i965: Check result of make_surface() for intel_miptree_create_for_bo
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_image.h"
31 #include "intel_mipmap_tree.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt,
53 GLbitfield mode);
54
55 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
56
57 static bool
58 intel_miptree_alloc_aux(struct brw_context *brw,
59 struct intel_mipmap_tree *mt);
60
61 static bool
62 is_mcs_supported(const struct brw_context *brw, mesa_format format,
63 uint32_t layout_flags)
64 {
65 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
66 if (brw->gen < 7)
67 return false;
68
69 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
70 switch (_mesa_get_format_base_format(format)) {
71 case GL_DEPTH_COMPONENT:
72 case GL_STENCIL_INDEX:
73 case GL_DEPTH_STENCIL:
74 return false;
75 default:
76 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
77 *
78 * This field must be set to 0 for all SINT MSRTs when all RT channels
79 * are not written
80 *
81 * In practice this means that we have to disable MCS for all signed
82 * integer MSAA buffers. The alternative, to disable MCS only when one
83 * of the render target channels is disabled, is impractical because it
84 * would require converting between CMS and UMS MSAA layouts on the fly,
85 * which is expensive.
86 */
87 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
88 return false;
89 } else if (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) {
90 /* We can't use the CMS layout because it uses an aux buffer, the MCS
91 * buffer. So fallback to UMS, which is identical to CMS without the
92 * MCS. */
93 return false;
94 } else {
95 return true;
96 }
97 }
98 }
99
100 static bool
101 intel_tiling_supports_ccs(const struct brw_context *brw,
102 enum isl_tiling tiling)
103 {
104 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
105 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
106 *
107 * - Support is limited to tiled render targets.
108 *
109 * Gen9 changes the restriction to Y-tile only.
110 */
111 if (brw->gen >= 9)
112 return tiling == ISL_TILING_Y0;
113 else if (brw->gen >= 7)
114 return tiling != ISL_TILING_LINEAR;
115 else
116 return false;
117 }
118
119 /**
120 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
121 * can be used. This doesn't (and should not) inspect any of the properties of
122 * the miptree's BO.
123 *
124 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
125 * beneath the "Fast Color Clear" bullet (p326):
126 *
127 * - Support is for non-mip-mapped and non-array surface types only.
128 *
129 * And then later, on p327:
130 *
131 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
132 * 64bpp, and 128bpp.
133 *
134 * From the Skylake documentation, it is made clear that X-tiling is no longer
135 * supported:
136 *
137 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
138 * non-MSRTs only.
139 */
140 static bool
141 intel_miptree_supports_ccs(struct brw_context *brw,
142 const struct intel_mipmap_tree *mt)
143 {
144 /* MCS support does not exist prior to Gen7 */
145 if (brw->gen < 7)
146 return false;
147
148 /* This function applies only to non-multisampled render targets. */
149 if (mt->surf.samples > 1)
150 return false;
151
152 /* MCS is only supported for color buffers */
153 switch (_mesa_get_format_base_format(mt->format)) {
154 case GL_DEPTH_COMPONENT:
155 case GL_DEPTH_STENCIL:
156 case GL_STENCIL_INDEX:
157 return false;
158 }
159
160 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
161 return false;
162
163 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
164 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
165 mt->surf.logical_level0_px.depth > 1;
166
167 if (arrayed) {
168 /* Multisample surfaces with the CMS layout are not layered surfaces,
169 * yet still have physical_depth0 > 1. Assert that we don't
170 * accidentally reject a multisampled surface here. We should have
171 * rejected it earlier by explicitly checking the sample count.
172 */
173 assert(mt->surf.samples == 1);
174 }
175
176 /* Handle the hardware restrictions...
177 *
178 * All GENs have the following restriction: "MCS buffer for non-MSRT is
179 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
180 *
181 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
182 * Non-MultiSampler Render Target Restrictions) Support is for
183 * non-mip-mapped and non-array surface types only.
184 *
185 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
186 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
187 * surfaces are supported with MCS buffer layout with these alignments in
188 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
189 *
190 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
194 */
195 if (brw->gen < 8 && (mip_mapped || arrayed))
196 return false;
197
198 /* There's no point in using an MCS buffer if the surface isn't in a
199 * renderable format.
200 */
201 if (!brw->mesa_format_supports_render[mt->format])
202 return false;
203
204 return true;
205 }
206
207 static bool
208 intel_tiling_supports_hiz(const struct brw_context *brw,
209 enum isl_tiling tiling)
210 {
211 if (brw->gen < 6)
212 return false;
213
214 return tiling == ISL_TILING_Y0;
215 }
216
217 static bool
218 intel_miptree_supports_hiz(const struct brw_context *brw,
219 const struct intel_mipmap_tree *mt)
220 {
221 if (!brw->has_hiz)
222 return false;
223
224 switch (mt->format) {
225 case MESA_FORMAT_Z_FLOAT32:
226 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
227 case MESA_FORMAT_Z24_UNORM_X8_UINT:
228 case MESA_FORMAT_Z24_UNORM_S8_UINT:
229 case MESA_FORMAT_Z_UNORM16:
230 return true;
231 default:
232 return false;
233 }
234 }
235
236 static bool
237 intel_miptree_supports_ccs_e(struct brw_context *brw,
238 const struct intel_mipmap_tree *mt)
239 {
240 if (brw->gen < 9)
241 return false;
242
243 /* For now compression is only enabled for integer formats even though
244 * there exist supported floating point formats also. This is a heuristic
245 * decision based on current public benchmarks. In none of the cases these
246 * formats provided any improvement but a few cases were seen to regress.
247 * Hence these are left to to be enabled in the future when they are known
248 * to improve things.
249 */
250 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
251 return false;
252
253 if (!intel_miptree_supports_ccs(brw, mt))
254 return false;
255
256 /* Many window system buffers are sRGB even if they are never rendered as
257 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
258 * surface is used as sRGB, we fall back to CCS_D.
259 */
260 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
261 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
262 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
263 }
264
265 /**
266 * Determine depth format corresponding to a depth+stencil format,
267 * for separate stencil.
268 */
269 mesa_format
270 intel_depth_format_for_depthstencil_format(mesa_format format) {
271 switch (format) {
272 case MESA_FORMAT_Z24_UNORM_S8_UINT:
273 return MESA_FORMAT_Z24_UNORM_X8_UINT;
274 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
275 return MESA_FORMAT_Z_FLOAT32;
276 default:
277 return format;
278 }
279 }
280
281 static bool
282 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
283 unsigned depth0, struct intel_mipmap_level *table)
284 {
285 for (unsigned level = first_level; level <= last_level; level++) {
286 const unsigned d =
287 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
288
289 table[level].slice = calloc(d, sizeof(*table[0].slice));
290 if (!table[level].slice)
291 goto unwind;
292 }
293
294 return true;
295
296 unwind:
297 for (unsigned level = first_level; level <= last_level; level++)
298 free(table[level].slice);
299
300 return false;
301 }
302
303 static bool
304 needs_separate_stencil(const struct brw_context *brw,
305 struct intel_mipmap_tree *mt,
306 mesa_format format, uint32_t layout_flags)
307 {
308
309 if (layout_flags & MIPTREE_LAYOUT_FOR_BO)
310 return false;
311
312 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
313 return false;
314
315 if (brw->must_use_separate_stencil)
316 return true;
317
318 return brw->has_separate_stencil &&
319 intel_miptree_supports_hiz(brw, mt);
320 }
321
322 /**
323 * Choose the aux usage for this miptree. This function must be called fairly
324 * late in the miptree create process after we have a tiling.
325 */
326 static void
327 intel_miptree_choose_aux_usage(struct brw_context *brw,
328 struct intel_mipmap_tree *mt)
329 {
330 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
331
332 const unsigned no_flags = 0;
333 if (mt->surf.samples > 1 && is_mcs_supported(brw, mt->format, no_flags)) {
334 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
335 mt->aux_usage = ISL_AUX_USAGE_MCS;
336 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
337 intel_miptree_supports_ccs(brw, mt)) {
338 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
339 intel_miptree_supports_ccs_e(brw, mt)) {
340 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
341 } else {
342 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
343 }
344 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
345 intel_miptree_supports_hiz(brw, mt)) {
346 mt->aux_usage = ISL_AUX_USAGE_HIZ;
347 }
348
349 /* We can do fast-clear on all auxiliary surface types that are
350 * allocated through the normal texture creation paths.
