i965: Reset miptree aux state on update_image_buffer
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
77 switch (_mesa_get_format_base_format(mt->format)) {
78 case GL_DEPTH_COMPONENT:
79 case GL_STENCIL_INDEX:
80 case GL_DEPTH_STENCIL:
81 return false;
82 default:
83 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
84 *
85 * This field must be set to 0 for all SINT MSRTs when all RT channels
86 * are not written
87 *
88 * In practice this means that we have to disable MCS for all signed
89 * integer MSAA buffers. The alternative, to disable MCS only when one
90 * of the render target channels is disabled, is impractical because it
91 * would require converting between CMS and UMS MSAA layouts on the fly,
92 * which is expensive.
93 */
94 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
95 return false;
96 } else {
97 return true;
98 }
99 }
100 }
101
102 static bool
103 intel_tiling_supports_ccs(const struct brw_context *brw,
104 enum isl_tiling tiling)
105 {
106 const struct gen_device_info *devinfo = &brw->screen->devinfo;
107
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (devinfo->gen >= 9)
116 return tiling == ISL_TILING_Y0;
117 else if (devinfo->gen >= 7)
118 return tiling != ISL_TILING_LINEAR;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 static bool
145 intel_miptree_supports_ccs(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 const struct gen_device_info *devinfo = &brw->screen->devinfo;
149
150 /* MCS support does not exist prior to Gen7 */
151 if (devinfo->gen < 7)
152 return false;
153
154 /* This function applies only to non-multisampled render targets. */
155 if (mt->surf.samples > 1)
156 return false;
157
158 /* MCS is only supported for color buffers */
159 switch (_mesa_get_format_base_format(mt->format)) {
160 case GL_DEPTH_COMPONENT:
161 case GL_DEPTH_STENCIL:
162 case GL_STENCIL_INDEX:
163 return false;
164 }
165
166 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
167 return false;
168
169 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
170 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
171 mt->surf.logical_level0_px.depth > 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->surf.samples == 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (devinfo->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->mesa_format_supports_render[mt->format])
208 return false;
209
210 return true;
211 }
212
213 static bool
214 intel_tiling_supports_hiz(const struct brw_context *brw,
215 enum isl_tiling tiling)
216 {
217 const struct gen_device_info *devinfo = &brw->screen->devinfo;
218
219 if (devinfo->gen < 6)
220 return false;
221
222 return tiling == ISL_TILING_Y0;
223 }
224
225 static bool
226 intel_miptree_supports_hiz(const struct brw_context *brw,
227 const struct intel_mipmap_tree *mt)
228 {
229 if (!brw->has_hiz)
230 return false;
231
232 switch (mt->format) {
233 case MESA_FORMAT_Z_FLOAT32:
234 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
235 case MESA_FORMAT_Z24_UNORM_X8_UINT:
236 case MESA_FORMAT_Z24_UNORM_S8_UINT:
237 case MESA_FORMAT_Z_UNORM16:
238 return true;
239 default:
240 return false;
241 }
242 }
243
244 static bool
245 intel_miptree_supports_ccs_e(struct brw_context *brw,
246 const struct intel_mipmap_tree *mt)
247 {
248 const struct gen_device_info *devinfo = &brw->screen->devinfo;
249
250 if (devinfo->gen < 9)
251 return false;
252
253 /* For now compression is only enabled for integer formats even though
254 * there exist supported floating point formats also. This is a heuristic
255 * decision based on current public benchmarks. In none of the cases these
256 * formats provided any improvement but a few cases were seen to regress.
257 * Hence these are left to to be enabled in the future when they are known
258 * to improve things.
259 */
260 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
261 return false;
262
263 if (!intel_miptree_supports_ccs(brw, mt))
264 return false;
265
266 /* Many window system buffers are sRGB even if they are never rendered as
267 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
268 * surface is used as sRGB, we fall back to CCS_D.
269 */
270 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
271 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
272 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
273 }
274
275 /**
276 * Determine depth format corresponding to a depth+stencil format,
277 * for separate stencil.
278 */
279 mesa_format
280 intel_depth_format_for_depthstencil_format(mesa_format format) {
281 switch (format) {
282 case MESA_FORMAT_Z24_UNORM_S8_UINT:
283 return MESA_FORMAT_Z24_UNORM_X8_UINT;
284 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
285 return MESA_FORMAT_Z_FLOAT32;
286 default:
287 return format;
288 }
289 }
290
291 static bool
292 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
293 unsigned depth0, struct intel_mipmap_level *table)
294 {
295 for (unsigned level = first_level; level <= last_level; level++) {
296 const unsigned d =
297 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
298
299 table[level].slice = calloc(d, sizeof(*table[0].slice));
300 if (!table[level].slice)
301 goto unwind;
302 }
303
304 return true;
305
306 unwind:
307 for (unsigned level = first_level; level <= last_level; level++)
308 free(table[level].slice);
309
310 return false;
311 }
312
313 static bool
314 needs_separate_stencil(const struct brw_context *brw,
315 struct intel_mipmap_tree *mt,
316 mesa_format format)
317 {
318 const struct gen_device_info *devinfo = &brw->screen->devinfo;
319
320 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
321 return false;
322
323 if (devinfo->must_use_separate_stencil)
324 return true;
325
326 return brw->has_separate_stencil &&
327 intel_miptree_supports_hiz(brw, mt);
328 }
329
330 /**
331 * Choose the aux usage for this miptree. This function must be called fairly
332 * late in the miptree create process after we have a tiling.
333 */
334 static void
335 intel_miptree_choose_aux_usage(struct brw_context *brw,
336 struct intel_mipmap_tree *mt)
337 {
338 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
339
340 if (intel_miptree_supports_mcs(brw, mt)) {
341 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
342 mt->aux_usage = ISL_AUX_USAGE_MCS;
343 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
344 intel_miptree_supports_ccs(brw, mt)) {
345 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
346 intel_miptree_supports_ccs_e(brw, mt)) {
347 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
348 } else {
349 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
350 }
351 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
352 intel_miptree_supports_hiz(brw, mt)) {
353 mt->aux_usage = ISL_AUX_USAGE_HIZ;
354 }
355
356 /* We can do fast-clear on all auxiliary surface types that are
357 * allocated through the normal texture creation paths.
358 */
359 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
360 mt->supports_fast_clear = true;
361 }
362
363
364 /**
365 * Choose an appropriate uncompressed format for a requested
366 * compressed format, if unsupported.
367 */
368 mesa_format
369 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
370 {
371 const struct gen_device_info *devinfo = &brw->screen->devinfo;
372
373 /* No need to lower ETC formats on these platforms,
374 * they are supported natively.
375 */
376 if (devinfo->gen >= 8 || devinfo->is_baytrail)
377 return format;
378
379 switch (format) {
380 case MESA_FORMAT_ETC1_RGB8:
381 return MESA_FORMAT_R8G8B8X8_UNORM;
382 case MESA_FORMAT_ETC2_RGB8:
383 return MESA_FORMAT_R8G8B8X8_UNORM;
384 case MESA_FORMAT_ETC2_SRGB8:
385 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
386 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
387 return MESA_FORMAT_B8G8R8A8_SRGB;
388 case MESA_FORMAT_ETC2_RGBA8_EAC:
389 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
390 return MESA_FORMAT_R8G8B8A8_UNORM;
391 case MESA_FORMAT_ETC2_R11_EAC:
392 return MESA_FORMAT_R_UNORM16;
393 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
394 return MESA_FORMAT_R_SNORM16;
395 case MESA_FORMAT_ETC2_RG11_EAC:
396 return MESA_FORMAT_R16G16_UNORM;
397 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
398 return MESA_FORMAT_R16G16_SNORM;
399 default:
400 /* Non ETC1 / ETC2 format */
401 return format;
402 }
403 }
404
405 unsigned
406 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
407 {
408 if (mt->surf.dim == ISL_SURF_DIM_3D)
409 return minify(mt->surf.logical_level0_px.depth, level);
410 else
411 return mt->surf.logical_level0_px.array_len;
412 }
413
414 UNUSED static unsigned
415 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
416 {
417 /* In case of physical dimensions one needs to consider also the layout.
418 * See isl_calc_phys_level0_extent_sa().
419 */
420 if (surf->dim != ISL_SURF_DIM_3D)
421 return surf->phys_level0_sa.array_len;
422
423 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
424 return minify(surf->phys_level0_sa.array_len, level);
425
426 return minify(surf->phys_level0_sa.depth, level);
427 }
428
429 /** \brief Assert that the level and layer are valid for the miptree. */
430 void
431 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
432 uint32_t level,
433 uint32_t layer)
434 {
435 (void) mt;
436 (void) level;
437 (void) layer;
438
439 assert(level >= mt->first_level);
440 assert(level <= mt->last_level);
441 assert(layer < get_num_phys_layers(&mt->surf, level));
442 }
443
444 static enum isl_aux_state **
445 create_aux_state_map(struct intel_mipmap_tree *mt,
446 enum isl_aux_state initial)
447 {
448 const uint32_t levels = mt->last_level + 1;
449
450 uint32_t total_slices = 0;
451 for (uint32_t level = 0; level < levels; level++)
452 total_slices += brw_get_num_logical_layers(mt, level);
453
454 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
455
456 /* We're going to allocate a single chunk of data for both the per-level
457 * reference array and the arrays of aux_state. This makes cleanup
458 * significantly easier.
459 */
460 const size_t total_size = per_level_array_size +
461 total_slices * sizeof(enum isl_aux_state);
462 void *data = malloc(total_size);
463 if (data == NULL)
464 return NULL;
465
466 enum isl_aux_state **per_level_arr = data;
467 enum isl_aux_state *s = data + per_level_array_size;
468 for (uint32_t level = 0; level < levels; level++) {
469 per_level_arr[level] = s;
470 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
471 for (uint32_t a = 0; a < level_layers; a++)
472 *(s++) = initial;
473 }
474 assert((void *)s == data + total_size);
475
476 return per_level_arr;
477 }
478
479 static void
480 free_aux_state_map(enum isl_aux_state **state)
481 {
482 free(state);
483 }
484
485 static bool
486 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
487 enum isl_tiling tiling, unsigned samples)
488 {
489 if (samples > 1)
490 return false;
491
492 if (tiling == ISL_TILING_LINEAR)
493 return false;
494
495 /* If the width is much smaller than a tile, don't bother tiling. */
496 if (row_pitch < 64)
497 return true;
498
499 if (ALIGN(row_pitch, 512) >= 32768) {
500 perf_debug("row pitch %u too large to blit, falling back to untiled",
501 row_pitch);
502 return true;
503 }
504
505 return false;
506 }
507
508 static bool
509 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
510 enum isl_tiling tiling)
511 {
512 const struct gen_device_info *devinfo = &brw->screen->devinfo;
513
514 /* If the BO is too large to fit in the aperture, we need to use the
515 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
516 * handle Y-tiling, so we need to fall back to X.
517 */
518 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
519 tiling == ISL_TILING_Y0)
520 return true;
521
522 return false;
523 }
524
525 static struct intel_mipmap_tree *
526 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
527 unsigned first_level, unsigned last_level,
528 unsigned width0, unsigned height0, unsigned depth0,
529 unsigned num_samples, isl_tiling_flags_t tiling_flags,
530 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
531 unsigned row_pitch, struct brw_bo *bo)
532 {
533 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
534 if (!mt)
535 return NULL;
536
537 if (!create_mapping_table(target, first_level, last_level, depth0,
538 mt->level)) {
539 free(mt);
540 return NULL;
541 }
542
543 mt->refcount = 1;
544
545 if (target == GL_TEXTURE_CUBE_MAP ||
546 target == GL_TEXTURE_CUBE_MAP_ARRAY)
547 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
548
549 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
550 __func__,
551 _mesa_enum_to_string(target),
552 _mesa_get_format_name(format),
553 num_samples, width0, height0, depth0,
554 first_level, last_level, mt);
555
556 struct isl_surf_init_info init_info = {
557 .dim = get_isl_surf_dim(target),
558 .format = translate_tex_format(brw, format, false),
559 .width = width0,
560 .height = height0,
561 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
562 .levels = last_level - first_level + 1,
563 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
564 .samples = num_samples,
565 .row_pitch = row_pitch,
566 .usage = isl_usage_flags,
567 .tiling_flags = tiling_flags,
568 };
569
570 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
571 goto fail;
572
573 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
574 * on gen7 platforms we also need to create Y-tiled copies of stencil for
575 * texturing since the hardware can't sample from W-tiled surfaces. For
576 * everything else, check for corner cases needing special treatment.
577 */
578 bool is_depth_stencil =
579 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
580 if (!is_depth_stencil) {
581 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
582 mt->surf.tiling, mt->surf.samples)) {
583 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
584 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
585 goto fail;
586 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
587 init_info.tiling_flags = 1u << ISL_TILING_X;
588 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
589 goto fail;
590 }
591 }
592
593 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
594 * the size may not be multiple of row_pitch.
595 * See isl_apply_surface_padding().
596 */
597 if (mt->surf.tiling != ISL_TILING_LINEAR)
598 assert(mt->surf.size % mt->surf.row_pitch == 0);
599
600 if (!bo) {
601 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
602 mt->surf.size,
603 isl_tiling_to_i915_tiling(
604 mt->surf.tiling),
605 mt->surf.row_pitch, alloc_flags);
606 if (!mt->bo)
607 goto fail;
608 } else {
609 mt->bo = bo;
610 }
611
612 mt->first_level = first_level;
613 mt->last_level = last_level;
614 mt->target = target;
615 mt->format = format;
616 mt->aux_state = NULL;
617 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
618 mt->compressed = _mesa_is_format_compressed(format);
619 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
620
621 return mt;
622
623 fail:
624 intel_miptree_release(&mt);
625 return NULL;
626 }
627
628 static bool
629 make_separate_stencil_surface(struct brw_context *brw,
630 struct intel_mipmap_tree *mt)
631 {
632 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
633 0, mt->surf.levels - 1,
634 mt->surf.logical_level0_px.width,
635 mt->surf.logical_level0_px.height,
636 mt->surf.dim == ISL_SURF_DIM_3D ?
