mt,
477 enum isl_aux_state initial)
478 {
479 const uint32_t levels = mt->last_level + 1;
480
481 uint32_t total_slices = 0;
482 for (uint32_t level = 0; level < levels; level++)
483 total_slices += brw_get_num_logical_layers(mt, level);
484
485 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
486
487 /* We're going to allocate a single chunk of data for both the per-level
488 * reference array and the arrays of aux_state. This makes cleanup
489 * significantly easier.
490 */
491 const size_t total_size = per_level_array_size +
492 total_slices * sizeof(enum isl_aux_state);
493 void *data = malloc(total_size);
494 if (data == NULL)
495 return NULL;
496
497 enum isl_aux_state **per_level_arr = data;
498 enum isl_aux_state *s = data + per_level_array_size;
499 for (uint32_t level = 0; level < levels; level++) {
500 per_level_arr[level] = s;
501 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
502 for (uint32_t a = 0; a < level_layers; a++)
503 *(s++) = initial;
504 }
505 assert((void *)s == data + total_size);
506
507 return per_level_arr;
508 }
509
510 static void
511 free_aux_state_map(enum isl_aux_state **state)
512 {
513 free(state);
514 }
515
516 static bool
517 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
518 enum isl_tiling tiling, unsigned samples)
519 {
520 if (samples > 1)
521 return false;
522
523 if (tiling == ISL_TILING_LINEAR)
524 return false;
525
526 /* If the width is much smaller than a tile, don't bother tiling. */
527 if (row_pitch < 64)
528 return true;
529
530 if (ALIGN(row_pitch, 512) >= 32768) {
531 perf_debug("row pitch %u too large to blit, falling back to untiled",
532 row_pitch);
533 return true;
534 }
535
536 return false;
537 }
538
539 static bool
540 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
541 enum isl_tiling tiling)
542 {
543 const struct gen_device_info *devinfo = &brw->screen->devinfo;
544
545 /* If the BO is too large to fit in the aperture, we need to use the
546 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
547 * handle Y-tiling, so we need to fall back to X.
548 */
549 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
550 tiling == ISL_TILING_Y0)
551 return true;
552
553 return false;
554 }
555
556 static struct intel_mipmap_tree *
557 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
558 unsigned first_level, unsigned last_level,
559 unsigned width0, unsigned height0, unsigned depth0,
560 unsigned num_samples, isl_tiling_flags_t tiling_flags,
561 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
562 unsigned row_pitch, struct brw_bo *bo)
563 {
564 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
565 if (!mt)
566 return NULL;
567
568 if (!create_mapping_table(target, first_level, last_level, depth0,
569 mt->level)) {
570 free(mt);
571 return NULL;
572 }
573
574 mt->refcount = 1;
575
576 if (target == GL_TEXTURE_CUBE_MAP ||
577 target == GL_TEXTURE_CUBE_MAP_ARRAY)
578 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
579
580 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
581 __func__,
582 _mesa_enum_to_string(target),
583 _mesa_get_format_name(format),
584 num_samples, width0, height0, depth0,
585 first_level, last_level, mt);
586
587 struct isl_surf_init_info init_info = {
588 .dim = get_isl_surf_dim(target),
589 .format = translate_tex_format(brw, format, false),
590 .width = width0,
591 .height = height0,
592 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
593 .levels = last_level - first_level + 1,
594 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
595 .samples = num_samples,
596 .row_pitch = row_pitch,
597 .usage = isl_usage_flags,
598 .tiling_flags = tiling_flags,
599 };
600
601 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
602 goto fail;
603
604 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
605 * on gen7 platforms we also need to create Y-tiled copies of stencil for
606 * texturing since the hardware can't sample from W-tiled surfaces. For
607 * everything else, check for corner cases needing special treatment.
608 */
609 bool is_depth_stencil =
610 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
611 if (!is_depth_stencil) {
612 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
613 mt->surf.tiling, mt->surf.samples)) {
614 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
615 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
616 goto fail;
617 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
618 init_info.tiling_flags = 1u << ISL_TILING_X;
619 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
620 goto fail;
621 }
622 }
623
624 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
625 * the size may not be multiple of row_pitch.
626 * See isl_apply_surface_padding().
627 */
628 if (mt->surf.tiling != ISL_TILING_LINEAR)
629 assert(mt->surf.size % mt->surf.row_pitch == 0);
630
631 if (!bo) {
632 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
633 mt->surf.size,
634 isl_tiling_to_i915_tiling(
635 mt->surf.tiling),
636 mt->surf.row_pitch, alloc_flags);
637 if (!mt->bo)
638 goto fail;
639 } else {
640 mt->bo = bo;
641 }
642
643 mt->first_level = first_level;
644 mt->last_level = last_level;
645 mt->target = target;
646 mt->format = format;
647 mt->aux_state = NULL;
648 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
649 mt->compressed = _mesa_is_format_compressed(format);
650 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
651
652 return mt;
653
654 fail:
655 intel_miptree_release(&mt);
656 return NULL;
657 }
658
659 static bool
660 make_separate_stencil_surface(struct brw_context *brw,
661 struct intel_mipmap_tree *mt)
662 {
663 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
664 0, mt->surf.levels - 1,
665 mt->surf.logical_level0_px.width,
666 mt->surf.logical_level0_px.height,
667 mt->surf.dim == ISL_SURF_DIM_3D ?
668 mt->surf.logical_level0_px.depth :
669 mt->surf.logical_level0_px.array_len,
670 mt->surf.samples, ISL_TILING_W_BIT,
671 ISL_SURF_USAGE_STENCIL_BIT |
672 ISL_SURF_USAGE_TEXTURE_BIT,
673 BO_ALLOC_BUSY, 0, NULL);
674
675 if (!mt->stencil_mt)
676 return false;
677
678 mt->stencil_mt->r8stencil_needs_update = true;
679
680 return true;
681 }
682
683 static struct intel_mipmap_tree *
684 miptree_create(struct brw_context *brw,
685 GLenum target,
686 mesa_format format,
687 GLuint first_level,
688 GLuint last_level,
689 GLuint width0,
690 GLuint height0,
691 GLuint depth0,
692 GLuint num_samples,
693 enum intel_miptree_create_flags flags)
694 {
695 const struct gen_device_info *devinfo = &brw->screen->devinfo;
696
697 if (format == MESA_FORMAT_S_UINT8)
698 return make_surface(brw, target, format, first_level, last_level,
699 width0, height0, depth0, num_samples,
700 ISL_TILING_W_BIT,
701 ISL_SURF_USAGE_STENCIL_BIT |
702 ISL_SURF_USAGE_TEXTURE_BIT,
703 BO_ALLOC_BUSY,
704 0,
705 NULL);
706
707 const GLenum base_format = _mesa_get_format_base_format(format);
708 if ((base_format == GL_DEPTH_COMPONENT ||
709 base_format == GL_DEPTH_STENCIL) &&
710 !(flags & MIPTREE_CREATE_LINEAR)) {
711 /* Fix up the Z miptree format for how we're splitting out separate
712 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
713 */
714 const mesa_format depth_only_format =
715 intel_depth_format_for_depthstencil_format(format);
716 struct intel_mipmap_tree *mt = make_surface(
717 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
718 first_level, last_level,
719 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
720 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
721 BO_ALLOC_BUSY, 0, NULL);
722
723 if (needs_separate_stencil(brw, mt, format) &&
724 !make_separate_stencil_surface(brw, mt)) {
725 intel_miptree_release(&mt);
726 return NULL;
727 }
728
729 if (!(flags & MIPTREE_CREATE_NO_AUX))
730 intel_miptree_choose_aux_usage(brw, mt);
731
732 return mt;
733 }
734
735 mesa_format tex_format = format;
736 mesa_format etc_format = MESA_FORMAT_NONE;
737 uint32_t alloc_flags = 0;
738
739 format = intel_lower_compressed_format(brw, format);
740
741 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
742
743 if (flags & MIPTREE_CREATE_BUSY)
744 alloc_flags |= BO_ALLOC_BUSY;
745
746 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
747 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
748
749 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
750 if (devinfo->gen < 6)
751 tiling_flags &= ~ISL_TILING_Y0_BIT;
752
753 struct intel_mipmap_tree *mt = make_surface(
754 brw, target, format,
755 first_level, last_level,
756 width0, height0, depth0,
757 num_samples, tiling_flags,
758 ISL_SURF_USAGE_RENDER_TARGET_BIT |
759 ISL_SURF_USAGE_TEXTURE_BIT,
760 alloc_flags, 0, NULL);
761 if (!mt)
762 return NULL;
763
764 mt->etc_format = etc_format;
765
766 if (!(flags & MIPTREE_CREATE_NO_AUX))
767 intel_miptree_choose_aux_usage(brw, mt);
768
769 return mt;
770 }
771
772 struct intel_mipmap_tree *
773 intel_miptree_create(struct brw_context *brw,
774 GLenum target,
775 mesa_format format,
776 GLuint first_level,
777 GLuint last_level,
778 GLuint width0,
779 GLuint height0,
780 GLuint depth0,
781 GLuint num_samples,
782 enum intel_miptree_create_flags flags)
783 {
784 assert(num_samples > 0);
785
786 struct intel_mipmap_tree *mt = miptree_create(
787 brw, target, format,
788 first_level, last_level,
789 width0, height0, depth0, num_samples,
790 flags);
791 if (!mt)
792 return NULL;
793
794 mt->offset = 0;
795
796 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
797 * compress clear color so we wait until an actual fast-clear to allocate
798 * it.
799 */
800 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
801 !intel_miptree_alloc_aux(brw, mt)) {
802 intel_miptree_release(&mt);
803 return NULL;
804 }
805
806 return mt;
807 }
808
809 struct intel_mipmap_tree *
810 intel_miptree_create_for_bo(struct brw_context *brw,
811 struct brw_bo *bo,
812 mesa_format format,
813 uint32_t offset,
814 uint32_t width,
815 uint32_t height,
816 uint32_t depth,
817 int pitch,
818 enum isl_tiling tiling,
819 enum intel_miptree_create_flags flags)
820 {
821 const struct gen_device_info *devinfo = &brw->screen->devinfo;
822 struct intel_mipmap_tree *mt;
823 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
824 const GLenum base_format = _mesa_get_format_base_format(format);
825
826 if ((base_format == GL_DEPTH_COMPONENT ||
827 base_format == GL_DEPTH_STENCIL)) {
828 const mesa_format depth_only_format =
829 intel_depth_format_for_depthstencil_format(format);
830 mt = make_surface(brw, target,
831 devinfo->gen >= 6 ? depth_only_format : format,
832 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
833 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
834 0, pitch, bo);
835 if (!mt)
836 return NULL;
837
838 brw_bo_reference(bo);
839
840 if (!(flags & MIPTREE_CREATE_NO_AUX))
841 intel_miptree_choose_aux_usage(brw, mt);
842
843 return mt;
844 } else if (format == MESA_FORMAT_S_UINT8) {
845 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
846 0, 0, width, height, depth, 1,
847 ISL_TILING_W_BIT,
848 ISL_SURF_USAGE_STENCIL_BIT |
849 ISL_SURF_USAGE_TEXTURE_BIT,
850 0, pitch, bo);
851 if (!mt)
852 return NULL;
853
854 assert(bo->size >= mt->surf.size);
855
856 brw_bo_reference(bo);
857 return mt;
858 }
859
860 /* Nothing will be able to use this miptree with the BO if the offset isn't
861 * aligned.
862 */
863 if (tiling != ISL_TILING_LINEAR)
864 assert(offset % 4096 == 0);
865
866 /* miptrees can't handle negative pitch. If you need flipping of images,
867 * that's outside of the scope of the mt.
868 */
869 assert(pitch >= 0);
870
871 /* The BO already has a tiling format and we shouldn't confuse the lower
872 * layers by making it try to find a tiling format again.
873 */
874 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
875
876 mt = make_surface(brw, target, format,
877 0, 0, width, height, depth, 1,
878 1lu << tiling,
879 ISL_SURF_USAGE_RENDER_TARGET_BIT |
880 ISL_SURF_USAGE_TEXTURE_BIT,
881 0, pitch, bo);
882 if (!mt)
883 return NULL;
884
885 brw_bo_reference(bo);
886 mt->bo = bo;
887 mt->offset = offset;
888
889 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
890 intel_miptree_choose_aux_usage(brw, mt);
891
892 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
893 * only compress clear color so we wait until an actual fast-clear to
894 * allocate it.