351 */
352 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
353 mt->supports_fast_clear = true;
354 }
355
356
357 /**
358 * Choose an appropriate uncompressed format for a requested
359 * compressed format, if unsupported.
360 */
361 mesa_format
362 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
363 {
364 /* No need to lower ETC formats on these platforms,
365 * they are supported natively.
366 */
367 if (brw->gen >= 8 || brw->is_baytrail)
368 return format;
369
370 switch (format) {
371 case MESA_FORMAT_ETC1_RGB8:
372 return MESA_FORMAT_R8G8B8X8_UNORM;
373 case MESA_FORMAT_ETC2_RGB8:
374 return MESA_FORMAT_R8G8B8X8_UNORM;
375 case MESA_FORMAT_ETC2_SRGB8:
376 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
377 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
378 return MESA_FORMAT_B8G8R8A8_SRGB;
379 case MESA_FORMAT_ETC2_RGBA8_EAC:
380 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
381 return MESA_FORMAT_R8G8B8A8_UNORM;
382 case MESA_FORMAT_ETC2_R11_EAC:
383 return MESA_FORMAT_R_UNORM16;
384 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
385 return MESA_FORMAT_R_SNORM16;
386 case MESA_FORMAT_ETC2_RG11_EAC:
387 return MESA_FORMAT_R16G16_UNORM;
388 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
389 return MESA_FORMAT_R16G16_SNORM;
390 default:
391 /* Non ETC1 / ETC2 format */
392 return format;
393 }
394 }
395
396 unsigned
397 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
398 {
399 if (mt->surf.dim == ISL_SURF_DIM_3D)
400 return minify(mt->surf.logical_level0_px.depth, level);
401 else
402 return mt->surf.logical_level0_px.array_len;
403 }
404
405 static unsigned
406 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
407 {
408 /* In case of physical dimensions one needs to consider also the layout.
409 * See isl_calc_phys_level0_extent_sa().
410 */
411 if (surf->dim != ISL_SURF_DIM_3D)
412 return surf->phys_level0_sa.array_len;
413
414 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
415 return minify(surf->phys_level0_sa.array_len, level);
416
417 return minify(surf->phys_level0_sa.depth, level);
418 }
419
420 /** \brief Assert that the level and layer are valid for the miptree. */
421 void
422 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
423 uint32_t level,
424 uint32_t layer)
425 {
426 (void) mt;
427 (void) level;
428 (void) layer;
429
430 assert(level >= mt->first_level);
431 assert(level <= mt->last_level);
432 assert(layer < get_num_phys_layers(&mt->surf, level));
433 }
434
435 static enum isl_aux_state **
436 create_aux_state_map(struct intel_mipmap_tree *mt,
437 enum isl_aux_state initial)
438 {
439 const uint32_t levels = mt->last_level + 1;
440
441 uint32_t total_slices = 0;
442 for (uint32_t level = 0; level < levels; level++)
443 total_slices += brw_get_num_logical_layers(mt, level);
444
445 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
446
447 /* We're going to allocate a single chunk of data for both the per-level
448 * reference array and the arrays of aux_state. This makes cleanup
449 * significantly easier.
450 */
451 const size_t total_size = per_level_array_size +
452 total_slices * sizeof(enum isl_aux_state);
453 void *data = malloc(total_size);
454 if (data == NULL)
455 return NULL;
456
457 enum isl_aux_state **per_level_arr = data;
458 enum isl_aux_state *s = data + per_level_array_size;
459 for (uint32_t level = 0; level < levels; level++) {
460 per_level_arr[level] = s;
461 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
462 for (uint32_t a = 0; a < level_layers; a++)
463 *(s++) = initial;
464 }
465 assert((void *)s == data + total_size);
466
467 return per_level_arr;
468 }
469
470 static void
471 free_aux_state_map(enum isl_aux_state **state)
472 {
473 free(state);
474 }
475
476 static bool
477 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
478 enum isl_tiling tiling, unsigned samples)
479 {
480 if (samples > 1)
481 return false;
482
483 if (tiling == ISL_TILING_LINEAR)
484 return false;
485
486 /* If the width is much smaller than a tile, don't bother tiling. */
487 if (row_pitch < 64)
488 return true;
489
490 if (ALIGN(row_pitch, 512) >= 32768) {
491 perf_debug("row pitch %u too large to blit, falling back to untiled",
492 row_pitch);
493 return true;
494 }
495
496 return false;
497 }
498
499 static bool
500 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
501 enum isl_tiling tiling)
502 {
503 /* If the BO is too large to fit in the aperture, we need to use the
504 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
505 * handle Y-tiling, so we need to fall back to X.
506 */
507 if (brw->gen < 6 && size >= brw->max_gtt_map_object_size &&
508 tiling == ISL_TILING_Y0)
509 return true;
510
511 return false;
512 }
513
514 static struct intel_mipmap_tree *
515 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
516 unsigned first_level, unsigned last_level,
517 unsigned width0, unsigned height0, unsigned depth0,
518 unsigned num_samples, isl_tiling_flags_t tiling_flags,
519 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
520 unsigned row_pitch, struct brw_bo *bo)
521 {
522 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
523 if (!mt)
524 return NULL;
525
526 if (!create_mapping_table(target, first_level, last_level, depth0,
527 mt->level)) {
528 free(mt);
529 return NULL;
530 }
531
532 mt->refcount = 1;
533
534 if (target == GL_TEXTURE_CUBE_MAP ||
535 target == GL_TEXTURE_CUBE_MAP_ARRAY)
536 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
537
538 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
539 __func__,
540 _mesa_enum_to_string(target),
541 _mesa_get_format_name(format),
542 num_samples, width0, height0, depth0,
543 first_level, last_level, mt);
544
545 struct isl_surf_init_info init_info = {
546 .dim = get_isl_surf_dim(target),
547 .format = translate_tex_format(brw, format, false),
548 .width = width0,
549 .height = height0,
550 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
551 .levels = last_level - first_level + 1,
552 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
553 .samples = num_samples,
554 .row_pitch = row_pitch,
555 .usage = isl_usage_flags,
556 .tiling_flags = tiling_flags,
557 };
558
559 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
560 goto fail;
561
562 /* In case caller doesn't specifically request Y-tiling (needed
563 * unconditionally for depth), check for corner cases needing special
564 * treatment.
565 */
566 if (tiling_flags & ~ISL_TILING_Y0_BIT) {
567 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
568 mt->surf.tiling, mt->surf.samples)) {
569 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
570 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
571 goto fail;
572 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
573 init_info.tiling_flags = 1u << ISL_TILING_X;
574 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
575 goto fail;
576 }
577 }
578
579 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
580 * the size may not be multiple of row_pitch.
581 * See isl_apply_surface_padding().
582 */
583 if (mt->surf.tiling != ISL_TILING_LINEAR)
584 assert(mt->surf.size % mt->surf.row_pitch == 0);
585
586 if (!bo) {
587 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
588 mt->surf.size,
589 isl_tiling_to_i915_tiling(
590 mt->surf.tiling),
591 mt->surf.row_pitch, alloc_flags);
592 if (!mt->bo)
593 goto fail;
594 } else {
595 mt->bo = bo;
596 }
597
598 mt->first_level = first_level;
599 mt->last_level = last_level;
600 mt->target = target;
601 mt->format = format;
602 mt->aux_state = NULL;
603 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
604 mt->compressed = _mesa_is_format_compressed(format);
605
606 return mt;
607
608 fail:
609 intel_miptree_release(&mt);
610 return NULL;
611 }
612
613 static bool
614 make_separate_stencil_surface(struct brw_context *brw,
615 struct intel_mipmap_tree *mt)
616 {
617 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
618 0, mt->surf.levels - 1,
619 mt->surf.logical_level0_px.width,
620 mt->surf.logical_level0_px.height,
621 mt->surf.dim == ISL_SURF_DIM_3D ?