637 mt->surf.logical_level0_px.depth :
638 mt->surf.logical_level0_px.array_len,
639 mt->surf.samples, ISL_TILING_W_BIT,
640 ISL_SURF_USAGE_STENCIL_BIT |
641 ISL_SURF_USAGE_TEXTURE_BIT,
642 BO_ALLOC_BUSY, 0, NULL);
643
644 if (!mt->stencil_mt)
645 return false;
646
647 mt->stencil_mt->r8stencil_needs_update = true;
648
649 return true;
650 }
651
652 static struct intel_mipmap_tree *
653 miptree_create(struct brw_context *brw,
654 GLenum target,
655 mesa_format format,
656 GLuint first_level,
657 GLuint last_level,
658 GLuint width0,
659 GLuint height0,
660 GLuint depth0,
661 GLuint num_samples,
662 enum intel_miptree_create_flags flags)
663 {
664 const struct gen_device_info *devinfo = &brw->screen->devinfo;
665
666 if (format == MESA_FORMAT_S_UINT8)
667 return make_surface(brw, target, format, first_level, last_level,
668 width0, height0, depth0, num_samples,
669 ISL_TILING_W_BIT,
670 ISL_SURF_USAGE_STENCIL_BIT |
671 ISL_SURF_USAGE_TEXTURE_BIT,
672 BO_ALLOC_BUSY,
673 0,
674 NULL);
675
676 const GLenum base_format = _mesa_get_format_base_format(format);
677 if ((base_format == GL_DEPTH_COMPONENT ||
678 base_format == GL_DEPTH_STENCIL) &&
679 !(flags & MIPTREE_CREATE_LINEAR)) {
680 /* Fix up the Z miptree format for how we're splitting out separate
681 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
682 */
683 const mesa_format depth_only_format =
684 intel_depth_format_for_depthstencil_format(format);
685 struct intel_mipmap_tree *mt = make_surface(
686 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
687 first_level, last_level,
688 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
689 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
690 BO_ALLOC_BUSY, 0, NULL);
691
692 if (needs_separate_stencil(brw, mt, format) &&
693 !make_separate_stencil_surface(brw, mt)) {
694 intel_miptree_release(&mt);
695 return NULL;
696 }
697
698 if (!(flags & MIPTREE_CREATE_NO_AUX))
699 intel_miptree_choose_aux_usage(brw, mt);
700
701 return mt;
702 }
703
704 mesa_format tex_format = format;
705 mesa_format etc_format = MESA_FORMAT_NONE;
706 uint32_t alloc_flags = 0;
707
708 format = intel_lower_compressed_format(brw, format);
709
710 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
711
712 if (flags & MIPTREE_CREATE_BUSY)
713 alloc_flags |= BO_ALLOC_BUSY;
714
715 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
716 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
717
718 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
719 if (devinfo->gen < 6)
720 tiling_flags &= ~ISL_TILING_Y0_BIT;
721
722 struct intel_mipmap_tree *mt = make_surface(
723 brw, target, format,
724 first_level, last_level,
725 width0, height0, depth0,
726 num_samples, tiling_flags,
727 ISL_SURF_USAGE_RENDER_TARGET_BIT |
728 ISL_SURF_USAGE_TEXTURE_BIT,
729 alloc_flags, 0, NULL);
730 if (!mt)
731 return NULL;
732
733 mt->etc_format = etc_format;
734
735 if (!(flags & MIPTREE_CREATE_NO_AUX))
736 intel_miptree_choose_aux_usage(brw, mt);
737
738 return mt;
739 }
740
741 struct intel_mipmap_tree *
742 intel_miptree_create(struct brw_context *brw,
743 GLenum target,
744 mesa_format format,
745 GLuint first_level,
746 GLuint last_level,
747 GLuint width0,
748 GLuint height0,
749 GLuint depth0,
750 GLuint num_samples,
751 enum intel_miptree_create_flags flags)
752 {
753 assert(num_samples > 0);
754
755 struct intel_mipmap_tree *mt = miptree_create(
756 brw, target, format,
757 first_level, last_level,
758 width0, height0, depth0, num_samples,
759 flags);
760 if (!mt)
761 return NULL;
762
763 mt->offset = 0;
764
765 if (!intel_miptree_alloc_aux(brw, mt)) {
766 intel_miptree_release(&mt);
767 return NULL;
768 }
769
770 return mt;
771 }
772
773 struct intel_mipmap_tree *
774 intel_miptree_create_for_bo(struct brw_context *brw,
775 struct brw_bo *bo,
776 mesa_format format,
777 uint32_t offset,
778 uint32_t width,
779 uint32_t height,
780 uint32_t depth,
781 int pitch,
782 enum intel_miptree_create_flags flags)
783 {
784 const struct gen_device_info *devinfo = &brw->screen->devinfo;
785 struct intel_mipmap_tree *mt;
786 uint32_t tiling, swizzle;
787 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
788 const GLenum base_format = _mesa_get_format_base_format(format);
789
790 if ((base_format == GL_DEPTH_COMPONENT ||
791 base_format == GL_DEPTH_STENCIL)) {
792 const mesa_format depth_only_format =
793 intel_depth_format_for_depthstencil_format(format);
794 mt = make_surface(brw, target,
795 devinfo->gen >= 6 ? depth_only_format : format,
796 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
797 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
798 BO_ALLOC_BUSY, pitch, bo);
799 if (!mt)
800 return NULL;
801
802 brw_bo_reference(bo);
803
804 if (!(flags & MIPTREE_CREATE_NO_AUX))
805 intel_miptree_choose_aux_usage(brw, mt);
806
807 return mt;
808 } else if (format == MESA_FORMAT_S_UINT8) {
809 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
810 0, 0, width, height, depth, 1,
811 ISL_TILING_W_BIT,
812 ISL_SURF_USAGE_STENCIL_BIT |
813 ISL_SURF_USAGE_TEXTURE_BIT,
814 BO_ALLOC_BUSY, pitch, bo);
815 if (!mt)
816 return NULL;
817
818 assert(bo->size >= mt->surf.size);
819
820 brw_bo_reference(bo);
821 return mt;
822 }
823
824 brw_bo_get_tiling(bo, &tiling, &swizzle);
825
826 /* Nothing will be able to use this miptree with the BO if the offset isn't
827 * aligned.
828 */
829 if (tiling != I915_TILING_NONE)
830 assert(offset % 4096 == 0);
831
832 /* miptrees can't handle negative pitch. If you need flipping of images,
833 * that's outside of the scope of the mt.
834 */
835 assert(pitch >= 0);
836
837 /* The BO already has a tiling format and we shouldn't confuse the lower
838 * layers by making it try to find a tiling format again.
839 */
840 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
841
842 mt = make_surface(brw, target, format,
843 0, 0, width, height, depth, 1,
844 1lu << isl_tiling_from_i915_tiling(tiling),
845 ISL_SURF_USAGE_RENDER_TARGET_BIT |
846 ISL_SURF_USAGE_TEXTURE_BIT,
847 0, pitch, bo);
848 if (!mt)
849 return NULL;
850
851 brw_bo_reference(bo);
852 mt->bo = bo;
853 mt->offset = offset;
854
855 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
856 intel_miptree_choose_aux_usage(brw, mt);
857
858 if (!intel_miptree_alloc_aux(brw, mt)) {
859 intel_miptree_release(&mt);
860 return NULL;
861 }
862 }
863
864 return mt;
865 }
866
867 static struct intel_mipmap_tree *
868 miptree_create_for_planar_image(struct brw_context *brw,
869 __DRIimage *image, GLenum target)
870 {
871 const struct intel_image_format *f = image->planar_format;
872 struct intel_mipmap_tree *planar_mt = NULL;
873
874 for (int i = 0; i < f->nplanes; i++) {
875 const int index = f->planes[i].buffer_index;
876 const uint32_t dri_format = f->planes[i].dri_format;
877 const mesa_format format = driImageFormatToGLFormat(dri_format);
878 const uint32_t width = image->width >> f->planes[i].width_shift;
879 const uint32_t height = image->height >> f->planes[i].height_shift;
880
881 /* Disable creation of the texture's aux buffers because the driver
882 * exposes no EGL API to manage them. That is, there is no API for
883 * resolving the aux buffer's content to the main buffer nor for
884 * invalidating the aux buffer's content.
885 */
886 struct intel_mipmap_tree *mt =
887 intel_miptree_create_for_bo(brw, image->bo, format,
888 image->offsets[index],
889 width, height, 1,
890 image->strides[index],
891 MIPTREE_CREATE_NO_AUX);
892 if (mt == NULL)
893 return NULL;
894
895 mt->target = target;
896
897 if (i == 0)
898 planar_mt = mt;
899 else
900 planar_mt->plane[i - 1] = mt;
901 }
902
903 planar_mt->drm_modifier = image->modifier;
904
905 return planar_mt;
906 }
907
908 static bool
909 create_ccs_buf_for_image(struct brw_context *brw,
910 __DRIimage *image,
911 struct intel_mipmap_tree *mt,
912 enum isl_aux_state initial_state)
913 {
914 struct isl_surf temp_ccs_surf;
915
916 /* CCS is only supported for very simple miptrees */
917 assert(image->aux_offset != 0 && image->aux_pitch != 0);
918 assert(image->tile_x == 0 && image->tile_y == 0);
919 assert(mt->surf.samples == 1);
920 assert(mt->surf.levels == 1);
921 assert(mt->surf.logical_level0_px.depth == 1);
922 assert(mt->surf.logical_level0_px.array_len == 1);
923 assert(mt->first_level == 0);
924 assert(mt->last_level == 0);
925
926 /* We shouldn't already have a CCS */
927 assert(!mt->mcs_buf);
928
929 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
930 image->aux_pitch))
931 return false;
932
933 assert(image->aux_offset < image->bo->size);
934 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
935
936 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
937 if (mt->mcs_buf == NULL)
938 return false;
939
940 mt->aux_state = create_aux_state_map(mt, initial_state);
941 if (!mt->aux_state) {
942 free(mt->mcs_buf);
943 mt->mcs_buf = NULL;
944 return false;
945 }
946
947 mt->mcs_buf->bo = image->bo;
948 brw_bo_reference(image->bo);
949
950 mt->mcs_buf->offset = image->aux_offset;
951 mt->mcs_buf->size = image->bo->size - image->aux_offset;
952 mt->mcs_buf->pitch = image->aux_pitch;
953 mt->mcs_buf->qpitch = 0;
954 mt->mcs_buf->surf = temp_ccs_surf;
955
956 return true;
957 }
958
959 struct intel_mipmap_tree *
960 intel_miptree_create_for_dri_image(struct brw_context *brw,
961 __DRIimage *image, GLenum target,
962 enum isl_colorspace colorspace,
963 bool is_winsys_image)
964 {
965 if (image->planar_format && image->planar_format->nplanes > 1) {
966 assert(colorspace == ISL_COLORSPACE_NONE ||
967 colorspace == ISL_COLORSPACE_YUV);
968 return miptree_create_for_planar_image(brw, image, target);
969 }
970
971 if (image->planar_format)
972 assert(image->planar_format->planes[0].dri_format == image->dri_format);
973
974 mesa_format format = image->format;
975 switch (colorspace) {
976 case ISL_COLORSPACE_NONE:
977 /* Keep the image format unmodified */
978 break;
979
980 case ISL_COLORSPACE_LINEAR:
981 format =_mesa_get_srgb_format_linear(format);
982 break;
983
984 case ISL_COLORSPACE_SRGB:
985 format =_mesa_get_linear_format_srgb(format);
986 break;
987
988 default:
989 unreachable("Inalid colorspace for non-planar image");
990 }
991
992 if (!brw->ctx.TextureFormatSupported[format]) {
993 /* The texture storage paths in core Mesa detect if the driver does not
994 * support the user-requested format, and then searches for a
995 * fallback format. The DRIimage code bypasses core Mesa, though. So we
996 * do the fallbacks here for important formats.
997 *
998 * We must support DRM_FOURCC_XBGR8888 textures because the Android
999 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1000 * the Chrome OS compositor consumes as dma_buf EGLImages.
1001 */
1002 format = _mesa_format_fallback_rgbx_to_rgba(format);
1003 }
1004
1005 if (!brw->ctx.TextureFormatSupported[format])
1006 return NULL;
1007
1008 const struct isl_drm_modifier_info *mod_info =
1009 isl_drm_modifier_get_info(image->modifier);
1010
1011 enum intel_miptree_create_flags mt_create_flags = 0;
1012
1013 /* If this image comes in from a window system, we have different
1014 * requirements than if it comes in via an EGL import operation. Window
1015 * system images can use any form of auxiliary compression we wish because
1016 * they get "flushed" before being handed off to the window system and we
1017 * have the opportunity to do resolves. Non window-system images, on the
1018 * other hand, have no resolve point so we can't have aux without a
1019 * modifier.
1020 */
1021 if (!is_winsys_image)
1022 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1023
1024 /* If we have a modifier which specifies aux, don't create one yet */
1025 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1026 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1027
1028 /* Disable creation of the texture's aux buffers because the driver exposes
1029 * no EGL API to manage them. That is, there is no API for resolving the aux
1030 * buffer's content to the main buffer nor for invalidating the aux buffer's
1031 * content.
1032 */
1033 struct intel_mipmap_tree *mt =
1034 intel_miptree_create_for_bo(brw, image->bo, format,
1035 image->offset, image->width, image->height, 1,
1036 image->pitch, mt_create_flags);
1037 if (mt == NULL)
1038 return NULL;
1039
1040 mt->target = target;
1041 mt->level[0].level_x = image->tile_x;
1042 mt->level[0].level_y = image->tile_y;
1043 mt->drm_modifier = image->modifier;
1044
1045 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1046 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1047 * trouble resolving back to destination image due to alignment issues.
