i965/miptree: Set supports_fast_clear = false in make_shareable
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_image.h"
31 #include "intel_mipmap_tree.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt,
53 GLbitfield mode);
54
55 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
56
57 static bool
58 intel_miptree_alloc_aux(struct brw_context *brw,
59 struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 /* MCS compression only applies to multisampled miptrees */
66 if (mt->surf.samples <= 1)
67 return false;
68
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return false;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(mt->format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return false;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
92 return false;
93 } else {
94 return true;
95 }
96 }
97 }
98
99 static bool
100 intel_tiling_supports_ccs(const struct brw_context *brw,
101 enum isl_tiling tiling)
102 {
103 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
104 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
105 *
106 * - Support is limited to tiled render targets.
107 *
108 * Gen9 changes the restriction to Y-tile only.
109 */
110 if (brw->gen >= 9)
111 return tiling == ISL_TILING_Y0;
112 else if (brw->gen >= 7)
113 return tiling != ISL_TILING_LINEAR;
114 else
115 return false;
116 }
117
118 /**
119 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
120 * can be used. This doesn't (and should not) inspect any of the properties of
121 * the miptree's BO.
122 *
123 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
124 * beneath the "Fast Color Clear" bullet (p326):
125 *
126 * - Support is for non-mip-mapped and non-array surface types only.
127 *
128 * And then later, on p327:
129 *
130 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
131 * 64bpp, and 128bpp.
132 *
133 * From the Skylake documentation, it is made clear that X-tiling is no longer
134 * supported:
135 *
136 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
137 * non-MSRTs only.
138 */
139 static bool
140 intel_miptree_supports_ccs(struct brw_context *brw,
141 const struct intel_mipmap_tree *mt)
142 {
143 /* MCS support does not exist prior to Gen7 */
144 if (brw->gen < 7)
145 return false;
146
147 /* This function applies only to non-multisampled render targets. */
148 if (mt->surf.samples > 1)
149 return false;
150
151 /* MCS is only supported for color buffers */
152 switch (_mesa_get_format_base_format(mt->format)) {
153 case GL_DEPTH_COMPONENT:
154 case GL_DEPTH_STENCIL:
155 case GL_STENCIL_INDEX:
156 return false;
157 }
158
159 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
160 return false;
161
162 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
163 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
164 mt->surf.logical_level0_px.depth > 1;
165
166 if (arrayed) {
167 /* Multisample surfaces with the CMS layout are not layered surfaces,
168 * yet still have physical_depth0 > 1. Assert that we don't
169 * accidentally reject a multisampled surface here. We should have
170 * rejected it earlier by explicitly checking the sample count.
171 */
172 assert(mt->surf.samples == 1);
173 }
174
175 /* Handle the hardware restrictions...
176 *
177 * All GENs have the following restriction: "MCS buffer for non-MSRT is
178 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
179 *
180 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
181 * Non-MultiSampler Render Target Restrictions) Support is for
182 * non-mip-mapped and non-array surface types only.
183 *
184 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
185 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
186 * surfaces are supported with MCS buffer layout with these alignments in
187 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
188 *
189 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
190 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
191 * surfaces are supported with MCS buffer layout with these alignments in
192 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
193 */
194 if (brw->gen < 8 && (mip_mapped || arrayed))
195 return false;
196
197 /* There's no point in using an MCS buffer if the surface isn't in a
198 * renderable format.
199 */
200 if (!brw->mesa_format_supports_render[mt->format])
201 return false;
202
203 return true;
204 }
205
206 static bool
207 intel_tiling_supports_hiz(const struct brw_context *brw,
208 enum isl_tiling tiling)
209 {
210 if (brw->gen < 6)
211 return false;
212
213 return tiling == ISL_TILING_Y0;
214 }
215
216 static bool
217 intel_miptree_supports_hiz(const struct brw_context *brw,
218 const struct intel_mipmap_tree *mt)
219 {
220 if (!brw->has_hiz)
221 return false;
222
223 switch (mt->format) {
224 case MESA_FORMAT_Z_FLOAT32:
225 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
226 case MESA_FORMAT_Z24_UNORM_X8_UINT:
227 case MESA_FORMAT_Z24_UNORM_S8_UINT:
228 case MESA_FORMAT_Z_UNORM16:
229 return true;
230 default:
231 return false;
232 }
233 }
234
235 static bool
236 intel_miptree_supports_ccs_e(struct brw_context *brw,
237 const struct intel_mipmap_tree *mt)
238 {
239 if (brw->gen < 9)
240 return false;
241
242 /* For now compression is only enabled for integer formats even though
243 * there exist supported floating point formats also. This is a heuristic
244 * decision based on current public benchmarks. In none of the cases these
245 * formats provided any improvement but a few cases were seen to regress.
246 * Hence these are left to to be enabled in the future when they are known
247 * to improve things.
248 */
249 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
250 return false;
251
252 if (!intel_miptree_supports_ccs(brw, mt))
253 return false;
254
255 /* Many window system buffers are sRGB even if they are never rendered as
256 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
257 * surface is used as sRGB, we fall back to CCS_D.
258 */
259 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
260 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
261 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
262 }
263
264 /**
265 * Determine depth format corresponding to a depth+stencil format,
266 * for separate stencil.
267 */
268 mesa_format
269 intel_depth_format_for_depthstencil_format(mesa_format format) {
270 switch (format) {
271 case MESA_FORMAT_Z24_UNORM_S8_UINT:
272 return MESA_FORMAT_Z24_UNORM_X8_UINT;
273 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
274 return MESA_FORMAT_Z_FLOAT32;
275 default:
276 return format;
277 }
278 }
279
280 static bool
281 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
282 unsigned depth0, struct intel_mipmap_level *table)
283 {
284 for (unsigned level = first_level; level <= last_level; level++) {
285 const unsigned d =
286 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
287
288 table[level].slice = calloc(d, sizeof(*table[0].slice));
289 if (!table[level].slice)
290 goto unwind;
291 }
292
293 return true;
294
295 unwind:
296 for (unsigned level = first_level; level <= last_level; level++)
297 free(table[level].slice);
298
299 return false;
300 }
301
302 static bool
303 needs_separate_stencil(const struct brw_context *brw,
304 struct intel_mipmap_tree *mt,
305 mesa_format format)
306 {
307 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
308 return false;
309
310 if (brw->must_use_separate_stencil)
311 return true;
312
313 return brw->has_separate_stencil &&
314 intel_miptree_supports_hiz(brw, mt);
315 }
316
317 /**
318 * Choose the aux usage for this miptree. This function must be called fairly
319 * late in the miptree create process after we have a tiling.
320 */
321 static void
322 intel_miptree_choose_aux_usage(struct brw_context *brw,
323 struct intel_mipmap_tree *mt)
324 {
325 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
326
327 if (intel_miptree_supports_mcs(brw, mt)) {
328 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
329 mt->aux_usage = ISL_AUX_USAGE_MCS;
330 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
331 intel_miptree_supports_ccs(brw, mt)) {
332 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
333 intel_miptree_supports_ccs_e(brw, mt)) {
334 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
335 } else {
336 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
337 }
338 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
339 intel_miptree_supports_hiz(brw, mt)) {
340 mt->aux_usage = ISL_AUX_USAGE_HIZ;
341 }
342
343 /* We can do fast-clear on all auxiliary surface types that are
344 * allocated through the normal texture creation paths.
345 */
346 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
347 mt->supports_fast_clear = true;
348 }
349
350
351 /**
352 * Choose an appropriate uncompressed format for a requested
353 * compressed format, if unsupported.
354 */
355 mesa_format
356 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
357 {
358 /* No need to lower ETC formats on these platforms,
359 * they are supported natively.
360 */
361 if (brw->gen >= 8 || brw->is_baytrail)
362 return format;
363
364 switch (format) {
365 case MESA_FORMAT_ETC1_RGB8:
366 return MESA_FORMAT_R8G8B8X8_UNORM;
367 case MESA_FORMAT_ETC2_RGB8:
368 return MESA_FORMAT_R8G8B8X8_UNORM;
369 case MESA_FORMAT_ETC2_SRGB8:
370 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
371 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
372 return MESA_FORMAT_B8G8R8A8_SRGB;
373 case MESA_FORMAT_ETC2_RGBA8_EAC:
374 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
375 return MESA_FORMAT_R8G8B8A8_UNORM;
376 case MESA_FORMAT_ETC2_R11_EAC:
377 return MESA_FORMAT_R_UNORM16;
378 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
379 return MESA_FORMAT_R_SNORM16;
380 case MESA_FORMAT_ETC2_RG11_EAC:
381 return MESA_FORMAT_R16G16_UNORM;
382 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
383 return MESA_FORMAT_R16G16_SNORM;
384 default:
385 /* Non ETC1 / ETC2 format */
386 return format;
387 }
388 }
389
390 unsigned
391 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
392 {
393 if (mt->surf.dim == ISL_SURF_DIM_3D)
394 return minify(mt->surf.logical_level0_px.depth, level);
395 else
396 return mt->surf.logical_level0_px.array_len;
397 }
398
399 static unsigned
400 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
401 {
402 /* In case of physical dimensions one needs to consider also the layout.
403 * See isl_calc_phys_level0_extent_sa().
404 */
405 if (surf->dim != ISL_SURF_DIM_3D)
406 return surf->phys_level0_sa.array_len;
407
408 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
409 return minify(surf->phys_level0_sa.array_len, level);
410
411 return minify(surf->phys_level0_sa.depth, level);
412 }
413
414 /** \brief Assert that the level and layer are valid for the miptree. */
415 void
416 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
417 uint32_t level,
418 uint32_t layer)
419 {
420 (void) mt;
421 (void) level;
422 (void) layer;
423
424 assert(level >= mt->first_level);
425 assert(level <= mt->last_level);
426 assert(layer < get_num_phys_layers(&mt->surf, level));
427 }
428
429 static enum isl_aux_state **
430 create_aux_state_map(struct intel_mipmap_tree *mt,
431 enum isl_aux_state initial)
432 {
433 const uint32_t levels = mt->last_level + 1;
434
435 uint32_t total_slices = 0;
436 for (uint32_t level = 0; level < levels; level++)
437 total_slices += brw_get_num_logical_layers(mt, level);
438
439 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
440
441 /* We're going to allocate a single chunk of data for both the per-level
442 * reference array and the arrays of aux_state. This makes cleanup
443 * significantly easier.
444 */
445 const size_t total_size = per_level_array_size +
446 total_slices * sizeof(enum isl_aux_state);
447 void *data = malloc(total_size);
448 if (data == NULL)
449 return NULL;
450
451 enum isl_aux_state **per_level_arr = data;
452 enum isl_aux_state *s = data + per_level_array_size;
453 for (uint32_t level = 0; level < levels; level++) {
454 per_level_arr[level] = s;
455 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
456 for (uint32_t a = 0; a < level_layers; a++)
457 *(s++) = initial;
458 }
459 assert((void *)s == data + total_size);
460
461 return per_level_arr;
462 }
463
464 static void
465 free_aux_state_map(enum isl_aux_state **state)
466 {
467 free(state);
468 }
469
470 static bool
471 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
472 enum isl_tiling tiling, unsigned samples)
473 {
474 if (samples > 1)
475 return false;
476
477 if (tiling == ISL_TILING_LINEAR)
478 return false;
479
480 /* If the width is much smaller than a tile, don't bother tiling. */
481 if (row_pitch < 64)
482 return true;
483
484 if (ALIGN(row_pitch, 512) >= 32768) {
485 perf_debug("row pitch %u too large to blit, falling back to untiled",
486 row_pitch);
487 return true;
488 }
489
490 return false;
491 }
492
493 static bool
494 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
495 enum isl_tiling tiling)
496 {
497 /* If the BO is too large to fit in the aperture, we need to use the
498 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
499 * handle Y-tiling, so we need to fall back to X.
500 */
501 if (brw->gen < 6 && size >= brw->max_gtt_map_object_size &&
502 tiling == ISL_TILING_Y0)
503 return true;
504
505 return false;
506 }
507
508 static struct intel_mipmap_tree *
509 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
510 unsigned first_level, unsigned last_level,
511 unsigned width0, unsigned height0, unsigned depth0,
512 unsigned num_samples, isl_tiling_flags_t tiling_flags,
513 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
514 unsigned row_pitch, struct brw_bo *bo)
515 {
516 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
517 if (!mt)
518 return NULL;
519
520 if (!create_mapping_table(target, first_level, last_level, depth0,
521 mt->level)) {
522 free(mt);
523 return NULL;
524 }
525
526 mt->refcount = 1;
527
528 if (target == GL_TEXTURE_CUBE_MAP ||
529 target == GL_TEXTURE_CUBE_MAP_ARRAY)
530 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
531
532 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
533 __func__,
534 _mesa_enum_to_string(target),
535 _mesa_get_format_name(format),
536 num_samples, width0, height0, depth0,
537 first_level, last_level, mt);
538
539 struct isl_surf_init_info init_info = {
540 .dim = get_isl_surf_dim(target),
541 .format = translate_tex_format(brw, format, false),
542 .width = width0,
543 .height = height0,
544 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
545 .levels = last_level - first_level + 1,
546 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
547 .samples = num_samples,
548 .row_pitch = row_pitch,
549 .usage = isl_usage_flags,
550 .tiling_flags = tiling_flags,
551 };
552
553 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
554 goto fail;
555
556 /* In case caller doesn't specifically request Y-tiling (needed
557 * unconditionally for depth), check for corner cases needing special
558 * treatment.