895 */
896 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
897 !intel_miptree_alloc_aux(brw, mt)) {
898 intel_miptree_release(&mt);
899 return NULL;
900 }
901 }
902
903 return mt;
904 }
905
906 static struct intel_mipmap_tree *
907 miptree_create_for_planar_image(struct brw_context *brw,
908 __DRIimage *image, GLenum target,
909 enum isl_tiling tiling)
910 {
911 const struct intel_image_format *f = image->planar_format;
912 struct intel_mipmap_tree *planar_mt = NULL;
913
914 for (int i = 0; i < f->nplanes; i++) {
915 const int index = f->planes[i].buffer_index;
916 const uint32_t dri_format = f->planes[i].dri_format;
917 const mesa_format format = driImageFormatToGLFormat(dri_format);
918 const uint32_t width = image->width >> f->planes[i].width_shift;
919 const uint32_t height = image->height >> f->planes[i].height_shift;
920
921 /* Disable creation of the texture's aux buffers because the driver
922 * exposes no EGL API to manage them. That is, there is no API for
923 * resolving the aux buffer's content to the main buffer nor for
924 * invalidating the aux buffer's content.
925 */
926 struct intel_mipmap_tree *mt =
927 intel_miptree_create_for_bo(brw, image->bo, format,
928 image->offsets[index],
929 width, height, 1,
930 image->strides[index],
931 tiling,
932 MIPTREE_CREATE_NO_AUX);
933 if (mt == NULL)
934 return NULL;
935
936 mt->target = target;
937
938 if (i == 0)
939 planar_mt = mt;
940 else
941 planar_mt->plane[i - 1] = mt;
942 }
943
944 planar_mt->drm_modifier = image->modifier;
945
946 return planar_mt;
947 }
948
949 static bool
950 create_ccs_buf_for_image(struct brw_context *brw,
951 __DRIimage *image,
952 struct intel_mipmap_tree *mt,
953 enum isl_aux_state initial_state)
954 {
955 struct isl_surf temp_ccs_surf;
956
957 /* CCS is only supported for very simple miptrees */
958 assert(image->aux_offset != 0 && image->aux_pitch != 0);
959 assert(image->tile_x == 0 && image->tile_y == 0);
960 assert(mt->surf.samples == 1);
961 assert(mt->surf.levels == 1);
962 assert(mt->surf.logical_level0_px.depth == 1);
963 assert(mt->surf.logical_level0_px.array_len == 1);
964 assert(mt->first_level == 0);
965 assert(mt->last_level == 0);
966
967 /* We shouldn't already have a CCS */
968 assert(!mt->aux_buf);
969
970 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
971 image->aux_pitch))
972 return false;
973
974 assert(image->aux_offset < image->bo->size);
975 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
976
977 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
978 if (mt->aux_buf == NULL)
979 return false;
980
981 mt->aux_state = create_aux_state_map(mt, initial_state);
982 if (!mt->aux_state) {
983 free(mt->aux_buf);
984 mt->aux_buf = NULL;
985 return false;
986 }
987
988 /* On gen10+ we start using an extra space in the aux buffer to store the
989 * indirect clear color. However, if we imported an image from the window
990 * system with CCS, we don't have the extra space at the end of the aux
991 * buffer. So create a new bo here that will store that clear color.
992 */
993 if (brw->isl_dev.ss.clear_color_state_size > 0) {
994 mt->aux_buf->clear_color_bo =
995 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
996 brw->isl_dev.ss.clear_color_state_size,
997 I915_TILING_NONE, 0, BO_ALLOC_ZEROED);
998 if (!mt->aux_buf->clear_color_bo) {
999 free(mt->aux_buf);
1000 mt->aux_buf = NULL;
1001 return false;
1002 }
1003 }
1004
1005 mt->aux_buf->bo = image->bo;
1006 brw_bo_reference(image->bo);
1007
1008 mt->aux_buf->offset = image->aux_offset;
1009 mt->aux_buf->surf = temp_ccs_surf;
1010
1011 return true;
1012 }
1013
1014 struct intel_mipmap_tree *
1015 intel_miptree_create_for_dri_image(struct brw_context *brw,
1016 __DRIimage *image, GLenum target,
1017 mesa_format format,
1018 bool is_winsys_image)
1019 {
1020 uint32_t bo_tiling, bo_swizzle;
1021 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1022
1023 const struct isl_drm_modifier_info *mod_info =
1024 isl_drm_modifier_get_info(image->modifier);
1025
1026 const enum isl_tiling tiling =
1027 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1028
1029 if (image->planar_format && image->planar_format->nplanes > 1)
1030 return miptree_create_for_planar_image(brw, image, target, tiling);
1031
1032 if (image->planar_format)
1033 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1034
1035 if (!brw->ctx.TextureFormatSupported[format]) {
1036 /* The texture storage paths in core Mesa detect if the driver does not
1037 * support the user-requested format, and then searches for a
1038 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1039 * do the fallbacks here for important formats.
1040 *
1041 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1042 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1043 * the Chrome OS compositor consumes as dma_buf EGLImages.
1044 */
1045 format = _mesa_format_fallback_rgbx_to_rgba(format);
1046 }
1047
1048 if (!brw->ctx.TextureFormatSupported[format])
1049 return NULL;
1050
1051 enum intel_miptree_create_flags mt_create_flags = 0;
1052
1053 /* If this image comes in from a window system, we have different
1054 * requirements than if it comes in via an EGL import operation. Window
1055 * system images can use any form of auxiliary compression we wish because
1056 * they get "flushed" before being handed off to the window system and we
1057 * have the opportunity to do resolves. Non window-system images, on the
1058 * other hand, have no resolve point so we can't have aux without a
1059 * modifier.
1060 */
1061 if (!is_winsys_image)
1062 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1063
1064 /* If we have a modifier which specifies aux, don't create one yet */
1065 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1066 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1067
1068 /* Disable creation of the texture's aux buffers because the driver exposes
1069 * no EGL API to manage them. That is, there is no API for resolving the aux
1070 * buffer's content to the main buffer nor for invalidating the aux buffer's
1071 * content.
1072 */
1073 struct intel_mipmap_tree *mt =
1074 intel_miptree_create_for_bo(brw, image->bo, format,
1075 image->offset, image->width, image->height, 1,
1076 image->pitch, tiling, mt_create_flags);
1077 if (mt == NULL)
1078 return NULL;
1079
1080 mt->target = target;
1081 mt->level[0].level_x = image->tile_x;
1082 mt->level[0].level_y = image->tile_y;
1083 mt->drm_modifier = image->modifier;
1084
1085 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1086 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1087 * trouble resolving back to destination image due to alignment issues.
1088 */
1089 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1090 if (!devinfo->has_surface_tile_offset) {
1091 uint32_t draw_x, draw_y;
1092 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1093
1094 if (draw_x != 0 || draw_y != 0) {
1095 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1096 intel_miptree_release(&mt);
1097 return NULL;
1098 }
1099 }
1100
1101 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1102 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1103
1104 mt->aux_usage = mod_info->aux_usage;
1105 /* If we are a window system buffer, then we can support fast-clears
1106 * even if the modifier doesn't support them by doing a partial resolve
1107 * as part of the flush operation.
1108 */
1109 mt->supports_fast_clear =
1110 is_winsys_image || mod_info->supports_clear_color;
1111
1112 /* We don't know the actual state of the surface when we get it but we
1113 * can make a pretty good guess based on the modifier. What we do know
1114 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1115 * a worst case of compression.
1116 */
1117 enum isl_aux_state initial_state =
1118 isl_drm_modifier_get_default_aux_state(image->modifier);
1119
1120 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1121 intel_miptree_release(&mt);
1122 return NULL;
1123 }
1124 }
1125
1126 /* Don't assume coherency for imported EGLimages. We don't know what
1127 * external clients are going to do with it. They may scan it out.
1128 */
1129 image->bo->cache_coherent = false;
1130
1131 return mt;
1132 }
1133
1134 /**
1135 * For a singlesample renderbuffer, this simply wraps the given BO with a
1136 * miptree.
1137 *
1138 * For a multisample renderbuffer, this wraps the window system's
1139 * (singlesample) BO with a singlesample miptree attached to the
1140 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1141 * that will contain the actual rendering (which is lazily resolved to
1142 * irb->singlesample_mt).
1143 */
1144 bool
1145 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1146 struct intel_renderbuffer *irb,
1147 struct intel_mipmap_tree *singlesample_mt,
1148 uint32_t width, uint32_t height,
1149 uint32_t pitch)
1150 {
1151 struct intel_mipmap_tree *multisample_mt = NULL;
1152 struct gl_renderbuffer *rb = &irb->Base.Base;
1153 mesa_format format = rb->Format;
1154 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1155
1156 /* Only the front and back buffers, which are color buffers, are allocated
1157 * through the image loader.
1158 */
1159 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1160 _mesa_get_format_base_format(format) == GL_RGBA);
1161
1162 assert(singlesample_mt);
1163
1164 if (num_samples == 1) {
1165 intel_miptree_release(&irb->mt);
1166 irb->mt = singlesample_mt;
1167
1168 assert(!irb->singlesample_mt);
1169 } else {
1170 intel_miptree_release(&irb->singlesample_mt);
1171 irb->singlesample_mt = singlesample_mt;
1172
1173 if (!irb->mt ||
1174 irb->mt->surf.logical_level0_px.width != width ||
1175 irb->mt->surf.logical_level0_px.height != height) {
1176 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1177 format,
1178 width,
1179 height,
1180 num_samples);
1181 if (!multisample_mt)
1182 goto fail;
1183
1184 irb->need_downsample = false;
1185 intel_miptree_release(&irb->mt);
1186 irb->mt = multisample_mt;
1187 }
1188 }
1189 return true;
1190
1191 fail:
1192 intel_miptree_release(&irb->mt);
1193 return false;
1194 }
1195
1196 struct intel_mipmap_tree*
1197 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1198 mesa_format format,
1199 uint32_t width,
1200 uint32_t height,
1201 uint32_t num_samples)
1202 {
1203 struct intel_mipmap_tree *mt;
1204 uint32_t depth = 1;
1205 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1206
1207 mt = intel_miptree_create(brw, target, format, 0, 0,
1208 width, height, depth, num_samples,
1209 MIPTREE_CREATE_BUSY);
1210 if (!mt)
1211 goto fail;
1212
1213 return mt;
1214
1215 fail:
1216 intel_miptree_release(&mt);
1217 return NULL;
1218 }
1219
1220 void
1221 intel_miptree_reference(struct intel_mipmap_tree **dst,
1222 struct intel_mipmap_tree *src)
1223 {
1224 if (*dst == src)
1225 return;
1226
1227 intel_miptree_release(dst);
1228
1229 if (src) {
1230 src->refcount++;
1231 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1232 }
1233
1234 *dst = src;
1235 }
1236
1237 static void
1238 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1239 {
1240 if (aux_buf == NULL)
1241 return;
1242
1243 brw_bo_unreference(aux_buf->bo);
1244 brw_bo_unreference(aux_buf->clear_color_bo);
1245
1246 free(aux_buf);
1247 }
1248
1249 void
1250 intel_miptree_release(struct intel_mipmap_tree **mt)
1251 {
1252 if (!*mt)
1253 return;
1254
1255 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1256 if (--(*mt)->refcount <= 0) {
1257 GLuint i;
1258
1259 DBG("%s deleting %p\n", __func__, *mt);
1260
1261 brw_bo_unreference((*mt)->bo);
1262 intel_miptree_release(&(*mt)->stencil_mt);
1263 intel_miptree_release(&(*mt)->r8stencil_mt);
1264 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1265 free_aux_state_map((*mt)->aux_state);
1266
1267 intel_miptree_release(&(*mt)->plane[0]);
1268 intel_miptree_release(&(*mt)->plane[1]);
1269
1270 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1271 free((*mt)->level[i].slice);
1272 }
1273
1274 free(*mt);
1275 }
1276 *mt = NULL;
1277 }
1278
1279
1280 void
1281 intel_get_image_dims(struct gl_texture_image *image,
1282 int *width, int *height, int *depth)
1283 {
1284 switch (image->TexObject->Target) {
1285 case GL_TEXTURE_1D_ARRAY:
1286 /* For a 1D Array texture the OpenGL API will treat the image height as
1287 * the number of array slices. For Intel hardware, we treat the 1D array
1288 * as a 2D Array with a height of 1. So, here we want to swap image
1289 * height and depth.
1290 */
1291 assert(image->Depth == 1);
1292 *width = image->Width;
1293 *height = 1;
1294 *depth = image->Height;
1295 break;
1296 case GL_TEXTURE_CUBE_MAP:
1297 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1298 * though we really have 6 slices.
1299 */
1300 assert(image->Depth == 1);
1301 *width = image->Width;
1302 *height = image->Height;
1303 *depth = 6;
1304 break;
1305 default:
1306 *width = image->Width;
1307 *height = image->Height;
1308 *depth = image->Depth;
1309 break;
1310 }
1311 }
1312
1313 /**
1314 * Can the image be pulled into a unified mipmap tree? This mirrors
1315 * the completeness test in a lot of ways.