1048 */
1049 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1050 if (!devinfo->has_surface_tile_offset) {
1051 uint32_t draw_x, draw_y;
1052 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1053
1054 if (draw_x != 0 || draw_y != 0) {
1055 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1056 intel_miptree_release(&mt);
1057 return NULL;
1058 }
1059 }
1060
1061 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1062 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1063
1064 mt->aux_usage = mod_info->aux_usage;
1065 /* If we are a window system buffer, then we can support fast-clears
1066 * even if the modifier doesn't support them by doing a partial resolve
1067 * as part of the flush operation.
1068 */
1069 mt->supports_fast_clear =
1070 is_winsys_image || mod_info->supports_clear_color;
1071
1072 /* We don't know the actual state of the surface when we get it but we
1073 * can make a pretty good guess based on the modifier. What we do know
1074 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1075 * a worst case of compression.
1076 */
1077 enum isl_aux_state initial_state =
1078 isl_drm_modifier_get_default_aux_state(image->modifier);
1079
1080 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1081 intel_miptree_release(&mt);
1082 return NULL;
1083 }
1084 }
1085
1086 /* Don't assume coherency for imported EGLimages. We don't know what
1087 * external clients are going to do with it. They may scan it out.
1088 */
1089 image->bo->cache_coherent = false;
1090
1091 return mt;
1092 }
1093
1094 /**
1095 * For a singlesample renderbuffer, this simply wraps the given BO with a
1096 * miptree.
1097 *
1098 * For a multisample renderbuffer, this wraps the window system's
1099 * (singlesample) BO with a singlesample miptree attached to the
1100 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1101 * that will contain the actual rendering (which is lazily resolved to
1102 * irb->singlesample_mt).
1103 */
1104 bool
1105 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1106 struct intel_renderbuffer *irb,
1107 struct intel_mipmap_tree *singlesample_mt,
1108 uint32_t width, uint32_t height,
1109 uint32_t pitch)
1110 {
1111 struct intel_mipmap_tree *multisample_mt = NULL;
1112 struct gl_renderbuffer *rb = &irb->Base.Base;
1113 mesa_format format = rb->Format;
1114 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1115
1116 /* Only the front and back buffers, which are color buffers, are allocated
1117 * through the image loader.
1118 */
1119 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1120 _mesa_get_format_base_format(format) == GL_RGBA);
1121
1122 assert(singlesample_mt);
1123
1124 if (num_samples == 1) {
1125 intel_miptree_release(&irb->mt);
1126 irb->mt = singlesample_mt;
1127
1128 assert(!irb->singlesample_mt);
1129 } else {
1130 intel_miptree_release(&irb->singlesample_mt);
1131 irb->singlesample_mt = singlesample_mt;
1132
1133 if (!irb->mt ||
1134 irb->mt->surf.logical_level0_px.width != width ||
1135 irb->mt->surf.logical_level0_px.height != height) {
1136 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1137 format,
1138 width,
1139 height,
1140 num_samples);
1141 if (!multisample_mt)
1142 goto fail;
1143
1144 irb->need_downsample = false;
1145 intel_miptree_release(&irb->mt);
1146 irb->mt = multisample_mt;
1147 }
1148 }
1149 return true;
1150
1151 fail:
1152 intel_miptree_release(&irb->mt);
1153 return false;
1154 }
1155
1156 struct intel_mipmap_tree*
1157 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1158 mesa_format format,
1159 uint32_t width,
1160 uint32_t height,
1161 uint32_t num_samples)
1162 {
1163 struct intel_mipmap_tree *mt;
1164 uint32_t depth = 1;
1165 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1166
1167 mt = intel_miptree_create(brw, target, format, 0, 0,
1168 width, height, depth, num_samples,
1169 MIPTREE_CREATE_BUSY);
1170 if (!mt)
1171 goto fail;
1172
1173 return mt;
1174
1175 fail:
1176 intel_miptree_release(&mt);
1177 return NULL;
1178 }
1179
1180 void
1181 intel_miptree_reference(struct intel_mipmap_tree **dst,
1182 struct intel_mipmap_tree *src)
1183 {
1184 if (*dst == src)
1185 return;
1186
1187 intel_miptree_release(dst);
1188
1189 if (src) {
1190 src->refcount++;
1191 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1192 }
1193
1194 *dst = src;
1195 }
1196
1197 static void
1198 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1199 {
1200 if (aux_buf == NULL)
1201 return;
1202
1203 brw_bo_unreference(aux_buf->bo);
1204
1205 free(aux_buf);
1206 }
1207
1208 void
1209 intel_miptree_release(struct intel_mipmap_tree **mt)
1210 {
1211 if (!*mt)
1212 return;
1213
1214 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1215 if (--(*mt)->refcount <= 0) {
1216 GLuint i;
1217
1218 DBG("%s deleting %p\n", __func__, *mt);
1219
1220 brw_bo_unreference((*mt)->bo);
1221 intel_miptree_release(&(*mt)->stencil_mt);
1222 intel_miptree_release(&(*mt)->r8stencil_mt);
1223 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1224 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1225 free_aux_state_map((*mt)->aux_state);
1226
1227 intel_miptree_release(&(*mt)->plane[0]);
1228 intel_miptree_release(&(*mt)->plane[1]);
1229
1230 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1231 free((*mt)->level[i].slice);
1232 }
1233
1234 free(*mt);
1235 }
1236 *mt = NULL;
1237 }
1238
1239
1240 void
1241 intel_get_image_dims(struct gl_texture_image *image,
1242 int *width, int *height, int *depth)
1243 {
1244 switch (image->TexObject->Target) {
1245 case GL_TEXTURE_1D_ARRAY:
1246 /* For a 1D Array texture the OpenGL API will treat the image height as
1247 * the number of array slices. For Intel hardware, we treat the 1D array
1248 * as a 2D Array with a height of 1. So, here we want to swap image
1249 * height and depth.
1250 */
1251 assert(image->Depth == 1);
1252 *width = image->Width;
1253 *height = 1;
1254 *depth = image->Height;
1255 break;
1256 case GL_TEXTURE_CUBE_MAP:
1257 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1258 * though we really have 6 slices.
1259 */
1260 assert(image->Depth == 1);
1261 *width = image->Width;
1262 *height = image->Height;
1263 *depth = 6;
1264 break;
1265 default:
1266 *width = image->Width;
1267 *height = image->Height;
1268 *depth = image->Depth;
1269 break;
1270 }
1271 }
1272
1273 /**
1274 * Can the image be pulled into a unified mipmap tree? This mirrors
1275 * the completeness test in a lot of ways.
1276 *
1277 * Not sure whether I want to pass gl_texture_image here.
1278 */
1279 bool
1280 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1281 struct gl_texture_image *image)
1282 {
1283 struct intel_texture_image *intelImage = intel_texture_image(image);
1284 GLuint level = intelImage->base.Base.Level;
1285 int width, height, depth;
1286
1287 /* glTexImage* choose the texture object based on the target passed in, and
1288 * objects can't change targets over their lifetimes, so this should be
1289 * true.
1290 */
1291 assert(image->TexObject->Target == mt->target);
1292
1293 mesa_format mt_format = mt->format;
1294 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1295 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1296 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1297 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1298 if (mt->etc_format != MESA_FORMAT_NONE)
1299 mt_format = mt->etc_format;
1300
1301 if (image->TexFormat != mt_format)
1302 return false;
1303
1304 intel_get_image_dims(image, &width, &height, &depth);
1305
1306 if (mt->target == GL_TEXTURE_CUBE_MAP)
1307 depth = 6;
1308
1309 if (level >= mt->surf.levels)
1310 return false;
1311
1312 const unsigned level_depth =
1313 mt->surf.dim == ISL_SURF_DIM_3D ?
1314 minify(mt->surf.logical_level0_px.depth, level) :
1315 mt->surf.logical_level0_px.array_len;
1316
1317 return width == minify(mt->surf.logical_level0_px.width, level) &&
1318 height == minify(mt->surf.logical_level0_px.height, level) &&
1319 depth == level_depth &&
1320 MAX2(image->NumSamples, 1) == mt->surf.samples;
1321 }
1322
1323 void
1324 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1325 GLuint level, GLuint slice,
1326 GLuint *x, GLuint *y)
1327 {
1328 if (level == 0 && slice == 0) {
1329 *x = mt->level[0].level_x;
1330 *y = mt->level[0].level_y;
1331 return;
1332 }
1333
1334 uint32_t x_offset_sa, y_offset_sa;
1335
1336 /* Miptree itself can have an offset only if it represents a single
1337 * slice in an imported buffer object.
1338 * See intel_miptree_create_for_dri_image().
1339 */
1340 assert(mt->level[0].level_x == 0);
1341 assert(mt->level[0].level_y == 0);
1342
1343 /* Given level is relative to level zero while the miptree may be
1344 * represent just a subset of all levels starting from 'first_level'.
1345 */
1346 assert(level >= mt->first_level);
1347 level -= mt->first_level;
1348
1349 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1350 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1351 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1352 &x_offset_sa, &y_offset_sa);
1353
1354 *x = x_offset_sa;
1355 *y = y_offset_sa;
1356 }
1357
1358
1359 /**
1360 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1361 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1362 * and tile_h is set to 1.
1363 */
1364 void
1365 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1366 uint32_t *tile_w, uint32_t *tile_h)
1367 {
1368 switch (tiling) {
1369 case ISL_TILING_X:
1370 *tile_w = 512;
1371 *tile_h = 8;
1372 break;
1373 case ISL_TILING_Y0:
1374 *tile_w = 128;
1375 *tile_h = 32;
1376 break;
1377 case ISL_TILING_LINEAR:
1378 *tile_w = cpp;
1379 *tile_h = 1;
1380 break;
1381 default:
1382 unreachable("not reached");
1383 }
1384 }
1385
1386
1387 /**
1388 * This function computes masks that may be used to select the bits of the X
1389 * and Y coordinates that indicate the offset within a tile. If the BO is
1390 * untiled, the masks are set to 0.
1391 */
1392 void
1393 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1394 uint32_t *mask_x, uint32_t *mask_y)
1395 {
1396 uint32_t tile_w_bytes, tile_h;
1397
1398 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1399
1400 *mask_x = tile_w_bytes / cpp - 1;
1401 *mask_y = tile_h - 1;
1402 }
1403
1404 /**
1405 * Compute the offset (in bytes) from the start of the BO to the given x
1406 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1407 * multiples of the tile size.
1408 */
1409 uint32_t
1410 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1411 uint32_t x, uint32_t y)
1412 {
1413 int cpp = mt->cpp;
1414 uint32_t pitch = mt->surf.row_pitch;
1415
1416 switch (mt->surf.tiling) {
1417 default:
1418 unreachable("not reached");
1419 case ISL_TILING_LINEAR:
1420 return y * pitch + x * cpp;
1421 case ISL_TILING_X:
1422 assert((x % (512 / cpp)) == 0);
1423 assert((y % 8) == 0);
1424 return y * pitch + x / (512 / cpp) * 4096;
1425 case ISL_TILING_Y0:
1426 assert((x % (128 / cpp)) == 0);
1427 assert((y % 32) == 0);
1428 return y * pitch + x / (128 / cpp) * 4096;
1429 }
1430 }
1431
1432 /**
1433 * Rendering with tiled buffers requires that the base address of the buffer
1434 * be aligned to a page boundary. For renderbuffers, and sometimes with
1435 * textures, we may want the surface to point at a texture image level that
1436 * isn't at a page boundary.
1437 *
1438 * This function returns an appropriately-aligned base offset
1439 * according to the tiling restrictions, plus any required x/y offset
1440 * from there.
1441 */
1442 uint32_t
1443 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1444 GLuint level, GLuint slice,
1445 uint32_t *tile_x,
1446 uint32_t *tile_y)
1447 {
1448 uint32_t x, y;
1449 uint32_t mask_x, mask_y;
1450
1451 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1452 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1453
1454 *tile_x = x & mask_x;
1455 *tile_y = y & mask_y;
1456
1457 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1458 }
1459
1460 static void
1461 intel_miptree_copy_slice_sw(struct brw_context *brw,
1462 struct intel_mipmap_tree *src_mt,
1463 unsigned src_level, unsigned src_layer,
1464 struct intel_mipmap_tree *dst_mt,
1465 unsigned dst_level, unsigned dst_layer,
1466 unsigned width, unsigned height)
1467 {
1468 void *src, *dst;
1469 ptrdiff_t src_stride, dst_stride;
1470 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1471
1472 intel_miptree_map(brw, src_mt,
1473 src_level, src_layer,
1474 0, 0,
1475 width, height,
1476 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1477 &src, &src_stride);
1478
1479 intel_miptree_map(brw, dst_mt,
1480 dst_level, dst_layer,
1481 0, 0,
1482 width, height,
1483 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1484 BRW_MAP_DIRECT_BIT,
1485 &dst, &dst_stride);
1486
1487 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1488 _mesa_get_format_name(src_mt->format),
1489 src_mt, src, src_stride,
1490 _mesa_get_format_name(dst_mt->format),
1491 dst_mt, dst, dst_stride,
1492 width, height);
1493
1494 int row_size = cpp * width;
1495 if (src_stride == row_size &&
1496 dst_stride == row_size) {
1497 memcpy(dst, src, row_size * height);
1498 } else {
1499 for (int i = 0; i < height; i++) {
1500 memcpy(dst, src, row_size);
1501 dst += dst_stride;
1502 src += src_stride;
1503 }
1504 }
1505
1506 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1507 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1508
1509 /* Don't forget to copy the stencil data over, too. We could have skipped
1510 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1511 * shuffling the two data sources in/out of temporary storage instead of
1512 * the direct mapping we get this way.