559 */
560 if (tiling_flags & ~ISL_TILING_Y0_BIT) {
561 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
562 mt->surf.tiling, mt->surf.samples)) {
563 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
564 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
565 goto fail;
566 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
567 init_info.tiling_flags = 1u << ISL_TILING_X;
568 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
569 goto fail;
570 }
571 }
572
573 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
574 * the size may not be multiple of row_pitch.
575 * See isl_apply_surface_padding().
576 */
577 if (mt->surf.tiling != ISL_TILING_LINEAR)
578 assert(mt->surf.size % mt->surf.row_pitch == 0);
579
580 if (!bo) {
581 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
582 mt->surf.size,
583 isl_tiling_to_i915_tiling(
584 mt->surf.tiling),
585 mt->surf.row_pitch, alloc_flags);
586 if (!mt->bo)
587 goto fail;
588 } else {
589 mt->bo = bo;
590 }
591
592 mt->first_level = first_level;
593 mt->last_level = last_level;
594 mt->target = target;
595 mt->format = format;
596 mt->aux_state = NULL;
597 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
598 mt->compressed = _mesa_is_format_compressed(format);
599
600 return mt;
601
602 fail:
603 intel_miptree_release(&mt);
604 return NULL;
605 }
606
607 static bool
608 make_separate_stencil_surface(struct brw_context *brw,
609 struct intel_mipmap_tree *mt)
610 {
611 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
612 0, mt->surf.levels - 1,
613 mt->surf.logical_level0_px.width,
614 mt->surf.logical_level0_px.height,
615 mt->surf.dim == ISL_SURF_DIM_3D ?
616 mt->surf.logical_level0_px.depth :
617 mt->surf.logical_level0_px.array_len,
618 mt->surf.samples, ISL_TILING_W_BIT,
619 ISL_SURF_USAGE_STENCIL_BIT |
620 ISL_SURF_USAGE_TEXTURE_BIT,
621 BO_ALLOC_FOR_RENDER, 0, NULL);
622
623 if (!mt->stencil_mt)
624 return false;
625
626 mt->stencil_mt->r8stencil_needs_update = true;
627
628 return true;
629 }
630
631 static struct intel_mipmap_tree *
632 miptree_create(struct brw_context *brw,
633 GLenum target,
634 mesa_format format,
635 GLuint first_level,
636 GLuint last_level,
637 GLuint width0,
638 GLuint height0,
639 GLuint depth0,
640 GLuint num_samples,
641 enum intel_miptree_create_flags flags)
642 {
643 if (format == MESA_FORMAT_S_UINT8)
644 return make_surface(brw, target, format, first_level, last_level,
645 width0, height0, depth0, num_samples,
646 ISL_TILING_W_BIT,
647 ISL_SURF_USAGE_STENCIL_BIT |
648 ISL_SURF_USAGE_TEXTURE_BIT,
649 BO_ALLOC_FOR_RENDER,
650 0,
651 NULL);
652
653 const GLenum base_format = _mesa_get_format_base_format(format);
654 if ((base_format == GL_DEPTH_COMPONENT ||
655 base_format == GL_DEPTH_STENCIL) &&
656 !(flags & MIPTREE_CREATE_LINEAR)) {
657 /* Fix up the Z miptree format for how we're splitting out separate
658 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
659 */
660 const mesa_format depth_only_format =
661 intel_depth_format_for_depthstencil_format(format);
662 struct intel_mipmap_tree *mt = make_surface(
663 brw, target, brw->gen >= 6 ? depth_only_format : format,
664 first_level, last_level,
665 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
666 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
667 BO_ALLOC_FOR_RENDER, 0, NULL);
668
669 if (needs_separate_stencil(brw, mt, format) &&
670 !make_separate_stencil_surface(brw, mt)) {
671 intel_miptree_release(&mt);
672 return NULL;
673 }
674
675 if (!(flags & MIPTREE_CREATE_NO_AUX))
676 intel_miptree_choose_aux_usage(brw, mt);
677
678 return mt;
679 }
680
681 mesa_format tex_format = format;
682 mesa_format etc_format = MESA_FORMAT_NONE;
683 uint32_t alloc_flags = 0;
684
685 format = intel_lower_compressed_format(brw, format);
686
687 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
688
689 if (flags & MIPTREE_CREATE_BUSY)
690 alloc_flags |= BO_ALLOC_FOR_RENDER;
691
692 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
693 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
694
695 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
696 if (brw->gen < 6)
697 tiling_flags &= ~ISL_TILING_Y0_BIT;
698
699 struct intel_mipmap_tree *mt = make_surface(
700 brw, target, format,
701 first_level, last_level,
702 width0, height0, depth0,
703 num_samples, tiling_flags,
704 ISL_SURF_USAGE_RENDER_TARGET_BIT |
705 ISL_SURF_USAGE_TEXTURE_BIT,
706 alloc_flags, 0, NULL);
707 if (!mt)
708 return NULL;
709
710 mt->etc_format = etc_format;
711
712 if (!(flags & MIPTREE_CREATE_NO_AUX))
713 intel_miptree_choose_aux_usage(brw, mt);
714
715 return mt;
716 }
717
718 struct intel_mipmap_tree *
719 intel_miptree_create(struct brw_context *brw,
720 GLenum target,
721 mesa_format format,
722 GLuint first_level,
723 GLuint last_level,
724 GLuint width0,
725 GLuint height0,
726 GLuint depth0,
727 GLuint num_samples,
728 enum intel_miptree_create_flags flags)
729 {
730 assert(num_samples > 0);
731
732 struct intel_mipmap_tree *mt = miptree_create(
733 brw, target, format,
734 first_level, last_level,
735 width0, height0, depth0, num_samples,
736 flags);
737 if (!mt)
738 return NULL;
739
740 mt->offset = 0;
741
742 if (!intel_miptree_alloc_aux(brw, mt)) {
743 intel_miptree_release(&mt);
744 return NULL;
745 }
746
747 return mt;
748 }
749
750 struct intel_mipmap_tree *
751 intel_miptree_create_for_bo(struct brw_context *brw,
752 struct brw_bo *bo,
753 mesa_format format,
754 uint32_t offset,
755 uint32_t width,
756 uint32_t height,
757 uint32_t depth,
758 int pitch,
759 enum intel_miptree_create_flags flags)
760 {
761 struct intel_mipmap_tree *mt;
762 uint32_t tiling, swizzle;
763 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
764 const GLenum base_format = _mesa_get_format_base_format(format);
765
766 if ((base_format == GL_DEPTH_COMPONENT ||
767 base_format == GL_DEPTH_STENCIL)) {
768 const mesa_format depth_only_format =
769 intel_depth_format_for_depthstencil_format(format);
770 mt = make_surface(brw, target,
771 brw->gen >= 6 ? depth_only_format : format,
772 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
773 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
774 BO_ALLOC_FOR_RENDER, pitch, bo);
775 if (!mt)
776 return NULL;
777
778 brw_bo_reference(bo);
779
780 if (!(flags & MIPTREE_CREATE_NO_AUX))
781 intel_miptree_choose_aux_usage(brw, mt);
782
783 return mt;
784 } else if (format == MESA_FORMAT_S_UINT8) {
785 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
786 0, 0, width, height, depth, 1,
787 ISL_TILING_W_BIT,
788 ISL_SURF_USAGE_STENCIL_BIT |
789 ISL_SURF_USAGE_TEXTURE_BIT,
790 BO_ALLOC_FOR_RENDER, pitch, bo);
791 if (!mt)
792 return NULL;
793
794 assert(bo->size >= mt->surf.size);
795
796 brw_bo_reference(bo);
797 return mt;
798 }
799
800 brw_bo_get_tiling(bo, &tiling, &swizzle);
801
802 /* Nothing will be able to use this miptree with the BO if the offset isn't
803 * aligned.
804 */
805 if (tiling != I915_TILING_NONE)
806 assert(offset % 4096 == 0);
807
808 /* miptrees can't handle negative pitch. If you need flipping of images,
809 * that's outside of the scope of the mt.
810 */
811 assert(pitch >= 0);
812
813 /* The BO already has a tiling format and we shouldn't confuse the lower
814 * layers by making it try to find a tiling format again.
815 */
816 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
817
818 mt = make_surface(brw, target, format,
819 0, 0, width, height, depth, 1,
820 1lu << isl_tiling_from_i915_tiling(tiling),
821 ISL_SURF_USAGE_RENDER_TARGET_BIT |
822 ISL_SURF_USAGE_TEXTURE_BIT,
823 0, pitch, bo);
824 if (!mt)
825 return NULL;
826
827 brw_bo_reference(bo);
828 mt->bo = bo;
829 mt->offset = offset;
830
831 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
832 intel_miptree_choose_aux_usage(brw, mt);
833
834 if (!intel_miptree_alloc_aux(brw, mt)) {
835 intel_miptree_release(&mt);
836 return NULL;
837 }
838 }
839
840 return mt;
841 }
842
843 static struct intel_mipmap_tree *
844 miptree_create_for_planar_image(struct brw_context *brw,
845 __DRIimage *image, GLenum target)
846 {
847 const struct intel_image_format *f = image->planar_format;
848 struct intel_mipmap_tree *planar_mt = NULL;
849
850 for (int i = 0; i < f->nplanes; i++) {
851 const int index = f->planes[i].buffer_index;
852 const uint32_t dri_format = f->planes[i].dri_format;
853 const mesa_format format = driImageFormatToGLFormat(dri_format);
854 const uint32_t width = image->width >> f->planes[i].width_shift;
855 const uint32_t height = image->height >> f->planes[i].height_shift;
856
857 /* Disable creation of the texture's aux buffers because the driver
858 * exposes no EGL API to manage them. That is, there is no API for
859 * resolving the aux buffer's content to the main buffer nor for
860 * invalidating the aux buffer's content.
861 */
862 struct intel_mipmap_tree *mt =
863 intel_miptree_create_for_bo(brw, image->bo, format,
864 image->offsets[index],
865 width, height, 1,
866 image->strides[index],
867 MIPTREE_CREATE_NO_AUX);
868 if (mt == NULL)
869 return NULL;
870
871 mt->target = target;
872
873 if (i == 0)
874 planar_mt = mt;
875 else
876 planar_mt->plane[i - 1] = mt;
877 }
878
879 return planar_mt;
880 }
881
882 struct intel_mipmap_tree *
883 intel_miptree_create_for_dri_image(struct brw_context *brw,
884 __DRIimage *image, GLenum target,
885 enum isl_colorspace colorspace,
886 bool is_winsys_image)
887 {
888 if (image->planar_format && image->planar_format->nplanes > 0) {
889 assert(colorspace == ISL_COLORSPACE_NONE ||
890 colorspace == ISL_COLORSPACE_YUV);
891 return miptree_create_for_planar_image(brw, image, target);
892 }
893
894 mesa_format format = image->format;
895 switch (colorspace) {
896 case ISL_COLORSPACE_NONE:
897 /* Keep the image format unmodified */
898 break;
899
900 case ISL_COLORSPACE_LINEAR:
901 format =_mesa_get_srgb_format_linear(format);
902 break;
903
904 case ISL_COLORSPACE_SRGB:
905 format =_mesa_get_linear_format_srgb(format);
906 break;
907
908 default:
909 unreachable("Inalid colorspace for non-planar image");
910 }
911
912 if (!brw->ctx.TextureFormatSupported[format]) {
913 /* The texture storage paths in core Mesa detect if the driver does not
914 * support the user-requested format, and then searches for a
915 * fallback format. The DRIimage code bypasses core Mesa, though. So we
916 * do the fallbacks here for important formats.
917 *
918 * We must support DRM_FOURCC_XBGR8888 textures because the Android
919 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
920 * the Chrome OS compositor consumes as dma_buf EGLImages.
921 */
922 format = _mesa_format_fallback_rgbx_to_rgba(format);
923 }
924
925 if (!brw->ctx.TextureFormatSupported[format])
926 return NULL;
927
928 /* If this image comes in from a window system, we have different
929 * requirements than if it comes in via an EGL import operation. Window
930 * system images can use any form of auxiliary compression we wish because
931 * they get "flushed" before being handed off to the window system and we
932 * have the opportunity to do resolves. Window system buffers also may be
933 * used for scanout so we need to flag that appropriately.
934 */
935 const enum intel_miptree_create_flags mt_create_flags =
936 is_winsys_image ? 0 : MIPTREE_CREATE_NO_AUX;
937
938 /* Disable creation of the texture's aux buffers because the driver exposes
939 * no EGL API to manage them. That is, there is no API for resolving the aux
940 * buffer's content to the main buffer nor for invalidating the aux buffer's
941 * content.
942 */
943 struct intel_mipmap_tree *mt =
944 intel_miptree_create_for_bo(brw, image->bo, format,
945 image->offset, image->width, image->height, 1,
946 image->pitch, mt_create_flags);
947 if (mt == NULL)
948 return NULL;
949
950 mt->target = target;
951 mt->level[0].level_x = image->tile_x;
952 mt->level[0].level_y = image->tile_y;
953
954 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
955 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
956 * trouble resolving back to destination image due to alignment issues.