1316 *
1317 * Not sure whether I want to pass gl_texture_image here.
1318 */
1319 bool
1320 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1321 struct gl_texture_image *image)
1322 {
1323 struct intel_texture_image *intelImage = intel_texture_image(image);
1324 GLuint level = intelImage->base.Base.Level;
1325 int width, height, depth;
1326
1327 /* glTexImage* choose the texture object based on the target passed in, and
1328 * objects can't change targets over their lifetimes, so this should be
1329 * true.
1330 */
1331 assert(image->TexObject->Target == mt->target);
1332
1333 mesa_format mt_format = mt->format;
1334 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1335 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1336 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1337 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1338 if (mt->etc_format != MESA_FORMAT_NONE)
1339 mt_format = mt->etc_format;
1340
1341 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1342 _mesa_get_srgb_format_linear(mt_format))
1343 return false;
1344
1345 intel_get_image_dims(image, &width, &height, &depth);
1346
1347 if (mt->target == GL_TEXTURE_CUBE_MAP)
1348 depth = 6;
1349
1350 if (level >= mt->surf.levels)
1351 return false;
1352
1353 const unsigned level_depth =
1354 mt->surf.dim == ISL_SURF_DIM_3D ?
1355 minify(mt->surf.logical_level0_px.depth, level) :
1356 mt->surf.logical_level0_px.array_len;
1357
1358 return width == minify(mt->surf.logical_level0_px.width, level) &&
1359 height == minify(mt->surf.logical_level0_px.height, level) &&
1360 depth == level_depth &&
1361 MAX2(image->NumSamples, 1) == mt->surf.samples;
1362 }
1363
1364 void
1365 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1366 GLuint level, GLuint slice,
1367 GLuint *x, GLuint *y)
1368 {
1369 if (level == 0 && slice == 0) {
1370 *x = mt->level[0].level_x;
1371 *y = mt->level[0].level_y;
1372 return;
1373 }
1374
1375 uint32_t x_offset_sa, y_offset_sa;
1376
1377 /* Miptree itself can have an offset only if it represents a single
1378 * slice in an imported buffer object.
1379 * See intel_miptree_create_for_dri_image().
1380 */
1381 assert(mt->level[0].level_x == 0);
1382 assert(mt->level[0].level_y == 0);
1383
1384 /* Given level is relative to level zero while the miptree may be
1385 * represent just a subset of all levels starting from 'first_level'.
1386 */
1387 assert(level >= mt->first_level);
1388 level -= mt->first_level;
1389
1390 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1391 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1392 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1393 &x_offset_sa, &y_offset_sa);
1394
1395 *x = x_offset_sa;
1396 *y = y_offset_sa;
1397 }
1398
1399
1400 /**
1401 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1402 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1403 * and tile_h is set to 1.
1404 */
1405 void
1406 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1407 uint32_t *tile_w, uint32_t *tile_h)
1408 {
1409 switch (tiling) {
1410 case ISL_TILING_X:
1411 *tile_w = 512;
1412 *tile_h = 8;
1413 break;
1414 case ISL_TILING_Y0:
1415 *tile_w = 128;
1416 *tile_h = 32;
1417 break;
1418 case ISL_TILING_LINEAR:
1419 *tile_w = cpp;
1420 *tile_h = 1;
1421 break;
1422 default:
1423 unreachable("not reached");
1424 }
1425 }
1426
1427
1428 /**
1429 * This function computes masks that may be used to select the bits of the X
1430 * and Y coordinates that indicate the offset within a tile. If the BO is
1431 * untiled, the masks are set to 0.
1432 */
1433 void
1434 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1435 uint32_t *mask_x, uint32_t *mask_y)
1436 {
1437 uint32_t tile_w_bytes, tile_h;
1438
1439 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1440
1441 *mask_x = tile_w_bytes / cpp - 1;
1442 *mask_y = tile_h - 1;
1443 }
1444
1445 /**
1446 * Compute the offset (in bytes) from the start of the BO to the given x
1447 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1448 * multiples of the tile size.
1449 */
1450 uint32_t
1451 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1452 uint32_t x, uint32_t y)
1453 {
1454 int cpp = mt->cpp;
1455 uint32_t pitch = mt->surf.row_pitch;
1456
1457 switch (mt->surf.tiling) {
1458 default:
1459 unreachable("not reached");
1460 case ISL_TILING_LINEAR:
1461 return y * pitch + x * cpp;
1462 case ISL_TILING_X:
1463 assert((x % (512 / cpp)) == 0);
1464 assert((y % 8) == 0);
1465 return y * pitch + x / (512 / cpp) * 4096;
1466 case ISL_TILING_Y0:
1467 assert((x % (128 / cpp)) == 0);
1468 assert((y % 32) == 0);
1469 return y * pitch + x / (128 / cpp) * 4096;
1470 }
1471 }
1472
1473 /**
1474 * Rendering with tiled buffers requires that the base address of the buffer
1475 * be aligned to a page boundary. For renderbuffers, and sometimes with
1476 * textures, we may want the surface to point at a texture image level that
1477 * isn't at a page boundary.
1478 *
1479 * This function returns an appropriately-aligned base offset
1480 * according to the tiling restrictions, plus any required x/y offset
1481 * from there.
1482 */
1483 uint32_t
1484 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1485 GLuint level, GLuint slice,
1486 uint32_t *tile_x,
1487 uint32_t *tile_y)
1488 {
1489 uint32_t x, y;
1490 uint32_t mask_x, mask_y;
1491
1492 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1493 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1494
1495 *tile_x = x & mask_x;
1496 *tile_y = y & mask_y;
1497
1498 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1499 }
1500
1501 static void
1502 intel_miptree_copy_slice_sw(struct brw_context *brw,
1503 struct intel_mipmap_tree *src_mt,
1504 unsigned src_level, unsigned src_layer,
1505 struct intel_mipmap_tree *dst_mt,
1506 unsigned dst_level, unsigned dst_layer,
1507 unsigned width, unsigned height)
1508 {
1509 void *src, *dst;
1510 ptrdiff_t src_stride, dst_stride;
1511 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1512
1513 intel_miptree_map(brw, src_mt,
1514 src_level, src_layer,
1515 0, 0,
1516 width, height,
1517 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1518 &src, &src_stride);
1519
1520 intel_miptree_map(brw, dst_mt,
1521 dst_level, dst_layer,
1522 0, 0,
1523 width, height,
1524 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1525 BRW_MAP_DIRECT_BIT,
1526 &dst, &dst_stride);
1527
1528 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1529 _mesa_get_format_name(src_mt->format),
1530 src_mt, src, src_stride,
1531 _mesa_get_format_name(dst_mt->format),
1532 dst_mt, dst, dst_stride,
1533 width, height);
1534
1535 int row_size = cpp * width;
1536 if (src_stride == row_size &&
1537 dst_stride == row_size) {
1538 memcpy(dst, src, row_size * height);
1539 } else {
1540 for (int i = 0; i < height; i++) {
1541 memcpy(dst, src, row_size);
1542 dst += dst_stride;
1543 src += src_stride;
1544 }
1545 }
1546
1547 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1548 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1549
1550 /* Don't forget to copy the stencil data over, too. We could have skipped
1551 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1552 * shuffling the two data sources in/out of temporary storage instead of
1553 * the direct mapping we get this way.
1554 */
1555 if (dst_mt->stencil_mt) {
1556 assert(src_mt->stencil_mt);
1557 intel_miptree_copy_slice_sw(brw,
1558 src_mt->stencil_mt, src_level, src_layer,
1559 dst_mt->stencil_mt, dst_level, dst_layer,
1560 width, height);
1561 }
1562 }
1563
1564 void
1565 intel_miptree_copy_slice(struct brw_context *brw,
1566 struct intel_mipmap_tree *src_mt,
1567 unsigned src_level, unsigned src_layer,
1568 struct intel_mipmap_tree *dst_mt,
1569 unsigned dst_level, unsigned dst_layer)
1570
1571 {
1572 mesa_format format = src_mt->format;
1573 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1574 src_level - src_mt->first_level);
1575 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1576 src_level - src_mt->first_level);
1577
1578 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1579 src_level - src_mt->first_level));
1580
1581 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1582 _mesa_get_srgb_format_linear(dst_mt->format));
1583
1584 if (dst_mt->compressed) {
1585 unsigned int i, j;
1586 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1587 height = ALIGN_NPOT(height, j) / j;
1588 width = ALIGN_NPOT(width, i) / i;
1589 }
1590
1591 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1592 * below won't apply since we can't do the depth's Y tiling or the
1593 * stencil's W tiling in the blitter.
1594 */
1595 if (src_mt->stencil_mt) {
1596 intel_miptree_copy_slice_sw(brw,
1597 src_mt, src_level, src_layer,
1598 dst_mt, dst_level, dst_layer,
1599 width, height);
1600 return;
1601 }
1602
1603 uint32_t dst_x, dst_y, src_x, src_y;
1604 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1605 &dst_x, &dst_y);
1606 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1607 &src_x, &src_y);
1608
1609 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1610 _mesa_get_format_name(src_mt->format),
1611 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1612 _mesa_get_format_name(dst_mt->format),
1613 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1614 width, height);
1615
1616 if (!intel_miptree_blit(brw,
1617 src_mt, src_level, src_layer, 0, 0, false,
1618 dst_mt, dst_level, dst_layer, 0, 0, false,
1619 width, height, COLOR_LOGICOP_COPY)) {
1620 perf_debug("miptree validate blit for %s failed\n",
1621 _mesa_get_format_name(format));
1622
1623 intel_miptree_copy_slice_sw(brw,
1624 src_mt, src_level, src_layer,
1625 dst_mt, dst_level, dst_layer,
1626 width, height);
1627 }
1628 }
1629
1630 /**
1631 * Copies the image's current data to the given miptree, and associates that
1632 * miptree with the image.
1633 */
1634 void
1635 intel_miptree_copy_teximage(struct brw_context *brw,
1636 struct intel_texture_image *intelImage,
1637 struct intel_mipmap_tree *dst_mt)
1638 {
1639 struct intel_mipmap_tree *src_mt = intelImage->mt;
1640 struct intel_texture_object *intel_obj =
1641 intel_texture_object(intelImage->base.Base.TexObject);
1642 int level = intelImage->base.Base.Level;
1643 const unsigned face = intelImage->base.Base.Face;
1644 unsigned start_layer, end_layer;
1645
1646 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1647 assert(face == 0);
1648 assert(intelImage->base.Base.Height);
1649 start_layer = 0;
1650 end_layer = intelImage->base.Base.Height - 1;
1651 } else if (face > 0) {
1652 start_layer = face;
1653 end_layer = face;
1654 } else {
1655 assert(intelImage->base.Base.Depth);
1656 start_layer = 0;
1657 end_layer = intelImage->base.Base.Depth - 1;
1658 }
1659
1660 for (unsigned i = start_layer; i <= end_layer; i++) {
1661 intel_miptree_copy_slice(brw,
1662 src_mt, level, i,
1663 dst_mt, level, i);
1664 }
1665
1666 intel_miptree_reference(&intelImage->mt, dst_mt);
1667 intel_obj->needs_validate = true;
1668 }
1669
1670 static struct intel_miptree_aux_buffer *
1671 intel_alloc_aux_buffer(struct brw_context *brw,
1672 const struct isl_surf *aux_surf,
1673 bool wants_memset,
1674 uint8_t memset_value)
1675 {
1676 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1677 if (!buf)
1678 return false;
1679
1680 uint64_t size = aux_surf->size;
1681
1682 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1683 if (has_indirect_clear) {
1684 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1685 * will set a pointer to a dword somewhere that contains the color. So,
1686 * allocate the space for the clear color value here on the aux buffer.
1687 */
1688 buf->clear_color_offset = size;
1689 size += brw->isl_dev.ss.clear_color_state_size;
1690 }
1691
1692 /* If the buffer needs to be initialised (requiring the buffer to be
1693 * immediately mapped to cpu space for writing), do not use the gpu access
1694 * flag which can cause an unnecessary delay if the backing pages happened
1695 * to be just used by the GPU.
1696 */
1697 const bool alloc_zeroed = wants_memset && memset_value == 0;
1698 const bool needs_memset =
1699 !alloc_zeroed && (wants_memset || has_indirect_clear);
1700 const uint32_t alloc_flags =
1701 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1702
1703 /* ISL has stricter set of alignment rules then the drm allocator.
1704 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1705 * trying to recalculate based on different format block sizes.