1513 */
1514 if (dst_mt->stencil_mt) {
1515 assert(src_mt->stencil_mt);
1516 intel_miptree_copy_slice_sw(brw,
1517 src_mt->stencil_mt, src_level, src_layer,
1518 dst_mt->stencil_mt, dst_level, dst_layer,
1519 width, height);
1520 }
1521 }
1522
1523 void
1524 intel_miptree_copy_slice(struct brw_context *brw,
1525 struct intel_mipmap_tree *src_mt,
1526 unsigned src_level, unsigned src_layer,
1527 struct intel_mipmap_tree *dst_mt,
1528 unsigned dst_level, unsigned dst_layer)
1529
1530 {
1531 mesa_format format = src_mt->format;
1532 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1533 src_level - src_mt->first_level);
1534 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1535 src_level - src_mt->first_level);
1536
1537 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1538 src_level - src_mt->first_level));
1539
1540 assert(src_mt->format == dst_mt->format);
1541
1542 if (dst_mt->compressed) {
1543 unsigned int i, j;
1544 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1545 height = ALIGN_NPOT(height, j) / j;
1546 width = ALIGN_NPOT(width, i) / i;
1547 }
1548
1549 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1550 * below won't apply since we can't do the depth's Y tiling or the
1551 * stencil's W tiling in the blitter.
1552 */
1553 if (src_mt->stencil_mt) {
1554 intel_miptree_copy_slice_sw(brw,
1555 src_mt, src_level, src_layer,
1556 dst_mt, dst_level, dst_layer,
1557 width, height);
1558 return;
1559 }
1560
1561 uint32_t dst_x, dst_y, src_x, src_y;
1562 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1563 &dst_x, &dst_y);
1564 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1565 &src_x, &src_y);
1566
1567 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1568 _mesa_get_format_name(src_mt->format),
1569 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1570 _mesa_get_format_name(dst_mt->format),
1571 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1572 width, height);
1573
1574 if (!intel_miptree_blit(brw,
1575 src_mt, src_level, src_layer, 0, 0, false,
1576 dst_mt, dst_level, dst_layer, 0, 0, false,
1577 width, height, GL_COPY)) {
1578 perf_debug("miptree validate blit for %s failed\n",
1579 _mesa_get_format_name(format));
1580
1581 intel_miptree_copy_slice_sw(brw,
1582 src_mt, src_level, src_layer,
1583 dst_mt, dst_level, dst_layer,
1584 width, height);
1585 }
1586 }
1587
1588 /**
1589 * Copies the image's current data to the given miptree, and associates that
1590 * miptree with the image.
1591 *
1592 * If \c invalidate is true, then the actual image data does not need to be
1593 * copied, but the image still needs to be associated to the new miptree (this
1594 * is set to true if we're about to clear the image).
1595 */
1596 void
1597 intel_miptree_copy_teximage(struct brw_context *brw,
1598 struct intel_texture_image *intelImage,
1599 struct intel_mipmap_tree *dst_mt,
1600 bool invalidate)
1601 {
1602 struct intel_mipmap_tree *src_mt = intelImage->mt;
1603 struct intel_texture_object *intel_obj =
1604 intel_texture_object(intelImage->base.Base.TexObject);
1605 int level = intelImage->base.Base.Level;
1606 const unsigned face = intelImage->base.Base.Face;
1607 unsigned start_layer, end_layer;
1608
1609 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1610 assert(face == 0);
1611 assert(intelImage->base.Base.Height);
1612 start_layer = 0;
1613 end_layer = intelImage->base.Base.Height - 1;
1614 } else if (face > 0) {
1615 start_layer = face;
1616 end_layer = face;
1617 } else {
1618 assert(intelImage->base.Base.Depth);
1619 start_layer = 0;
1620 end_layer = intelImage->base.Base.Depth - 1;
1621 }
1622
1623 if (!invalidate) {
1624 for (unsigned i = start_layer; i <= end_layer; i++) {
1625 intel_miptree_copy_slice(brw,
1626 src_mt, level, i,
1627 dst_mt, level, i);
1628 }
1629 }
1630
1631 intel_miptree_reference(&intelImage->mt, dst_mt);
1632 intel_obj->needs_validate = true;
1633 }
1634
1635 static void
1636 intel_miptree_init_mcs(struct brw_context *brw,
1637 struct intel_mipmap_tree *mt,
1638 int init_value)
1639 {
1640 assert(mt->mcs_buf != NULL);
1641
1642 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1643 *
1644 * When MCS buffer is enabled and bound to MSRT, it is required that it
1645 * is cleared prior to any rendering.
1646 *
1647 * Since we don't use the MCS buffer for any purpose other than rendering,
1648 * it makes sense to just clear it immediately upon allocation.
1649 *
1650 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1651 */
1652 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1653 if (unlikely(map == NULL)) {
1654 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1655 brw_bo_unreference(mt->mcs_buf->bo);
1656 free(mt->mcs_buf);
1657 return;
1658 }
1659 void *data = map;
1660 memset(data, init_value, mt->mcs_buf->size);
1661 brw_bo_unmap(mt->mcs_buf->bo);
1662 }
1663
1664 static struct intel_miptree_aux_buffer *
1665 intel_alloc_aux_buffer(struct brw_context *brw,
1666 const char *name,
1667 const struct isl_surf *aux_surf,
1668 uint32_t alloc_flags,
1669 struct intel_mipmap_tree *mt)
1670 {
1671 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1672 if (!buf)
1673 return false;
1674
1675 buf->size = aux_surf->size;
1676 buf->pitch = aux_surf->row_pitch;
1677 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1678
1679 /* ISL has stricter set of alignment rules then the drm allocator.
1680 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1681 * trying to recalculate based on different format block sizes.
1682 */
1683 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1684 I915_TILING_Y, buf->pitch, alloc_flags);
1685 if (!buf->bo) {
1686 free(buf);
1687 return NULL;
1688 }
1689
1690 buf->surf = *aux_surf;
1691
1692 return buf;
1693 }
1694
1695 static bool
1696 intel_miptree_alloc_mcs(struct brw_context *brw,
1697 struct intel_mipmap_tree *mt,
1698 GLuint num_samples)
1699 {
1700 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1701
1702 assert(devinfo->gen >= 7); /* MCS only used on Gen7+ */
1703 assert(mt->mcs_buf == NULL);
1704 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1705
1706 /* Multisampled miptrees are only supported for single level. */
1707 assert(mt->first_level == 0);
1708 enum isl_aux_state **aux_state =
1709 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1710 if (!aux_state)
1711 return false;
1712
1713 struct isl_surf temp_mcs_surf;
1714
1715 MAYBE_UNUSED bool ok =
1716 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1717 assert(ok);
1718
1719 /* Buffer needs to be initialised requiring the buffer to be immediately
1720 * mapped to cpu space for writing. Therefore do not use the gpu access
1721 * flag which can cause an unnecessary delay if the backing pages happened
1722 * to be just used by the GPU.
1723 */
1724 const uint32_t alloc_flags = 0;
1725 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1726 &temp_mcs_surf, alloc_flags, mt);
1727 if (!mt->mcs_buf) {
1728 free(aux_state);
1729 return false;
1730 }
1731
1732 mt->aux_state = aux_state;
1733
1734 intel_miptree_init_mcs(brw, mt, 0xFF);
1735
1736 return true;
1737 }
1738
1739 bool
1740 intel_miptree_alloc_ccs(struct brw_context *brw,
1741 struct intel_mipmap_tree *mt)
1742 {
1743 assert(mt->mcs_buf == NULL);
1744 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1745 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1746
1747 struct isl_surf temp_ccs_surf;
1748
1749 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1750 return false;
1751
1752 assert(temp_ccs_surf.size &&
1753 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1754
1755 enum isl_aux_state **aux_state =
1756 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1757 if (!aux_state)
1758 return false;
1759
1760 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1761 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1762 *
1763 * "If Software wants to enable Color Compression without Fast clear,
1764 * Software needs to initialize MCS with zeros."
1765 *
1766 * A CCS value of 0 indicates that the corresponding block is in the
1767 * pass-through state which is what we want.
1768 *
1769 * For CCS_D, on the other hand, we don't care as we're about to perform a
1770 * fast-clear operation. In that case, being hot in caches more useful.
1771 */
1772 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1773 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1774 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1775 &temp_ccs_surf, alloc_flags, mt);
1776 if (!mt->mcs_buf) {
1777 free(aux_state);
1778 return false;
1779 }
1780
1781 mt->aux_state = aux_state;
1782
1783 return true;
1784 }
1785
1786 /**
1787 * Helper for intel_miptree_alloc_hiz() that sets
1788 * \c mt->level[level].has_hiz. Return true if and only if
1789 * \c has_hiz was set.
1790 */
1791 static bool
1792 intel_miptree_level_enable_hiz(struct brw_context *brw,
1793 struct intel_mipmap_tree *mt,
1794 uint32_t level)
1795 {
1796 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1797
1798 assert(mt->hiz_buf);
1799 assert(mt->surf.size > 0);
1800
1801 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1802 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1803 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1804
1805 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1806 * and the height is 4 aligned. This allows our HiZ support
1807 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1808 * we can grow the width & height to allow the HiZ op to
1809 * force the proper size alignments.
1810 */
1811 if (level > 0 && ((width & 7) || (height & 3))) {
1812 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1813 return false;
1814 }
1815 }
1816
1817 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1818 mt->level[level].has_hiz = true;
1819 return true;
1820 }
1821
1822 bool
1823 intel_miptree_alloc_hiz(struct brw_context *brw,
1824 struct intel_mipmap_tree *mt)
1825 {
1826 assert(mt->hiz_buf == NULL);
1827 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1828
1829 enum isl_aux_state **aux_state =
1830 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1831 if (!aux_state)
1832 return false;
1833
1834 struct isl_surf temp_hiz_surf;
1835
1836 MAYBE_UNUSED bool ok =
1837 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1838 assert(ok);
1839
1840 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1841 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1842 &temp_hiz_surf, alloc_flags, mt);
1843
1844 if (!mt->hiz_buf) {
1845 free(aux_state);
1846 return false;
1847 }
1848
1849 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1850 intel_miptree_level_enable_hiz(brw, mt, level);
1851
1852 mt->aux_state = aux_state;
1853
1854 return true;
1855 }
1856
1857
1858 /**
1859 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1860 *
1861 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1862 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1863 * compress clear color so we wait until an actual fast-clear to allocate it.
1864 */
1865 static bool
1866 intel_miptree_alloc_aux(struct brw_context *brw,
1867 struct intel_mipmap_tree *mt)
1868 {
1869 switch (mt->aux_usage) {
1870 case ISL_AUX_USAGE_NONE:
1871 return true;
1872
1873 case ISL_AUX_USAGE_HIZ:
1874 assert(!_mesa_is_format_color_format(mt->format));
1875 if (!intel_miptree_alloc_hiz(brw, mt))
1876 return false;
1877 return true;
1878
1879 case ISL_AUX_USAGE_MCS:
1880 assert(_mesa_is_format_color_format(mt->format));
1881 assert(mt->surf.samples > 1);
1882 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1883 return false;
1884 return true;
1885
1886 case ISL_AUX_USAGE_CCS_D:
1887 /* Since CCS_D can only compress clear color so we wait until an actual
1888 * fast-clear to allocate it.
1889 */
1890 return true;
1891
1892 case ISL_AUX_USAGE_CCS_E:
1893 assert(_mesa_is_format_color_format(mt->format));
1894 assert(mt->surf.samples == 1);
1895 if (!intel_miptree_alloc_ccs(brw, mt))
1896 return false;
1897 return true;
1898 }
1899
1900 unreachable("Invalid aux usage");
1901 }
1902
1903
1904 /**
1905 * Can the miptree sample using the hiz buffer?
1906 */
1907 bool
1908 intel_miptree_sample_with_hiz(struct brw_context *brw,
1909 struct intel_mipmap_tree *mt)
1910 {
1911 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1912
1913 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1914 * so keep things conservative for now and never enable it unless we're SKL+.
1915 */
1916 if (devinfo->gen < 9) {
1917 return false;
1918 }
1919
1920 if (!mt->hiz_buf) {
1921 return false;
1922 }
1923
1924 /* It seems the hardware won't fallback to the depth buffer if some of the
1925 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1926 * of the texture to be HiZ enabled.
1927 */
1928 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1929 if (!intel_miptree_level_has_hiz(mt, level))
1930 return false;
1931 }
1932
1933 /* If compressed multisampling is enabled, then we use it for the auxiliary
1934 * buffer instead.
1935 *
1936 * From the BDW PRM (Volume 2d: Command Reference: Structures
1937 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1938 *
1939 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1940 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1941 *
1942 * There is no such blurb for 1D textures, but there is sufficient evidence
1943 * that this is broken on SKL+.
1944 */
1945 return (mt->surf.samples == 1 &&
1946 mt->target != GL_TEXTURE_3D &&
1947 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1948 }
1949
1950 /**
1951 * Does the miptree slice have hiz enabled?