622 mt->surf.logical_level0_px.depth :
623 mt->surf.logical_level0_px.array_len,
624 mt->surf.samples, ISL_TILING_W_BIT,
625 ISL_SURF_USAGE_STENCIL_BIT |
626 ISL_SURF_USAGE_TEXTURE_BIT,
627 BO_ALLOC_FOR_RENDER, 0, NULL);
628
629 if (!mt->stencil_mt)
630 return false;
631
632 mt->stencil_mt->r8stencil_needs_update = true;
633
634 return true;
635 }
636
637 static bool
638 force_linear_tiling(uint32_t layout_flags)
639 {
640 /* ANY includes NONE and Y bit. */
641 if (layout_flags & MIPTREE_LAYOUT_TILING_Y)
642 return false;
643
644 return layout_flags & MIPTREE_LAYOUT_TILING_NONE;
645 }
646
647 static struct intel_mipmap_tree *
648 miptree_create(struct brw_context *brw,
649 GLenum target,
650 mesa_format format,
651 GLuint first_level,
652 GLuint last_level,
653 GLuint width0,
654 GLuint height0,
655 GLuint depth0,
656 GLuint num_samples,
657 uint32_t layout_flags)
658 {
659 if (format == MESA_FORMAT_S_UINT8)
660 return make_surface(brw, target, format, first_level, last_level,
661 width0, height0, depth0, num_samples,
662 ISL_TILING_W_BIT,
663 ISL_SURF_USAGE_STENCIL_BIT |
664 ISL_SURF_USAGE_TEXTURE_BIT,
665 BO_ALLOC_FOR_RENDER,
666 0,
667 NULL);
668
669 const GLenum base_format = _mesa_get_format_base_format(format);
670 if ((base_format == GL_DEPTH_COMPONENT ||
671 base_format == GL_DEPTH_STENCIL) &&
672 !force_linear_tiling(layout_flags)) {
673 /* Fix up the Z miptree format for how we're splitting out separate
674 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
675 */
676 const mesa_format depth_only_format =
677 intel_depth_format_for_depthstencil_format(format);
678 struct intel_mipmap_tree *mt = make_surface(
679 brw, target, brw->gen >= 6 ? depth_only_format : format,
680 first_level, last_level,
681 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
682 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
683 BO_ALLOC_FOR_RENDER, 0, NULL);
684
685 if (needs_separate_stencil(brw, mt, format, layout_flags) &&
686 !make_separate_stencil_surface(brw, mt)) {
687 intel_miptree_release(&mt);
688 return NULL;
689 }
690
691 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
692 intel_miptree_choose_aux_usage(brw, mt);
693
694 return mt;
695 }
696
697 mesa_format tex_format = format;
698 mesa_format etc_format = MESA_FORMAT_NONE;
699 uint32_t alloc_flags = 0;
700
701 format = intel_lower_compressed_format(brw, format);
702
703 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
704
705 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
706 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
707 alloc_flags |= BO_ALLOC_FOR_RENDER;
708
709 isl_tiling_flags_t tiling_flags = force_linear_tiling(layout_flags) ?
710 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
711
712 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
713 if (brw->gen < 6)
714 tiling_flags &= ~ISL_TILING_Y0_BIT;
715
716 struct intel_mipmap_tree *mt = make_surface(
717 brw, target, format,
718 first_level, last_level,
719 width0, height0, depth0,
720 num_samples, tiling_flags,
721 ISL_SURF_USAGE_RENDER_TARGET_BIT |
722 ISL_SURF_USAGE_TEXTURE_BIT,
723 alloc_flags, 0, NULL);
724 if (!mt)
725 return NULL;
726
727 mt->etc_format = etc_format;
728
729 if (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT)
730 mt->bo->cache_coherent = false;
731
732 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
733 intel_miptree_choose_aux_usage(brw, mt);
734
735 return mt;
736 }
737
738 struct intel_mipmap_tree *
739 intel_miptree_create(struct brw_context *brw,
740 GLenum target,
741 mesa_format format,
742 GLuint first_level,
743 GLuint last_level,
744 GLuint width0,
745 GLuint height0,
746 GLuint depth0,
747 GLuint num_samples,
748 uint32_t layout_flags)
749 {
750 assert(num_samples > 0);
751
752 struct intel_mipmap_tree *mt = miptree_create(
753 brw, target, format,
754 first_level, last_level,
755 width0, height0, depth0, num_samples,
756 layout_flags);
757 if (!mt)
758 return NULL;
759
760 mt->offset = 0;
761
762 if (!intel_miptree_alloc_aux(brw, mt)) {
763 intel_miptree_release(&mt);
764 return NULL;
765 }
766
767 return mt;
768 }
769
770 struct intel_mipmap_tree *
771 intel_miptree_create_for_bo(struct brw_context *brw,
772 struct brw_bo *bo,
773 mesa_format format,
774 uint32_t offset,
775 uint32_t width,
776 uint32_t height,
777 uint32_t depth,
778 int pitch,
779 uint32_t layout_flags)
780 {
781 struct intel_mipmap_tree *mt;
782 uint32_t tiling, swizzle;
783 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
784 const GLenum base_format = _mesa_get_format_base_format(format);
785
786 if ((base_format == GL_DEPTH_COMPONENT ||
787 base_format == GL_DEPTH_STENCIL)) {
788 const mesa_format depth_only_format =
789 intel_depth_format_for_depthstencil_format(format);
790 mt = make_surface(brw, target,
791 brw->gen >= 6 ? depth_only_format : format,
792 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
793 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
794 BO_ALLOC_FOR_RENDER, pitch, bo);
795 if (!mt)
796 return NULL;
797
798 brw_bo_reference(bo);
799
800 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
801 intel_miptree_choose_aux_usage(brw, mt);
802
803 return mt;
804 } else if (format == MESA_FORMAT_S_UINT8) {
805 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
806 0, 0, width, height, depth, 1,
807 ISL_TILING_W_BIT,
808 ISL_SURF_USAGE_STENCIL_BIT |
809 ISL_SURF_USAGE_TEXTURE_BIT,
810 BO_ALLOC_FOR_RENDER, pitch, bo);
811 if (!mt)
812 return NULL;
813
814 assert(bo->size >= mt->surf.size);
815
816 brw_bo_reference(bo);
817 return mt;
818 }
819
820 brw_bo_get_tiling(bo, &tiling, &swizzle);
821
822 /* Nothing will be able to use this miptree with the BO if the offset isn't
823 * aligned.
824 */
825 if (tiling != I915_TILING_NONE)
826 assert(offset % 4096 == 0);
827
828 /* miptrees can't handle negative pitch. If you need flipping of images,
829 * that's outside of the scope of the mt.
830 */
831 assert(pitch >= 0);
832
833 /* The BO already has a tiling format and we shouldn't confuse the lower
834 * layers by making it try to find a tiling format again.
835 */
836 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
837 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
838
839 mt = make_surface(brw, target, format,
840 0, 0, width, height, depth, 1,
841 1lu << isl_tiling_from_i915_tiling(tiling),
842 ISL_SURF_USAGE_RENDER_TARGET_BIT |
843 ISL_SURF_USAGE_TEXTURE_BIT,
844 0, pitch, bo);
845 if (!mt)
846 return NULL;
847
848 brw_bo_reference(bo);
849 mt->bo = bo;
850 mt->offset = offset;
851
852 if (!(layout_flags & MIPTREE_LAYOUT_DISABLE_AUX))
853 intel_miptree_choose_aux_usage(brw, mt);
854
855 return mt;
856 }
857
858 static struct intel_mipmap_tree *
859 miptree_create_for_planar_image(struct brw_context *brw,
860 __DRIimage *image, GLenum target)
861 {
862 struct intel_image_format *f = image->planar_format;
863 struct intel_mipmap_tree *planar_mt = NULL;
864
865 for (int i = 0; i < f->nplanes; i++) {
866 const int index = f->planes[i].buffer_index;
867 const uint32_t dri_format = f->planes[i].dri_format;
868 const mesa_format format = driImageFormatToGLFormat(dri_format);
869 const uint32_t width = image->width >> f->planes[i].width_shift;
870 const uint32_t height = image->height >> f->planes[i].height_shift;
871
872 /* Disable creation of the texture's aux buffers because the driver
873 * exposes no EGL API to manage them. That is, there is no API for
874 * resolving the aux buffer's content to the main buffer nor for
875 * invalidating the aux buffer's content.