957 */
958 if (!brw->has_surface_tile_offset) {
959 uint32_t draw_x, draw_y;
960 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
961
962 if (draw_x != 0 || draw_y != 0) {
963 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
964 intel_miptree_release(&mt);
965 return NULL;
966 }
967 }
968
969 /* If this is a window-system image, then we can no longer assume it's
970 * cache-coherent because it may suddenly get scanned out which destroys
971 * coherency.
972 */
973 if (is_winsys_image)
974 image->bo->cache_coherent = false;
975
976 return mt;
977 }
978
979 /**
980 * For a singlesample renderbuffer, this simply wraps the given BO with a
981 * miptree.
982 *
983 * For a multisample renderbuffer, this wraps the window system's
984 * (singlesample) BO with a singlesample miptree attached to the
985 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
986 * that will contain the actual rendering (which is lazily resolved to
987 * irb->singlesample_mt).
988 */
989 bool
990 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
991 struct intel_renderbuffer *irb,
992 struct intel_mipmap_tree *singlesample_mt,
993 uint32_t width, uint32_t height,
994 uint32_t pitch)
995 {
996 struct intel_mipmap_tree *multisample_mt = NULL;
997 struct gl_renderbuffer *rb = &irb->Base.Base;
998 mesa_format format = rb->Format;
999 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1000
1001 /* Only the front and back buffers, which are color buffers, are allocated
1002 * through the image loader.
1003 */
1004 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1005 _mesa_get_format_base_format(format) == GL_RGBA);
1006
1007 assert(singlesample_mt);
1008
1009 if (num_samples == 1) {
1010 intel_miptree_release(&irb->mt);
1011 irb->mt = singlesample_mt;
1012
1013 assert(!irb->singlesample_mt);
1014 } else {
1015 intel_miptree_release(&irb->singlesample_mt);
1016 irb->singlesample_mt = singlesample_mt;
1017
1018 if (!irb->mt ||
1019 irb->mt->surf.logical_level0_px.width != width ||
1020 irb->mt->surf.logical_level0_px.height != height) {
1021 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1022 format,
1023 width,
1024 height,
1025 num_samples);
1026 if (!multisample_mt)
1027 goto fail;
1028
1029 irb->need_downsample = false;
1030 intel_miptree_release(&irb->mt);
1031 irb->mt = multisample_mt;
1032 }
1033 }
1034 return true;
1035
1036 fail:
1037 intel_miptree_release(&irb->mt);
1038 return false;
1039 }
1040
1041 struct intel_mipmap_tree*
1042 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1043 mesa_format format,
1044 uint32_t width,
1045 uint32_t height,
1046 uint32_t num_samples)
1047 {
1048 struct intel_mipmap_tree *mt;
1049 uint32_t depth = 1;
1050 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1051
1052 mt = intel_miptree_create(brw, target, format, 0, 0,
1053 width, height, depth, num_samples,
1054 MIPTREE_CREATE_BUSY);
1055 if (!mt)
1056 goto fail;
1057
1058 return mt;
1059
1060 fail:
1061 intel_miptree_release(&mt);
1062 return NULL;
1063 }
1064
1065 void
1066 intel_miptree_reference(struct intel_mipmap_tree **dst,
1067 struct intel_mipmap_tree *src)
1068 {
1069 if (*dst == src)
1070 return;
1071
1072 intel_miptree_release(dst);
1073
1074 if (src) {
1075 src->refcount++;
1076 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1077 }
1078
1079 *dst = src;
1080 }
1081
1082 static void
1083 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1084 {
1085 if (aux_buf == NULL)
1086 return;
1087
1088 brw_bo_unreference(aux_buf->bo);
1089
1090 free(aux_buf);
1091 }
1092
1093 void
1094 intel_miptree_release(struct intel_mipmap_tree **mt)
1095 {
1096 if (!*mt)
1097 return;
1098
1099 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1100 if (--(*mt)->refcount <= 0) {
1101 GLuint i;
1102
1103 DBG("%s deleting %p\n", __func__, *mt);
1104
1105 brw_bo_unreference((*mt)->bo);
1106 intel_miptree_release(&(*mt)->stencil_mt);
1107 intel_miptree_release(&(*mt)->r8stencil_mt);
1108 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1109 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1110 free_aux_state_map((*mt)->aux_state);
1111
1112 intel_miptree_release(&(*mt)->plane[0]);
1113 intel_miptree_release(&(*mt)->plane[1]);
1114
1115 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1116 free((*mt)->level[i].slice);
1117 }
1118
1119 free(*mt);
1120 }
1121 *mt = NULL;
1122 }
1123
1124
1125 void
1126 intel_get_image_dims(struct gl_texture_image *image,
1127 int *width, int *height, int *depth)
1128 {
1129 switch (image->TexObject->Target) {
1130 case GL_TEXTURE_1D_ARRAY:
1131 /* For a 1D Array texture the OpenGL API will treat the image height as
1132 * the number of array slices. For Intel hardware, we treat the 1D array
1133 * as a 2D Array with a height of 1. So, here we want to swap image
1134 * height and depth.
1135 */
1136 assert(image->Depth == 1);
1137 *width = image->Width;
1138 *height = 1;
1139 *depth = image->Height;
1140 break;
1141 case GL_TEXTURE_CUBE_MAP:
1142 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1143 * though we really have 6 slices.
1144 */
1145 assert(image->Depth == 1);
1146 *width = image->Width;
1147 *height = image->Height;
1148 *depth = 6;
1149 break;
1150 default:
1151 *width = image->Width;
1152 *height = image->Height;
1153 *depth = image->Depth;
1154 break;
1155 }
1156 }
1157
1158 /**
1159 * Can the image be pulled into a unified mipmap tree? This mirrors
1160 * the completeness test in a lot of ways.
1161 *
1162 * Not sure whether I want to pass gl_texture_image here.
1163 */
1164 bool
1165 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1166 struct gl_texture_image *image)
1167 {
1168 struct intel_texture_image *intelImage = intel_texture_image(image);
1169 GLuint level = intelImage->base.Base.Level;
1170 int width, height, depth;
1171
1172 /* glTexImage* choose the texture object based on the target passed in, and
1173 * objects can't change targets over their lifetimes, so this should be
1174 * true.
1175 */
1176 assert(image->TexObject->Target == mt->target);
1177
1178 mesa_format mt_format = mt->format;
1179 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1180 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1181 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1182 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1183 if (mt->etc_format != MESA_FORMAT_NONE)
1184 mt_format = mt->etc_format;
1185
1186 if (image->TexFormat != mt_format)
1187 return false;
1188
1189 intel_get_image_dims(image, &width, &height, &depth);
1190
1191 if (mt->target == GL_TEXTURE_CUBE_MAP)
1192 depth = 6;
1193
1194 if (level >= mt->surf.levels)
1195 return false;
1196
1197 const unsigned level_depth =
1198 mt->surf.dim == ISL_SURF_DIM_3D ?
1199 minify(mt->surf.logical_level0_px.depth, level) :
1200 mt->surf.logical_level0_px.array_len;
1201
1202 return width == minify(mt->surf.logical_level0_px.width, level) &&
1203 height == minify(mt->surf.logical_level0_px.height, level) &&
1204 depth == level_depth &&
1205 MAX2(image->NumSamples, 1) == mt->surf.samples;
1206 }
1207
1208 void
1209 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1210 GLuint level, GLuint slice,
1211 GLuint *x, GLuint *y)
1212 {
1213 if (level == 0 && slice == 0) {
1214 *x = mt->level[0].level_x;
1215 *y = mt->level[0].level_y;
1216 return;
1217 }
1218
1219 uint32_t x_offset_sa, y_offset_sa;
1220
1221 /* Miptree itself can have an offset only if it represents a single
1222 * slice in an imported buffer object.
1223 * See intel_miptree_create_for_dri_image().
1224 */
1225 assert(mt->level[0].level_x == 0);
1226 assert(mt->level[0].level_y == 0);
1227
1228 /* Given level is relative to level zero while the miptree may be
1229 * represent just a subset of all levels starting from 'first_level'.
1230 */
1231 assert(level >= mt->first_level);
1232 level -= mt->first_level;
1233
1234 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1235 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1236 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1237 &x_offset_sa, &y_offset_sa);
1238
1239 *x = x_offset_sa;
1240 *y = y_offset_sa;
1241 }
1242
1243
1244 /**
1245 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1246 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1247 * and tile_h is set to 1.
1248 */
1249 void
1250 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1251 uint32_t *tile_w, uint32_t *tile_h)
1252 {
1253 switch (tiling) {
1254 case ISL_TILING_X:
1255 *tile_w = 512;
1256 *tile_h = 8;
1257 break;
1258 case ISL_TILING_Y0:
1259 *tile_w = 128;
1260 *tile_h = 32;
1261 break;
1262 case ISL_TILING_LINEAR:
1263 *tile_w = cpp;
1264 *tile_h = 1;
1265 break;
1266 default:
1267 unreachable("not reached");
1268 }
1269 }
1270
1271
1272 /**
1273 * This function computes masks that may be used to select the bits of the X
1274 * and Y coordinates that indicate the offset within a tile. If the BO is
1275 * untiled, the masks are set to 0.
1276 */
1277 void
1278 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1279 uint32_t *mask_x, uint32_t *mask_y)
1280 {
1281 uint32_t tile_w_bytes, tile_h;
1282
1283 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1284
1285 *mask_x = tile_w_bytes / cpp - 1;
1286 *mask_y = tile_h - 1;
1287 }
1288
1289 /**
1290 * Compute the offset (in bytes) from the start of the BO to the given x
1291 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1292 * multiples of the tile size.
1293 */
1294 uint32_t
1295 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1296 uint32_t x, uint32_t y)
1297 {
1298 int cpp = mt->cpp;
1299 uint32_t pitch = mt->surf.row_pitch;
1300
1301 switch (mt->surf.tiling) {
1302 default:
1303 unreachable("not reached");
1304 case ISL_TILING_LINEAR:
1305 return y * pitch + x * cpp;
1306 case ISL_TILING_X:
1307 assert((x % (512 / cpp)) == 0);
1308 assert((y % 8) == 0);
1309 return y * pitch + x / (512 / cpp) * 4096;
1310 case ISL_TILING_Y0:
1311 assert((x % (128 / cpp)) == 0);
1312 assert((y % 32) == 0);
1313 return y * pitch + x / (128 / cpp) * 4096;
1314 }
1315 }
1316
1317 /**
1318 * Rendering with tiled buffers requires that the base address of the buffer
1319 * be aligned to a page boundary. For renderbuffers, and sometimes with
1320 * textures, we may want the surface to point at a texture image level that
1321 * isn't at a page boundary.
1322 *
1323 * This function returns an appropriately-aligned base offset
1324 * according to the tiling restrictions, plus any required x/y offset
1325 * from there.
1326 */
1327 uint32_t
1328 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1329 GLuint level, GLuint slice,
1330 uint32_t *tile_x,
1331 uint32_t *tile_y)
1332 {
1333 uint32_t x, y;
1334 uint32_t mask_x, mask_y;
1335
1336 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1337 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1338
1339 *tile_x = x & mask_x;
1340 *tile_y = y & mask_y;
1341
1342 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1343 }
1344
1345 static void
1346 intel_miptree_copy_slice_sw(struct brw_context *brw,
1347 struct intel_mipmap_tree *src_mt,
1348 unsigned src_level, unsigned src_layer,
1349 struct intel_mipmap_tree *dst_mt,
1350 unsigned dst_level, unsigned dst_layer,
1351 unsigned width, unsigned height)
1352 {
1353 void *src, *dst;
1354 ptrdiff_t src_stride, dst_stride;
1355 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1356
1357 intel_miptree_map(brw, src_mt,
1358 src_level, src_layer,
1359 0, 0,
1360 width, height,
1361 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1362 &src, &src_stride);
1363
1364 intel_miptree_map(brw, dst_mt,
1365 dst_level, dst_layer,
1366 0, 0,
1367 width, height,
1368 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1369 BRW_MAP_DIRECT_BIT,
1370 &dst, &dst_stride);
1371
1372 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1373 _mesa_get_format_name(src_mt->format),
1374 src_mt, src, src_stride,
1375 _mesa_get_format_name(dst_mt->format),
1376 dst_mt, dst, dst_stride,
1377 width, height);
1378
1379 int row_size = cpp * width;
1380 if (src_stride == row_size &&
1381 dst_stride == row_size) {
1382 memcpy(dst, src, row_size * height);
1383 } else {
1384 for (int i = 0; i < height; i++) {
1385 memcpy(dst, src, row_size);
1386 dst += dst_stride;
1387 src += src_stride;
1388 }
1389 }
1390
1391 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1392 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1393
1394 /* Don't forget to copy the stencil data over, too. We could have skipped
1395 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1396 * shuffling the two data sources in/out of temporary storage instead of
1397 * the direct mapping we get this way.