1952 */
1953 bool
1954 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1955 {
1956 intel_miptree_check_level_layer(mt, level, 0);
1957 return mt->level[level].has_hiz;
1958 }
1959
1960 static inline uint32_t
1961 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1962 uint32_t start_level, uint32_t num_levels)
1963 {
1964 assert(start_level >= mt->first_level);
1965 assert(start_level <= mt->last_level);
1966
1967 if (num_levels == INTEL_REMAINING_LAYERS)
1968 num_levels = mt->last_level - start_level + 1;
1969 /* Check for overflow */
1970 assert(start_level + num_levels >= start_level);
1971 assert(start_level + num_levels <= mt->last_level + 1);
1972
1973 return num_levels;
1974 }
1975
1976 static inline uint32_t
1977 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1978 uint32_t start_layer, uint32_t num_layers)
1979 {
1980 assert(level <= mt->last_level);
1981
1982 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1983 assert(start_layer < total_num_layers);
1984 if (num_layers == INTEL_REMAINING_LAYERS)
1985 num_layers = total_num_layers - start_layer;
1986 /* Check for overflow */
1987 assert(start_layer + num_layers >= start_layer);
1988 assert(start_layer + num_layers <= total_num_layers);
1989
1990 return num_layers;
1991 }
1992
1993 bool
1994 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1995 unsigned start_level, unsigned num_levels,
1996 unsigned start_layer, unsigned num_layers)
1997 {
1998 assert(_mesa_is_format_color_format(mt->format));
1999
2000 if (!mt->mcs_buf)
2001 return false;
2002
2003 /* Clamp the level range to fit the miptree */
2004 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2005
2006 for (uint32_t l = 0; l < num_levels; l++) {
2007 const uint32_t level = start_level + l;
2008 const uint32_t level_layers =
2009 miptree_layer_range_length(mt, level, start_layer, num_layers);
2010 for (unsigned a = 0; a < level_layers; a++) {
2011 enum isl_aux_state aux_state =
2012 intel_miptree_get_aux_state(mt, level, start_layer + a);
2013 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2014 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2015 return true;
2016 }
2017 }
2018
2019 return false;
2020 }
2021
2022 static void
2023 intel_miptree_check_color_resolve(const struct brw_context *brw,
2024 const struct intel_mipmap_tree *mt,
2025 unsigned level, unsigned layer)
2026 {
2027 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2028
2029 if (!mt->mcs_buf)
2030 return;
2031
2032 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2033 assert(devinfo->gen >= 8 ||
2034 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2035
2036 /* Compression of arrayed msaa surfaces is supported. */
2037 if (mt->surf.samples > 1)
2038 return;
2039
2040 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2041 assert(devinfo->gen >= 8 ||
2042 (layer == 0 &&
2043 mt->surf.logical_level0_px.depth == 1 &&
2044 mt->surf.logical_level0_px.array_len == 1));
2045
2046 (void)level;
2047 (void)layer;
2048 }
2049
2050 static enum blorp_fast_clear_op
2051 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2052 enum isl_aux_usage aux_usage,
2053 bool fast_clear_supported)
2054 {
2055 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2056
2057 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2058
2059 assert(ccs_supported == fast_clear_supported);
2060
2061 switch (aux_state) {
2062 case ISL_AUX_STATE_CLEAR:
2063 case ISL_AUX_STATE_PARTIAL_CLEAR:
2064 if (!ccs_supported)
2065 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2066 else
2067 return BLORP_FAST_CLEAR_OP_NONE;
2068
2069 case ISL_AUX_STATE_PASS_THROUGH:
2070 return BLORP_FAST_CLEAR_OP_NONE;
2071
2072 case ISL_AUX_STATE_RESOLVED:
2073 case ISL_AUX_STATE_AUX_INVALID:
2074 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2075 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2076 break;
2077 }
2078
2079 unreachable("Invalid aux state for CCS_D");
2080 }
2081
2082 static enum blorp_fast_clear_op
2083 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2084 enum isl_aux_usage aux_usage,
2085 bool fast_clear_supported)
2086 {
2087 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2088 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2089 aux_usage == ISL_AUX_USAGE_CCS_D ||
2090 aux_usage == ISL_AUX_USAGE_CCS_E);
2091
2092 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2093 assert(fast_clear_supported);
2094
2095 switch (aux_state) {
2096 case ISL_AUX_STATE_CLEAR:
2097 case ISL_AUX_STATE_PARTIAL_CLEAR:
2098 if (fast_clear_supported)
2099 return BLORP_FAST_CLEAR_OP_NONE;
2100 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2101 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2102 else
2103 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2104
2105 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2106 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2107 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2108 else if (!fast_clear_supported)
2109 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2110 else
2111 return BLORP_FAST_CLEAR_OP_NONE;
2112
2113 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2114 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2115 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2116 else
2117 return BLORP_FAST_CLEAR_OP_NONE;
2118
2119 case ISL_AUX_STATE_PASS_THROUGH:
2120 return BLORP_FAST_CLEAR_OP_NONE;
2121
2122 case ISL_AUX_STATE_RESOLVED:
2123 case ISL_AUX_STATE_AUX_INVALID:
2124 break;
2125 }
2126
2127 unreachable("Invalid aux state for CCS_E");
2128 }
2129
2130 static void
2131 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2132 struct intel_mipmap_tree *mt,
2133 uint32_t level, uint32_t layer,
2134 enum isl_aux_usage aux_usage,
2135 bool fast_clear_supported)
2136 {
2137 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2138
2139 enum blorp_fast_clear_op resolve_op;
2140 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2141 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2142 fast_clear_supported);
2143 } else {
2144 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2145 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2146 fast_clear_supported);
2147 }
2148
2149 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2150 intel_miptree_check_color_resolve(brw, mt, level, layer);
2151 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2152
2153 switch (resolve_op) {
2154 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2155 /* The CCS full resolve operation destroys the CCS and sets it to the
2156 * pass-through state. (You can also think of this as being both a
2157 * resolve and an ambiguate in one operation.)
2158 */
2159 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2160 ISL_AUX_STATE_PASS_THROUGH);
2161 break;
2162
2163 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2164 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2165 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2166 break;
2167
2168 default:
2169 unreachable("Invalid resolve op");
2170 }
2171 }
2172 }
2173
2174 static void
2175 intel_miptree_finish_ccs_write(struct brw_context *brw,
2176 struct intel_mipmap_tree *mt,
2177 uint32_t level, uint32_t layer,
2178 enum isl_aux_usage aux_usage)
2179 {
2180 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2181 aux_usage == ISL_AUX_USAGE_CCS_D ||
2182 aux_usage == ISL_AUX_USAGE_CCS_E);
2183
2184 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2185
2186 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2187 switch (aux_state) {
2188 case ISL_AUX_STATE_CLEAR:
2189 case ISL_AUX_STATE_PARTIAL_CLEAR:
2190 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2191 aux_usage == ISL_AUX_USAGE_CCS_D);
2192
2193 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2194 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2195 ISL_AUX_STATE_COMPRESSED_CLEAR);
2196 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2197 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2198 ISL_AUX_STATE_PARTIAL_CLEAR);
2199 }
2200 break;
2201
2202 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2203 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2204 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2205 break; /* Nothing to do */
2206
2207 case ISL_AUX_STATE_PASS_THROUGH:
2208 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2209 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2210 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2211 } else {
2212 /* Nothing to do */
2213 }
2214 break;
2215
2216 case ISL_AUX_STATE_RESOLVED:
2217 case ISL_AUX_STATE_AUX_INVALID:
2218 unreachable("Invalid aux state for CCS_E");
2219 }
2220 } else {
2221 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2222 /* CCS_D is a bit simpler */
2223 switch (aux_state) {
2224 case ISL_AUX_STATE_CLEAR:
2225 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2226 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2227 ISL_AUX_STATE_PARTIAL_CLEAR);
2228 break;
2229
2230 case ISL_AUX_STATE_PARTIAL_CLEAR:
2231 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2232 break; /* Nothing to do */
2233
2234 case ISL_AUX_STATE_PASS_THROUGH:
2235 /* Nothing to do */
2236 break;
2237
2238 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2239 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2240 case ISL_AUX_STATE_RESOLVED:
2241 case ISL_AUX_STATE_AUX_INVALID:
2242 unreachable("Invalid aux state for CCS_D");
2243 }
2244 }
2245 }
2246
2247 static void
2248 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2249 struct intel_mipmap_tree *mt,
2250 uint32_t layer,
2251 enum isl_aux_usage aux_usage,
2252 bool fast_clear_supported)
2253 {
2254 assert(aux_usage == ISL_AUX_USAGE_MCS);
2255
2256 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2257 case ISL_AUX_STATE_CLEAR:
2258 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2259 if (!fast_clear_supported) {
2260 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2261 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2262 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2263 }
2264 break;
2265
2266 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2267 break; /* Nothing to do */
2268
2269 case ISL_AUX_STATE_RESOLVED:
2270 case ISL_AUX_STATE_PASS_THROUGH:
2271 case ISL_AUX_STATE_AUX_INVALID:
2272 case ISL_AUX_STATE_PARTIAL_CLEAR:
2273 unreachable("Invalid aux state for MCS");
2274 }
2275 }
2276
2277 static void
2278 intel_miptree_finish_mcs_write(struct brw_context *brw,
2279 struct intel_mipmap_tree *mt,
2280 uint32_t layer,
2281 enum isl_aux_usage aux_usage)
2282 {
2283 assert(aux_usage == ISL_AUX_USAGE_MCS);
2284
2285 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2286 case ISL_AUX_STATE_CLEAR:
2287 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2288 ISL_AUX_STATE_COMPRESSED_CLEAR);
2289 break;
2290
2291 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2292 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2293 break; /* Nothing to do */
2294
2295 case ISL_AUX_STATE_RESOLVED:
2296 case ISL_AUX_STATE_PASS_THROUGH:
2297 case ISL_AUX_STATE_AUX_INVALID:
2298 case ISL_AUX_STATE_PARTIAL_CLEAR:
2299 unreachable("Invalid aux state for MCS");
2300 }
2301 }
2302
2303 static void
2304 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2305 struct intel_mipmap_tree *mt,
2306 uint32_t level, uint32_t layer,
2307 enum isl_aux_usage aux_usage,
2308 bool fast_clear_supported)
2309 {
2310 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2311
2312 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2313 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2314 case ISL_AUX_STATE_CLEAR:
2315 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2316 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2317 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2318 break;
2319
2320 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2321 if (aux_usage != ISL_AUX_USAGE_HIZ)
2322 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2323 break;
2324
2325 case ISL_AUX_STATE_PASS_THROUGH:
2326 case ISL_AUX_STATE_RESOLVED:
2327 break;
2328
2329 case ISL_AUX_STATE_AUX_INVALID:
2330 if (aux_usage == ISL_AUX_USAGE_HIZ)
2331 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2332 break;
2333
2334 case ISL_AUX_STATE_PARTIAL_CLEAR:
2335 unreachable("Invalid HiZ state");
2336 }
2337
2338 if (hiz_op != BLORP_HIZ_OP_NONE) {
2339 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2340
2341 switch (hiz_op) {
2342 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2343 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2344 ISL_AUX_STATE_RESOLVED);
2345 break;
2346
2347 case BLORP_HIZ_OP_HIZ_RESOLVE:
2348 /* The HiZ resolve operation is actually an ambiguate */
2349 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2350 ISL_AUX_STATE_PASS_THROUGH);
2351 break;
2352
2353 default:
2354 unreachable("Invalid HiZ op");
2355 }
2356 }
2357 }
2358
2359 static void
2360 intel_miptree_finish_hiz_write(struct brw_context *brw,
2361 struct intel_mipmap_tree *mt,
2362 uint32_t level, uint32_t layer,
2363 enum isl_aux_usage aux_usage)
2364 {
2365 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2366
2367 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2368 case ISL_AUX_STATE_CLEAR:
2369 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2370 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2371 ISL_AUX_STATE_COMPRESSED_CLEAR);
2372 break;
2373
2374 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2375 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2376 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2377 break; /* Nothing to do */
2378
2379 case ISL_AUX_STATE_RESOLVED:
2380 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2381 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2382 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2383 } else {
2384 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2385 ISL_AUX_STATE_AUX_INVALID);
2386 }
2387 break;
2388
2389 case ISL_AUX_STATE_PASS_THROUGH:
2390 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2391 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2392 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2393 }
2394 break;
2395
2396 case ISL_AUX_STATE_AUX_INVALID:
2397 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2398 break;
2399
2400 case ISL_AUX_STATE_PARTIAL_CLEAR:
2401 unreachable("Invalid HiZ state");
2402 }
2403 }
2404
2405 void
2406 intel_miptree_prepare_access(struct brw_context *brw,
2407 struct intel_mipmap_tree *mt,
2408 uint32_t start_level, uint32_t num_levels,
2409 uint32_t start_layer, uint32_t num_layers,
2410 enum isl_aux_usage aux_usage,
2411 bool fast_clear_supported)
2412 {
2413 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2414
2415 switch (mt->aux_usage) {
2416 case ISL_AUX_USAGE_NONE:
2417 /* Nothing to do */
2418 break;
2419
2420 case ISL_AUX_USAGE_MCS:
2421 assert(mt->mcs_buf);
2422 assert(start_level == 0 && num_levels == 1);
2423 const uint32_t level_layers =
2424 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2425 for (uint32_t a = 0; a < level_layers; a++) {
2426 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2427 aux_usage, fast_clear_supported);
2428 }
2429 break;
2430
2431 case ISL_AUX_USAGE_CCS_D:
2432 case ISL_AUX_USAGE_CCS_E:
2433 if (!mt->mcs_buf)
2434 return;
2435
2436 for (uint32_t l = 0; l < num_levels; l++) {
2437 const uint32_t level = start_level + l;
2438 const uint32_t level_layers =
2439 miptree_layer_range_length(mt, level, start_layer, num_layers);
2440 for (uint32_t a = 0; a < level_layers; a++) {
2441 intel_miptree_prepare_ccs_access(brw, mt, level,
2442 start_layer + a,
2443 aux_usage, fast_clear_supported);
2444 }
2445 }
2446 break;
2447
2448 case ISL_AUX_USAGE_HIZ:
2449 assert(mt->hiz_buf);
2450 for (uint32_t l = 0; l < num_levels; l++) {
2451 const uint32_t level = start_level + l;
2452 if (!intel_miptree_level_has_hiz(mt, level))
2453 continue;
2454
2455 const uint32_t level_layers =
2456 miptree_layer_range_length(mt, level, start_layer, num_layers);
2457 for (uint32_t a = 0; a < level_layers; a++) {
2458 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2459 aux_usage, fast_clear_supported);
2460 }
2461 }
2462 break;
2463
2464 default:
2465 unreachable("Invalid aux usage");
2466 }
2467 }
2468
2469 void
2470 intel_miptree_finish_write(struct brw_context *brw,
2471 struct intel_mipmap_tree *mt, uint32_t level,
2472 uint32_t start_layer, uint32_t num_layers,
2473 enum isl_aux_usage aux_usage)
2474 {
2475 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2476
2477 switch (mt->aux_usage) {
2478 case ISL_AUX_USAGE_NONE:
2479 /* Nothing to do */
2480 break;
2481
2482 case ISL_AUX_USAGE_MCS:
2483 assert(mt->mcs_buf);
2484 for (uint32_t a = 0; a < num_layers; a++) {
2485 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2486 aux_usage);
2487 }
2488 break;
2489
2490 case ISL_AUX_USAGE_CCS_D:
2491 case ISL_AUX_USAGE_CCS_E:
2492 if (!mt->mcs_buf)
2493 return;
2494
2495 for (uint32_t a = 0; a < num_layers; a++) {
2496 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2497 aux_usage);
2498 }
2499 break;
2500
2501 case ISL_AUX_USAGE_HIZ:
2502 if (!intel_miptree_level_has_hiz(mt, level))
2503 return;
2504
2505 for (uint32_t a = 0; a < num_layers; a++) {
2506 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2507 aux_usage);
2508 }
2509 break;
2510
2511 default:
2512 unreachable("Invavlid aux usage");
2513 }
2514 }
2515
2516 enum isl_aux_state
2517 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2518 uint32_t level, uint32_t layer)
2519 {
2520 intel_miptree_check_level_layer(mt, level, layer);
2521
2522 if (_mesa_is_format_color_format(mt->format)) {
2523 assert(mt->mcs_buf != NULL);
2524 assert(mt->surf.samples == 1 ||
2525 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2526 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2527 unreachable("Cannot get aux state for stencil");
2528 } else {
2529 assert(intel_miptree_level_has_hiz(mt, level));
2530 }
2531
2532 return mt->aux_state[level][layer];
2533 }
2534
2535 void
2536 intel_miptree_set_aux_state(struct brw_context *brw,
2537 struct intel_mipmap_tree *mt, uint32_t level,
2538 uint32_t start_layer, uint32_t num_layers,
2539 enum isl_aux_state aux_state)
2540 {
2541 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2542
2543 if (_mesa_is_format_color_format(mt->format)) {
2544 assert(mt->mcs_buf != NULL);
2545 assert(mt->surf.samples == 1 ||
2546 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2547 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2548 unreachable("Cannot get aux state for stencil");
2549 } else {
2550 assert(intel_miptree_level_has_hiz(mt, level));
2551 }
2552
2553 for (unsigned a = 0; a < num_layers; a++) {
2554 if (mt->aux_state[level][start_layer + a] != aux_state) {
2555 mt->aux_state[level][start_layer + a] = aux_state;
2556 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2557 }
2558 }
2559 }
2560
2561 /* On Gen9 color buffers may be compressed by the hardware (lossless
2562 * compression). There are, however, format restrictions and care needs to be
2563 * taken that the sampler engine is capable for re-interpreting a buffer with
2564 * format different the buffer was originally written with.