876 */
877 struct intel_mipmap_tree *mt =
878 intel_miptree_create_for_bo(brw, image->bo, format,
879 image->offsets[index],
880 width, height, 1,
881 image->strides[index],
882 MIPTREE_LAYOUT_DISABLE_AUX);
883 if (mt == NULL)
884 return NULL;
885
886 mt->target = target;
887
888 if (i == 0)
889 planar_mt = mt;
890 else
891 planar_mt->plane[i - 1] = mt;
892 }
893
894 return planar_mt;
895 }
896
897 struct intel_mipmap_tree *
898 intel_miptree_create_for_dri_image(struct brw_context *brw,
899 __DRIimage *image, GLenum target,
900 enum isl_colorspace colorspace,
901 bool is_winsys_image)
902 {
903 if (image->planar_format && image->planar_format->nplanes > 0) {
904 assert(colorspace == ISL_COLORSPACE_NONE ||
905 colorspace == ISL_COLORSPACE_YUV);
906 return miptree_create_for_planar_image(brw, image, target);
907 }
908
909 mesa_format format = image->format;
910 switch (colorspace) {
911 case ISL_COLORSPACE_NONE:
912 /* Keep the image format unmodified */
913 break;
914
915 case ISL_COLORSPACE_LINEAR:
916 format =_mesa_get_srgb_format_linear(format);
917 break;
918
919 case ISL_COLORSPACE_SRGB:
920 format =_mesa_get_linear_format_srgb(format);
921 break;
922
923 default:
924 unreachable("Inalid colorspace for non-planar image");
925 }
926
927 if (!brw->ctx.TextureFormatSupported[format]) {
928 /* The texture storage paths in core Mesa detect if the driver does not
929 * support the user-requested format, and then searches for a
930 * fallback format. The DRIimage code bypasses core Mesa, though. So we
931 * do the fallbacks here for important formats.
932 *
933 * We must support DRM_FOURCC_XBGR8888 textures because the Android
934 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
935 * the Chrome OS compositor consumes as dma_buf EGLImages.
936 */
937 format = _mesa_format_fallback_rgbx_to_rgba(format);
938 }
939
940 if (!brw->ctx.TextureFormatSupported[format])
941 return NULL;
942
943 /* If this image comes in from a window system, we have different
944 * requirements than if it comes in via an EGL import operation. Window
945 * system images can use any form of auxiliary compression we wish because
946 * they get "flushed" before being handed off to the window system and we
947 * have the opportunity to do resolves. Window system buffers also may be
948 * used for scanout so we need to flag that appropriately.
949 */
950 const uint32_t mt_layout_flags =
951 is_winsys_image ? MIPTREE_LAYOUT_FOR_SCANOUT : MIPTREE_LAYOUT_DISABLE_AUX;
952
953 /* Disable creation of the texture's aux buffers because the driver exposes
954 * no EGL API to manage them. That is, there is no API for resolving the aux
955 * buffer's content to the main buffer nor for invalidating the aux buffer's
956 * content.
957 */
958 struct intel_mipmap_tree *mt =
959 intel_miptree_create_for_bo(brw, image->bo, format,
960 image->offset, image->width, image->height, 1,
961 image->pitch, mt_layout_flags);
962 if (mt == NULL)
963 return NULL;
964
965 mt->target = target;
966 mt->level[0].level_x = image->tile_x;
967 mt->level[0].level_y = image->tile_y;
968
969 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
970 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
971 * trouble resolving back to destination image due to alignment issues.
972 */
973 if (!brw->has_surface_tile_offset) {
974 uint32_t draw_x, draw_y;
975 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
976
977 if (draw_x != 0 || draw_y != 0) {
978 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
979 intel_miptree_release(&mt);
980 return NULL;
981 }
982 }
983
984 if (!intel_miptree_alloc_aux(brw, mt)) {
985 intel_miptree_release(&mt);
986 return NULL;
987 }
988
989 return mt;
990 }
991
992 /**
993 * For a singlesample renderbuffer, this simply wraps the given BO with a
994 * miptree.
995 *
996 * For a multisample renderbuffer, this wraps the window system's
997 * (singlesample) BO with a singlesample miptree attached to the
998 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
999 * that will contain the actual rendering (which is lazily resolved to
1000 * irb->singlesample_mt).
1001 */
1002 bool
1003 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1004 struct intel_renderbuffer *irb,
1005 struct intel_mipmap_tree *singlesample_mt,
1006 uint32_t width, uint32_t height,
1007 uint32_t pitch)
1008 {
1009 struct intel_mipmap_tree *multisample_mt = NULL;
1010 struct gl_renderbuffer *rb = &irb->Base.Base;
1011 mesa_format format = rb->Format;
1012 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1013
1014 /* Only the front and back buffers, which are color buffers, are allocated
1015 * through the image loader.
1016 */
1017 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1018 _mesa_get_format_base_format(format) == GL_RGBA);
1019
1020 assert(singlesample_mt);
1021
1022 if (num_samples == 1) {
1023 intel_miptree_release(&irb->mt);
1024 irb->mt = singlesample_mt;
1025
1026 assert(!irb->singlesample_mt);
1027 } else {
1028 intel_miptree_release(&irb->singlesample_mt);
1029 irb->singlesample_mt = singlesample_mt;
1030
1031 if (!irb->mt ||
1032 irb->mt->surf.logical_level0_px.width != width ||
1033 irb->mt->surf.logical_level0_px.height != height) {
1034 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1035 format,
1036 width,
1037 height,
1038 num_samples);
1039 if (!multisample_mt)
1040 goto fail;
1041
1042 irb->need_downsample = false;
1043 intel_miptree_release(&irb->mt);
1044 irb->mt = multisample_mt;
1045 }
1046 }
1047 return true;
1048
1049 fail:
1050 intel_miptree_release(&irb->mt);
1051 return false;
1052 }
1053
1054 struct intel_mipmap_tree*
1055 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1056 mesa_format format,
1057 uint32_t width,
1058 uint32_t height,
1059 uint32_t num_samples)
1060 {
1061 struct intel_mipmap_tree *mt;
1062 uint32_t depth = 1;
1063 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1064 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
1065 MIPTREE_LAYOUT_TILING_ANY;
1066
1067 mt = intel_miptree_create(brw, target, format, 0, 0,
1068 width, height, depth, num_samples,
1069 layout_flags);
1070 if (!mt)
1071 goto fail;
1072
1073 return mt;
1074
1075 fail:
1076 intel_miptree_release(&mt);
1077 return NULL;
1078 }
1079
1080 void
1081 intel_miptree_reference(struct intel_mipmap_tree **dst,
1082 struct intel_mipmap_tree *src)
1083 {
1084 if (*dst == src)
1085 return;
1086
1087 intel_miptree_release(dst);
1088
1089 if (src) {
1090 src->refcount++;
1091 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1092 }
1093
1094 *dst = src;
1095 }
1096
1097 static void
1098 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1099 {
1100 if (aux_buf == NULL)
1101 return;
1102
1103 brw_bo_unreference(aux_buf->bo);
1104
1105 free(aux_buf);
1106 }
1107
1108 void
1109 intel_miptree_release(struct intel_mipmap_tree **mt)
1110 {
1111 if (!*mt)
1112 return;
1113
1114 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1115 if (--(*mt)->refcount <= 0) {
1116 GLuint i;
1117
1118 DBG("%s deleting %p\n", __func__, *mt);
1119
1120 brw_bo_unreference((*mt)->bo);
1121 intel_miptree_release(&(*mt)->stencil_mt);
1122 intel_miptree_release(&(*mt)->r8stencil_mt);
1123 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1124 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1125 free_aux_state_map((*mt)->aux_state);
1126
1127 intel_miptree_release(&(*mt)->plane[0]);
1128 intel_miptree_release(&(*mt)->plane[1]);
1129
1130 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1131 free((*mt)->level[i].slice);
1132 }
1133
1134 free(*mt);
1135 }
1136 *mt = NULL;
1137 }
1138
1139
1140 void
1141 intel_get_image_dims(struct gl_texture_image *image,
1142 int *width, int *height, int *depth)
1143 {
1144 switch (image->TexObject->Target) {
1145 case GL_TEXTURE_1D_ARRAY:
1146 /* For a 1D Array texture the OpenGL API will treat the image height as
1147 * the number of array slices. For Intel hardware, we treat the 1D array
1148 * as a 2D Array with a height of 1. So, here we want to swap image
1149 * height and depth.