1398 */
1399 if (dst_mt->stencil_mt) {
1400 assert(src_mt->stencil_mt);
1401 intel_miptree_copy_slice_sw(brw,
1402 src_mt->stencil_mt, src_level, src_layer,
1403 dst_mt->stencil_mt, dst_level, dst_layer,
1404 width, height);
1405 }
1406 }
1407
1408 void
1409 intel_miptree_copy_slice(struct brw_context *brw,
1410 struct intel_mipmap_tree *src_mt,
1411 unsigned src_level, unsigned src_layer,
1412 struct intel_mipmap_tree *dst_mt,
1413 unsigned dst_level, unsigned dst_layer)
1414
1415 {
1416 mesa_format format = src_mt->format;
1417 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1418 src_level - src_mt->first_level);
1419 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1420 src_level - src_mt->first_level);
1421
1422 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1423 src_level - src_mt->first_level));
1424
1425 assert(src_mt->format == dst_mt->format);
1426
1427 if (dst_mt->compressed) {
1428 unsigned int i, j;
1429 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1430 height = ALIGN_NPOT(height, j) / j;
1431 width = ALIGN_NPOT(width, i) / i;
1432 }
1433
1434 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1435 * below won't apply since we can't do the depth's Y tiling or the
1436 * stencil's W tiling in the blitter.
1437 */
1438 if (src_mt->stencil_mt) {
1439 intel_miptree_copy_slice_sw(brw,
1440 src_mt, src_level, src_layer,
1441 dst_mt, dst_level, dst_layer,
1442 width, height);
1443 return;
1444 }
1445
1446 uint32_t dst_x, dst_y, src_x, src_y;
1447 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1448 &dst_x, &dst_y);
1449 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1450 &src_x, &src_y);
1451
1452 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1453 _mesa_get_format_name(src_mt->format),
1454 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1455 _mesa_get_format_name(dst_mt->format),
1456 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1457 width, height);
1458
1459 if (!intel_miptree_blit(brw,
1460 src_mt, src_level, src_layer, 0, 0, false,
1461 dst_mt, dst_level, dst_layer, 0, 0, false,
1462 width, height, GL_COPY)) {
1463 perf_debug("miptree validate blit for %s failed\n",
1464 _mesa_get_format_name(format));
1465
1466 intel_miptree_copy_slice_sw(brw,
1467 src_mt, src_level, src_layer,
1468 dst_mt, dst_level, dst_layer,
1469 width, height);
1470 }
1471 }
1472
1473 /**
1474 * Copies the image's current data to the given miptree, and associates that
1475 * miptree with the image.
1476 *
1477 * If \c invalidate is true, then the actual image data does not need to be
1478 * copied, but the image still needs to be associated to the new miptree (this
1479 * is set to true if we're about to clear the image).
1480 */
1481 void
1482 intel_miptree_copy_teximage(struct brw_context *brw,
1483 struct intel_texture_image *intelImage,
1484 struct intel_mipmap_tree *dst_mt,
1485 bool invalidate)
1486 {
1487 struct intel_mipmap_tree *src_mt = intelImage->mt;
1488 struct intel_texture_object *intel_obj =
1489 intel_texture_object(intelImage->base.Base.TexObject);
1490 int level = intelImage->base.Base.Level;
1491 const unsigned face = intelImage->base.Base.Face;
1492 unsigned start_layer, end_layer;
1493
1494 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1495 assert(face == 0);
1496 assert(intelImage->base.Base.Height);
1497 start_layer = 0;
1498 end_layer = intelImage->base.Base.Height - 1;
1499 } else if (face > 0) {
1500 start_layer = face;
1501 end_layer = face;
1502 } else {
1503 assert(intelImage->base.Base.Depth);
1504 start_layer = 0;
1505 end_layer = intelImage->base.Base.Depth - 1;
1506 }
1507
1508 if (!invalidate) {
1509 for (unsigned i = start_layer; i <= end_layer; i++) {
1510 intel_miptree_copy_slice(brw,
1511 src_mt, level, i,
1512 dst_mt, level, i);
1513 }
1514 }
1515
1516 intel_miptree_reference(&intelImage->mt, dst_mt);
1517 intel_obj->needs_validate = true;
1518 }
1519
1520 static void
1521 intel_miptree_init_mcs(struct brw_context *brw,
1522 struct intel_mipmap_tree *mt,
1523 int init_value)
1524 {
1525 assert(mt->mcs_buf != NULL);
1526
1527 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1528 *
1529 * When MCS buffer is enabled and bound to MSRT, it is required that it
1530 * is cleared prior to any rendering.
1531 *
1532 * Since we don't use the MCS buffer for any purpose other than rendering,
1533 * it makes sense to just clear it immediately upon allocation.
1534 *
1535 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1536 */
1537 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1538 if (unlikely(map == NULL)) {
1539 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1540 brw_bo_unreference(mt->mcs_buf->bo);
1541 free(mt->mcs_buf);
1542 return;
1543 }
1544 void *data = map;
1545 memset(data, init_value, mt->mcs_buf->size);
1546 brw_bo_unmap(mt->mcs_buf->bo);
1547 }
1548
1549 static struct intel_miptree_aux_buffer *
1550 intel_alloc_aux_buffer(struct brw_context *brw,
1551 const char *name,
1552 const struct isl_surf *aux_surf,
1553 uint32_t alloc_flags,
1554 struct intel_mipmap_tree *mt)
1555 {
1556 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1557 if (!buf)
1558 return false;
1559
1560 buf->size = aux_surf->size;
1561 buf->pitch = aux_surf->row_pitch;
1562 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1563
1564 /* ISL has stricter set of alignment rules then the drm allocator.
1565 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1566 * trying to recalculate based on different format block sizes.
1567 */
1568 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1569 I915_TILING_Y, buf->pitch, alloc_flags);
1570 if (!buf->bo) {
1571 free(buf);
1572 return NULL;
1573 }
1574
1575 buf->surf = *aux_surf;
1576
1577 return buf;
1578 }
1579
1580 static bool
1581 intel_miptree_alloc_mcs(struct brw_context *brw,
1582 struct intel_mipmap_tree *mt,
1583 GLuint num_samples)
1584 {
1585 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1586 assert(mt->mcs_buf == NULL);
1587 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1588
1589 /* Multisampled miptrees are only supported for single level. */
1590 assert(mt->first_level == 0);
1591 enum isl_aux_state **aux_state =
1592 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1593 if (!aux_state)
1594 return false;
1595
1596 struct isl_surf temp_mcs_surf;
1597
1598 MAYBE_UNUSED bool ok =
1599 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1600 assert(ok);
1601
1602 /* Buffer needs to be initialised requiring the buffer to be immediately
1603 * mapped to cpu space for writing. Therefore do not use the gpu access
1604 * flag which can cause an unnecessary delay if the backing pages happened
1605 * to be just used by the GPU.
1606 */
1607 const uint32_t alloc_flags = 0;
1608 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1609 &temp_mcs_surf, alloc_flags, mt);
1610 if (!mt->mcs_buf) {
1611 free(aux_state);
1612 return false;
1613 }
1614
1615 mt->aux_state = aux_state;
1616
1617 intel_miptree_init_mcs(brw, mt, 0xFF);
1618
1619 return true;
1620 }
1621
1622 bool
1623 intel_miptree_alloc_ccs(struct brw_context *brw,
1624 struct intel_mipmap_tree *mt)
1625 {
1626 assert(mt->mcs_buf == NULL);
1627 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1628 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1629
1630 struct isl_surf temp_ccs_surf;
1631
1632 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1633 return false;
1634
1635 assert(temp_ccs_surf.size &&
1636 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1637
1638 enum isl_aux_state **aux_state =
1639 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1640 if (!aux_state)
1641 return false;
1642
1643 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1644 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1645 *
1646 * "If Software wants to enable Color Compression without Fast clear,
1647 * Software needs to initialize MCS with zeros."
1648 *
1649 * A CCS value of 0 indicates that the corresponding block is in the
1650 * pass-through state which is what we want.
1651 *
1652 * For CCS_D, on the other hand, we don't care as we're about to perform a
1653 * fast-clear operation. In that case, being hot in caches more useful.
1654 */
1655 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1656 BO_ALLOC_ZEROED : BO_ALLOC_FOR_RENDER;
1657 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1658 &temp_ccs_surf, alloc_flags, mt);
1659 if (!mt->mcs_buf) {
1660 free(aux_state);
1661 return false;
1662 }
1663
1664 mt->aux_state = aux_state;
1665
1666 return true;
1667 }
1668
1669 /**
1670 * Helper for intel_miptree_alloc_hiz() that sets
1671 * \c mt->level[level].has_hiz. Return true if and only if
1672 * \c has_hiz was set.
1673 */
1674 static bool
1675 intel_miptree_level_enable_hiz(struct brw_context *brw,
1676 struct intel_mipmap_tree *mt,
1677 uint32_t level)
1678 {
1679 assert(mt->hiz_buf);
1680 assert(mt->surf.size > 0);
1681
1682 if (brw->gen >= 8 || brw->is_haswell) {
1683 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1684 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1685
1686 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1687 * and the height is 4 aligned. This allows our HiZ support
1688 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1689 * we can grow the width & height to allow the HiZ op to
1690 * force the proper size alignments.
1691 */
1692 if (level > 0 && ((width & 7) || (height & 3))) {
1693 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1694 return false;
1695 }
1696 }
1697
1698 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1699 mt->level[level].has_hiz = true;
1700 return true;
1701 }
1702
1703 bool
1704 intel_miptree_alloc_hiz(struct brw_context *brw,
1705 struct intel_mipmap_tree *mt)
1706 {
1707 assert(mt->hiz_buf == NULL);
1708 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1709
1710 enum isl_aux_state **aux_state =
1711 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1712 if (!aux_state)
1713 return false;
1714
1715 struct isl_surf temp_hiz_surf;
1716
1717 MAYBE_UNUSED bool ok =
1718 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1719 assert(ok);
1720
1721 const uint32_t alloc_flags = BO_ALLOC_FOR_RENDER;
1722 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1723 &temp_hiz_surf, alloc_flags, mt);
1724
1725 if (!mt->hiz_buf) {
1726 free(aux_state);
1727 return false;
1728 }
1729
1730 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1731 intel_miptree_level_enable_hiz(brw, mt, level);
1732
1733 mt->aux_state = aux_state;
1734
1735 return true;
1736 }
1737
1738
1739 /**
1740 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1741 *
1742 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1743 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1744 * compress clear color so we wait until an actual fast-clear to allocate it.
1745 */
1746 static bool
1747 intel_miptree_alloc_aux(struct brw_context *brw,
1748 struct intel_mipmap_tree *mt)
1749 {
1750 switch (mt->aux_usage) {
1751 case ISL_AUX_USAGE_NONE:
1752 return true;
1753
1754 case ISL_AUX_USAGE_HIZ:
1755 assert(!_mesa_is_format_color_format(mt->format));
1756 if (!intel_miptree_alloc_hiz(brw, mt))
1757 return false;
1758 return true;
1759
1760 case ISL_AUX_USAGE_MCS:
1761 assert(_mesa_is_format_color_format(mt->format));
1762 assert(mt->surf.samples > 1);
1763 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1764 return false;
1765 return true;
1766
1767 case ISL_AUX_USAGE_CCS_D:
1768 /* Since CCS_D can only compress clear color so we wait until an actual
1769 * fast-clear to allocate it.
1770 */
1771 return true;
1772
1773 case ISL_AUX_USAGE_CCS_E:
1774 assert(_mesa_is_format_color_format(mt->format));
1775 assert(mt->surf.samples == 1);
1776 if (!intel_miptree_alloc_ccs(brw, mt))
1777 return false;
1778 return true;
1779 }
1780
1781 unreachable("Invalid aux usage");
1782 }
1783
1784
1785 /**
1786 * Can the miptree sample using the hiz buffer?
1787 */
1788 bool
1789 intel_miptree_sample_with_hiz(struct brw_context *brw,
1790 struct intel_mipmap_tree *mt)
1791 {
1792 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1793 * so keep things conservative for now and never enable it unless we're SKL+.
1794 */
1795 if (brw->gen < 9) {
1796 return false;
1797 }
1798
1799 if (!mt->hiz_buf) {
1800 return false;
1801 }
1802
1803 /* It seems the hardware won't fallback to the depth buffer if some of the
1804 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1805 * of the texture to be HiZ enabled.
1806 */
1807 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1808 if (!intel_miptree_level_has_hiz(mt, level))
1809 return false;
1810 }
1811
1812 /* If compressed multisampling is enabled, then we use it for the auxiliary
1813 * buffer instead.
1814 *
1815 * From the BDW PRM (Volume 2d: Command Reference: Structures
1816 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1817 *
1818 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1819 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1820 *
1821 * There is no such blurb for 1D textures, but there is sufficient evidence
1822 * that this is broken on SKL+.
1823 */
1824 return (mt->surf.samples == 1 &&
1825 mt->target != GL_TEXTURE_3D &&
1826 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1827 }
1828
1829 /**
1830 * Does the miptree slice have hiz enabled?