2565 *
2566 * For example, SRGB formats are not compressible and the sampler engine isn't
2567 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2568 * color buffer needs to be resolved so that the sampling surface can be
2569 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2570 * set).
2571 */
2572 static bool
2573 can_texture_with_ccs(struct brw_context *brw,
2574 struct intel_mipmap_tree *mt,
2575 enum isl_format view_format)
2576 {
2577 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2578 return false;
2579
2580 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2581 mt->surf.format, view_format)) {
2582 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2583 isl_format_get_layout(view_format)->name,
2584 _mesa_get_format_name(mt->format));
2585 return false;
2586 }
2587
2588 return true;
2589 }
2590
2591 enum isl_aux_usage
2592 intel_miptree_texture_aux_usage(struct brw_context *brw,
2593 struct intel_mipmap_tree *mt,
2594 enum isl_format view_format)
2595 {
2596 switch (mt->aux_usage) {
2597 case ISL_AUX_USAGE_HIZ:
2598 if (intel_miptree_sample_with_hiz(brw, mt))
2599 return ISL_AUX_USAGE_HIZ;
2600 break;
2601
2602 case ISL_AUX_USAGE_MCS:
2603 return ISL_AUX_USAGE_MCS;
2604
2605 case ISL_AUX_USAGE_CCS_D:
2606 case ISL_AUX_USAGE_CCS_E:
2607 if (!mt->mcs_buf) {
2608 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2609 return ISL_AUX_USAGE_NONE;
2610 }
2611
2612 /* If we don't have any unresolved color, report an aux usage of
2613 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2614 * aux surface and we can save some bandwidth.
2615 */
2616 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2617 0, INTEL_REMAINING_LAYERS))
2618 return ISL_AUX_USAGE_NONE;
2619
2620 if (can_texture_with_ccs(brw, mt, view_format))
2621 return ISL_AUX_USAGE_CCS_E;
2622 break;
2623
2624 default:
2625 break;
2626 }
2627
2628 return ISL_AUX_USAGE_NONE;
2629 }
2630
2631 static bool
2632 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2633 {
2634 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2635 * values so sRGB curve application was a no-op for all fast-clearable
2636 * formats.
2637 *
2638 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2639 * values, the hardware interprets the floats, not as what would be
2640 * returned from the sampler (or written by the shader), but as being
2641 * between format conversion and sRGB curve application. This means that
2642 * we can switch between sRGB and UNORM without having to whack the clear
2643 * color.
2644 */
2645 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2646 }
2647
2648 static void
2649 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2650 struct intel_mipmap_tree *mt,
2651 enum isl_format view_format,
2652 uint32_t start_level, uint32_t num_levels,
2653 uint32_t start_layer, uint32_t num_layers,
2654 bool *aux_supported_out)
2655 {
2656 enum isl_aux_usage aux_usage =
2657 intel_miptree_texture_aux_usage(brw, mt, view_format);
2658 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2659
2660 /* Clear color is specified as ints or floats and the conversion is done by
2661 * the sampler. If we have a texture view, we would have to perform the
2662 * clear color conversion manually. Just disable clear color.
2663 */
2664 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2665 clear_supported = false;
2666
2667 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2668 start_layer, num_layers,
2669 aux_usage, clear_supported);
2670 if (aux_supported_out)
2671 *aux_supported_out = aux_usage != ISL_AUX_USAGE_NONE;
2672 }
2673
2674 void
2675 intel_miptree_prepare_texture(struct brw_context *brw,
2676 struct intel_mipmap_tree *mt,
2677 enum isl_format view_format,
2678 bool *aux_supported_out)
2679 {
2680 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2681 0, INTEL_REMAINING_LEVELS,
2682 0, INTEL_REMAINING_LAYERS,
2683 aux_supported_out);
2684 }
2685
2686 void
2687 intel_miptree_prepare_image(struct brw_context *brw,
2688 struct intel_mipmap_tree *mt)
2689 {
2690 /* The data port doesn't understand any compression */
2691 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2692 0, INTEL_REMAINING_LAYERS,
2693 ISL_AUX_USAGE_NONE, false);
2694 }
2695
2696 void
2697 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2698 struct intel_mipmap_tree *mt, uint32_t level,
2699 uint32_t start_layer, uint32_t num_layers)
2700 {
2701 intel_miptree_prepare_texture_slices(brw, mt, mt->surf.format, level, 1,
2702 start_layer, num_layers, NULL);
2703 }
2704
2705 enum isl_aux_usage
2706 intel_miptree_render_aux_usage(struct brw_context *brw,
2707 struct intel_mipmap_tree *mt,
2708 bool srgb_enabled, bool blend_enabled)
2709 {
2710 switch (mt->aux_usage) {
2711 case ISL_AUX_USAGE_MCS:
2712 assert(mt->mcs_buf);
2713 return ISL_AUX_USAGE_MCS;
2714
2715 case ISL_AUX_USAGE_CCS_D:
2716 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2717
2718 case ISL_AUX_USAGE_CCS_E: {
2719 mesa_format mesa_format =
2720 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2721 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2722
2723 /* If the format supports CCS_E, then we can just use it */
2724 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2725 return ISL_AUX_USAGE_CCS_E;
2726
2727 /* Otherwise, we have to fall back to CCS_D */
2728
2729 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2730 * formats. However, there are issues with blending where it doesn't
2731 * properly apply the sRGB curve to the clear color when blending.
2732 */
2733 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2734 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2735 return ISL_AUX_USAGE_NONE;
2736
2737 return ISL_AUX_USAGE_CCS_D;
2738 }
2739
2740 default:
2741 return ISL_AUX_USAGE_NONE;
2742 }
2743 }
2744
2745 void
2746 intel_miptree_prepare_render(struct brw_context *brw,
2747 struct intel_mipmap_tree *mt, uint32_t level,
2748 uint32_t start_layer, uint32_t layer_count,
2749 bool srgb_enabled, bool blend_enabled)
2750 {
2751 enum isl_aux_usage aux_usage =
2752 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2753 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2754 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2755 }
2756
2757 void
2758 intel_miptree_finish_render(struct brw_context *brw,
2759 struct intel_mipmap_tree *mt, uint32_t level,
2760 uint32_t start_layer, uint32_t layer_count,
2761 bool srgb_enabled, bool blend_enabled)
2762 {
2763 assert(_mesa_is_format_color_format(mt->format));
2764
2765 enum isl_aux_usage aux_usage =
2766 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2767 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2768 aux_usage);
2769 }
2770
2771 void
2772 intel_miptree_prepare_depth(struct brw_context *brw,
2773 struct intel_mipmap_tree *mt, uint32_t level,
2774 uint32_t start_layer, uint32_t layer_count)
2775 {
2776 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2777 mt->aux_usage, mt->hiz_buf != NULL);
2778 }
2779
2780 void
2781 intel_miptree_finish_depth(struct brw_context *brw,
2782 struct intel_mipmap_tree *mt, uint32_t level,
2783 uint32_t start_layer, uint32_t layer_count,
2784 bool depth_written)
2785 {
2786 if (depth_written) {
2787 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2788 mt->hiz_buf != NULL);
2789 }
2790 }
2791
2792 void
2793 intel_miptree_prepare_external(struct brw_context *brw,
2794 struct intel_mipmap_tree *mt)
2795 {
2796 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2797 bool supports_fast_clear = false;
2798
2799 const struct isl_drm_modifier_info *mod_info =
2800 isl_drm_modifier_get_info(mt->drm_modifier);
2801
2802 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2803 /* CCS_E is the only supported aux for external images and it's only
2804 * supported on very simple images.
2805 */
2806 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2807 assert(_mesa_is_format_color_format(mt->format));
2808 assert(mt->first_level == 0 && mt->last_level == 0);
2809 assert(mt->surf.logical_level0_px.depth == 1);
2810 assert(mt->surf.logical_level0_px.array_len == 1);
2811 assert(mt->surf.samples == 1);
2812 assert(mt->mcs_buf != NULL);
2813
2814 aux_usage = mod_info->aux_usage;
2815 supports_fast_clear = mod_info->supports_clear_color;
2816 }
2817
2818 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2819 0, INTEL_REMAINING_LAYERS,
2820 aux_usage, supports_fast_clear);
2821 }
2822
2823 void
2824 intel_miptree_finish_external(struct brw_context *brw,
2825 struct intel_mipmap_tree *mt)
2826 {
2827 if (!mt->mcs_buf)
2828 return;
2829
2830 /* We just got this image in from the window system via glxBindTexImageEXT
2831 * or similar and have no idea what the actual aux state is other than that
2832 * we aren't in AUX_INVALID. Reset the aux state to the default for the
2833 * image's modifier.
2834 */
2835 enum isl_aux_state default_aux_state =
2836 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2837 assert(mt->last_level == mt->first_level);
2838 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2839 default_aux_state);
2840 }
2841
2842 /**
2843 * Make it possible to share the BO backing the given miptree with another
2844 * process or another miptree.
2845 *
2846 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2847 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2848 * ensure that no MCS buffer gets allocated in the future.
2849 *
2850 * HiZ is similarly unsafe with shared buffers.
2851 */
2852 void
2853 intel_miptree_make_shareable(struct brw_context *brw,
2854 struct intel_mipmap_tree *mt)
2855 {
2856 /* MCS buffers are also used for multisample buffers, but we can't resolve
2857 * away a multisample MCS buffer because it's an integral part of how the
2858 * pixel data is stored. Fortunately this code path should never be
2859 * reached for multisample buffers.
2860 */
2861 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2862 mt->surf.samples == 1);
2863
2864 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2865 0, INTEL_REMAINING_LAYERS,
2866 ISL_AUX_USAGE_NONE, false);
2867
2868 if (mt->mcs_buf) {
2869 brw_bo_unreference(mt->mcs_buf->bo);
2870 free(mt->mcs_buf);
2871 mt->mcs_buf = NULL;
2872
2873 /* Any pending MCS/CCS operations are no longer needed. Trying to
2874 * execute any will likely crash due to the missing aux buffer. So let's
2875 * delete all pending ops.
2876 */
2877 free(mt->aux_state);
2878 mt->aux_state = NULL;
2879 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2880 }
2881
2882 if (mt->hiz_buf) {
2883 intel_miptree_aux_buffer_free(mt->hiz_buf);
2884 mt->hiz_buf = NULL;
2885
2886 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2887 mt->level[l].has_hiz = false;
2888 }
2889
2890 /* Any pending HiZ operations are no longer needed. Trying to execute
2891 * any will likely crash due to the missing aux buffer. So let's delete
2892 * all pending ops.