1150 */
1151 assert(image->Depth == 1);
1152 *width = image->Width;
1153 *height = 1;
1154 *depth = image->Height;
1155 break;
1156 case GL_TEXTURE_CUBE_MAP:
1157 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1158 * though we really have 6 slices.
1159 */
1160 assert(image->Depth == 1);
1161 *width = image->Width;
1162 *height = image->Height;
1163 *depth = 6;
1164 break;
1165 default:
1166 *width = image->Width;
1167 *height = image->Height;
1168 *depth = image->Depth;
1169 break;
1170 }
1171 }
1172
1173 /**
1174 * Can the image be pulled into a unified mipmap tree? This mirrors
1175 * the completeness test in a lot of ways.
1176 *
1177 * Not sure whether I want to pass gl_texture_image here.
1178 */
1179 bool
1180 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1181 struct gl_texture_image *image)
1182 {
1183 struct intel_texture_image *intelImage = intel_texture_image(image);
1184 GLuint level = intelImage->base.Base.Level;
1185 int width, height, depth;
1186
1187 /* glTexImage* choose the texture object based on the target passed in, and
1188 * objects can't change targets over their lifetimes, so this should be
1189 * true.
1190 */
1191 assert(image->TexObject->Target == mt->target);
1192
1193 mesa_format mt_format = mt->format;
1194 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1195 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1196 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1197 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1198 if (mt->etc_format != MESA_FORMAT_NONE)
1199 mt_format = mt->etc_format;
1200
1201 if (image->TexFormat != mt_format)
1202 return false;
1203
1204 intel_get_image_dims(image, &width, &height, &depth);
1205
1206 if (mt->target == GL_TEXTURE_CUBE_MAP)
1207 depth = 6;
1208
1209 if (level >= mt->surf.levels)
1210 return false;
1211
1212 const unsigned level_depth =
1213 mt->surf.dim == ISL_SURF_DIM_3D ?
1214 minify(mt->surf.logical_level0_px.depth, level) :
1215 mt->surf.logical_level0_px.array_len;
1216
1217 return width == minify(mt->surf.logical_level0_px.width, level) &&
1218 height == minify(mt->surf.logical_level0_px.height, level) &&
1219 depth == level_depth &&
1220 MAX2(image->NumSamples, 1) == mt->surf.samples;
1221 }
1222
1223 void
1224 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1225 GLuint level, GLuint slice,
1226 GLuint *x, GLuint *y)
1227 {
1228 if (level == 0 && slice == 0) {
1229 *x = mt->level[0].level_x;
1230 *y = mt->level[0].level_y;
1231 return;
1232 }
1233
1234 uint32_t x_offset_sa, y_offset_sa;
1235
1236 /* Miptree itself can have an offset only if it represents a single
1237 * slice in an imported buffer object.
1238 * See intel_miptree_create_for_dri_image().
1239 */
1240 assert(mt->level[0].level_x == 0);
1241 assert(mt->level[0].level_y == 0);
1242
1243 /* Given level is relative to level zero while the miptree may be
1244 * represent just a subset of all levels starting from 'first_level'.
1245 */
1246 assert(level >= mt->first_level);
1247 level -= mt->first_level;
1248
1249 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1250 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1251 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1252 &x_offset_sa, &y_offset_sa);
1253
1254 *x = x_offset_sa;
1255 *y = y_offset_sa;
1256 }
1257
1258
1259 /**
1260 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1261 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1262 * and tile_h is set to 1.
1263 */
1264 void
1265 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1266 uint32_t *tile_w, uint32_t *tile_h)
1267 {
1268 switch (tiling) {
1269 case ISL_TILING_X:
1270 *tile_w = 512;
1271 *tile_h = 8;
1272 break;
1273 case ISL_TILING_Y0:
1274 *tile_w = 128;
1275 *tile_h = 32;
1276 break;
1277 case ISL_TILING_LINEAR:
1278 *tile_w = cpp;
1279 *tile_h = 1;
1280 break;
1281 default:
1282 unreachable("not reached");
1283 }
1284 }
1285
1286
1287 /**
1288 * This function computes masks that may be used to select the bits of the X
1289 * and Y coordinates that indicate the offset within a tile. If the BO is
1290 * untiled, the masks are set to 0.
1291 */
1292 void
1293 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1294 uint32_t *mask_x, uint32_t *mask_y)
1295 {
1296 uint32_t tile_w_bytes, tile_h;
1297
1298 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1299
1300 *mask_x = tile_w_bytes / cpp - 1;
1301 *mask_y = tile_h - 1;
1302 }
1303
1304 /**
1305 * Compute the offset (in bytes) from the start of the BO to the given x
1306 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1307 * multiples of the tile size.
1308 */
1309 uint32_t
1310 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1311 uint32_t x, uint32_t y)
1312 {
1313 int cpp = mt->cpp;
1314 uint32_t pitch = mt->surf.row_pitch;
1315
1316 switch (mt->surf.tiling) {
1317 default:
1318 unreachable("not reached");
1319 case ISL_TILING_LINEAR:
1320 return y * pitch + x * cpp;
1321 case ISL_TILING_X:
1322 assert((x % (512 / cpp)) == 0);
1323 assert((y % 8) == 0);
1324 return y * pitch + x / (512 / cpp) * 4096;
1325 case ISL_TILING_Y0:
1326 assert((x % (128 / cpp)) == 0);
1327 assert((y % 32) == 0);
1328 return y * pitch + x / (128 / cpp) * 4096;
1329 }
1330 }
1331
1332 /**
1333 * Rendering with tiled buffers requires that the base address of the buffer
1334 * be aligned to a page boundary. For renderbuffers, and sometimes with
1335 * textures, we may want the surface to point at a texture image level that
1336 * isn't at a page boundary.
1337 *
1338 * This function returns an appropriately-aligned base offset
1339 * according to the tiling restrictions, plus any required x/y offset
1340 * from there.
1341 */
1342 uint32_t
1343 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1344 GLuint level, GLuint slice,
1345 uint32_t *tile_x,
1346 uint32_t *tile_y)
1347 {
1348 uint32_t x, y;
1349 uint32_t mask_x, mask_y;
1350
1351 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1352 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1353
1354 *tile_x = x & mask_x;
1355 *tile_y = y & mask_y;
1356
1357 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1358 }
1359
1360 static void
1361 intel_miptree_copy_slice_sw(struct brw_context *brw,
1362 struct intel_mipmap_tree *src_mt,
1363 unsigned src_level, unsigned src_layer,
1364 struct intel_mipmap_tree *dst_mt,
1365 unsigned dst_level, unsigned dst_layer,
1366 unsigned width, unsigned height)
1367 {
1368 void *src, *dst;
1369 ptrdiff_t src_stride, dst_stride;
1370 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1371
1372 intel_miptree_map(brw, src_mt,
1373 src_level, src_layer,
1374 0, 0,
1375 width, height,
1376 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1377 &src, &src_stride);
1378
1379 intel_miptree_map(brw, dst_mt,
1380 dst_level, dst_layer,
1381 0, 0,
1382 width, height,
1383 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1384 BRW_MAP_DIRECT_BIT,
1385 &dst, &dst_stride);
1386
1387 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1388 _mesa_get_format_name(src_mt->format),
1389 src_mt, src, src_stride,
1390 _mesa_get_format_name(dst_mt->format),
1391 dst_mt, dst, dst_stride,
1392 width, height);
1393
1394 int row_size = cpp * width;
1395 if (src_stride == row_size &&
1396 dst_stride == row_size) {
1397 memcpy(dst, src, row_size * height);
1398 } else {
1399 for (int i = 0; i < height; i++) {
1400 memcpy(dst, src, row_size);
1401 dst += dst_stride;
1402 src += src_stride;
1403 }
1404 }
1405
1406 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1407 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1408
1409 /* Don't forget to copy the stencil data over, too. We could have skipped
1410 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1411 * shuffling the two data sources in/out of temporary storage instead of
1412 * the direct mapping we get this way.