1831 */
1832 bool
1833 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1834 {
1835 intel_miptree_check_level_layer(mt, level, 0);
1836 return mt->level[level].has_hiz;
1837 }
1838
1839 static inline uint32_t
1840 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1841 uint32_t start_level, uint32_t num_levels)
1842 {
1843 assert(start_level >= mt->first_level);
1844 assert(start_level <= mt->last_level);
1845
1846 if (num_levels == INTEL_REMAINING_LAYERS)
1847 num_levels = mt->last_level - start_level + 1;
1848 /* Check for overflow */
1849 assert(start_level + num_levels >= start_level);
1850 assert(start_level + num_levels <= mt->last_level + 1);
1851
1852 return num_levels;
1853 }
1854
1855 static inline uint32_t
1856 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1857 uint32_t start_layer, uint32_t num_layers)
1858 {
1859 assert(level <= mt->last_level);
1860
1861 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1862 assert(start_layer < total_num_layers);
1863 if (num_layers == INTEL_REMAINING_LAYERS)
1864 num_layers = total_num_layers - start_layer;
1865 /* Check for overflow */
1866 assert(start_layer + num_layers >= start_layer);
1867 assert(start_layer + num_layers <= total_num_layers);
1868
1869 return num_layers;
1870 }
1871
1872 bool
1873 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1874 unsigned start_level, unsigned num_levels,
1875 unsigned start_layer, unsigned num_layers)
1876 {
1877 assert(_mesa_is_format_color_format(mt->format));
1878
1879 if (!mt->mcs_buf)
1880 return false;
1881
1882 /* Clamp the level range to fit the miptree */
1883 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1884
1885 for (uint32_t l = 0; l < num_levels; l++) {
1886 const uint32_t level = start_level + l;
1887 const uint32_t level_layers =
1888 miptree_layer_range_length(mt, level, start_layer, num_layers);
1889 for (unsigned a = 0; a < level_layers; a++) {
1890 enum isl_aux_state aux_state =
1891 intel_miptree_get_aux_state(mt, level, start_layer + a);
1892 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1893 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1894 return true;
1895 }
1896 }
1897
1898 return false;
1899 }
1900
1901 static void
1902 intel_miptree_check_color_resolve(const struct brw_context *brw,
1903 const struct intel_mipmap_tree *mt,
1904 unsigned level, unsigned layer)
1905 {
1906
1907 if (!mt->mcs_buf)
1908 return;
1909
1910 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
1911 assert(brw->gen >= 8 ||
1912 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
1913
1914 /* Compression of arrayed msaa surfaces is supported. */
1915 if (mt->surf.samples > 1)
1916 return;
1917
1918 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
1919 assert(brw->gen >= 8 ||
1920 (layer == 0 &&
1921 mt->surf.logical_level0_px.depth == 1 &&
1922 mt->surf.logical_level0_px.array_len == 1));
1923
1924 (void)level;
1925 (void)layer;
1926 }
1927
1928 static enum blorp_fast_clear_op
1929 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
1930 enum isl_aux_usage aux_usage,
1931 bool fast_clear_supported)
1932 {
1933 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
1934
1935 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
1936
1937 assert(ccs_supported == fast_clear_supported);
1938
1939 switch (aux_state) {
1940 case ISL_AUX_STATE_CLEAR:
1941 case ISL_AUX_STATE_PARTIAL_CLEAR:
1942 if (!ccs_supported)
1943 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1944 else
1945 return BLORP_FAST_CLEAR_OP_NONE;
1946
1947 case ISL_AUX_STATE_PASS_THROUGH:
1948 return BLORP_FAST_CLEAR_OP_NONE;
1949
1950 case ISL_AUX_STATE_RESOLVED:
1951 case ISL_AUX_STATE_AUX_INVALID:
1952 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1953 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1954 break;
1955 }
1956
1957 unreachable("Invalid aux state for CCS_D");
1958 }
1959
1960 static enum blorp_fast_clear_op
1961 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
1962 enum isl_aux_usage aux_usage,
1963 bool fast_clear_supported)
1964 {
1965 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
1966 assert(aux_usage == ISL_AUX_USAGE_NONE ||
1967 aux_usage == ISL_AUX_USAGE_CCS_D ||
1968 aux_usage == ISL_AUX_USAGE_CCS_E);
1969
1970 if (aux_usage == ISL_AUX_USAGE_CCS_D)
1971 assert(fast_clear_supported);
1972
1973 switch (aux_state) {
1974 case ISL_AUX_STATE_CLEAR:
1975 case ISL_AUX_STATE_PARTIAL_CLEAR:
1976 if (fast_clear_supported)
1977 return BLORP_FAST_CLEAR_OP_NONE;
1978 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
1979 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
1980 else
1981 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1982
1983 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1984 if (aux_usage != ISL_AUX_USAGE_CCS_E)
1985 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1986 else if (!fast_clear_supported)
1987 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
1988 else
1989 return BLORP_FAST_CLEAR_OP_NONE;
1990
1991 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1992 if (aux_usage != ISL_AUX_USAGE_CCS_E)
1993 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1994 else
1995 return BLORP_FAST_CLEAR_OP_NONE;
1996
1997 case ISL_AUX_STATE_PASS_THROUGH:
1998 return BLORP_FAST_CLEAR_OP_NONE;
1999
2000 case ISL_AUX_STATE_RESOLVED:
2001 case ISL_AUX_STATE_AUX_INVALID:
2002 break;
2003 }
2004
2005 unreachable("Invalid aux state for CCS_E");
2006 }
2007
2008 static void
2009 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2010 struct intel_mipmap_tree *mt,
2011 uint32_t level, uint32_t layer,
2012 enum isl_aux_usage aux_usage,
2013 bool fast_clear_supported)
2014 {
2015 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2016
2017 enum blorp_fast_clear_op resolve_op;
2018 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2019 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2020 fast_clear_supported);
2021 } else {
2022 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2023 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2024 fast_clear_supported);
2025 }
2026
2027 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2028 intel_miptree_check_color_resolve(brw, mt, level, layer);
2029 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2030
2031 switch (resolve_op) {
2032 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2033 /* The CCS full resolve operation destroys the CCS and sets it to the
2034 * pass-through state. (You can also think of this as being both a
2035 * resolve and an ambiguate in one operation.)
2036 */
2037 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2038 ISL_AUX_STATE_PASS_THROUGH);
2039 break;
2040
2041 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2042 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2043 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2044 break;
2045
2046 default:
2047 unreachable("Invalid resolve op");
2048 }
2049 }
2050 }
2051
2052 static void
2053 intel_miptree_finish_ccs_write(struct brw_context *brw,
2054 struct intel_mipmap_tree *mt,
2055 uint32_t level, uint32_t layer,
2056 enum isl_aux_usage aux_usage)
2057 {
2058 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2059 aux_usage == ISL_AUX_USAGE_CCS_D ||
2060 aux_usage == ISL_AUX_USAGE_CCS_E);
2061
2062 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2063
2064 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2065 switch (aux_state) {
2066 case ISL_AUX_STATE_CLEAR:
2067 case ISL_AUX_STATE_PARTIAL_CLEAR:
2068 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2069 aux_usage == ISL_AUX_USAGE_CCS_D);
2070
2071 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2072 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2073 ISL_AUX_STATE_COMPRESSED_CLEAR);
2074 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2075 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2076 ISL_AUX_STATE_PARTIAL_CLEAR);
2077 }
2078 break;
2079
2080 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2081 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2082 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2083 break; /* Nothing to do */
2084
2085 case ISL_AUX_STATE_PASS_THROUGH:
2086 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2087 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2088 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2089 } else {
2090 /* Nothing to do */
2091 }
2092 break;
2093
2094 case ISL_AUX_STATE_RESOLVED:
2095 case ISL_AUX_STATE_AUX_INVALID:
2096 unreachable("Invalid aux state for CCS_E");
2097 }
2098 } else {
2099 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2100 /* CCS_D is a bit simpler */
2101 switch (aux_state) {
2102 case ISL_AUX_STATE_CLEAR:
2103 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2104 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2105 ISL_AUX_STATE_PARTIAL_CLEAR);
2106 break;
2107
2108 case ISL_AUX_STATE_PARTIAL_CLEAR:
2109 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2110 break; /* Nothing to do */
2111
2112 case ISL_AUX_STATE_PASS_THROUGH:
2113 /* Nothing to do */
2114 break;
2115
2116 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2117 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2118 case ISL_AUX_STATE_RESOLVED:
2119 case ISL_AUX_STATE_AUX_INVALID:
2120 unreachable("Invalid aux state for CCS_D");
2121 }
2122 }
2123 }
2124
2125 static void
2126 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2127 struct intel_mipmap_tree *mt,
2128 uint32_t layer,
2129 enum isl_aux_usage aux_usage,
2130 bool fast_clear_supported)
2131 {
2132 assert(aux_usage == ISL_AUX_USAGE_MCS);
2133
2134 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2135 case ISL_AUX_STATE_CLEAR:
2136 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2137 if (!fast_clear_supported) {
2138 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2139 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2140 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2141 }
2142 break;
2143
2144 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2145 break; /* Nothing to do */
2146
2147 case ISL_AUX_STATE_RESOLVED:
2148 case ISL_AUX_STATE_PASS_THROUGH:
2149 case ISL_AUX_STATE_AUX_INVALID:
2150 case ISL_AUX_STATE_PARTIAL_CLEAR:
2151 unreachable("Invalid aux state for MCS");
2152 }
2153 }
2154
2155 static void
2156 intel_miptree_finish_mcs_write(struct brw_context *brw,
2157 struct intel_mipmap_tree *mt,
2158 uint32_t layer,
2159 enum isl_aux_usage aux_usage)
2160 {
2161 assert(aux_usage == ISL_AUX_USAGE_MCS);
2162
2163 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2164 case ISL_AUX_STATE_CLEAR:
2165 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2166 ISL_AUX_STATE_COMPRESSED_CLEAR);
2167 break;
2168
2169 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2170 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2171 break; /* Nothing to do */
2172
2173 case ISL_AUX_STATE_RESOLVED:
2174 case ISL_AUX_STATE_PASS_THROUGH:
2175 case ISL_AUX_STATE_AUX_INVALID:
2176 case ISL_AUX_STATE_PARTIAL_CLEAR:
2177 unreachable("Invalid aux state for MCS");
2178 }
2179 }
2180
2181 static void
2182 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2183 struct intel_mipmap_tree *mt,
2184 uint32_t level, uint32_t layer,
2185 enum isl_aux_usage aux_usage,
2186 bool fast_clear_supported)
2187 {
2188 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2189
2190 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2191 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2192 case ISL_AUX_STATE_CLEAR:
2193 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2194 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2195 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2196 break;
2197
2198 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2199 if (aux_usage != ISL_AUX_USAGE_HIZ)
2200 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2201 break;
2202
2203 case ISL_AUX_STATE_PASS_THROUGH:
2204 case ISL_AUX_STATE_RESOLVED:
2205 break;
2206
2207 case ISL_AUX_STATE_AUX_INVALID:
2208 if (aux_usage == ISL_AUX_USAGE_HIZ)
2209 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2210 break;
2211
2212 case ISL_AUX_STATE_PARTIAL_CLEAR:
2213 unreachable("Invalid HiZ state");
2214 }
2215
2216 if (hiz_op != BLORP_HIZ_OP_NONE) {
2217 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2218
2219 switch (hiz_op) {
2220 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2221 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2222 ISL_AUX_STATE_RESOLVED);
2223 break;
2224
2225 case BLORP_HIZ_OP_HIZ_RESOLVE:
2226 /* The HiZ resolve operation is actually an ambiguate */
2227 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2228 ISL_AUX_STATE_PASS_THROUGH);
2229 break;
2230
2231 default:
2232 unreachable("Invalid HiZ op");
2233 }
2234 }
2235 }
2236
2237 static void
2238 intel_miptree_finish_hiz_write(struct brw_context *brw,
2239 struct intel_mipmap_tree *mt,
2240 uint32_t level, uint32_t layer,
2241 enum isl_aux_usage aux_usage)
2242 {
2243 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2244
2245 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2246 case ISL_AUX_STATE_CLEAR:
2247 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2248 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2249 ISL_AUX_STATE_COMPRESSED_CLEAR);
2250 break;
2251
2252 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2253 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2254 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2255 break; /* Nothing to do */
2256
2257 case ISL_AUX_STATE_RESOLVED:
2258 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2259 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2260 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2261 } else {
2262 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2263 ISL_AUX_STATE_AUX_INVALID);
2264 }
2265 break;
2266
2267 case ISL_AUX_STATE_PASS_THROUGH:
2268 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2269 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2270 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2271 }
2272 break;
2273
2274 case ISL_AUX_STATE_AUX_INVALID:
2275 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2276 break;
2277
2278 case ISL_AUX_STATE_PARTIAL_CLEAR:
2279 unreachable("Invalid HiZ state");
2280 }
2281 }
2282
2283 void
2284 intel_miptree_prepare_access(struct brw_context *brw,
2285 struct intel_mipmap_tree *mt,
2286 uint32_t start_level, uint32_t num_levels,
2287 uint32_t start_layer, uint32_t num_layers,
2288 enum isl_aux_usage aux_usage,
2289 bool fast_clear_supported)
2290 {
2291 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2292
2293 switch (mt->aux_usage) {
2294 case ISL_AUX_USAGE_NONE:
2295 /* Nothing to do */
2296 break;
2297
2298 case ISL_AUX_USAGE_MCS:
2299 assert(mt->mcs_buf);
2300 assert(start_level == 0 && num_levels == 1);
2301 const uint32_t level_layers =
2302 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2303 for (uint32_t a = 0; a < level_layers; a++) {
2304 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2305 aux_usage, fast_clear_supported);
2306 }
2307 break;
2308
2309 case ISL_AUX_USAGE_CCS_D:
2310 case ISL_AUX_USAGE_CCS_E:
2311 if (!mt->mcs_buf)
2312 return;
2313
2314 for (uint32_t l = 0; l < num_levels; l++) {
2315 const uint32_t level = start_level + l;
2316 const uint32_t level_layers =
2317 miptree_layer_range_length(mt, level, start_layer, num_layers);
2318 for (uint32_t a = 0; a < level_layers; a++) {
2319 intel_miptree_prepare_ccs_access(brw, mt, level,
2320 start_layer + a,
2321 aux_usage, fast_clear_supported);
2322 }
2323 }
2324 break;
2325
2326 case ISL_AUX_USAGE_HIZ:
2327 assert(mt->hiz_buf);
2328 for (uint32_t l = 0; l < num_levels; l++) {
2329 const uint32_t level = start_level + l;
2330 if (!intel_miptree_level_has_hiz(mt, level))
2331 continue;
2332
2333 const uint32_t level_layers =
2334 miptree_layer_range_length(mt, level, start_layer, num_layers);
2335 for (uint32_t a = 0; a < level_layers; a++) {
2336 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2337 aux_usage, fast_clear_supported);
2338 }
2339 }
2340 break;
2341
2342 default:
2343 unreachable("Invalid aux usage");
2344 }
2345 }
2346
2347 void
2348 intel_miptree_finish_write(struct brw_context *brw,
2349 struct intel_mipmap_tree *mt, uint32_t level,
2350 uint32_t start_layer, uint32_t num_layers,
2351 enum isl_aux_usage aux_usage)
2352 {
2353 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2354
2355 switch (mt->aux_usage) {
2356 case ISL_AUX_USAGE_NONE:
2357 /* Nothing to do */
2358 break;
2359
2360 case ISL_AUX_USAGE_MCS:
2361 assert(mt->mcs_buf);
2362 for (uint32_t a = 0; a < num_layers; a++) {
2363 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2364 aux_usage);
2365 }
2366 break;
2367
2368 case ISL_AUX_USAGE_CCS_D:
2369 case ISL_AUX_USAGE_CCS_E:
2370 if (!mt->mcs_buf)
2371 return;
2372
2373 for (uint32_t a = 0; a < num_layers; a++) {
2374 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2375 aux_usage);
2376 }
2377 break;
2378
2379 case ISL_AUX_USAGE_HIZ:
2380 if (!intel_miptree_level_has_hiz(mt, level))
2381 return;
2382
2383 for (uint32_t a = 0; a < num_layers; a++) {
2384 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2385 aux_usage);
2386 }
2387 break;
2388
2389 default:
2390 unreachable("Invavlid aux usage");
2391 }
2392 }
2393
2394 enum isl_aux_state
2395 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2396 uint32_t level, uint32_t layer)
2397 {
2398 intel_miptree_check_level_layer(mt, level, layer);
2399
2400 if (_mesa_is_format_color_format(mt->format)) {
2401 assert(mt->mcs_buf != NULL);
2402 assert(mt->surf.samples == 1 ||
2403 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2404 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2405 unreachable("Cannot get aux state for stencil");
2406 } else {
2407 assert(intel_miptree_level_has_hiz(mt, level));
2408 }
2409
2410 return mt->aux_state[level][layer];
2411 }
2412
2413 void
2414 intel_miptree_set_aux_state(struct brw_context *brw,
2415 struct intel_mipmap_tree *mt, uint32_t level,
2416 uint32_t start_layer, uint32_t num_layers,
2417 enum isl_aux_state aux_state)
2418 {
2419 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2420
2421 if (_mesa_is_format_color_format(mt->format)) {
2422 assert(mt->mcs_buf != NULL);
2423 assert(mt->surf.samples == 1 ||
2424 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2425 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2426 unreachable("Cannot get aux state for stencil");
2427 } else {
2428 assert(intel_miptree_level_has_hiz(mt, level));
2429 }
2430
2431 for (unsigned a = 0; a < num_layers; a++)
2432 mt->aux_state[level][start_layer + a] = aux_state;
2433 }
2434
2435 /* On Gen9 color buffers may be compressed by the hardware (lossless
2436 * compression). There are, however, format restrictions and care needs to be
2437 * taken that the sampler engine is capable for re-interpreting a buffer with
2438 * format different the buffer was originally written with.