2893 */
2894 free(mt->aux_state);
2895 mt->aux_state = NULL;
2896 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2897 }
2898
2899 mt->aux_usage = ISL_AUX_USAGE_NONE;
2900 mt->supports_fast_clear = false;
2901 }
2902
2903
2904 /**
2905 * \brief Get pointer offset into stencil buffer.
2906 *
2907 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2908 * must decode the tile's layout in software.
2909 *
2910 * See
2911 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2912 * Format.
2913 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2914 *
2915 * Even though the returned offset is always positive, the return type is
2916 * signed due to
2917 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2918 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2919 */
2920 static intptr_t
2921 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2922 {
2923 uint32_t tile_size = 4096;
2924 uint32_t tile_width = 64;
2925 uint32_t tile_height = 64;
2926 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2927
2928 uint32_t tile_x = x / tile_width;
2929 uint32_t tile_y = y / tile_height;
2930
2931 /* The byte's address relative to the tile's base addres. */
2932 uint32_t byte_x = x % tile_width;
2933 uint32_t byte_y = y % tile_height;
2934
2935 uintptr_t u = tile_y * row_size
2936 + tile_x * tile_size
2937 + 512 * (byte_x / 8)
2938 + 64 * (byte_y / 8)
2939 + 32 * ((byte_y / 4) % 2)
2940 + 16 * ((byte_x / 4) % 2)
2941 + 8 * ((byte_y / 2) % 2)
2942 + 4 * ((byte_x / 2) % 2)
2943 + 2 * (byte_y % 2)
2944 + 1 * (byte_x % 2);
2945
2946 if (swizzled) {
2947 /* adjust for bit6 swizzling */
2948 if (((byte_x / 8) % 2) == 1) {
2949 if (((byte_y / 8) % 2) == 0) {
2950 u += 64;
2951 } else {
2952 u -= 64;
2953 }
2954 }
2955 }
2956
2957 return u;
2958 }
2959
2960 void
2961 intel_miptree_updownsample(struct brw_context *brw,
2962 struct intel_mipmap_tree *src,
2963 struct intel_mipmap_tree *dst)
2964 {
2965 unsigned src_w = src->surf.logical_level0_px.width;
2966 unsigned src_h = src->surf.logical_level0_px.height;
2967 unsigned dst_w = dst->surf.logical_level0_px.width;
2968 unsigned dst_h = dst->surf.logical_level0_px.height;
2969
2970 brw_blorp_blit_miptrees(brw,
2971 src, 0 /* level */, 0 /* layer */,
2972 src->format, SWIZZLE_XYZW,
2973 dst, 0 /* level */, 0 /* layer */, dst->format,
2974 0, 0, src_w, src_h,
2975 0, 0, dst_w, dst_h,
2976 GL_NEAREST, false, false /*mirror x, y*/,
2977 false, false);
2978
2979 if (src->stencil_mt) {
2980 src_w = src->stencil_mt->surf.logical_level0_px.width;
2981 src_h = src->stencil_mt->surf.logical_level0_px.height;
2982 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2983 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2984
2985 brw_blorp_blit_miptrees(brw,
2986 src->stencil_mt, 0 /* level */, 0 /* layer */,
2987 src->stencil_mt->format, SWIZZLE_XYZW,
2988 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2989 dst->stencil_mt->format,
2990 0, 0, src_w, src_h,
2991 0, 0, dst_w, dst_h,
2992 GL_NEAREST, false, false /*mirror x, y*/,
2993 false, false /* decode/encode srgb */);
2994 }
2995 }
2996
2997 void
2998 intel_update_r8stencil(struct brw_context *brw,
2999 struct intel_mipmap_tree *mt)
3000 {
3001 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3002
3003 assert(devinfo->gen >= 7);
3004 struct intel_mipmap_tree *src =
3005 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
3006 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
3007 return;
3008
3009 assert(src->surf.size > 0);
3010
3011 if (!mt->r8stencil_mt) {
3012 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
3013 mt->r8stencil_mt = make_surface(
3014 brw,
3015 src->target,
3016 MESA_FORMAT_R_UINT8,
3017 src->first_level, src->last_level,
3018 src->surf.logical_level0_px.width,
3019 src->surf.logical_level0_px.height,
3020 src->surf.dim == ISL_SURF_DIM_3D ?
3021 src->surf.logical_level0_px.depth :
3022 src->surf.logical_level0_px.array_len,
3023 src->surf.samples,
3024 ISL_TILING_Y0_BIT,
3025 ISL_SURF_USAGE_TEXTURE_BIT,
3026 BO_ALLOC_BUSY, 0, NULL);
3027 assert(mt->r8stencil_mt);
3028 }
3029
3030 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
3031
3032 for (int level = src->first_level; level <= src->last_level; level++) {
3033 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
3034 minify(src->surf.phys_level0_sa.depth, level) :
3035 src->surf.phys_level0_sa.array_len;
3036
3037 for (unsigned layer = 0; layer < depth; layer++) {
3038 brw_blorp_copy_miptrees(brw,
3039 src, level, layer,
3040 dst, level, layer,
3041 0, 0, 0, 0,
3042 minify(src->surf.logical_level0_px.width,
3043 level),
3044 minify(src->surf.logical_level0_px.height,
3045 level));
3046 }
3047 }
3048
3049 brw_render_cache_set_check_flush(brw, dst->bo);
3050 src->r8stencil_needs_update = false;
3051 }
3052
3053 static void *
3054 intel_miptree_map_raw(struct brw_context *brw,
3055 struct intel_mipmap_tree *mt,
3056 GLbitfield mode)
3057 {
3058 struct brw_bo *bo = mt->bo;
3059
3060 if (brw_batch_references(&brw->batch, bo))
3061 intel_batchbuffer_flush(brw);
3062
3063 return brw_bo_map(brw, bo, mode);
3064 }
3065
3066 static void
3067 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3068 {
3069 brw_bo_unmap(mt->bo);
3070 }
3071
3072 static void
3073 intel_miptree_map_gtt(struct brw_context *brw,
3074 struct intel_mipmap_tree *mt,
3075 struct intel_miptree_map *map,
3076 unsigned int level, unsigned int slice)
3077 {
3078 unsigned int bw, bh;
3079 void *base;
3080 unsigned int image_x, image_y;
3081 intptr_t x = map->x;
3082 intptr_t y = map->y;
3083
3084 /* For compressed formats, the stride is the number of bytes per
3085 * row of blocks. intel_miptree_get_image_offset() already does
3086 * the divide.
3087 */
3088 _mesa_get_format_block_size(mt->format, &bw, &bh);
3089 assert(y % bh == 0);
3090 assert(x % bw == 0);
3091 y /= bh;
3092 x /= bw;
3093
3094 base = intel_miptree_map_raw(brw, mt, map->mode);
3095
3096 if (base == NULL)
3097 map->ptr = NULL;
3098 else {
3099 base += mt->offset;
3100
3101 /* Note that in the case of cube maps, the caller must have passed the
3102 * slice number referencing the face.
3103 */
3104 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3105 x += image_x;
3106 y += image_y;
3107
3108 map->stride = mt->surf.row_pitch;
3109 map->ptr = base + y * map->stride + x * mt->cpp;
3110 }
3111
3112 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3113 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3114 map->x, map->y, map->w, map->h,
3115 mt, _mesa_get_format_name(mt->format),
3116 x, y, map->ptr, map->stride);
3117 }
3118
3119 static void
3120 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3121 {
3122 intel_miptree_unmap_raw(mt);
3123 }
3124
3125 static void
3126 intel_miptree_map_blit(struct brw_context *brw,
3127 struct intel_mipmap_tree *mt,
3128 struct intel_miptree_map *map,
3129 unsigned int level, unsigned int slice)
3130 {
3131 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3132 /* first_level */ 0,
3133 /* last_level */ 0,
3134 map->w, map->h, 1,
3135 /* samples */ 1,
3136 MIPTREE_CREATE_LINEAR);
3137
3138 if (!map->linear_mt) {
3139 fprintf(stderr, "Failed to allocate blit temporary\n");
3140 goto fail;
3141 }
3142 map->stride = map->linear_mt->surf.row_pitch;
3143
3144 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3145 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3146 * invalidate is set, since we'll be writing the whole rectangle from our
3147 * temporary buffer back out.
3148 */
3149 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3150 if (!intel_miptree_copy(brw,
3151 mt, level, slice, map->x, map->y,
3152 map->linear_mt, 0, 0, 0, 0,
3153 map->w, map->h)) {
3154 fprintf(stderr, "Failed to blit\n");
3155 goto fail;
3156 }
3157 }
3158
3159 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3160
3161 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3162 map->x, map->y, map->w, map->h,
3163 mt, _mesa_get_format_name(mt->format),
3164 level, slice, map->ptr, map->stride);
3165
3166 return;
3167
3168 fail:
3169 intel_miptree_release(&map->linear_mt);
3170 map->ptr = NULL;
3171 map->stride = 0;
3172 }
3173
3174 static void
3175 intel_miptree_unmap_blit(struct brw_context *brw,
3176 struct intel_mipmap_tree *mt,
3177 struct intel_miptree_map *map,
3178 unsigned int level,
3179 unsigned int slice)
3180 {
3181 struct gl_context *ctx = &brw->ctx;
3182
3183 intel_miptree_unmap_raw(map->linear_mt);
3184
3185 if (map->mode & GL_MAP_WRITE_BIT) {
3186 bool ok = intel_miptree_copy(brw,
3187 map->linear_mt, 0, 0, 0, 0,
3188 mt, level, slice, map->x, map->y,
3189 map->w, map->h);
3190 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3191 }
3192
3193 intel_miptree_release(&map->linear_mt);
3194 }
3195
3196 /**
3197 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3198 */
3199 #if defined(USE_SSE41)
3200 static void
3201 intel_miptree_map_movntdqa(struct brw_context *brw,
3202 struct intel_mipmap_tree *mt,
3203 struct intel_miptree_map *map,
3204 unsigned int level, unsigned int slice)
3205 {
3206 assert(map->mode & GL_MAP_READ_BIT);
3207 assert(!(map->mode & GL_MAP_WRITE_BIT));
3208
3209 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3210 map->x, map->y, map->w, map->h,
3211 mt, _mesa_get_format_name(mt->format),
3212 level, slice, map->ptr, map->stride);
3213
3214 /* Map the original image */
3215 uint32_t image_x;
3216 uint32_t image_y;
3217 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3218 image_x += map->x;
3219 image_y += map->y;
3220
3221 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3222 if (!src)
3223 return;
3224
3225 src += mt->offset;
3226
3227 src += image_y * mt->surf.row_pitch;
3228 src += image_x * mt->cpp;
3229
3230 /* Due to the pixel offsets for the particular image being mapped, our
3231 * src pointer may not be 16-byte aligned. However, if the pitch is
3232 * divisible by 16, then the amount by which it's misaligned will remain
3233 * consistent from row to row.
3234 */
3235 assert((mt->surf.row_pitch % 16) == 0);
3236 const int misalignment = ((uintptr_t) src) & 15;
3237
3238 /* Create an untiled temporary buffer for the mapping. */
3239 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3240
3241 map->stride = ALIGN(misalignment + width_bytes, 16);
3242
3243 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3244 /* Offset the destination so it has the same misalignment as src. */
3245 map->ptr = map->buffer + misalignment;
3246
3247 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3248
3249 for (uint32_t y = 0; y < map->h; y++) {
3250 void *dst_ptr = map->ptr + y * map->stride;
3251 void *src_ptr = src + y * mt->surf.row_pitch;
3252
3253 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3254 }
3255
3256 intel_miptree_unmap_raw(mt);
3257 }
3258
3259 static void
3260 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3261 struct intel_mipmap_tree *mt,
3262 struct intel_miptree_map *map,
3263 unsigned int level,
3264 unsigned int slice)
3265 {
3266 _mesa_align_free(map->buffer);
3267 map->buffer = NULL;
3268 map->ptr = NULL;
3269 }
3270 #endif
3271
3272 static void
3273 intel_miptree_map_s8(struct brw_context *brw,
3274 struct intel_mipmap_tree *mt,
3275 struct intel_miptree_map *map,
3276 unsigned int level, unsigned int slice)
3277 {
3278 map->stride = map->w;
3279 map->buffer = map->ptr = malloc(map->stride * map->h);
3280 if (!map->buffer)
3281 return;
3282
3283 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3284 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3285 * invalidate is set, since we'll be writing the whole rectangle from our
3286 * temporary buffer back out.