1706 */
1707 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1708 I915_TILING_Y, aux_surf->row_pitch,
1709 alloc_flags);
1710 if (!buf->bo) {
1711 free(buf);
1712 return NULL;
1713 }
1714
1715 /* Initialize the bo to the desired value */
1716 if (needs_memset) {
1717 assert(!(alloc_flags & BO_ALLOC_BUSY));
1718
1719 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1720 if (map == NULL) {
1721 intel_miptree_aux_buffer_free(buf);
1722 return NULL;
1723 }
1724
1725 /* Memset the aux_surf portion of the BO. */
1726 if (wants_memset)
1727 memset(map, memset_value, aux_surf->size);
1728
1729 /* Zero the indirect clear color to match ::fast_clear_color. */
1730 if (has_indirect_clear) {
1731 memset((char *)map + buf->clear_color_offset, 0,
1732 brw->isl_dev.ss.clear_color_state_size);
1733 }
1734
1735 brw_bo_unmap(buf->bo);
1736 }
1737
1738 if (has_indirect_clear) {
1739 buf->clear_color_bo = buf->bo;
1740 brw_bo_reference(buf->clear_color_bo);
1741 }
1742
1743 buf->surf = *aux_surf;
1744
1745 return buf;
1746 }
1747
1748
1749 /**
1750 * Helper for intel_miptree_alloc_aux() that sets
1751 * \c mt->level[level].has_hiz. Return true if and only if
1752 * \c has_hiz was set.
1753 */
1754 static bool
1755 intel_miptree_level_enable_hiz(struct brw_context *brw,
1756 struct intel_mipmap_tree *mt,
1757 uint32_t level)
1758 {
1759 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1760
1761 assert(mt->aux_buf);
1762 assert(mt->surf.size > 0);
1763
1764 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1765 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1766 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1767
1768 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1769 * and the height is 4 aligned. This allows our HiZ support
1770 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1771 * we can grow the width & height to allow the HiZ op to
1772 * force the proper size alignments.
1773 */
1774 if (level > 0 && ((width & 7) || (height & 3))) {
1775 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1776 return false;
1777 }
1778 }
1779
1780 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1781 mt->level[level].has_hiz = true;
1782 return true;
1783 }
1784
1785
1786 /**
1787 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1788 *
1789 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1790 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1791 * compress clear color so we wait until an actual fast-clear to allocate it.
1792 */
1793 bool
1794 intel_miptree_alloc_aux(struct brw_context *brw,
1795 struct intel_mipmap_tree *mt)
1796 {
1797 assert(mt->aux_buf == NULL);
1798
1799 /* Get the aux buf allocation parameters for this miptree. */
1800 enum isl_aux_state initial_state;
1801 uint8_t memset_value;
1802 struct isl_surf aux_surf;
1803 MAYBE_UNUSED bool aux_surf_ok;
1804
1805 switch (mt->aux_usage) {
1806 case ISL_AUX_USAGE_NONE:
1807 aux_surf.size = 0;
1808 aux_surf_ok = true;
1809 break;
1810 case ISL_AUX_USAGE_HIZ:
1811 assert(!_mesa_is_format_color_format(mt->format));
1812
1813 initial_state = ISL_AUX_STATE_AUX_INVALID;
1814 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1815 break;
1816 case ISL_AUX_USAGE_MCS:
1817 assert(_mesa_is_format_color_format(mt->format));
1818 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1819
1820 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1821 *
1822 * When MCS buffer is enabled and bound to MSRT, it is required that
1823 * it is cleared prior to any rendering.
1824 *
1825 * Since we don't use the MCS buffer for any purpose other than
1826 * rendering, it makes sense to just clear it immediately upon
1827 * allocation.
1828 *
1829 * Note: the clear value for MCS buffers is all 1's, so we memset to
1830 * 0xff.
1831 */
1832 initial_state = ISL_AUX_STATE_CLEAR;
1833 memset_value = 0xFF;
1834 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1835 break;
1836 case ISL_AUX_USAGE_CCS_D:
1837 case ISL_AUX_USAGE_CCS_E:
1838 assert(_mesa_is_format_color_format(mt->format));
1839
1840 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1841 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1842 * Target(s)":
1843 *
1844 * "If Software wants to enable Color Compression without Fast
1845 * clear, Software needs to initialize MCS with zeros."
1846 *
1847 * A CCS value of 0 indicates that the corresponding block is in the
1848 * pass-through state which is what we want.
1849 *
1850 * For CCS_D, do the same thing. On gen9+, this avoids having any
1851 * undefined bits in the aux buffer.
1852 */
1853 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1854 memset_value = 0;
1855 aux_surf_ok =
1856 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
1857 break;
1858 }
1859
1860 /* We should have a valid aux_surf. */
1861 assert(aux_surf_ok);
1862
1863 /* No work is needed for a zero-sized auxiliary buffer. */
1864 if (aux_surf.size == 0)
1865 return true;
1866
1867 /* Create the aux_state for the auxiliary buffer. */
1868 mt->aux_state = create_aux_state_map(mt, initial_state);
1869 if (mt->aux_state == NULL)
1870 return false;
1871
1872 /* Allocate the auxiliary buffer. */
1873 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1874 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1875 memset_value);
1876 if (mt->aux_buf == NULL) {
1877 free_aux_state_map(mt->aux_state);
1878 mt->aux_state = NULL;
1879 return false;
1880 }
1881
1882 /* Perform aux_usage-specific initialization. */
1883 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1884 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1885 intel_miptree_level_enable_hiz(brw, mt, level);
1886 }
1887
1888 return true;
1889 }
1890
1891
1892 /**
1893 * Can the miptree sample using the hiz buffer?
1894 */
1895 bool
1896 intel_miptree_sample_with_hiz(struct brw_context *brw,
1897 struct intel_mipmap_tree *mt)
1898 {
1899 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1900
1901 if (!devinfo->has_sample_with_hiz) {
1902 return false;
1903 }
1904
1905 if (!mt->aux_buf) {
1906 return false;
1907 }
1908
1909 /* It seems the hardware won't fallback to the depth buffer if some of the
1910 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1911 * of the texture to be HiZ enabled.
1912 */
1913 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1914 if (!intel_miptree_level_has_hiz(mt, level))
1915 return false;
1916 }
1917
1918 /* If compressed multisampling is enabled, then we use it for the auxiliary
1919 * buffer instead.
1920 *
1921 * From the BDW PRM (Volume 2d: Command Reference: Structures
1922 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1923 *
1924 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1925 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1926 *
1927 * There is no such blurb for 1D textures, but there is sufficient evidence
1928 * that this is broken on SKL+.
1929 */
1930 return (mt->surf.samples == 1 &&
1931 mt->target != GL_TEXTURE_3D &&
1932 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1933 }
1934
1935 /**
1936 * Does the miptree slice have hiz enabled?
1937 */
1938 bool
1939 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1940 {
1941 intel_miptree_check_level_layer(mt, level, 0);
1942 return mt->level[level].has_hiz;
1943 }
1944
1945 static inline uint32_t
1946 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1947 uint32_t start_level, uint32_t num_levels)
1948 {
1949 assert(start_level >= mt->first_level);
1950 assert(start_level <= mt->last_level);
1951
1952 if (num_levels == INTEL_REMAINING_LAYERS)
1953 num_levels = mt->last_level - start_level + 1;
1954 /* Check for overflow */
1955 assert(start_level + num_levels >= start_level);
1956 assert(start_level + num_levels <= mt->last_level + 1);
1957
1958 return num_levels;
1959 }
1960
1961 static inline uint32_t
1962 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1963 uint32_t start_layer, uint32_t num_layers)
1964 {
1965 assert(level <= mt->last_level);
1966
1967 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1968 assert(start_layer < total_num_layers);
1969 if (num_layers == INTEL_REMAINING_LAYERS)
1970 num_layers = total_num_layers - start_layer;
1971 /* Check for overflow */
1972 assert(start_layer + num_layers >= start_layer);
1973 assert(start_layer + num_layers <= total_num_layers);
1974
1975 return num_layers;
1976 }
1977
1978 bool
1979 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1980 unsigned start_level, unsigned num_levels,
1981 unsigned start_layer, unsigned num_layers)
1982 {
1983 assert(_mesa_is_format_color_format(mt->format));
1984
1985 if (!mt->aux_buf)
1986 return false;
1987
1988 /* Clamp the level range to fit the miptree */
1989 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1990
1991 for (uint32_t l = 0; l < num_levels; l++) {
1992 const uint32_t level = start_level + l;
1993 const uint32_t level_layers =
1994 miptree_layer_range_length(mt, level, start_layer, num_layers);
1995 for (unsigned a = 0; a < level_layers; a++) {
1996 enum isl_aux_state aux_state =
1997 intel_miptree_get_aux_state(mt, level, start_layer + a);
1998 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1999 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2000 return true;
2001 }
2002 }
2003
2004 return false;
2005 }
2006
2007 static void
2008 intel_miptree_check_color_resolve(const struct brw_context *brw,
2009 const struct intel_mipmap_tree *mt,
2010 unsigned level, unsigned layer)
2011 {
2012 if (!mt->aux_buf)
2013 return;
2014
2015 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2016 assert(brw->screen->devinfo.gen >= 8 ||
2017 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2018
2019 /* Compression of arrayed msaa surfaces is supported. */
2020 if (mt->surf.samples > 1)
2021 return;
2022
2023 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2024 assert(brw->screen->devinfo.gen >= 8 ||
2025 (layer == 0 &&
2026 mt->surf.logical_level0_px.depth == 1 &&
2027 mt->surf.logical_level0_px.array_len == 1));
2028
2029 (void)level;
2030 (void)layer;
2031 }
2032
2033 static enum isl_aux_op
2034 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2035 enum isl_aux_usage aux_usage,
2036 bool fast_clear_supported)
2037 {
2038 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2039
2040 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2041
2042 assert(ccs_supported == fast_clear_supported);
2043
2044 switch (aux_state) {
2045 case ISL_AUX_STATE_CLEAR:
2046 case ISL_AUX_STATE_PARTIAL_CLEAR:
2047 if (!ccs_supported)
2048 return ISL_AUX_OP_FULL_RESOLVE;
2049 else
2050 return ISL_AUX_OP_NONE;
2051
2052 case ISL_AUX_STATE_PASS_THROUGH:
2053 return ISL_AUX_OP_NONE;
2054
2055 case ISL_AUX_STATE_RESOLVED:
2056 case ISL_AUX_STATE_AUX_INVALID:
2057 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2058 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2059 break;
2060 }
2061
2062 unreachable("Invalid aux state for CCS_D");
2063 }
2064
2065 static enum isl_aux_op
2066 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2067 enum isl_aux_usage aux_usage,
2068 bool fast_clear_supported)
2069 {
2070 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2071 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2072 aux_usage == ISL_AUX_USAGE_CCS_D ||
2073 aux_usage == ISL_AUX_USAGE_CCS_E);
2074
2075 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2076 assert(fast_clear_supported);
2077
2078 switch (aux_state) {
2079 case ISL_AUX_STATE_CLEAR:
2080 case ISL_AUX_STATE_PARTIAL_CLEAR:
2081 if (fast_clear_supported)
2082 return ISL_AUX_OP_NONE;
2083 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2084 return ISL_AUX_OP_PARTIAL_RESOLVE;
2085 else
2086 return ISL_AUX_OP_FULL_RESOLVE;
2087
2088 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2089 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2090 return ISL_AUX_OP_FULL_RESOLVE;
2091 else if (!fast_clear_supported)
2092 return ISL_AUX_OP_PARTIAL_RESOLVE;
2093 else
2094 return ISL_AUX_OP_NONE;
2095
2096 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2097 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2098 return ISL_AUX_OP_FULL_RESOLVE;
2099 else
2100 return ISL_AUX_OP_NONE;
2101
2102 case ISL_AUX_STATE_PASS_THROUGH:
2103 return ISL_AUX_OP_NONE;
2104
2105 case ISL_AUX_STATE_RESOLVED:
2106 case ISL_AUX_STATE_AUX_INVALID:
2107 break;
2108 }
2109
2110 unreachable("Invalid aux state for CCS_E");
2111 }
2112
2113 static void
2114 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2115 struct intel_mipmap_tree *mt,
2116 uint32_t level, uint32_t layer,
2117 enum isl_aux_usage aux_usage,
2118 bool fast_clear_supported)
2119 {
2120 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2121
2122 enum isl_aux_op resolve_op;
2123 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2124 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2125 fast_clear_supported);
2126 } else {
2127 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2128 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2129 fast_clear_supported);
2130 }
2131
2132 if (resolve_op != ISL_AUX_OP_NONE) {
2133 intel_miptree_check_color_resolve(brw, mt, level, layer);
2134 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2135
2136 switch (resolve_op) {
2137 case ISL_AUX_OP_FULL_RESOLVE:
2138 /* The CCS full resolve operation destroys the CCS and sets it to the
2139 * pass-through state. (You can also think of this as being both a
2140 * resolve and an ambiguate in one operation.)