2439 *
2440 * For example, SRGB formats are not compressible and the sampler engine isn't
2441 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2442 * color buffer needs to be resolved so that the sampling surface can be
2443 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2444 * set).
2445 */
2446 static bool
2447 can_texture_with_ccs(struct brw_context *brw,
2448 struct intel_mipmap_tree *mt,
2449 enum isl_format view_format)
2450 {
2451 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2452 return false;
2453
2454 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2455 mt->surf.format, view_format)) {
2456 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2457 isl_format_get_layout(view_format)->name,
2458 _mesa_get_format_name(mt->format));
2459 return false;
2460 }
2461
2462 return true;
2463 }
2464
2465 enum isl_aux_usage
2466 intel_miptree_texture_aux_usage(struct brw_context *brw,
2467 struct intel_mipmap_tree *mt,
2468 enum isl_format view_format)
2469 {
2470 switch (mt->aux_usage) {
2471 case ISL_AUX_USAGE_HIZ:
2472 if (intel_miptree_sample_with_hiz(brw, mt))
2473 return ISL_AUX_USAGE_HIZ;
2474 break;
2475
2476 case ISL_AUX_USAGE_MCS:
2477 return ISL_AUX_USAGE_MCS;
2478
2479 case ISL_AUX_USAGE_CCS_D:
2480 case ISL_AUX_USAGE_CCS_E:
2481 if (mt->mcs_buf && can_texture_with_ccs(brw, mt, view_format))
2482 return ISL_AUX_USAGE_CCS_E;
2483 break;
2484
2485 default:
2486 break;
2487 }
2488
2489 return ISL_AUX_USAGE_NONE;
2490 }
2491
2492 static bool
2493 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2494 {
2495 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2496 * values so sRGB curve application was a no-op for all fast-clearable
2497 * formats.
2498 *
2499 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2500 * values, the hardware interprets the floats, not as what would be
2501 * returned from the sampler (or written by the shader), but as being
2502 * between format conversion and sRGB curve application. This means that
2503 * we can switch between sRGB and UNORM without having to whack the clear
2504 * color.
2505 */
2506 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2507 }
2508
2509 static void
2510 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2511 struct intel_mipmap_tree *mt,
2512 enum isl_format view_format,
2513 uint32_t start_level, uint32_t num_levels,
2514 uint32_t start_layer, uint32_t num_layers,
2515 bool *aux_supported_out)
2516 {
2517 enum isl_aux_usage aux_usage =
2518 intel_miptree_texture_aux_usage(brw, mt, view_format);
2519 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2520
2521 /* Clear color is specified as ints or floats and the conversion is done by
2522 * the sampler. If we have a texture view, we would have to perform the
2523 * clear color conversion manually. Just disable clear color.
2524 */
2525 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2526 clear_supported = false;
2527
2528 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2529 start_layer, num_layers,
2530 aux_usage, clear_supported);
2531 if (aux_supported_out)
2532 *aux_supported_out = aux_usage != ISL_AUX_USAGE_NONE;
2533 }
2534
2535 void
2536 intel_miptree_prepare_texture(struct brw_context *brw,
2537 struct intel_mipmap_tree *mt,
2538 enum isl_format view_format,
2539 bool *aux_supported_out)
2540 {
2541 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2542 0, INTEL_REMAINING_LEVELS,
2543 0, INTEL_REMAINING_LAYERS,
2544 aux_supported_out);
2545 }
2546
2547 void
2548 intel_miptree_prepare_image(struct brw_context *brw,
2549 struct intel_mipmap_tree *mt)
2550 {
2551 /* The data port doesn't understand any compression */
2552 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2553 0, INTEL_REMAINING_LAYERS,
2554 ISL_AUX_USAGE_NONE, false);
2555 }
2556
2557 void
2558 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2559 struct intel_mipmap_tree *mt, uint32_t level,
2560 uint32_t start_layer, uint32_t num_layers)
2561 {
2562 intel_miptree_prepare_texture_slices(brw, mt, mt->surf.format, level, 1,
2563 start_layer, num_layers, NULL);
2564 }
2565
2566 enum isl_aux_usage
2567 intel_miptree_render_aux_usage(struct brw_context *brw,
2568 struct intel_mipmap_tree *mt,
2569 bool srgb_enabled, bool blend_enabled)
2570 {
2571 switch (mt->aux_usage) {
2572 case ISL_AUX_USAGE_MCS:
2573 assert(mt->mcs_buf);
2574 return ISL_AUX_USAGE_MCS;
2575
2576 case ISL_AUX_USAGE_CCS_D:
2577 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2578
2579 case ISL_AUX_USAGE_CCS_E: {
2580 mesa_format mesa_format =
2581 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2582 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2583
2584 /* If the format supports CCS_E, then we can just use it */
2585 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2586 return ISL_AUX_USAGE_CCS_E;
2587
2588 /* Otherwise, we have to fall back to CCS_D */
2589
2590 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2591 * formats. However, there are issues with blending where it doesn't
2592 * properly apply the sRGB curve to the clear color when blending.
2593 */
2594 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2595 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2596 return ISL_AUX_USAGE_NONE;
2597
2598 return ISL_AUX_USAGE_CCS_D;
2599 }
2600
2601 default:
2602 return ISL_AUX_USAGE_NONE;
2603 }
2604 }
2605
2606 void
2607 intel_miptree_prepare_render(struct brw_context *brw,
2608 struct intel_mipmap_tree *mt, uint32_t level,
2609 uint32_t start_layer, uint32_t layer_count,
2610 bool srgb_enabled, bool blend_enabled)
2611 {
2612 enum isl_aux_usage aux_usage =
2613 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2614 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2615 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2616 }
2617
2618 void
2619 intel_miptree_finish_render(struct brw_context *brw,
2620 struct intel_mipmap_tree *mt, uint32_t level,
2621 uint32_t start_layer, uint32_t layer_count,
2622 bool srgb_enabled, bool blend_enabled)
2623 {
2624 assert(_mesa_is_format_color_format(mt->format));
2625
2626 enum isl_aux_usage aux_usage =
2627 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2628 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2629 aux_usage);
2630 }
2631
2632 void
2633 intel_miptree_prepare_depth(struct brw_context *brw,
2634 struct intel_mipmap_tree *mt, uint32_t level,
2635 uint32_t start_layer, uint32_t layer_count)
2636 {
2637 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2638 mt->aux_usage, mt->hiz_buf != NULL);
2639 }
2640
2641 void
2642 intel_miptree_finish_depth(struct brw_context *brw,
2643 struct intel_mipmap_tree *mt, uint32_t level,
2644 uint32_t start_layer, uint32_t layer_count,
2645 bool depth_written)
2646 {
2647 if (depth_written) {
2648 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2649 mt->hiz_buf != NULL);
2650 }
2651 }
2652
2653 /**
2654 * Make it possible to share the BO backing the given miptree with another
2655 * process or another miptree.
2656 *
2657 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2658 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2659 * ensure that no MCS buffer gets allocated in the future.
2660 *
2661 * HiZ is similarly unsafe with shared buffers.
2662 */
2663 void
2664 intel_miptree_make_shareable(struct brw_context *brw,
2665 struct intel_mipmap_tree *mt)
2666 {
2667 /* MCS buffers are also used for multisample buffers, but we can't resolve
2668 * away a multisample MCS buffer because it's an integral part of how the
2669 * pixel data is stored. Fortunately this code path should never be
2670 * reached for multisample buffers.
2671 */
2672 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2673 mt->surf.samples == 1);
2674
2675 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2676 0, INTEL_REMAINING_LAYERS,
2677 ISL_AUX_USAGE_NONE, false);
2678
2679 if (mt->mcs_buf) {
2680 brw_bo_unreference(mt->mcs_buf->bo);
2681 free(mt->mcs_buf);
2682 mt->mcs_buf = NULL;
2683
2684 /* Any pending MCS/CCS operations are no longer needed. Trying to
2685 * execute any will likely crash due to the missing aux buffer. So let's
2686 * delete all pending ops.
2687 */
2688 free(mt->aux_state);
2689 mt->aux_state = NULL;
2690 }
2691
2692 if (mt->hiz_buf) {
2693 intel_miptree_aux_buffer_free(mt->hiz_buf);
2694 mt->hiz_buf = NULL;
2695
2696 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2697 mt->level[l].has_hiz = false;
2698 }
2699
2700 /* Any pending HiZ operations are no longer needed. Trying to execute
2701 * any will likely crash due to the missing aux buffer. So let's delete
2702 * all pending ops.
2703 */
2704 free(mt->aux_state);
2705 mt->aux_state = NULL;
2706 }
2707
2708 mt->aux_usage = ISL_AUX_USAGE_NONE;
2709 mt->supports_fast_clear = false;
2710 }
2711
2712
2713 /**
2714 * \brief Get pointer offset into stencil buffer.
2715 *
2716 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2717 * must decode the tile's layout in software.
2718 *
2719 * See
2720 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2721 * Format.