1413 */
1414 if (dst_mt->stencil_mt) {
1415 assert(src_mt->stencil_mt);
1416 intel_miptree_copy_slice_sw(brw,
1417 src_mt->stencil_mt, src_level, src_layer,
1418 dst_mt->stencil_mt, dst_level, dst_layer,
1419 width, height);
1420 }
1421 }
1422
1423 void
1424 intel_miptree_copy_slice(struct brw_context *brw,
1425 struct intel_mipmap_tree *src_mt,
1426 unsigned src_level, unsigned src_layer,
1427 struct intel_mipmap_tree *dst_mt,
1428 unsigned dst_level, unsigned dst_layer)
1429
1430 {
1431 mesa_format format = src_mt->format;
1432 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1433 src_level - src_mt->first_level);
1434 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1435 src_level - src_mt->first_level);
1436
1437 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1438 src_level - src_mt->first_level));
1439
1440 assert(src_mt->format == dst_mt->format);
1441
1442 if (dst_mt->compressed) {
1443 unsigned int i, j;
1444 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1445 height = ALIGN_NPOT(height, j) / j;
1446 width = ALIGN_NPOT(width, i) / i;
1447 }
1448
1449 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1450 * below won't apply since we can't do the depth's Y tiling or the
1451 * stencil's W tiling in the blitter.
1452 */
1453 if (src_mt->stencil_mt) {
1454 intel_miptree_copy_slice_sw(brw,
1455 src_mt, src_level, src_layer,
1456 dst_mt, dst_level, dst_layer,
1457 width, height);
1458 return;
1459 }
1460
1461 uint32_t dst_x, dst_y, src_x, src_y;
1462 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1463 &dst_x, &dst_y);
1464 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1465 &src_x, &src_y);
1466
1467 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1468 _mesa_get_format_name(src_mt->format),
1469 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1470 _mesa_get_format_name(dst_mt->format),
1471 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1472 width, height);
1473
1474 if (!intel_miptree_blit(brw,
1475 src_mt, src_level, src_layer, 0, 0, false,
1476 dst_mt, dst_level, dst_layer, 0, 0, false,
1477 width, height, GL_COPY)) {
1478 perf_debug("miptree validate blit for %s failed\n",
1479 _mesa_get_format_name(format));
1480
1481 intel_miptree_copy_slice_sw(brw,
1482 src_mt, src_level, src_layer,
1483 dst_mt, dst_level, dst_layer,
1484 width, height);
1485 }
1486 }
1487
1488 /**
1489 * Copies the image's current data to the given miptree, and associates that
1490 * miptree with the image.
1491 *
1492 * If \c invalidate is true, then the actual image data does not need to be
1493 * copied, but the image still needs to be associated to the new miptree (this
1494 * is set to true if we're about to clear the image).
1495 */
1496 void
1497 intel_miptree_copy_teximage(struct brw_context *brw,
1498 struct intel_texture_image *intelImage,
1499 struct intel_mipmap_tree *dst_mt,
1500 bool invalidate)
1501 {
1502 struct intel_mipmap_tree *src_mt = intelImage->mt;
1503 struct intel_texture_object *intel_obj =
1504 intel_texture_object(intelImage->base.Base.TexObject);
1505 int level = intelImage->base.Base.Level;
1506 const unsigned face = intelImage->base.Base.Face;
1507 unsigned start_layer, end_layer;
1508
1509 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1510 assert(face == 0);
1511 assert(intelImage->base.Base.Height);
1512 start_layer = 0;
1513 end_layer = intelImage->base.Base.Height - 1;
1514 } else if (face > 0) {
1515 start_layer = face;
1516 end_layer = face;
1517 } else {
1518 assert(intelImage->base.Base.Depth);
1519 start_layer = 0;
1520 end_layer = intelImage->base.Base.Depth - 1;
1521 }
1522
1523 if (!invalidate) {
1524 for (unsigned i = start_layer; i <= end_layer; i++) {
1525 intel_miptree_copy_slice(brw,
1526 src_mt, level, i,
1527 dst_mt, level, i);
1528 }
1529 }
1530
1531 intel_miptree_reference(&intelImage->mt, dst_mt);
1532 intel_obj->needs_validate = true;
1533 }
1534
1535 static void
1536 intel_miptree_init_mcs(struct brw_context *brw,
1537 struct intel_mipmap_tree *mt,
1538 int init_value)
1539 {
1540 assert(mt->mcs_buf != NULL);
1541
1542 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1543 *
1544 * When MCS buffer is enabled and bound to MSRT, it is required that it
1545 * is cleared prior to any rendering.
1546 *
1547 * Since we don't use the MCS buffer for any purpose other than rendering,
1548 * it makes sense to just clear it immediately upon allocation.
1549 *
1550 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1551 */
1552 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1553 if (unlikely(map == NULL)) {
1554 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1555 brw_bo_unreference(mt->mcs_buf->bo);
1556 free(mt->mcs_buf);
1557 return;
1558 }
1559 void *data = map;
1560 memset(data, init_value, mt->mcs_buf->size);
1561 brw_bo_unmap(mt->mcs_buf->bo);
1562 }
1563
1564 static struct intel_miptree_aux_buffer *
1565 intel_alloc_aux_buffer(struct brw_context *brw,
1566 const char *name,
1567 const struct isl_surf *aux_surf,
1568 uint32_t alloc_flags,
1569 struct intel_mipmap_tree *mt)
1570 {
1571 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1572 if (!buf)
1573 return false;
1574
1575 buf->size = aux_surf->size;
1576 buf->pitch = aux_surf->row_pitch;
1577 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1578
1579 /* ISL has stricter set of alignment rules then the drm allocator.
1580 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1581 * trying to recalculate based on different format block sizes.
1582 */
1583 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1584 I915_TILING_Y, buf->pitch, alloc_flags);
1585 if (!buf->bo) {
1586 free(buf);
1587 return NULL;
1588 }
1589
1590 buf->surf = *aux_surf;
1591
1592 return buf;
1593 }
1594
1595 static bool
1596 intel_miptree_alloc_mcs(struct brw_context *brw,
1597 struct intel_mipmap_tree *mt,
1598 GLuint num_samples)
1599 {
1600 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1601 assert(mt->mcs_buf == NULL);
1602 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1603
1604 /* Multisampled miptrees are only supported for single level. */
1605 assert(mt->first_level == 0);
1606 enum isl_aux_state **aux_state =
1607 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1608 if (!aux_state)
1609 return false;
1610
1611 struct isl_surf temp_mcs_surf;
1612
1613 MAYBE_UNUSED bool ok =
1614 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1615 assert(ok);
1616
1617 /* Buffer needs to be initialised requiring the buffer to be immediately
1618 * mapped to cpu space for writing. Therefore do not use the gpu access
1619 * flag which can cause an unnecessary delay if the backing pages happened
1620 * to be just used by the GPU.
1621 */
1622 const uint32_t alloc_flags = 0;
1623 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1624 &temp_mcs_surf, alloc_flags, mt);
1625 if (!mt->mcs_buf) {
1626 free(aux_state);
1627 return false;
1628 }
1629
1630 mt->aux_state = aux_state;
1631
1632 intel_miptree_init_mcs(brw, mt, 0xFF);
1633
1634 return true;
1635 }
1636
1637 bool
1638 intel_miptree_alloc_ccs(struct brw_context *brw,
1639 struct intel_mipmap_tree *mt)
1640 {
1641 assert(mt->mcs_buf == NULL);
1642 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1643 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1644
1645 struct isl_surf temp_ccs_surf;
1646
1647 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1648 return false;
1649
1650 assert(temp_ccs_surf.size &&
1651 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1652
1653 enum isl_aux_state **aux_state =
1654 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1655 if (!aux_state)
1656 return false;
1657
1658 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1659 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1660 *
1661 * "If Software wants to enable Color Compression without Fast clear,
1662 * Software needs to initialize MCS with zeros."
1663 *
1664 * A CCS value of 0 indicates that the corresponding block is in the
1665 * pass-through state which is what we want.
1666 *
1667 * For CCS_D, on the other hand, we don't care as we're about to perform a
1668 * fast-clear operation. In that case, being hot in caches more useful.
1669 */
1670 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1671 BO_ALLOC_ZEROED : BO_ALLOC_FOR_RENDER;
1672 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1673 &temp_ccs_surf, alloc_flags, mt);
1674 if (!mt->mcs_buf) {
1675 free(aux_state);
1676 return false;
1677 }
1678
1679 mt->aux_state = aux_state;
1680
1681 return true;
1682 }
1683
1684 /**
1685 * Helper for intel_miptree_alloc_hiz() that sets
1686 * \c mt->level[level].has_hiz. Return true if and only if
1687 * \c has_hiz was set.