2141 */
2142 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2143 ISL_AUX_STATE_PASS_THROUGH);
2144 break;
2145
2146 case ISL_AUX_OP_PARTIAL_RESOLVE:
2147 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2148 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2149 break;
2150
2151 default:
2152 unreachable("Invalid resolve op");
2153 }
2154 }
2155 }
2156
2157 static void
2158 intel_miptree_finish_ccs_write(struct brw_context *brw,
2159 struct intel_mipmap_tree *mt,
2160 uint32_t level, uint32_t layer,
2161 enum isl_aux_usage aux_usage)
2162 {
2163 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2164 aux_usage == ISL_AUX_USAGE_CCS_D ||
2165 aux_usage == ISL_AUX_USAGE_CCS_E);
2166
2167 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2168
2169 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2170 switch (aux_state) {
2171 case ISL_AUX_STATE_CLEAR:
2172 case ISL_AUX_STATE_PARTIAL_CLEAR:
2173 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2174 aux_usage == ISL_AUX_USAGE_CCS_D);
2175
2176 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2177 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2178 ISL_AUX_STATE_COMPRESSED_CLEAR);
2179 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2180 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2181 ISL_AUX_STATE_PARTIAL_CLEAR);
2182 }
2183 break;
2184
2185 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2186 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2187 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2188 break; /* Nothing to do */
2189
2190 case ISL_AUX_STATE_PASS_THROUGH:
2191 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2192 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2193 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2194 } else {
2195 /* Nothing to do */
2196 }
2197 break;
2198
2199 case ISL_AUX_STATE_RESOLVED:
2200 case ISL_AUX_STATE_AUX_INVALID:
2201 unreachable("Invalid aux state for CCS_E");
2202 }
2203 } else {
2204 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2205 /* CCS_D is a bit simpler */
2206 switch (aux_state) {
2207 case ISL_AUX_STATE_CLEAR:
2208 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2209 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2210 ISL_AUX_STATE_PARTIAL_CLEAR);
2211 break;
2212
2213 case ISL_AUX_STATE_PARTIAL_CLEAR:
2214 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2215 break; /* Nothing to do */
2216
2217 case ISL_AUX_STATE_PASS_THROUGH:
2218 /* Nothing to do */
2219 break;
2220
2221 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2222 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2223 case ISL_AUX_STATE_RESOLVED:
2224 case ISL_AUX_STATE_AUX_INVALID:
2225 unreachable("Invalid aux state for CCS_D");
2226 }
2227 }
2228 }
2229
2230 static void
2231 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2232 struct intel_mipmap_tree *mt,
2233 uint32_t layer,
2234 enum isl_aux_usage aux_usage,
2235 bool fast_clear_supported)
2236 {
2237 assert(aux_usage == ISL_AUX_USAGE_MCS);
2238
2239 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2240 case ISL_AUX_STATE_CLEAR:
2241 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2242 if (!fast_clear_supported) {
2243 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2244 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2245 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2246 }
2247 break;
2248
2249 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2250 break; /* Nothing to do */
2251
2252 case ISL_AUX_STATE_RESOLVED:
2253 case ISL_AUX_STATE_PASS_THROUGH:
2254 case ISL_AUX_STATE_AUX_INVALID:
2255 case ISL_AUX_STATE_PARTIAL_CLEAR:
2256 unreachable("Invalid aux state for MCS");
2257 }
2258 }
2259
2260 static void
2261 intel_miptree_finish_mcs_write(struct brw_context *brw,
2262 struct intel_mipmap_tree *mt,
2263 uint32_t layer,
2264 enum isl_aux_usage aux_usage)
2265 {
2266 assert(aux_usage == ISL_AUX_USAGE_MCS);
2267
2268 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2269 case ISL_AUX_STATE_CLEAR:
2270 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2271 ISL_AUX_STATE_COMPRESSED_CLEAR);
2272 break;
2273
2274 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2275 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2276 break; /* Nothing to do */
2277
2278 case ISL_AUX_STATE_RESOLVED:
2279 case ISL_AUX_STATE_PASS_THROUGH:
2280 case ISL_AUX_STATE_AUX_INVALID:
2281 case ISL_AUX_STATE_PARTIAL_CLEAR:
2282 unreachable("Invalid aux state for MCS");
2283 }
2284 }
2285
2286 static void
2287 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2288 struct intel_mipmap_tree *mt,
2289 uint32_t level, uint32_t layer,
2290 enum isl_aux_usage aux_usage,
2291 bool fast_clear_supported)
2292 {
2293 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2294
2295 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2296 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2297 case ISL_AUX_STATE_CLEAR:
2298 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2299 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2300 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2301 break;
2302
2303 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2304 if (aux_usage != ISL_AUX_USAGE_HIZ)
2305 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2306 break;
2307
2308 case ISL_AUX_STATE_PASS_THROUGH:
2309 case ISL_AUX_STATE_RESOLVED:
2310 break;
2311
2312 case ISL_AUX_STATE_AUX_INVALID:
2313 if (aux_usage == ISL_AUX_USAGE_HIZ)
2314 hiz_op = ISL_AUX_OP_AMBIGUATE;
2315 break;
2316
2317 case ISL_AUX_STATE_PARTIAL_CLEAR:
2318 unreachable("Invalid HiZ state");
2319 }
2320
2321 if (hiz_op != ISL_AUX_OP_NONE) {
2322 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2323
2324 switch (hiz_op) {
2325 case ISL_AUX_OP_FULL_RESOLVE:
2326 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2327 ISL_AUX_STATE_RESOLVED);
2328 break;
2329
2330 case ISL_AUX_OP_AMBIGUATE:
2331 /* The HiZ resolve operation is actually an ambiguate */
2332 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2333 ISL_AUX_STATE_PASS_THROUGH);
2334 break;
2335
2336 default:
2337 unreachable("Invalid HiZ op");
2338 }
2339 }
2340 }
2341
2342 static void
2343 intel_miptree_finish_hiz_write(struct brw_context *brw,
2344 struct intel_mipmap_tree *mt,
2345 uint32_t level, uint32_t layer,
2346 enum isl_aux_usage aux_usage)
2347 {
2348 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2349
2350 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2351 case ISL_AUX_STATE_CLEAR:
2352 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2353 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2354 ISL_AUX_STATE_COMPRESSED_CLEAR);
2355 break;
2356
2357 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2358 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2359 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2360 break; /* Nothing to do */
2361
2362 case ISL_AUX_STATE_RESOLVED:
2363 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2364 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2365 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2366 } else {
2367 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2368 ISL_AUX_STATE_AUX_INVALID);
2369 }
2370 break;
2371
2372 case ISL_AUX_STATE_PASS_THROUGH:
2373 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2374 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2375 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2376 }
2377 break;
2378
2379 case ISL_AUX_STATE_AUX_INVALID:
2380 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2381 break;
2382
2383 case ISL_AUX_STATE_PARTIAL_CLEAR:
2384 unreachable("Invalid HiZ state");
2385 }
2386 }
2387
2388 void
2389 intel_miptree_prepare_access(struct brw_context *brw,
2390 struct intel_mipmap_tree *mt,
2391 uint32_t start_level, uint32_t num_levels,
2392 uint32_t start_layer, uint32_t num_layers,
2393 enum isl_aux_usage aux_usage,
2394 bool fast_clear_supported)
2395 {
2396 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2397
2398 switch (mt->aux_usage) {
2399 case ISL_AUX_USAGE_NONE:
2400 /* Nothing to do */
2401 break;
2402
2403 case ISL_AUX_USAGE_MCS:
2404 assert(mt->aux_buf);
2405 assert(start_level == 0 && num_levels == 1);
2406 const uint32_t level_layers =
2407 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2408 for (uint32_t a = 0; a < level_layers; a++) {
2409 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2410 aux_usage, fast_clear_supported);
2411 }
2412 break;
2413
2414 case ISL_AUX_USAGE_CCS_D:
2415 case ISL_AUX_USAGE_CCS_E:
2416 if (!mt->aux_buf)
2417 return;
2418
2419 for (uint32_t l = 0; l < num_levels; l++) {
2420 const uint32_t level = start_level + l;
2421 const uint32_t level_layers =
2422 miptree_layer_range_length(mt, level, start_layer, num_layers);
2423 for (uint32_t a = 0; a < level_layers; a++) {
2424 intel_miptree_prepare_ccs_access(brw, mt, level,
2425 start_layer + a,
2426 aux_usage, fast_clear_supported);
2427 }
2428 }
2429 break;
2430
2431 case ISL_AUX_USAGE_HIZ:
2432 assert(mt->aux_buf);
2433 for (uint32_t l = 0; l < num_levels; l++) {
2434 const uint32_t level = start_level + l;
2435 if (!intel_miptree_level_has_hiz(mt, level))
2436 continue;
2437
2438 const uint32_t level_layers =
2439 miptree_layer_range_length(mt, level, start_layer, num_layers);
2440 for (uint32_t a = 0; a < level_layers; a++) {
2441 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2442 aux_usage, fast_clear_supported);
2443 }
2444 }
2445 break;
2446
2447 default:
2448 unreachable("Invalid aux usage");
2449 }
2450 }
2451
2452 void
2453 intel_miptree_finish_write(struct brw_context *brw,
2454 struct intel_mipmap_tree *mt, uint32_t level,
2455 uint32_t start_layer, uint32_t num_layers,
2456 enum isl_aux_usage aux_usage)
2457 {
2458 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2459
2460 switch (mt->aux_usage) {
2461 case ISL_AUX_USAGE_NONE:
2462 /* Nothing to do */
2463 break;
2464
2465 case ISL_AUX_USAGE_MCS:
2466 assert(mt->aux_buf);
2467 for (uint32_t a = 0; a < num_layers; a++) {
2468 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2469 aux_usage);
2470 }
2471 break;
2472
2473 case ISL_AUX_USAGE_CCS_D:
2474 case ISL_AUX_USAGE_CCS_E:
2475 if (!mt->aux_buf)
2476 return;
2477
2478 for (uint32_t a = 0; a < num_layers; a++) {
2479 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2480 aux_usage);
2481 }
2482 break;
2483
2484 case ISL_AUX_USAGE_HIZ:
2485 if (!intel_miptree_level_has_hiz(mt, level))
2486 return;
2487
2488 for (uint32_t a = 0; a < num_layers; a++) {
2489 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2490 aux_usage);
2491 }
2492 break;
2493
2494 default:
2495 unreachable("Invavlid aux usage");
2496 }
2497 }
2498
2499 enum isl_aux_state
2500 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2501 uint32_t level, uint32_t layer)
2502 {
2503 intel_miptree_check_level_layer(mt, level, layer);
2504
2505 if (_mesa_is_format_color_format(mt->format)) {
2506 assert(mt->aux_buf != NULL);
2507 assert(mt->surf.samples == 1 ||
2508 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2509 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2510 unreachable("Cannot get aux state for stencil");
2511 } else {
2512 assert(intel_miptree_level_has_hiz(mt, level));
2513 }
2514
2515 return mt->aux_state[level][layer];
2516 }
2517
2518 void
2519 intel_miptree_set_aux_state(struct brw_context *brw,
2520 struct intel_mipmap_tree *mt, uint32_t level,
2521 uint32_t start_layer, uint32_t num_layers,
2522 enum isl_aux_state aux_state)
2523 {
2524 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2525
2526 if (_mesa_is_format_color_format(mt->format)) {
2527 assert(mt->aux_buf != NULL);
2528 assert(mt->surf.samples == 1 ||
2529 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2530 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2531 unreachable("Cannot get aux state for stencil");
2532 } else {
2533 assert(intel_miptree_level_has_hiz(mt, level));
2534 }
2535
2536 for (unsigned a = 0; a < num_layers; a++) {
2537 if (mt->aux_state[level][start_layer + a] != aux_state) {
2538 mt->aux_state[level][start_layer + a] = aux_state;
2539 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2540 }
2541 }
2542 }
2543
2544 /* On Gen9 color buffers may be compressed by the hardware (lossless
2545 * compression). There are, however, format restrictions and care needs to be
2546 * taken that the sampler engine is capable for re-interpreting a buffer with
2547 * format different the buffer was originally written with.
2548 *
2549 * For example, SRGB formats are not compressible and the sampler engine isn't
2550 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2551 * color buffer needs to be resolved so that the sampling surface can be
2552 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2553 * set).