2722 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2723 *
2724 * Even though the returned offset is always positive, the return type is
2725 * signed due to
2726 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2727 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2728 */
2729 static intptr_t
2730 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2731 {
2732 uint32_t tile_size = 4096;
2733 uint32_t tile_width = 64;
2734 uint32_t tile_height = 64;
2735 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2736
2737 uint32_t tile_x = x / tile_width;
2738 uint32_t tile_y = y / tile_height;
2739
2740 /* The byte's address relative to the tile's base addres. */
2741 uint32_t byte_x = x % tile_width;
2742 uint32_t byte_y = y % tile_height;
2743
2744 uintptr_t u = tile_y * row_size
2745 + tile_x * tile_size
2746 + 512 * (byte_x / 8)
2747 + 64 * (byte_y / 8)
2748 + 32 * ((byte_y / 4) % 2)
2749 + 16 * ((byte_x / 4) % 2)
2750 + 8 * ((byte_y / 2) % 2)
2751 + 4 * ((byte_x / 2) % 2)
2752 + 2 * (byte_y % 2)
2753 + 1 * (byte_x % 2);
2754
2755 if (swizzled) {
2756 /* adjust for bit6 swizzling */
2757 if (((byte_x / 8) % 2) == 1) {
2758 if (((byte_y / 8) % 2) == 0) {
2759 u += 64;
2760 } else {
2761 u -= 64;
2762 }
2763 }
2764 }
2765
2766 return u;
2767 }
2768
2769 void
2770 intel_miptree_updownsample(struct brw_context *brw,
2771 struct intel_mipmap_tree *src,
2772 struct intel_mipmap_tree *dst)
2773 {
2774 unsigned src_w = src->surf.logical_level0_px.width;
2775 unsigned src_h = src->surf.logical_level0_px.height;
2776 unsigned dst_w = dst->surf.logical_level0_px.width;
2777 unsigned dst_h = dst->surf.logical_level0_px.height;
2778
2779 brw_blorp_blit_miptrees(brw,
2780 src, 0 /* level */, 0 /* layer */,
2781 src->format, SWIZZLE_XYZW,
2782 dst, 0 /* level */, 0 /* layer */, dst->format,
2783 0, 0, src_w, src_h,
2784 0, 0, dst_w, dst_h,
2785 GL_NEAREST, false, false /*mirror x, y*/,
2786 false, false);
2787
2788 if (src->stencil_mt) {
2789 src_w = src->stencil_mt->surf.logical_level0_px.width;
2790 src_h = src->stencil_mt->surf.logical_level0_px.height;
2791 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2792 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2793
2794 brw_blorp_blit_miptrees(brw,
2795 src->stencil_mt, 0 /* level */, 0 /* layer */,
2796 src->stencil_mt->format, SWIZZLE_XYZW,
2797 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2798 dst->stencil_mt->format,
2799 0, 0, src_w, src_h,
2800 0, 0, dst_w, dst_h,
2801 GL_NEAREST, false, false /*mirror x, y*/,
2802 false, false /* decode/encode srgb */);
2803 }
2804 }
2805
2806 void
2807 intel_update_r8stencil(struct brw_context *brw,
2808 struct intel_mipmap_tree *mt)
2809 {
2810 assert(brw->gen >= 7);
2811 struct intel_mipmap_tree *src =
2812 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2813 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2814 return;
2815
2816 assert(src->surf.size > 0);
2817
2818 if (!mt->r8stencil_mt) {
2819 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2820 mt->r8stencil_mt = make_surface(
2821 brw,
2822 src->target,
2823 MESA_FORMAT_R_UINT8,
2824 src->first_level, src->last_level,
2825 src->surf.logical_level0_px.width,
2826 src->surf.logical_level0_px.height,
2827 src->surf.dim == ISL_SURF_DIM_3D ?
2828 src->surf.logical_level0_px.depth :
2829 src->surf.logical_level0_px.array_len,
2830 src->surf.samples,
2831 ISL_TILING_Y0_BIT,
2832 ISL_SURF_USAGE_TEXTURE_BIT,
2833 BO_ALLOC_FOR_RENDER, 0, NULL);
2834 assert(mt->r8stencil_mt);
2835 }
2836
2837 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2838
2839 for (int level = src->first_level; level <= src->last_level; level++) {
2840 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2841 minify(src->surf.phys_level0_sa.depth, level) :
2842 src->surf.phys_level0_sa.array_len;
2843
2844 for (unsigned layer = 0; layer < depth; layer++) {
2845 brw_blorp_copy_miptrees(brw,
2846 src, level, layer,
2847 dst, level, layer,
2848 0, 0, 0, 0,
2849 minify(src->surf.logical_level0_px.width,
2850 level),
2851 minify(src->surf.logical_level0_px.height,
2852 level));
2853 }
2854 }
2855
2856 brw_render_cache_set_check_flush(brw, dst->bo);
2857 src->r8stencil_needs_update = false;
2858 }
2859
2860 static void *
2861 intel_miptree_map_raw(struct brw_context *brw,
2862 struct intel_mipmap_tree *mt,
2863 GLbitfield mode)
2864 {
2865 struct brw_bo *bo = mt->bo;
2866
2867 if (brw_batch_references(&brw->batch, bo))
2868 intel_batchbuffer_flush(brw);
2869
2870 return brw_bo_map(brw, bo, mode);
2871 }
2872
2873 static void
2874 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2875 {
2876 brw_bo_unmap(mt->bo);
2877 }
2878
2879 static void
2880 intel_miptree_map_gtt(struct brw_context *brw,
2881 struct intel_mipmap_tree *mt,
2882 struct intel_miptree_map *map,
2883 unsigned int level, unsigned int slice)
2884 {
2885 unsigned int bw, bh;
2886 void *base;
2887 unsigned int image_x, image_y;
2888 intptr_t x = map->x;
2889 intptr_t y = map->y;
2890
2891 /* For compressed formats, the stride is the number of bytes per
2892 * row of blocks. intel_miptree_get_image_offset() already does
2893 * the divide.
2894 */
2895 _mesa_get_format_block_size(mt->format, &bw, &bh);
2896 assert(y % bh == 0);
2897 assert(x % bw == 0);
2898 y /= bh;
2899 x /= bw;
2900
2901 base = intel_miptree_map_raw(brw, mt, map->mode);
2902
2903 if (base == NULL)
2904 map->ptr = NULL;
2905 else {
2906 base += mt->offset;
2907
2908 /* Note that in the case of cube maps, the caller must have passed the
2909 * slice number referencing the face.
2910 */
2911 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2912 x += image_x;
2913 y += image_y;
2914
2915 map->stride = mt->surf.row_pitch;
2916 map->ptr = base + y * map->stride + x * mt->cpp;
2917 }
2918
2919 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2920 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2921 map->x, map->y, map->w, map->h,
2922 mt, _mesa_get_format_name(mt->format),
2923 x, y, map->ptr, map->stride);
2924 }
2925
2926 static void
2927 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2928 {
2929 intel_miptree_unmap_raw(mt);
2930 }
2931
2932 static void
2933 intel_miptree_map_blit(struct brw_context *brw,
2934 struct intel_mipmap_tree *mt,
2935 struct intel_miptree_map *map,
2936 unsigned int level, unsigned int slice)
2937 {
2938 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2939 /* first_level */ 0,
2940 /* last_level */ 0,
2941 map->w, map->h, 1,
2942 /* samples */ 1,
2943 MIPTREE_CREATE_LINEAR);
2944
2945 if (!map->linear_mt) {
2946 fprintf(stderr, "Failed to allocate blit temporary\n");
2947 goto fail;
2948 }
2949 map->stride = map->linear_mt->surf.row_pitch;
2950
2951 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2952 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2953 * invalidate is set, since we'll be writing the whole rectangle from our
2954 * temporary buffer back out.
2955 */
2956 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2957 if (!intel_miptree_copy(brw,
2958 mt, level, slice, map->x, map->y,
2959 map->linear_mt, 0, 0, 0, 0,
2960 map->w, map->h)) {
2961 fprintf(stderr, "Failed to blit\n");
2962 goto fail;
2963 }
2964 }
2965
2966 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
2967
2968 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2969 map->x, map->y, map->w, map->h,
2970 mt, _mesa_get_format_name(mt->format),
2971 level, slice, map->ptr, map->stride);
2972
2973 return;
2974
2975 fail:
2976 intel_miptree_release(&map->linear_mt);
2977 map->ptr = NULL;
2978 map->stride = 0;
2979 }
2980
2981 static void
2982 intel_miptree_unmap_blit(struct brw_context *brw,
2983 struct intel_mipmap_tree *mt,
2984 struct intel_miptree_map *map,
2985 unsigned int level,
2986 unsigned int slice)
2987 {
2988 struct gl_context *ctx = &brw->ctx;
2989
2990 intel_miptree_unmap_raw(map->linear_mt);
2991
2992 if (map->mode & GL_MAP_WRITE_BIT) {
2993 bool ok = intel_miptree_copy(brw,
2994 map->linear_mt, 0, 0, 0, 0,
2995 mt, level, slice, map->x, map->y,
2996 map->w, map->h);
2997 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2998 }
2999
3000 intel_miptree_release(&map->linear_mt);
3001 }
3002
3003 /**
3004 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3005 */
3006 #if defined(USE_SSE41)
3007 static void
3008 intel_miptree_map_movntdqa(struct brw_context *brw,
3009 struct intel_mipmap_tree *mt,
3010 struct intel_miptree_map *map,
3011 unsigned int level, unsigned int slice)
3012 {
3013 assert(map->mode & GL_MAP_READ_BIT);
3014 assert(!(map->mode & GL_MAP_WRITE_BIT));
3015
3016 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3017 map->x, map->y, map->w, map->h,
3018 mt, _mesa_get_format_name(mt->format),
3019 level, slice, map->ptr, map->stride);
3020
3021 /* Map the original image */
3022 uint32_t image_x;
3023 uint32_t image_y;
3024 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3025 image_x += map->x;
3026 image_y += map->y;
3027
3028 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3029 if (!src)
3030 return;
3031
3032 src += mt->offset;
3033
3034 src += image_y * mt->surf.row_pitch;
3035 src += image_x * mt->cpp;
3036
3037 /* Due to the pixel offsets for the particular image being mapped, our
3038 * src pointer may not be 16-byte aligned. However, if the pitch is
3039 * divisible by 16, then the amount by which it's misaligned will remain
3040 * consistent from row to row.
3041 */
3042 assert((mt->surf.row_pitch % 16) == 0);
3043 const int misalignment = ((uintptr_t) src) & 15;
3044
3045 /* Create an untiled temporary buffer for the mapping. */
3046 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3047
3048 map->stride = ALIGN(misalignment + width_bytes, 16);
3049
3050 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3051 /* Offset the destination so it has the same misalignment as src. */
3052 map->ptr = map->buffer + misalignment;
3053
3054 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3055
3056 for (uint32_t y = 0; y < map->h; y++) {
3057 void *dst_ptr = map->ptr + y * map->stride;
3058 void *src_ptr = src + y * mt->surf.row_pitch;
3059
3060 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3061 }
3062
3063 intel_miptree_unmap_raw(mt);
3064 }
3065
3066 static void
3067 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3068 struct intel_mipmap_tree *mt,
3069 struct intel_miptree_map *map,
3070 unsigned int level,
3071 unsigned int slice)
3072 {
3073 _mesa_align_free(map->buffer);
3074 map->buffer = NULL;
3075 map->ptr = NULL;
3076 }
3077 #endif
3078
3079 static void
3080 intel_miptree_map_s8(struct brw_context *brw,
3081 struct intel_mipmap_tree *mt,
3082 struct intel_miptree_map *map,
3083 unsigned int level, unsigned int slice)
3084 {
3085 map->stride = map->w;
3086 map->buffer = map->ptr = malloc(map->stride * map->h);
3087 if (!map->buffer)
3088 return;
3089
3090 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3091 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3092 * invalidate is set, since we'll be writing the whole rectangle from our
3093 * temporary buffer back out.
3094 */
3095 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3096 uint8_t *untiled_s8_map = map->ptr;
3097 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3098 unsigned int image_x, image_y;
3099
3100 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3101
3102 for (uint32_t y = 0; y < map->h; y++) {
3103 for (uint32_t x = 0; x < map->w; x++) {
3104 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3105 x + image_x + map->x,
3106 y + image_y + map->y,
3107 brw->has_swizzling);
3108 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3109 }
3110 }
3111
3112 intel_miptree_unmap_raw(mt);
3113
3114 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3115 map->x, map->y, map->w, map->h,
3116 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3117 } else {
3118 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3119 map->x, map->y, map->w, map->h,
3120 mt, map->ptr, map->stride);
3121 }
3122 }
3123
3124 static void
3125 intel_miptree_unmap_s8(struct brw_context *brw,
3126 struct intel_mipmap_tree *mt,
3127 struct intel_miptree_map *map,
3128 unsigned int level,
3129 unsigned int slice)
3130 {
3131 if (map->mode & GL_MAP_WRITE_BIT) {
3132 unsigned int image_x, image_y;
3133 uint8_t *untiled_s8_map = map->ptr;
3134 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3135
3136 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3137
3138 for (uint32_t y = 0; y < map->h; y++) {
3139 for (uint32_t x = 0; x < map->w; x++) {
3140 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3141 image_x + x + map->x,
3142 image_y + y + map->y,
3143 brw->has_swizzling);
3144 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3145 }
3146 }
3147
3148 intel_miptree_unmap_raw(mt);
3149 }
3150
3151 free(map->buffer);
3152 }
3153
3154 static void
3155 intel_miptree_map_etc(struct brw_context *brw,
3156 struct intel_mipmap_tree *mt,
3157 struct intel_miptree_map *map,
3158 unsigned int level,
3159 unsigned int slice)
3160 {
3161 assert(mt->etc_format != MESA_FORMAT_NONE);
3162 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3163 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3164 }
3165
3166 assert(map->mode & GL_MAP_WRITE_BIT);
3167 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3168
3169 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3170 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3171 map->w, map->h, 1));
3172 map->ptr = map->buffer;
3173 }
3174
3175 static void
3176 intel_miptree_unmap_etc(struct brw_context *brw,
3177 struct intel_mipmap_tree *mt,
3178 struct intel_miptree_map *map,
3179 unsigned int level,
3180 unsigned int slice)
3181 {
3182 uint32_t image_x;
3183 uint32_t image_y;
3184 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3185
3186 image_x += map->x;
3187 image_y += map->y;
3188
3189 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3190 + image_y * mt->surf.row_pitch
3191 + image_x * mt->cpp;
3192
3193 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3194 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3195 map->ptr, map->stride,
3196 map->w, map->h);
3197 else
3198 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3199 map->ptr, map->stride,
3200 map->w, map->h, mt->etc_format);
3201
3202 intel_miptree_unmap_raw(mt);
3203 free(map->buffer);
3204 }
3205
3206 /**
3207 * Mapping function for packed depth/stencil miptrees backed by real separate
3208 * miptrees for depth and stencil.