1688 */
1689 static bool
1690 intel_miptree_level_enable_hiz(struct brw_context *brw,
1691 struct intel_mipmap_tree *mt,
1692 uint32_t level)
1693 {
1694 assert(mt->hiz_buf);
1695 assert(mt->surf.size > 0);
1696
1697 if (brw->gen >= 8 || brw->is_haswell) {
1698 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1699 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1700
1701 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1702 * and the height is 4 aligned. This allows our HiZ support
1703 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1704 * we can grow the width & height to allow the HiZ op to
1705 * force the proper size alignments.
1706 */
1707 if (level > 0 && ((width & 7) || (height & 3))) {
1708 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1709 return false;
1710 }
1711 }
1712
1713 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1714 mt->level[level].has_hiz = true;
1715 return true;
1716 }
1717
1718 bool
1719 intel_miptree_alloc_hiz(struct brw_context *brw,
1720 struct intel_mipmap_tree *mt)
1721 {
1722 assert(mt->hiz_buf == NULL);
1723 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1724
1725 enum isl_aux_state **aux_state =
1726 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1727 if (!aux_state)
1728 return false;
1729
1730 struct isl_surf temp_hiz_surf;
1731
1732 MAYBE_UNUSED bool ok =
1733 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1734 assert(ok);
1735
1736 const uint32_t alloc_flags = BO_ALLOC_FOR_RENDER;
1737 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1738 &temp_hiz_surf, alloc_flags, mt);
1739
1740 if (!mt->hiz_buf) {
1741 free(aux_state);
1742 return false;
1743 }
1744
1745 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1746 intel_miptree_level_enable_hiz(brw, mt, level);
1747
1748 mt->aux_state = aux_state;
1749
1750 return true;
1751 }
1752
1753
1754 /**
1755 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1756 *
1757 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1758 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1759 * compress clear color so we wait until an actual fast-clear to allocate it.
1760 */
1761 static bool
1762 intel_miptree_alloc_aux(struct brw_context *brw,
1763 struct intel_mipmap_tree *mt)
1764 {
1765 switch (mt->aux_usage) {
1766 case ISL_AUX_USAGE_NONE:
1767 return true;
1768
1769 case ISL_AUX_USAGE_HIZ:
1770 assert(!_mesa_is_format_color_format(mt->format));
1771 if (!intel_miptree_alloc_hiz(brw, mt))
1772 return false;
1773 return true;
1774
1775 case ISL_AUX_USAGE_MCS:
1776 assert(_mesa_is_format_color_format(mt->format));
1777 assert(mt->surf.samples > 1);
1778 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1779 return false;
1780 return true;
1781
1782 case ISL_AUX_USAGE_CCS_D:
1783 /* Since CCS_D can only compress clear color so we wait until an actual
1784 * fast-clear to allocate it.
1785 */
1786 return true;
1787
1788 case ISL_AUX_USAGE_CCS_E:
1789 assert(_mesa_is_format_color_format(mt->format));
1790 assert(mt->surf.samples == 1);
1791 if (!intel_miptree_alloc_ccs(brw, mt))
1792 return false;
1793 return true;
1794 }
1795
1796 unreachable("Invalid aux usage");
1797 }
1798
1799
1800 /**
1801 * Can the miptree sample using the hiz buffer?
1802 */
1803 bool
1804 intel_miptree_sample_with_hiz(struct brw_context *brw,
1805 struct intel_mipmap_tree *mt)
1806 {
1807 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1808 * so keep things conservative for now and never enable it unless we're SKL+.
1809 */
1810 if (brw->gen < 9) {
1811 return false;
1812 }
1813
1814 if (!mt->hiz_buf) {
1815 return false;
1816 }
1817
1818 /* It seems the hardware won't fallback to the depth buffer if some of the
1819 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1820 * of the texture to be HiZ enabled.
1821 */
1822 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1823 if (!intel_miptree_level_has_hiz(mt, level))
1824 return false;
1825 }
1826
1827 /* If compressed multisampling is enabled, then we use it for the auxiliary
1828 * buffer instead.
1829 *
1830 * From the BDW PRM (Volume 2d: Command Reference: Structures
1831 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1832 *
1833 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1834 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1835 *
1836 * There is no such blurb for 1D textures, but there is sufficient evidence
1837 * that this is broken on SKL+.
1838 */
1839 return (mt->surf.samples == 1 &&
1840 mt->target != GL_TEXTURE_3D &&
1841 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1842 }
1843
1844 /**
1845 * Does the miptree slice have hiz enabled?
1846 */
1847 bool
1848 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1849 {
1850 intel_miptree_check_level_layer(mt, level, 0);
1851 return mt->level[level].has_hiz;
1852 }
1853
1854 static inline uint32_t
1855 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1856 uint32_t start_level, uint32_t num_levels)
1857 {
1858 assert(start_level >= mt->first_level);
1859 assert(start_level <= mt->last_level);
1860
1861 if (num_levels == INTEL_REMAINING_LAYERS)
1862 num_levels = mt->last_level - start_level + 1;
1863 /* Check for overflow */
1864 assert(start_level + num_levels >= start_level);
1865 assert(start_level + num_levels <= mt->last_level + 1);
1866
1867 return num_levels;
1868 }
1869
1870 static inline uint32_t
1871 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1872 uint32_t start_layer, uint32_t num_layers)
1873 {
1874 assert(level <= mt->last_level);
1875
1876 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1877 assert(start_layer < total_num_layers);
1878 if (num_layers == INTEL_REMAINING_LAYERS)
1879 num_layers = total_num_layers - start_layer;
1880 /* Check for overflow */
1881 assert(start_layer + num_layers >= start_layer);
1882 assert(start_layer + num_layers <= total_num_layers);
1883
1884 return num_layers;
1885 }
1886
1887 bool
1888 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1889 unsigned start_level, unsigned num_levels,
1890 unsigned start_layer, unsigned num_layers)
1891 {
1892 assert(_mesa_is_format_color_format(mt->format));
1893
1894 if (!mt->mcs_buf)
1895 return false;
1896
1897 /* Clamp the level range to fit the miptree */
1898 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1899
1900 for (uint32_t l = 0; l < num_levels; l++) {
1901 const uint32_t level = start_level + l;
1902 const uint32_t level_layers =
1903 miptree_layer_range_length(mt, level, start_layer, num_layers);
1904 for (unsigned a = 0; a < level_layers; a++) {
1905 enum isl_aux_state aux_state =
1906 intel_miptree_get_aux_state(mt, level, start_layer + a);
1907 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1908 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1909 return true;
1910 }
1911 }
1912
1913 return false;
1914 }
1915
1916 static void
1917 intel_miptree_check_color_resolve(const struct brw_context *brw,
1918 const struct intel_mipmap_tree *mt,
1919 unsigned level, unsigned layer)
1920 {
1921
1922 if (!mt->mcs_buf)
1923 return;
1924
1925 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
1926 assert(brw->gen >= 8 ||
1927 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
1928
1929 /* Compression of arrayed msaa surfaces is supported. */
1930 if (mt->surf.samples > 1)
1931 return;
1932
1933 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
1934 assert(brw->gen >= 8 ||
1935 (layer == 0 &&
1936 mt->surf.logical_level0_px.depth == 1 &&
1937 mt->surf.logical_level0_px.array_len == 1));
1938
1939 (void)level;
1940 (void)layer;
1941 }
1942
1943 static enum blorp_fast_clear_op
1944 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
1945 enum isl_aux_usage aux_usage,
1946 bool fast_clear_supported)
1947 {
1948 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
1949
1950 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
1951
1952 assert(ccs_supported == fast_clear_supported);
1953
1954 switch (aux_state) {
1955 case ISL_AUX_STATE_CLEAR:
1956 case ISL_AUX_STATE_PARTIAL_CLEAR:
1957 if (!ccs_supported)
1958 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1959 else
1960 return BLORP_FAST_CLEAR_OP_NONE;
1961
1962 case ISL_AUX_STATE_PASS_THROUGH:
1963 return BLORP_FAST_CLEAR_OP_NONE;
1964
1965 case ISL_AUX_STATE_RESOLVED:
1966 case ISL_AUX_STATE_AUX_INVALID:
1967 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1968 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
1969 break;
1970 }
1971
1972 unreachable("Invalid aux state for CCS_D");
1973 }
1974
1975 static enum blorp_fast_clear_op
1976 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
1977 enum isl_aux_usage aux_usage,
1978 bool fast_clear_supported)
1979 {
1980 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