2554 */
2555 static bool
2556 can_texture_with_ccs(struct brw_context *brw,
2557 struct intel_mipmap_tree *mt,
2558 enum isl_format view_format)
2559 {
2560 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2561 return false;
2562
2563 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2564 mt, view_format)) {
2565 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2566 isl_format_get_layout(view_format)->name,
2567 _mesa_get_format_name(mt->format));
2568 return false;
2569 }
2570
2571 return true;
2572 }
2573
2574 enum isl_aux_usage
2575 intel_miptree_texture_aux_usage(struct brw_context *brw,
2576 struct intel_mipmap_tree *mt,
2577 enum isl_format view_format)
2578 {
2579 switch (mt->aux_usage) {
2580 case ISL_AUX_USAGE_HIZ:
2581 if (intel_miptree_sample_with_hiz(brw, mt))
2582 return ISL_AUX_USAGE_HIZ;
2583 break;
2584
2585 case ISL_AUX_USAGE_MCS:
2586 return ISL_AUX_USAGE_MCS;
2587
2588 case ISL_AUX_USAGE_CCS_D:
2589 case ISL_AUX_USAGE_CCS_E:
2590 if (!mt->aux_buf) {
2591 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2592 return ISL_AUX_USAGE_NONE;
2593 }
2594
2595 /* If we don't have any unresolved color, report an aux usage of
2596 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2597 * aux surface and we can save some bandwidth.
2598 */
2599 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2600 0, INTEL_REMAINING_LAYERS))
2601 return ISL_AUX_USAGE_NONE;
2602
2603 if (can_texture_with_ccs(brw, mt, view_format))
2604 return ISL_AUX_USAGE_CCS_E;
2605 break;
2606
2607 default:
2608 break;
2609 }
2610
2611 return ISL_AUX_USAGE_NONE;
2612 }
2613
2614 static bool
2615 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2616 {
2617 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2618 * values so sRGB curve application was a no-op for all fast-clearable
2619 * formats.
2620 *
2621 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2622 * values, the hardware interprets the floats, not as what would be
2623 * returned from the sampler (or written by the shader), but as being
2624 * between format conversion and sRGB curve application. This means that
2625 * we can switch between sRGB and UNORM without having to whack the clear
2626 * color.
2627 */
2628 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2629 }
2630
2631 void
2632 intel_miptree_prepare_texture(struct brw_context *brw,
2633 struct intel_mipmap_tree *mt,
2634 enum isl_format view_format,
2635 uint32_t start_level, uint32_t num_levels,
2636 uint32_t start_layer, uint32_t num_layers)
2637 {
2638 enum isl_aux_usage aux_usage =
2639 intel_miptree_texture_aux_usage(brw, mt, view_format);
2640 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2641
2642 /* Clear color is specified as ints or floats and the conversion is done by
2643 * the sampler. If we have a texture view, we would have to perform the
2644 * clear color conversion manually. Just disable clear color.
2645 */
2646 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2647 clear_supported = false;
2648
2649 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2650 start_layer, num_layers,
2651 aux_usage, clear_supported);
2652 }
2653
2654 void
2655 intel_miptree_prepare_image(struct brw_context *brw,
2656 struct intel_mipmap_tree *mt)
2657 {
2658 /* The data port doesn't understand any compression */
2659 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2660 0, INTEL_REMAINING_LAYERS,
2661 ISL_AUX_USAGE_NONE, false);
2662 }
2663
2664 enum isl_aux_usage
2665 intel_miptree_render_aux_usage(struct brw_context *brw,
2666 struct intel_mipmap_tree *mt,
2667 enum isl_format render_format,
2668 bool blend_enabled,
2669 bool draw_aux_disabled)
2670 {
2671 struct gen_device_info *devinfo = &brw->screen->devinfo;
2672
2673 if (draw_aux_disabled)
2674 return ISL_AUX_USAGE_NONE;
2675
2676 switch (mt->aux_usage) {
2677 case ISL_AUX_USAGE_MCS:
2678 assert(mt->aux_buf);
2679 return ISL_AUX_USAGE_MCS;
2680
2681 case ISL_AUX_USAGE_CCS_D:
2682 case ISL_AUX_USAGE_CCS_E:
2683 if (!mt->aux_buf) {
2684 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2685 return ISL_AUX_USAGE_NONE;
2686 }
2687
2688 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2689 * formats. However, there are issues with blending where it doesn't
2690 * properly apply the sRGB curve to the clear color when blending.
2691 */
2692 if (devinfo->gen >= 9 && blend_enabled &&
2693 isl_format_is_srgb(render_format) &&
2694 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2695 return ISL_AUX_USAGE_NONE;
2696
2697 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2698 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2699 mt, render_format))
2700 return ISL_AUX_USAGE_CCS_E;
2701
2702 /* Otherwise, we have to fall back to CCS_D */
2703 return ISL_AUX_USAGE_CCS_D;
2704
2705 default:
2706 return ISL_AUX_USAGE_NONE;
2707 }
2708 }
2709
2710 void
2711 intel_miptree_prepare_render(struct brw_context *brw,
2712 struct intel_mipmap_tree *mt, uint32_t level,
2713 uint32_t start_layer, uint32_t layer_count,
2714 enum isl_aux_usage aux_usage)
2715 {
2716 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2717 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2718 }
2719
2720 void
2721 intel_miptree_finish_render(struct brw_context *brw,
2722 struct intel_mipmap_tree *mt, uint32_t level,
2723 uint32_t start_layer, uint32_t layer_count,
2724 enum isl_aux_usage aux_usage)
2725 {
2726 assert(_mesa_is_format_color_format(mt->format));
2727
2728 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2729 aux_usage);
2730 }
2731
2732 void
2733 intel_miptree_prepare_depth(struct brw_context *brw,
2734 struct intel_mipmap_tree *mt, uint32_t level,
2735 uint32_t start_layer, uint32_t layer_count)
2736 {
2737 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2738 mt->aux_usage, mt->aux_buf != NULL);
2739 }
2740
2741 void
2742 intel_miptree_finish_depth(struct brw_context *brw,
2743 struct intel_mipmap_tree *mt, uint32_t level,
2744 uint32_t start_layer, uint32_t layer_count,
2745 bool depth_written)
2746 {
2747 if (depth_written) {
2748 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2749 mt->aux_buf != NULL);
2750 }
2751 }
2752
2753 void
2754 intel_miptree_prepare_external(struct brw_context *brw,
2755 struct intel_mipmap_tree *mt)
2756 {
2757 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2758 bool supports_fast_clear = false;
2759
2760 const struct isl_drm_modifier_info *mod_info =
2761 isl_drm_modifier_get_info(mt->drm_modifier);
2762
2763 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2764 /* CCS_E is the only supported aux for external images and it's only
2765 * supported on very simple images.
2766 */
2767 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2768 assert(_mesa_is_format_color_format(mt->format));
2769 assert(mt->first_level == 0 && mt->last_level == 0);
2770 assert(mt->surf.logical_level0_px.depth == 1);
2771 assert(mt->surf.logical_level0_px.array_len == 1);
2772 assert(mt->surf.samples == 1);
2773 assert(mt->aux_buf != NULL);
2774
2775 aux_usage = mod_info->aux_usage;
2776 supports_fast_clear = mod_info->supports_clear_color;
2777 }
2778
2779 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2780 0, INTEL_REMAINING_LAYERS,
2781 aux_usage, supports_fast_clear);
2782 }
2783
2784 void
2785 intel_miptree_finish_external(struct brw_context *brw,
2786 struct intel_mipmap_tree *mt)
2787 {
2788 if (!mt->aux_buf)
2789 return;
2790
2791 /* We don't know the actual aux state of the aux surface. The previous
2792 * owner could have given it to us in a number of different states.
2793 * Because we don't know the aux state, we reset the aux state to the
2794 * least common denominator of possible valid states.
2795 */
2796 enum isl_aux_state default_aux_state =
2797 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2798 assert(mt->last_level == mt->first_level);
2799 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2800 default_aux_state);
2801 }
2802
2803 /**
2804 * Make it possible to share the BO backing the given miptree with another
2805 * process or another miptree.
2806 *
2807 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2808 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2809 * ensure that no MCS buffer gets allocated in the future.
2810 *
2811 * HiZ is similarly unsafe with shared buffers.
2812 */
2813 void
2814 intel_miptree_make_shareable(struct brw_context *brw,
2815 struct intel_mipmap_tree *mt)
2816 {
2817 /* MCS buffers are also used for multisample buffers, but we can't resolve
2818 * away a multisample MCS buffer because it's an integral part of how the
2819 * pixel data is stored. Fortunately this code path should never be
2820 * reached for multisample buffers.
2821 */
2822 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2823 mt->surf.samples == 1);
2824
2825 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2826 0, INTEL_REMAINING_LAYERS,
2827 ISL_AUX_USAGE_NONE, false);
2828
2829 if (mt->aux_buf) {
2830 intel_miptree_aux_buffer_free(mt->aux_buf);
2831 mt->aux_buf = NULL;
2832
2833 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2834 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2835 mt->level[l].has_hiz = false;
2836 }
2837
2838 free(mt->aux_state);
2839 mt->aux_state = NULL;
2840 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2841 }
2842
2843 mt->aux_usage = ISL_AUX_USAGE_NONE;
2844 mt->supports_fast_clear = false;
2845 }
2846
2847
2848 /**
2849 * \brief Get pointer offset into stencil buffer.
2850 *
2851 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2852 * must decode the tile's layout in software.
2853 *
2854 * See
2855 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2856 * Format.
2857 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2858 *
2859 * Even though the returned offset is always positive, the return type is
2860 * signed due to
2861 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2862 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2863 */
2864 static intptr_t
2865 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2866 {
2867 uint32_t tile_size = 4096;
2868 uint32_t tile_width = 64;
2869 uint32_t tile_height = 64;
2870 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2871
2872 uint32_t tile_x = x / tile_width;
2873 uint32_t tile_y = y / tile_height;
2874
2875 /* The byte's address relative to the tile's base addres. */
2876 uint32_t byte_x = x % tile_width;
2877 uint32_t byte_y = y % tile_height;
2878
2879 uintptr_t u = tile_y * row_size
2880 + tile_x * tile_size
2881 + 512 * (byte_x / 8)
2882 + 64 * (byte_y / 8)
2883 + 32 * ((byte_y / 4) % 2)
2884 + 16 * ((byte_x / 4) % 2)
2885 + 8 * ((byte_y / 2) % 2)
2886 + 4 * ((byte_x / 2) % 2)
2887 + 2 * (byte_y % 2)
2888 + 1 * (byte_x % 2);
2889
2890 if (swizzled) {
2891 /* adjust for bit6 swizzling */
2892 if (((byte_x / 8) % 2) == 1) {
2893 if (((byte_y / 8) % 2) == 0) {
2894 u += 64;
2895 } else {
2896 u -= 64;
2897 }
2898 }
2899 }
2900
2901 return u;
2902 }
2903
2904 void
2905 intel_miptree_updownsample(struct brw_context *brw,
2906 struct intel_mipmap_tree *src,
2907 struct intel_mipmap_tree *dst)
2908 {
2909 unsigned src_w = src->surf.logical_level0_px.width;
2910 unsigned src_h = src->surf.logical_level0_px.height;
2911 unsigned dst_w = dst->surf.logical_level0_px.width;
2912 unsigned dst_h = dst->surf.logical_level0_px.height;
2913
2914 brw_blorp_blit_miptrees(brw,
2915 src, 0 /* level */, 0 /* layer */,
2916 src->format, SWIZZLE_XYZW,
2917 dst, 0 /* level */, 0 /* layer */, dst->format,
2918 0, 0, src_w, src_h,
2919 0, 0, dst_w, dst_h,
2920 GL_NEAREST, false, false /*mirror x, y*/,
2921 false, false);
2922
2923 if (src->stencil_mt) {
2924 src_w = src->stencil_mt->surf.logical_level0_px.width;
2925 src_h = src->stencil_mt->surf.logical_level0_px.height;
2926 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2927 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2928
2929 brw_blorp_blit_miptrees(brw,
2930 src->stencil_mt, 0 /* level */, 0 /* layer */,
2931 src->stencil_mt->format, SWIZZLE_XYZW,
2932 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2933 dst->stencil_mt->format,
2934 0, 0, src_w, src_h,
2935 0, 0, dst_w, dst_h,
2936 GL_NEAREST, false, false /*mirror x, y*/,
2937 false, false /* decode/encode srgb */);
2938 }
2939 }
2940
2941 void
2942 intel_update_r8stencil(struct brw_context *brw,
2943 struct intel_mipmap_tree *mt)
2944 {
2945 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2946
2947 assert(devinfo->gen >= 7);
2948 struct intel_mipmap_tree *src =
2949 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2950 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2951 return;
2952
2953 assert(src->surf.size > 0);
2954
2955 if (!mt->r8stencil_mt) {
2956 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2957 mt->r8stencil_mt = make_surface(
2958 brw,
2959 src->target,
2960 MESA_FORMAT_R_UINT8,
2961 src->first_level, src->last_level,
2962 src->surf.logical_level0_px.width,
2963 src->surf.logical_level0_px.height,
2964 src->surf.dim == ISL_SURF_DIM_3D ?