3287 */
3288 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3289 uint8_t *untiled_s8_map = map->ptr;
3290 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3291 unsigned int image_x, image_y;
3292
3293 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3294
3295 for (uint32_t y = 0; y < map->h; y++) {
3296 for (uint32_t x = 0; x < map->w; x++) {
3297 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3298 x + image_x + map->x,
3299 y + image_y + map->y,
3300 brw->has_swizzling);
3301 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3302 }
3303 }
3304
3305 intel_miptree_unmap_raw(mt);
3306
3307 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3308 map->x, map->y, map->w, map->h,
3309 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3310 } else {
3311 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3312 map->x, map->y, map->w, map->h,
3313 mt, map->ptr, map->stride);
3314 }
3315 }
3316
3317 static void
3318 intel_miptree_unmap_s8(struct brw_context *brw,
3319 struct intel_mipmap_tree *mt,
3320 struct intel_miptree_map *map,
3321 unsigned int level,
3322 unsigned int slice)
3323 {
3324 if (map->mode & GL_MAP_WRITE_BIT) {
3325 unsigned int image_x, image_y;
3326 uint8_t *untiled_s8_map = map->ptr;
3327 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3328
3329 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3330
3331 for (uint32_t y = 0; y < map->h; y++) {
3332 for (uint32_t x = 0; x < map->w; x++) {
3333 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3334 image_x + x + map->x,
3335 image_y + y + map->y,
3336 brw->has_swizzling);
3337 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3338 }
3339 }
3340
3341 intel_miptree_unmap_raw(mt);
3342 }
3343
3344 free(map->buffer);
3345 }
3346
3347 static void
3348 intel_miptree_map_etc(struct brw_context *brw,
3349 struct intel_mipmap_tree *mt,
3350 struct intel_miptree_map *map,
3351 unsigned int level,
3352 unsigned int slice)
3353 {
3354 assert(mt->etc_format != MESA_FORMAT_NONE);
3355 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3356 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3357 }
3358
3359 assert(map->mode & GL_MAP_WRITE_BIT);
3360 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3361
3362 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3363 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3364 map->w, map->h, 1));
3365 map->ptr = map->buffer;
3366 }
3367
3368 static void
3369 intel_miptree_unmap_etc(struct brw_context *brw,
3370 struct intel_mipmap_tree *mt,
3371 struct intel_miptree_map *map,
3372 unsigned int level,
3373 unsigned int slice)
3374 {
3375 uint32_t image_x;
3376 uint32_t image_y;
3377 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3378
3379 image_x += map->x;
3380 image_y += map->y;
3381
3382 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3383 + image_y * mt->surf.row_pitch
3384 + image_x * mt->cpp;
3385
3386 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3387 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3388 map->ptr, map->stride,
3389 map->w, map->h);
3390 else
3391 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3392 map->ptr, map->stride,
3393 map->w, map->h, mt->etc_format);
3394
3395 intel_miptree_unmap_raw(mt);
3396 free(map->buffer);
3397 }
3398
3399 /**
3400 * Mapping function for packed depth/stencil miptrees backed by real separate
3401 * miptrees for depth and stencil.
3402 *
3403 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3404 * separate from the depth buffer. Yet at the GL API level, we have to expose
3405 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3406 * be able to map that memory for texture storage and glReadPixels-type
3407 * operations. We give Mesa core that access by mallocing a temporary and
3408 * copying the data between the actual backing store and the temporary.
3409 */
3410 static void
3411 intel_miptree_map_depthstencil(struct brw_context *brw,
3412 struct intel_mipmap_tree *mt,
3413 struct intel_miptree_map *map,
3414 unsigned int level, unsigned int slice)
3415 {
3416 struct intel_mipmap_tree *z_mt = mt;
3417 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3418 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3419 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3420
3421 map->stride = map->w * packed_bpp;
3422 map->buffer = map->ptr = malloc(map->stride * map->h);
3423 if (!map->buffer)
3424 return;
3425
3426 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3427 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3428 * invalidate is set, since we'll be writing the whole rectangle from our
3429 * temporary buffer back out.
3430 */
3431 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3432 uint32_t *packed_map = map->ptr;
3433 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3434 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3435 unsigned int s_image_x, s_image_y;
3436 unsigned int z_image_x, z_image_y;
3437
3438 intel_miptree_get_image_offset(s_mt, level, slice,
3439 &s_image_x, &s_image_y);
3440 intel_miptree_get_image_offset(z_mt, level, slice,
3441 &z_image_x, &z_image_y);
3442
3443 for (uint32_t y = 0; y < map->h; y++) {
3444 for (uint32_t x = 0; x < map->w; x++) {
3445 int map_x = map->x + x, map_y = map->y + y;
3446 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3447 map_x + s_image_x,
3448 map_y + s_image_y,
3449 brw->has_swizzling);
3450 ptrdiff_t z_offset = ((map_y + z_image_y) *
3451 (z_mt->surf.row_pitch / 4) +
3452 (map_x + z_image_x));
3453 uint8_t s = s_map[s_offset];
3454 uint32_t z = z_map[z_offset];
3455
3456 if (map_z32f_x24s8) {
3457 packed_map[(y * map->w + x) * 2 + 0] = z;
3458 packed_map[(y * map->w + x) * 2 + 1] = s;
3459 } else {
3460 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3461 }
3462 }
3463 }
3464
3465 intel_miptree_unmap_raw(s_mt);
3466 intel_miptree_unmap_raw(z_mt);
3467
3468 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3469 __func__,
3470 map->x, map->y, map->w, map->h,
3471 z_mt, map->x + z_image_x, map->y + z_image_y,
3472 s_mt, map->x + s_image_x, map->y + s_image_y,
3473 map->ptr, map->stride);
3474 } else {
3475 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3476 map->x, map->y, map->w, map->h,
3477 mt, map->ptr, map->stride);
3478 }
3479 }
3480
3481 static void
3482 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3483 struct intel_mipmap_tree *mt,
3484 struct intel_miptree_map *map,
3485 unsigned int level,
3486 unsigned int slice)
3487 {
3488 struct intel_mipmap_tree *z_mt = mt;
3489 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3490 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3491
3492 if (map->mode & GL_MAP_WRITE_BIT) {
3493 uint32_t *packed_map = map->ptr;
3494 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3495 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3496 unsigned int s_image_x, s_image_y;
3497 unsigned int z_image_x, z_image_y;
3498
3499 intel_miptree_get_image_offset(s_mt, level, slice,
3500 &s_image_x, &s_image_y);
3501 intel_miptree_get_image_offset(z_mt, level, slice,
3502 &z_image_x, &z_image_y);
3503
3504 for (uint32_t y = 0; y < map->h; y++) {
3505 for (uint32_t x = 0; x < map->w; x++) {
3506 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3507 x + s_image_x + map->x,
3508 y + s_image_y + map->y,
3509 brw->has_swizzling);
3510 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3511 (z_mt->surf.row_pitch / 4) +
3512 (x + z_image_x + map->x));
3513
3514 if (map_z32f_x24s8) {
3515 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3516 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3517 } else {
3518 uint32_t packed = packed_map[y * map->w + x];
3519 s_map[s_offset] = packed >> 24;
3520 z_map[z_offset] = packed;
3521 }
3522 }
3523 }
3524
3525 intel_miptree_unmap_raw(s_mt);
3526 intel_miptree_unmap_raw(z_mt);
3527
3528 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3529 __func__,
3530 map->x, map->y, map->w, map->h,
3531 z_mt, _mesa_get_format_name(z_mt->format),
3532 map->x + z_image_x, map->y + z_image_y,
3533 s_mt, map->x + s_image_x, map->y + s_image_y,
3534 map->ptr, map->stride);
3535 }
3536
3537 free(map->buffer);
3538 }
3539
3540 /**
3541 * Create and attach a map to the miptree at (level, slice). Return the
3542 * attached map.
3543 */
3544 static struct intel_miptree_map*
3545 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3546 unsigned int level,
3547 unsigned int slice,
3548 unsigned int x,
3549 unsigned int y,
3550 unsigned int w,
3551 unsigned int h,
3552 GLbitfield mode)
3553 {
3554 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3555
3556 if (!map)
3557 return NULL;
3558
3559 assert(mt->level[level].slice[slice].map == NULL);
3560 mt->level[level].slice[slice].map = map;
3561
3562 map->mode = mode;
3563 map->x = x;
3564 map->y = y;
3565 map->w = w;
3566 map->h = h;
3567
3568 return map;
3569 }
3570
3571 /**
3572 * Release the map at (level, slice).
3573 */
3574 static void
3575 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3576 unsigned int level,
3577 unsigned int slice)
3578 {
3579 struct intel_miptree_map **map;
3580
3581 map = &mt->level[level].slice[slice].map;
3582 free(*map);
3583 *map = NULL;
3584 }
3585
3586 static bool
3587 can_blit_slice(struct intel_mipmap_tree *mt,
3588 unsigned int level, unsigned int slice)
3589 {
3590 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3591 if (mt->surf.row_pitch >= 32768)
3592 return false;
3593
3594 return true;
3595 }
3596
3597 static bool
3598 use_intel_mipree_map_blit(struct brw_context *brw,
3599 struct intel_mipmap_tree *mt,
3600 GLbitfield mode,
3601 unsigned int level,
3602 unsigned int slice)
3603 {
3604 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3605
3606 if (devinfo->has_llc &&
3607 /* It's probably not worth swapping to the blit ring because of
3608 * all the overhead involved.
3609 */
3610 !(mode & GL_MAP_WRITE_BIT) &&
3611 !mt->compressed &&
3612 (mt->surf.tiling == ISL_TILING_X ||
3613 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3614 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3615 /* Fast copy blit on skl+ supports all tiling formats. */
3616 devinfo->gen >= 9) &&
3617 can_blit_slice(mt, level, slice))
3618 return true;
3619
3620 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3621 mt->bo->size >= brw->max_gtt_map_object_size) {
3622 assert(can_blit_slice(mt, level, slice));
3623 return true;
3624 }
3625
3626 return false;
3627 }
3628
3629 /**
3630 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3631 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3632 * arithmetic overflow.
3633 *
3634 * If you call this function and use \a out_stride, then you're doing pointer
3635 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3636 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3637 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3638 * which usually have type uint32_t or GLuint.
3639 */
3640 void
3641 intel_miptree_map(struct brw_context *brw,
3642 struct intel_mipmap_tree *mt,
3643 unsigned int level,
3644 unsigned int slice,
3645 unsigned int x,
3646 unsigned int y,
3647 unsigned int w,
3648 unsigned int h,
3649 GLbitfield mode,
3650 void **out_ptr,
3651 ptrdiff_t *out_stride)
3652 {
3653 struct intel_miptree_map *map;
3654
3655 assert(mt->surf.samples == 1);
3656
3657 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3658 if (!map){
3659 *out_ptr = NULL;
3660 *out_stride = 0;
3661 return;
3662 }
3663
3664 intel_miptree_access_raw(brw, mt, level, slice,
3665 map->mode & GL_MAP_WRITE_BIT);
3666
3667 if (mt->format == MESA_FORMAT_S_UINT8) {
3668 intel_miptree_map_s8(brw, mt, map, level, slice);
3669 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3670 !(mode & BRW_MAP_DIRECT_BIT)) {
3671 intel_miptree_map_etc(brw, mt, map, level, slice);
3672 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3673 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3674 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3675 intel_miptree_map_blit(brw, mt, map, level, slice);
3676 #if defined(USE_SSE41)
3677 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3678 !mt->compressed && cpu_has_sse4_1 &&
3679 (mt->surf.row_pitch % 16 == 0)) {
3680 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3681 #endif
3682 } else {
3683 intel_miptree_map_gtt(brw, mt, map, level, slice);
3684 }
3685
3686 *out_ptr = map->ptr;
3687 *out_stride = map->stride;
3688
3689 if (map->ptr == NULL)
3690 intel_miptree_release_map(mt, level, slice);
3691 }
3692
3693 void
3694 intel_miptree_unmap(struct brw_context *brw,
3695 struct intel_mipmap_tree *mt,
3696 unsigned int level,
3697 unsigned int slice)
3698 {
3699 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3700
3701 assert(mt->surf.samples == 1);
3702
3703 if (!map)
3704 return;
3705
3706 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3707 mt, _mesa_get_format_name(mt->format), level, slice);
3708
3709 if (mt->format == MESA_FORMAT_S_UINT8) {
3710 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3711 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3712 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3713 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3714 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3715 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3716 } else if (map->linear_mt) {
3717 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3718 #if defined(USE_SSE41)
3719 } else if (map->buffer && cpu_has_sse4_1) {
3720 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3721 #endif
3722 } else {
3723 intel_miptree_unmap_gtt(mt);
3724 }
3725
3726 intel_miptree_release_map(mt, level, slice);
3727 }
3728
3729 enum isl_surf_dim
3730 get_isl_surf_dim(GLenum target)
3731 {
3732 switch (target) {
3733 case GL_TEXTURE_1D:
3734 case GL_TEXTURE_1D_ARRAY:
3735 return ISL_SURF_DIM_1D;
3736
3737 case GL_TEXTURE_2D:
3738 case GL_TEXTURE_2D_ARRAY:
3739 case GL_TEXTURE_RECTANGLE:
3740 case GL_TEXTURE_CUBE_MAP:
3741 case GL_TEXTURE_CUBE_MAP_ARRAY:
3742 case GL_TEXTURE_2D_MULTISAMPLE:
3743 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3744 case GL_TEXTURE_EXTERNAL_OES:
3745 return ISL_SURF_DIM_2D;
3746
3747 case GL_TEXTURE_3D:
3748 return ISL_SURF_DIM_3D;
3749 }
3750
3751 unreachable("Invalid texture target");
3752 }
3753
3754 enum isl_dim_layout
3755 get_isl_dim_layout(const struct gen_device_info *devinfo,
3756 enum isl_tiling tiling, GLenum target)
3757 {
3758 switch (target) {
3759 case GL_TEXTURE_1D:
3760 case GL_TEXTURE_1D_ARRAY:
3761 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3762 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3763
3764 case GL_TEXTURE_2D:
3765 case GL_TEXTURE_2D_ARRAY:
3766 case GL_TEXTURE_RECTANGLE:
3767 case GL_TEXTURE_2D_MULTISAMPLE:
3768 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3769 case GL_TEXTURE_EXTERNAL_OES:
3770 return ISL_DIM_LAYOUT_GEN4_2D;
3771
3772 case GL_TEXTURE_CUBE_MAP:
3773 case GL_TEXTURE_CUBE_MAP_ARRAY:
3774 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3775 ISL_DIM_LAYOUT_GEN4_2D);
3776
3777 case GL_TEXTURE_3D:
3778 return (devinfo->gen >= 9 ?
3779 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3780 }
3781
3782 unreachable("Invalid texture target");
3783 }
3784
3785 enum isl_aux_usage
3786 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3787 const struct intel_mipmap_tree *mt)
3788 {
3789 if (mt->hiz_buf)
3790 return ISL_AUX_USAGE_HIZ;
3791
3792 if (!mt->mcs_buf)
3793 return ISL_AUX_USAGE_NONE;
3794
3795 return mt->aux_usage;
3796 }