3209 *
3210 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3211 * separate from the depth buffer. Yet at the GL API level, we have to expose
3212 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3213 * be able to map that memory for texture storage and glReadPixels-type
3214 * operations. We give Mesa core that access by mallocing a temporary and
3215 * copying the data between the actual backing store and the temporary.
3216 */
3217 static void
3218 intel_miptree_map_depthstencil(struct brw_context *brw,
3219 struct intel_mipmap_tree *mt,
3220 struct intel_miptree_map *map,
3221 unsigned int level, unsigned int slice)
3222 {
3223 struct intel_mipmap_tree *z_mt = mt;
3224 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3225 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3226 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3227
3228 map->stride = map->w * packed_bpp;
3229 map->buffer = map->ptr = malloc(map->stride * map->h);
3230 if (!map->buffer)
3231 return;
3232
3233 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3234 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3235 * invalidate is set, since we'll be writing the whole rectangle from our
3236 * temporary buffer back out.
3237 */
3238 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3239 uint32_t *packed_map = map->ptr;
3240 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3241 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3242 unsigned int s_image_x, s_image_y;
3243 unsigned int z_image_x, z_image_y;
3244
3245 intel_miptree_get_image_offset(s_mt, level, slice,
3246 &s_image_x, &s_image_y);
3247 intel_miptree_get_image_offset(z_mt, level, slice,
3248 &z_image_x, &z_image_y);
3249
3250 for (uint32_t y = 0; y < map->h; y++) {
3251 for (uint32_t x = 0; x < map->w; x++) {
3252 int map_x = map->x + x, map_y = map->y + y;
3253 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3254 map_x + s_image_x,
3255 map_y + s_image_y,
3256 brw->has_swizzling);
3257 ptrdiff_t z_offset = ((map_y + z_image_y) *
3258 (z_mt->surf.row_pitch / 4) +
3259 (map_x + z_image_x));
3260 uint8_t s = s_map[s_offset];
3261 uint32_t z = z_map[z_offset];
3262
3263 if (map_z32f_x24s8) {
3264 packed_map[(y * map->w + x) * 2 + 0] = z;
3265 packed_map[(y * map->w + x) * 2 + 1] = s;
3266 } else {
3267 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3268 }
3269 }
3270 }
3271
3272 intel_miptree_unmap_raw(s_mt);
3273 intel_miptree_unmap_raw(z_mt);
3274
3275 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3276 __func__,
3277 map->x, map->y, map->w, map->h,
3278 z_mt, map->x + z_image_x, map->y + z_image_y,
3279 s_mt, map->x + s_image_x, map->y + s_image_y,
3280 map->ptr, map->stride);
3281 } else {
3282 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3283 map->x, map->y, map->w, map->h,
3284 mt, map->ptr, map->stride);
3285 }
3286 }
3287
3288 static void
3289 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3290 struct intel_mipmap_tree *mt,
3291 struct intel_miptree_map *map,
3292 unsigned int level,
3293 unsigned int slice)
3294 {
3295 struct intel_mipmap_tree *z_mt = mt;
3296 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3297 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3298
3299 if (map->mode & GL_MAP_WRITE_BIT) {
3300 uint32_t *packed_map = map->ptr;
3301 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3302 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3303 unsigned int s_image_x, s_image_y;
3304 unsigned int z_image_x, z_image_y;
3305
3306 intel_miptree_get_image_offset(s_mt, level, slice,
3307 &s_image_x, &s_image_y);
3308 intel_miptree_get_image_offset(z_mt, level, slice,
3309 &z_image_x, &z_image_y);
3310
3311 for (uint32_t y = 0; y < map->h; y++) {
3312 for (uint32_t x = 0; x < map->w; x++) {
3313 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3314 x + s_image_x + map->x,
3315 y + s_image_y + map->y,
3316 brw->has_swizzling);
3317 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3318 (z_mt->surf.row_pitch / 4) +
3319 (x + z_image_x + map->x));
3320
3321 if (map_z32f_x24s8) {
3322 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3323 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3324 } else {
3325 uint32_t packed = packed_map[y * map->w + x];
3326 s_map[s_offset] = packed >> 24;
3327 z_map[z_offset] = packed;
3328 }
3329 }
3330 }
3331
3332 intel_miptree_unmap_raw(s_mt);
3333 intel_miptree_unmap_raw(z_mt);
3334
3335 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3336 __func__,
3337 map->x, map->y, map->w, map->h,
3338 z_mt, _mesa_get_format_name(z_mt->format),
3339 map->x + z_image_x, map->y + z_image_y,
3340 s_mt, map->x + s_image_x, map->y + s_image_y,
3341 map->ptr, map->stride);
3342 }
3343
3344 free(map->buffer);
3345 }
3346
3347 /**
3348 * Create and attach a map to the miptree at (level, slice). Return the
3349 * attached map.
3350 */
3351 static struct intel_miptree_map*
3352 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3353 unsigned int level,
3354 unsigned int slice,
3355 unsigned int x,
3356 unsigned int y,
3357 unsigned int w,
3358 unsigned int h,
3359 GLbitfield mode)
3360 {
3361 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3362
3363 if (!map)
3364 return NULL;
3365
3366 assert(mt->level[level].slice[slice].map == NULL);
3367 mt->level[level].slice[slice].map = map;
3368
3369 map->mode = mode;
3370 map->x = x;
3371 map->y = y;
3372 map->w = w;
3373 map->h = h;
3374
3375 return map;
3376 }
3377
3378 /**
3379 * Release the map at (level, slice).
3380 */
3381 static void
3382 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3383 unsigned int level,
3384 unsigned int slice)
3385 {
3386 struct intel_miptree_map **map;
3387
3388 map = &mt->level[level].slice[slice].map;
3389 free(*map);
3390 *map = NULL;
3391 }
3392
3393 static bool
3394 can_blit_slice(struct intel_mipmap_tree *mt,
3395 unsigned int level, unsigned int slice)
3396 {
3397 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3398 if (mt->surf.row_pitch >= 32768)
3399 return false;
3400
3401 return true;
3402 }
3403
3404 static bool
3405 use_intel_mipree_map_blit(struct brw_context *brw,
3406 struct intel_mipmap_tree *mt,
3407 GLbitfield mode,
3408 unsigned int level,
3409 unsigned int slice)
3410 {
3411 if (brw->has_llc &&
3412 /* It's probably not worth swapping to the blit ring because of
3413 * all the overhead involved.
3414 */
3415 !(mode & GL_MAP_WRITE_BIT) &&
3416 !mt->compressed &&
3417 (mt->surf.tiling == ISL_TILING_X ||
3418 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3419 (brw->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3420 /* Fast copy blit on skl+ supports all tiling formats. */
3421 brw->gen >= 9) &&
3422 can_blit_slice(mt, level, slice))
3423 return true;
3424
3425 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3426 mt->bo->size >= brw->max_gtt_map_object_size) {
3427 assert(can_blit_slice(mt, level, slice));
3428 return true;
3429 }
3430
3431 return false;
3432 }
3433
3434 /**
3435 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3436 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3437 * arithmetic overflow.
3438 *
3439 * If you call this function and use \a out_stride, then you're doing pointer
3440 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3441 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3442 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3443 * which usually have type uint32_t or GLuint.
3444 */
3445 void
3446 intel_miptree_map(struct brw_context *brw,
3447 struct intel_mipmap_tree *mt,
3448 unsigned int level,
3449 unsigned int slice,
3450 unsigned int x,
3451 unsigned int y,
3452 unsigned int w,
3453 unsigned int h,
3454 GLbitfield mode,
3455 void **out_ptr,
3456 ptrdiff_t *out_stride)
3457 {
3458 struct intel_miptree_map *map;
3459
3460 assert(mt->surf.samples == 1);
3461
3462 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3463 if (!map){
3464 *out_ptr = NULL;
3465 *out_stride = 0;
3466 return;
3467 }
3468
3469 intel_miptree_access_raw(brw, mt, level, slice,
3470 map->mode & GL_MAP_WRITE_BIT);
3471
3472 if (mt->format == MESA_FORMAT_S_UINT8) {
3473 intel_miptree_map_s8(brw, mt, map, level, slice);
3474 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3475 !(mode & BRW_MAP_DIRECT_BIT)) {
3476 intel_miptree_map_etc(brw, mt, map, level, slice);
3477 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3478 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3479 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3480 intel_miptree_map_blit(brw, mt, map, level, slice);
3481 #if defined(USE_SSE41)
3482 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3483 !mt->compressed && cpu_has_sse4_1 &&
3484 (mt->surf.row_pitch % 16 == 0)) {
3485 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3486 #endif
3487 } else {
3488 intel_miptree_map_gtt(brw, mt, map, level, slice);
3489 }
3490
3491 *out_ptr = map->ptr;
3492 *out_stride = map->stride;
3493
3494 if (map->ptr == NULL)
3495 intel_miptree_release_map(mt, level, slice);
3496 }
3497
3498 void
3499 intel_miptree_unmap(struct brw_context *brw,
3500 struct intel_mipmap_tree *mt,
3501 unsigned int level,
3502 unsigned int slice)
3503 {
3504 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3505
3506 assert(mt->surf.samples == 1);
3507
3508 if (!map)
3509 return;
3510
3511 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3512 mt, _mesa_get_format_name(mt->format), level, slice);
3513
3514 if (mt->format == MESA_FORMAT_S_UINT8) {
3515 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3516 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3517 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3518 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3519 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3520 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3521 } else if (map->linear_mt) {
3522 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3523 #if defined(USE_SSE41)
3524 } else if (map->buffer && cpu_has_sse4_1) {
3525 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3526 #endif
3527 } else {
3528 intel_miptree_unmap_gtt(mt);
3529 }
3530
3531 intel_miptree_release_map(mt, level, slice);
3532 }
3533
3534 enum isl_surf_dim
3535 get_isl_surf_dim(GLenum target)
3536 {
3537 switch (target) {
3538 case GL_TEXTURE_1D:
3539 case GL_TEXTURE_1D_ARRAY:
3540 return ISL_SURF_DIM_1D;
3541
3542 case GL_TEXTURE_2D:
3543 case GL_TEXTURE_2D_ARRAY:
3544 case GL_TEXTURE_RECTANGLE:
3545 case GL_TEXTURE_CUBE_MAP:
3546 case GL_TEXTURE_CUBE_MAP_ARRAY:
3547 case GL_TEXTURE_2D_MULTISAMPLE:
3548 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3549 case GL_TEXTURE_EXTERNAL_OES:
3550 return ISL_SURF_DIM_2D;
3551
3552 case GL_TEXTURE_3D:
3553 return ISL_SURF_DIM_3D;
3554 }
3555
3556 unreachable("Invalid texture target");
3557 }
3558
3559 enum isl_dim_layout
3560 get_isl_dim_layout(const struct gen_device_info *devinfo,
3561 enum isl_tiling tiling, GLenum target)
3562 {
3563 switch (target) {
3564 case GL_TEXTURE_1D:
3565 case GL_TEXTURE_1D_ARRAY:
3566 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3567 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3568
3569 case GL_TEXTURE_2D:
3570 case GL_TEXTURE_2D_ARRAY:
3571 case GL_TEXTURE_RECTANGLE:
3572 case GL_TEXTURE_2D_MULTISAMPLE:
3573 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3574 case GL_TEXTURE_EXTERNAL_OES:
3575 return ISL_DIM_LAYOUT_GEN4_2D;
3576
3577 case GL_TEXTURE_CUBE_MAP:
3578 case GL_TEXTURE_CUBE_MAP_ARRAY:
3579 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3580 ISL_DIM_LAYOUT_GEN4_2D);
3581
3582 case GL_TEXTURE_3D:
3583 return (devinfo->gen >= 9 ?
3584 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3585 }
3586
3587 unreachable("Invalid texture target");
3588 }
3589
3590 enum isl_aux_usage
3591 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3592 const struct intel_mipmap_tree *mt)
3593 {
3594 if (mt->hiz_buf)
3595 return ISL_AUX_USAGE_HIZ;
3596
3597 if (!mt->mcs_buf)
3598 return ISL_AUX_USAGE_NONE;
3599
3600 return mt->aux_usage;
3601 }