2965 src->surf.logical_level0_px.depth :
2966 src->surf.logical_level0_px.array_len,
2967 src->surf.samples,
2968 ISL_TILING_Y0_BIT,
2969 ISL_SURF_USAGE_TEXTURE_BIT,
2970 BO_ALLOC_BUSY, 0, NULL);
2971 assert(mt->r8stencil_mt);
2972 }
2973
2974 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2975
2976 for (int level = src->first_level; level <= src->last_level; level++) {
2977 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2978 minify(src->surf.phys_level0_sa.depth, level) :
2979 src->surf.phys_level0_sa.array_len;
2980
2981 for (unsigned layer = 0; layer < depth; layer++) {
2982 brw_blorp_copy_miptrees(brw,
2983 src, level, layer,
2984 dst, level, layer,
2985 0, 0, 0, 0,
2986 minify(src->surf.logical_level0_px.width,
2987 level),
2988 minify(src->surf.logical_level0_px.height,
2989 level));
2990 }
2991 }
2992
2993 brw_cache_flush_for_read(brw, dst->bo);
2994 src->r8stencil_needs_update = false;
2995 }
2996
2997 static void *
2998 intel_miptree_map_raw(struct brw_context *brw,
2999 struct intel_mipmap_tree *mt,
3000 GLbitfield mode)
3001 {
3002 struct brw_bo *bo = mt->bo;
3003
3004 if (brw_batch_references(&brw->batch, bo))
3005 intel_batchbuffer_flush(brw);
3006
3007 return brw_bo_map(brw, bo, mode);
3008 }
3009
3010 static void
3011 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3012 {
3013 brw_bo_unmap(mt->bo);
3014 }
3015
3016 static void
3017 intel_miptree_unmap_gtt(struct brw_context *brw,
3018 struct intel_mipmap_tree *mt,
3019 struct intel_miptree_map *map,
3020 unsigned int level, unsigned int slice)
3021 {
3022 intel_miptree_unmap_raw(mt);
3023 }
3024
3025 static void
3026 intel_miptree_map_gtt(struct brw_context *brw,
3027 struct intel_mipmap_tree *mt,
3028 struct intel_miptree_map *map,
3029 unsigned int level, unsigned int slice)
3030 {
3031 unsigned int bw, bh;
3032 void *base;
3033 unsigned int image_x, image_y;
3034 intptr_t x = map->x;
3035 intptr_t y = map->y;
3036
3037 /* For compressed formats, the stride is the number of bytes per
3038 * row of blocks. intel_miptree_get_image_offset() already does
3039 * the divide.
3040 */
3041 _mesa_get_format_block_size(mt->format, &bw, &bh);
3042 assert(y % bh == 0);
3043 assert(x % bw == 0);
3044 y /= bh;
3045 x /= bw;
3046
3047 base = intel_miptree_map_raw(brw, mt, map->mode);
3048
3049 if (base == NULL)
3050 map->ptr = NULL;
3051 else {
3052 base += mt->offset;
3053
3054 /* Note that in the case of cube maps, the caller must have passed the
3055 * slice number referencing the face.
3056 */
3057 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3058 x += image_x;
3059 y += image_y;
3060
3061 map->stride = mt->surf.row_pitch;
3062 map->ptr = base + y * map->stride + x * mt->cpp;
3063 }
3064
3065 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3066 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3067 map->x, map->y, map->w, map->h,
3068 mt, _mesa_get_format_name(mt->format),
3069 x, y, map->ptr, map->stride);
3070
3071 map->unmap = intel_miptree_unmap_gtt;
3072 }
3073
3074 static void
3075 intel_miptree_unmap_blit(struct brw_context *brw,
3076 struct intel_mipmap_tree *mt,
3077 struct intel_miptree_map *map,
3078 unsigned int level,
3079 unsigned int slice)
3080 {
3081 struct gl_context *ctx = &brw->ctx;
3082
3083 intel_miptree_unmap_raw(map->linear_mt);
3084
3085 if (map->mode & GL_MAP_WRITE_BIT) {
3086 bool ok = intel_miptree_copy(brw,
3087 map->linear_mt, 0, 0, 0, 0,
3088 mt, level, slice, map->x, map->y,
3089 map->w, map->h);
3090 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3091 }
3092
3093 intel_miptree_release(&map->linear_mt);
3094 }
3095
3096 static void
3097 intel_miptree_map_blit(struct brw_context *brw,
3098 struct intel_mipmap_tree *mt,
3099 struct intel_miptree_map *map,
3100 unsigned int level, unsigned int slice)
3101 {
3102 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3103 /* first_level */ 0,
3104 /* last_level */ 0,
3105 map->w, map->h, 1,
3106 /* samples */ 1,
3107 MIPTREE_CREATE_LINEAR);
3108
3109 if (!map->linear_mt) {
3110 fprintf(stderr, "Failed to allocate blit temporary\n");
3111 goto fail;
3112 }
3113 map->stride = map->linear_mt->surf.row_pitch;
3114
3115 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3116 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3117 * invalidate is set, since we'll be writing the whole rectangle from our
3118 * temporary buffer back out.
3119 */
3120 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3121 if (!intel_miptree_copy(brw,
3122 mt, level, slice, map->x, map->y,
3123 map->linear_mt, 0, 0, 0, 0,
3124 map->w, map->h)) {
3125 fprintf(stderr, "Failed to blit\n");
3126 goto fail;
3127 }
3128 }
3129
3130 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3131
3132 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3133 map->x, map->y, map->w, map->h,
3134 mt, _mesa_get_format_name(mt->format),
3135 level, slice, map->ptr, map->stride);
3136
3137 map->unmap = intel_miptree_unmap_blit;
3138 return;
3139
3140 fail:
3141 intel_miptree_release(&map->linear_mt);
3142 map->ptr = NULL;
3143 map->stride = 0;
3144 }
3145
3146 /**
3147 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3148 */
3149 #if defined(USE_SSE41)
3150 static void
3151 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3152 struct intel_mipmap_tree *mt,
3153 struct intel_miptree_map *map,
3154 unsigned int level,
3155 unsigned int slice)
3156 {
3157 _mesa_align_free(map->buffer);
3158 map->buffer = NULL;
3159 map->ptr = NULL;
3160 }
3161
3162 static void
3163 intel_miptree_map_movntdqa(struct brw_context *brw,
3164 struct intel_mipmap_tree *mt,
3165 struct intel_miptree_map *map,
3166 unsigned int level, unsigned int slice)
3167 {
3168 assert(map->mode & GL_MAP_READ_BIT);
3169 assert(!(map->mode & GL_MAP_WRITE_BIT));
3170
3171 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3172 map->x, map->y, map->w, map->h,
3173 mt, _mesa_get_format_name(mt->format),
3174 level, slice, map->ptr, map->stride);
3175
3176 /* Map the original image */
3177 uint32_t image_x;
3178 uint32_t image_y;
3179 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3180 image_x += map->x;
3181 image_y += map->y;
3182
3183 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3184 if (!src)
3185 return;
3186
3187 src += mt->offset;
3188
3189 src += image_y * mt->surf.row_pitch;
3190 src += image_x * mt->cpp;
3191
3192 /* Due to the pixel offsets for the particular image being mapped, our
3193 * src pointer may not be 16-byte aligned. However, if the pitch is
3194 * divisible by 16, then the amount by which it's misaligned will remain
3195 * consistent from row to row.
3196 */
3197 assert((mt->surf.row_pitch % 16) == 0);
3198 const int misalignment = ((uintptr_t) src) & 15;
3199
3200 /* Create an untiled temporary buffer for the mapping. */
3201 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3202
3203 map->stride = ALIGN(misalignment + width_bytes, 16);
3204
3205 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3206 /* Offset the destination so it has the same misalignment as src. */
3207 map->ptr = map->buffer + misalignment;
3208
3209 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3210
3211 for (uint32_t y = 0; y < map->h; y++) {
3212 void *dst_ptr = map->ptr + y * map->stride;
3213 void *src_ptr = src + y * mt->surf.row_pitch;
3214
3215 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3216 }
3217
3218 intel_miptree_unmap_raw(mt);
3219
3220 map->unmap = intel_miptree_unmap_movntdqa;
3221 }
3222 #endif
3223
3224 static void
3225 intel_miptree_unmap_s8(struct brw_context *brw,
3226 struct intel_mipmap_tree *mt,
3227 struct intel_miptree_map *map,
3228 unsigned int level,
3229 unsigned int slice)
3230 {
3231 if (map->mode & GL_MAP_WRITE_BIT) {
3232 unsigned int image_x, image_y;
3233 uint8_t *untiled_s8_map = map->ptr;
3234 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3235
3236 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3237
3238 for (uint32_t y = 0; y < map->h; y++) {
3239 for (uint32_t x = 0; x < map->w; x++) {
3240 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3241 image_x + x + map->x,
3242 image_y + y + map->y,
3243 brw->has_swizzling);
3244 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3245 }
3246 }
3247
3248 intel_miptree_unmap_raw(mt);
3249 }
3250
3251 free(map->buffer);
3252 }
3253
3254 static void
3255 intel_miptree_map_s8(struct brw_context *brw,
3256 struct intel_mipmap_tree *mt,
3257 struct intel_miptree_map *map,
3258 unsigned int level, unsigned int slice)
3259 {
3260 map->stride = map->w;
3261 map->buffer = map->ptr = malloc(map->stride * map->h);
3262 if (!map->buffer)
3263 return;
3264
3265 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3266 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3267 * invalidate is set, since we'll be writing the whole rectangle from our
3268 * temporary buffer back out.
3269 */
3270 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3271 uint8_t *untiled_s8_map = map->ptr;
3272 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3273 unsigned int image_x, image_y;
3274
3275 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3276
3277 for (uint32_t y = 0; y < map->h; y++) {
3278 for (uint32_t x = 0; x < map->w; x++) {
3279 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3280 x + image_x + map->x,
3281 y + image_y + map->y,
3282 brw->has_swizzling);
3283 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3284 }
3285 }
3286
3287 intel_miptree_unmap_raw(mt);
3288
3289 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3290 map->x, map->y, map->w, map->h,
3291 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3292 } else {
3293 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3294 map->x, map->y, map->w, map->h,
3295 mt, map->ptr, map->stride);
3296 }
3297
3298 map->unmap = intel_miptree_unmap_s8;
3299 }
3300
3301 static void
3302 intel_miptree_unmap_etc(struct brw_context *brw,
3303 struct intel_mipmap_tree *mt,
3304 struct intel_miptree_map *map,
3305 unsigned int level,
3306 unsigned int slice)
3307 {
3308 uint32_t image_x;
3309 uint32_t image_y;
3310 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3311
3312 image_x += map->x;
3313 image_y += map->y;
3314
3315 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3316 + image_y * mt->surf.row_pitch
3317 + image_x * mt->cpp;
3318
3319 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3320 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3321 map->ptr, map->stride,
3322 map->w, map->h);
3323 else
3324 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3325 map->ptr, map->stride,
3326 map->w, map->h, mt->etc_format);
3327
3328 intel_miptree_unmap_raw(mt);
3329 free(map->buffer);
3330 }
3331
3332 static void
3333 intel_miptree_map_etc(struct brw_context *brw,
3334 struct intel_mipmap_tree *mt,
3335 struct intel_miptree_map *map,
3336 unsigned int level,
3337 unsigned int slice)
3338 {
3339 assert(mt->etc_format != MESA_FORMAT_NONE);
3340 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3341 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3342 }
3343
3344 assert(map->mode & GL_MAP_WRITE_BIT);
3345 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3346
3347 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3348 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3349 map->w, map->h, 1));
3350 map->ptr = map->buffer;
3351 map->unmap = intel_miptree_unmap_etc;
3352 }
3353
3354 /**
3355 * Mapping functions for packed depth/stencil miptrees backed by real separate
3356 * miptrees for depth and stencil.
3357 *
3358 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3359 * separate from the depth buffer. Yet at the GL API level, we have to expose
3360 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3361 * be able to map that memory for texture storage and glReadPixels-type
3362 * operations. We give Mesa core that access by mallocing a temporary and
3363 * copying the data between the actual backing store and the temporary.
3364 */
3365 static void
3366 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3367 struct intel_mipmap_tree *mt,
3368 struct intel_miptree_map *map,
3369 unsigned int level,
3370 unsigned int slice)
3371 {
3372 struct intel_mipmap_tree *z_mt = mt;
3373 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3374 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3375
3376 if (map->mode & GL_MAP_WRITE_BIT) {
3377 uint32_t *packed_map = map->ptr;
3378 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3379 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3380 unsigned int s_image_x, s_image_y;
3381 unsigned int z_image_x, z_image_y;
3382
3383 intel_miptree_get_image_offset(s_mt, level, slice,
3384 &s_image_x, &s_image_y);
3385 intel_miptree_get_image_offset(z_mt, level, slice,
3386 &z_image_x, &z_image_y);
3387
3388 for (uint32_t y = 0; y < map->h; y++) {
3389 for (uint32_t x = 0; x < map->w; x++) {
3390 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3391 x + s_image_x + map->x,
3392 y + s_image_y + map->y,
3393 brw->has_swizzling);
3394 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3395 (z_mt->surf.row_pitch / 4) +
3396 (x + z_image_x + map->x));
3397
3398 if (map_z32f_x24s8) {
3399 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3400 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3401 } else {
3402 uint32_t packed = packed_map[y * map->w + x];
3403 s_map[s_offset] = packed >> 24;
3404 z_map[z_offset] = packed;
3405 }
3406 }
3407 }
3408
3409 intel_miptree_unmap_raw(s_mt);
3410 intel_miptree_unmap_raw(z_mt);
3411
3412 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3413 __func__,
3414 map->x, map->y, map->w, map->h,
3415 z_mt, _mesa_get_format_name(z_mt->format),
3416 map->x + z_image_x, map->y + z_image_y,
3417 s_mt, map->x + s_image_x, map->y + s_image_y,
3418 map->ptr, map->stride);
3419 }
3420
3421 free(map->buffer);
3422 }
3423
3424 static void
3425 intel_miptree_map_depthstencil(struct brw_context *brw,
3426 struct intel_mipmap_tree *mt,
3427 struct intel_miptree_map *map,
3428 unsigned int level, unsigned int slice)
3429 {
3430 struct intel_mipmap_tree *z_mt = mt;
3431 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3432 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3433 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3434
3435 map->stride = map->w * packed_bpp;
3436 map->buffer = map->ptr = malloc(map->stride * map->h);
3437 if (!map->buffer)
3438 return;
3439
3440 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3441 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3442 * invalidate is set, since we'll be writing the whole rectangle from our
3443 * temporary buffer back out.
3444 */
3445 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3446 uint32_t *packed_map = map->ptr;
3447 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3448 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3449 unsigned int s_image_x, s_image_y;
3450 unsigned int z_image_x, z_image_y;
3451
3452 intel_miptree_get_image_offset(s_mt, level, slice,
3453 &s_image_x, &s_image_y);
3454 intel_miptree_get_image_offset(z_mt, level, slice,
3455 &z_image_x, &z_image_y);
3456
3457 for (uint32_t y = 0; y < map->h; y++) {
3458 for (uint32_t x = 0; x < map->w; x++) {
3459 int map_x = map->x + x, map_y = map->y + y;
3460 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3461 map_x + s_image_x,
3462 map_y + s_image_y,
3463 brw->has_swizzling);
3464 ptrdiff_t z_offset = ((map_y + z_image_y) *
3465 (z_mt->surf.row_pitch / 4) +
3466 (map_x + z_image_x));
3467 uint8_t s = s_map[s_offset];
3468 uint32_t z = z_map[z_offset];
3469
3470 if (map_z32f_x24s8) {
3471 packed_map[(y * map->w + x) * 2 + 0] = z;
3472 packed_map[(y * map->w + x) * 2 + 1] = s;
3473 } else {
3474 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3475 }
3476 }
3477 }
3478
3479 intel_miptree_unmap_raw(s_mt);
3480 intel_miptree_unmap_raw(z_mt);
3481
3482 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3483 __func__,
3484 map->x, map->y, map->w, map->h,
3485 z_mt, map->x + z_image_x, map->y + z_image_y,
3486 s_mt, map->x + s_image_x, map->y + s_image_y,
3487 map->ptr, map->stride);
3488 } else {
3489 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3490 map->x, map->y, map->w, map->h,
3491 mt, map->ptr, map->stride);
3492 }
3493
3494 map->unmap = intel_miptree_unmap_depthstencil;
3495 }
3496
3497 /**
3498 * Create and attach a map to the miptree at (level, slice). Return the
3499 * attached map.
3500 */
3501 static struct intel_miptree_map*
3502 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3503 unsigned int level,
3504 unsigned int slice,
3505 unsigned int x,
3506 unsigned int y,
3507 unsigned int w,
3508 unsigned int h,
3509 GLbitfield mode)
3510 {
3511 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3512
3513 if (!map)
3514 return NULL;
3515
3516 assert(mt->level[level].slice[slice].map == NULL);
3517 mt->level[level].slice[slice].map = map;
3518
3519 map->mode = mode;
3520 map->x = x;
3521 map->y = y;
3522 map->w = w;
3523 map->h = h;
3524
3525 return map;
3526 }
3527
3528 /**
3529 * Release the map at (level, slice).
3530 */
3531 static void
3532 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3533 unsigned int level,
3534 unsigned int slice)
3535 {
3536 struct intel_miptree_map **map;
3537
3538 map = &mt->level[level].slice[slice].map;
3539 free(*map);
3540 *map = NULL;
3541 }
3542
3543 static bool
3544 can_blit_slice(struct intel_mipmap_tree *mt,
3545 unsigned int level, unsigned int slice)
3546 {
3547 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3548 if (mt->surf.row_pitch >= 32768)
3549 return false;
3550
3551 return true;
3552 }
3553
3554 static bool
3555 use_intel_mipree_map_blit(struct brw_context *brw,
3556 struct intel_mipmap_tree *mt,
3557 GLbitfield mode,
3558 unsigned int level,
3559 unsigned int slice)
3560 {
3561 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3562
3563 if (devinfo->has_llc &&
3564 /* It's probably not worth swapping to the blit ring because of
3565 * all the overhead involved.
3566 */
3567 !(mode & GL_MAP_WRITE_BIT) &&
3568 !mt->compressed &&
3569 (mt->surf.tiling == ISL_TILING_X ||
3570 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3571 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3572 /* Fast copy blit on skl+ supports all tiling formats. */
3573 devinfo->gen >= 9) &&
3574 can_blit_slice(mt, level, slice))
3575 return true;
3576
3577 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3578 mt->bo->size >= brw->max_gtt_map_object_size) {
3579 assert(can_blit_slice(mt, level, slice));
3580 return true;
3581 }
3582
3583 return false;
3584 }
3585
3586 /**
3587 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3588 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3589 * arithmetic overflow.
3590 *
3591 * If you call this function and use \a out_stride, then you're doing pointer
3592 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3593 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3594 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3595 * which usually have type uint32_t or GLuint.
3596 */
3597 void
3598 intel_miptree_map(struct brw_context *brw,
3599 struct intel_mipmap_tree *mt,
3600 unsigned int level,
3601 unsigned int slice,
3602 unsigned int x,
3603 unsigned int y,
3604 unsigned int w,
3605 unsigned int h,
3606 GLbitfield mode,
3607 void **out_ptr,
3608 ptrdiff_t *out_stride)
3609 {
3610 struct intel_miptree_map *map;
3611
3612 assert(mt->surf.samples == 1);
3613
3614 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3615 if (!map){
3616 *out_ptr = NULL;
3617 *out_stride = 0;
3618 return;
3619 }
3620
3621 intel_miptree_access_raw(brw, mt, level, slice,
3622 map->mode & GL_MAP_WRITE_BIT);
3623
3624 if (mt->format == MESA_FORMAT_S_UINT8) {
3625 intel_miptree_map_s8(brw, mt, map, level, slice);
3626 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3627 !(mode & BRW_MAP_DIRECT_BIT)) {
3628 intel_miptree_map_etc(brw, mt, map, level, slice);
3629 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3630 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3631 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3632 intel_miptree_map_blit(brw, mt, map, level, slice);
3633 #if defined(USE_SSE41)
3634 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3635 !mt->compressed && cpu_has_sse4_1 &&
3636 (mt->surf.row_pitch % 16 == 0)) {
3637 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3638 #endif
3639 } else {
3640 intel_miptree_map_gtt(brw, mt, map, level, slice);
3641 }
3642
3643 *out_ptr = map->ptr;
3644 *out_stride = map->stride;
3645
3646 if (map->ptr == NULL)
3647 intel_miptree_release_map(mt, level, slice);
3648 }
3649
3650 void
3651 intel_miptree_unmap(struct brw_context *brw,
3652 struct intel_mipmap_tree *mt,
3653 unsigned int level,
3654 unsigned int slice)
3655 {
3656 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3657
3658 assert(mt->surf.samples == 1);
3659
3660 if (!map)
3661 return;
3662
3663 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3664 mt, _mesa_get_format_name(mt->format), level, slice);
3665
3666 if (map->unmap)
3667 map->unmap(brw, mt, map, level, slice);
3668
3669 intel_miptree_release_map(mt, level, slice);
3670 }
3671
3672 enum isl_surf_dim
3673 get_isl_surf_dim(GLenum target)
3674 {
3675 switch (target) {
3676 case GL_TEXTURE_1D:
3677 case GL_TEXTURE_1D_ARRAY:
3678 return ISL_SURF_DIM_1D;
3679
3680 case GL_TEXTURE_2D:
3681 case GL_TEXTURE_2D_ARRAY:
3682 case GL_TEXTURE_RECTANGLE:
3683 case GL_TEXTURE_CUBE_MAP:
3684 case GL_TEXTURE_CUBE_MAP_ARRAY:
3685 case GL_TEXTURE_2D_MULTISAMPLE:
3686 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3687 case GL_TEXTURE_EXTERNAL_OES:
3688 return ISL_SURF_DIM_2D;
3689
3690 case GL_TEXTURE_3D:
3691 return ISL_SURF_DIM_3D;
3692 }
3693
3694 unreachable("Invalid texture target");
3695 }
3696
3697 enum isl_dim_layout
3698 get_isl_dim_layout(const struct gen_device_info *devinfo,
3699 enum isl_tiling tiling, GLenum target)
3700 {
3701 switch (target) {
3702 case GL_TEXTURE_1D:
3703 case GL_TEXTURE_1D_ARRAY:
3704 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3705 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3706
3707 case GL_TEXTURE_2D:
3708 case GL_TEXTURE_2D_ARRAY:
3709 case GL_TEXTURE_RECTANGLE:
3710 case GL_TEXTURE_2D_MULTISAMPLE:
3711 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3712 case GL_TEXTURE_EXTERNAL_OES:
3713 return ISL_DIM_LAYOUT_GEN4_2D;
3714
3715 case GL_TEXTURE_CUBE_MAP:
3716 case GL_TEXTURE_CUBE_MAP_ARRAY:
3717 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3718 ISL_DIM_LAYOUT_GEN4_2D);
3719
3720 case GL_TEXTURE_3D:
3721 return (devinfo->gen >= 9 ?
3722 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3723 }
3724
3725 unreachable("Invalid texture target");
3726 }
3727
3728 bool
3729 intel_miptree_set_clear_color(struct brw_context *brw,
3730 struct intel_mipmap_tree *mt,
3731 union isl_color_value clear_color)
3732 {
3733 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3734 mt->fast_clear_color = clear_color;
3735 if (mt->aux_buf->clear_color_bo) {
3736 /* We can't update the clear color while the hardware is still using
3737 * the previous one for a resolve or sampling from it. Make sure that
3738 * there are no pending commands at this point.
3739 */
3740 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3741 for (int i = 0; i < 4; i++) {
3742 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3743 mt->aux_buf->clear_color_offset + i * 4,
3744 mt->fast_clear_color.u32[i]);
3745 }
3746 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3747 }
3748 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3749 return true;
3750 }
3751 return false;
3752 }
3753
3754 union isl_color_value
3755 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3756 const struct intel_mipmap_tree *mt,
3757 enum isl_format view_format, bool sampling,
3758 struct brw_bo **clear_color_bo,
3759 uint32_t *clear_color_offset)
3760 {
3761 assert(mt->aux_buf);
3762
3763 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3764 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3765 * we switch to using the inline clear color and do the sRGB color
3766 * conversion process defined in the OpenGL spec. The red, green, and
3767 * blue channels take part in gamma correction, while the alpha channel
3768 * is unchanged.
3769 */
3770 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3771 for (unsigned i = 0; i < 3; i++) {
3772 srgb_decoded_value.f32[i] =
3773 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3774 }
3775 *clear_color_bo = 0;
3776 *clear_color_offset = 0;
3777 return srgb_decoded_value;
3778 } else {
3779 *clear_color_bo = mt->aux_buf->clear_color_bo;
3780 *clear_color_offset = mt->aux_buf->clear_color_offset;
3781 return mt->fast_clear_color;
3782 }
3783 }