1981 assert(aux_usage == ISL_AUX_USAGE_NONE ||
1982 aux_usage == ISL_AUX_USAGE_CCS_D ||
1983 aux_usage == ISL_AUX_USAGE_CCS_E);
1984
1985 if (aux_usage == ISL_AUX_USAGE_CCS_D)
1986 assert(fast_clear_supported);
1987
1988 switch (aux_state) {
1989 case ISL_AUX_STATE_CLEAR:
1990 case ISL_AUX_STATE_PARTIAL_CLEAR:
1991 if (fast_clear_supported)
1992 return BLORP_FAST_CLEAR_OP_NONE;
1993 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
1994 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
1995 else
1996 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
1997
1998 case ISL_AUX_STATE_COMPRESSED_CLEAR:
1999 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2000 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2001 else if (!fast_clear_supported)
2002 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2003 else
2004 return BLORP_FAST_CLEAR_OP_NONE;
2005
2006 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2007 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2008 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2009 else
2010 return BLORP_FAST_CLEAR_OP_NONE;
2011
2012 case ISL_AUX_STATE_PASS_THROUGH:
2013 return BLORP_FAST_CLEAR_OP_NONE;
2014
2015 case ISL_AUX_STATE_RESOLVED:
2016 case ISL_AUX_STATE_AUX_INVALID:
2017 break;
2018 }
2019
2020 unreachable("Invalid aux state for CCS_E");
2021 }
2022
2023 static void
2024 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2025 struct intel_mipmap_tree *mt,
2026 uint32_t level, uint32_t layer,
2027 enum isl_aux_usage aux_usage,
2028 bool fast_clear_supported)
2029 {
2030 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2031
2032 enum blorp_fast_clear_op resolve_op;
2033 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2034 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2035 fast_clear_supported);
2036 } else {
2037 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2038 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2039 fast_clear_supported);
2040 }
2041
2042 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2043 intel_miptree_check_color_resolve(brw, mt, level, layer);
2044 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2045
2046 switch (resolve_op) {
2047 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2048 /* The CCS full resolve operation destroys the CCS and sets it to the
2049 * pass-through state. (You can also think of this as being both a
2050 * resolve and an ambiguate in one operation.)
2051 */
2052 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2053 ISL_AUX_STATE_PASS_THROUGH);
2054 break;
2055
2056 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2057 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2058 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2059 break;
2060
2061 default:
2062 unreachable("Invalid resolve op");
2063 }
2064 }
2065 }
2066
2067 static void
2068 intel_miptree_finish_ccs_write(struct brw_context *brw,
2069 struct intel_mipmap_tree *mt,
2070 uint32_t level, uint32_t layer,
2071 enum isl_aux_usage aux_usage)
2072 {
2073 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2074 aux_usage == ISL_AUX_USAGE_CCS_D ||
2075 aux_usage == ISL_AUX_USAGE_CCS_E);
2076
2077 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2078
2079 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2080 switch (aux_state) {
2081 case ISL_AUX_STATE_CLEAR:
2082 case ISL_AUX_STATE_PARTIAL_CLEAR:
2083 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2084 aux_usage == ISL_AUX_USAGE_CCS_D);
2085
2086 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2087 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2088 ISL_AUX_STATE_COMPRESSED_CLEAR);
2089 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2090 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2091 ISL_AUX_STATE_PARTIAL_CLEAR);
2092 }
2093 break;
2094
2095 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2096 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2097 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2098 break; /* Nothing to do */
2099
2100 case ISL_AUX_STATE_PASS_THROUGH:
2101 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2102 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2103 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2104 } else {
2105 /* Nothing to do */
2106 }
2107 break;
2108
2109 case ISL_AUX_STATE_RESOLVED:
2110 case ISL_AUX_STATE_AUX_INVALID:
2111 unreachable("Invalid aux state for CCS_E");
2112 }
2113 } else {
2114 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2115 /* CCS_D is a bit simpler */
2116 switch (aux_state) {
2117 case ISL_AUX_STATE_CLEAR:
2118 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2119 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2120 ISL_AUX_STATE_PARTIAL_CLEAR);
2121 break;
2122
2123 case ISL_AUX_STATE_PARTIAL_CLEAR:
2124 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2125 break; /* Nothing to do */
2126
2127 case ISL_AUX_STATE_PASS_THROUGH:
2128 /* Nothing to do */
2129 break;
2130
2131 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2132 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2133 case ISL_AUX_STATE_RESOLVED:
2134 case ISL_AUX_STATE_AUX_INVALID:
2135 unreachable("Invalid aux state for CCS_D");
2136 }
2137 }
2138 }
2139
2140 static void
2141 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2142 struct intel_mipmap_tree *mt,
2143 uint32_t layer,
2144 enum isl_aux_usage aux_usage,
2145 bool fast_clear_supported)
2146 {
2147 assert(aux_usage == ISL_AUX_USAGE_MCS);
2148
2149 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2150 case ISL_AUX_STATE_CLEAR:
2151 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2152 if (!fast_clear_supported) {
2153 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2154 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2155 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2156 }
2157 break;
2158
2159 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2160 break; /* Nothing to do */
2161
2162 case ISL_AUX_STATE_RESOLVED:
2163 case ISL_AUX_STATE_PASS_THROUGH:
2164 case ISL_AUX_STATE_AUX_INVALID:
2165 case ISL_AUX_STATE_PARTIAL_CLEAR:
2166 unreachable("Invalid aux state for MCS");
2167 }
2168 }
2169
2170 static void
2171 intel_miptree_finish_mcs_write(struct brw_context *brw,
2172 struct intel_mipmap_tree *mt,
2173 uint32_t layer,
2174 enum isl_aux_usage aux_usage)
2175 {
2176 assert(aux_usage == ISL_AUX_USAGE_MCS);
2177
2178 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2179 case ISL_AUX_STATE_CLEAR:
2180 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2181 ISL_AUX_STATE_COMPRESSED_CLEAR);
2182 break;
2183
2184 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2185 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2186 break; /* Nothing to do */
2187
2188 case ISL_AUX_STATE_RESOLVED:
2189 case ISL_AUX_STATE_PASS_THROUGH:
2190 case ISL_AUX_STATE_AUX_INVALID:
2191 case ISL_AUX_STATE_PARTIAL_CLEAR:
2192 unreachable("Invalid aux state for MCS");
2193 }
2194 }
2195
2196 static void
2197 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2198 struct intel_mipmap_tree *mt,
2199 uint32_t level, uint32_t layer,
2200 enum isl_aux_usage aux_usage,
2201 bool fast_clear_supported)
2202 {
2203 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2204
2205 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2206 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2207 case ISL_AUX_STATE_CLEAR:
2208 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2209 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2210 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2211 break;
2212
2213 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2214 if (aux_usage != ISL_AUX_USAGE_HIZ)
2215 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2216 break;
2217
2218 case ISL_AUX_STATE_PASS_THROUGH:
2219 case ISL_AUX_STATE_RESOLVED:
2220 break;
2221
2222 case ISL_AUX_STATE_AUX_INVALID:
2223 if (aux_usage == ISL_AUX_USAGE_HIZ)
2224 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2225 break;
2226
2227 case ISL_AUX_STATE_PARTIAL_CLEAR:
2228 unreachable("Invalid HiZ state");
2229 }
2230
2231 if (hiz_op != BLORP_HIZ_OP_NONE) {
2232 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2233
2234 switch (hiz_op) {
2235 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2236 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2237 ISL_AUX_STATE_RESOLVED);
2238 break;
2239
2240 case BLORP_HIZ_OP_HIZ_RESOLVE:
2241 /* The HiZ resolve operation is actually an ambiguate */
2242 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2243 ISL_AUX_STATE_PASS_THROUGH);
2244 break;
2245
2246 default:
2247 unreachable("Invalid HiZ op");
2248 }
2249 }
2250 }
2251
2252 static void
2253 intel_miptree_finish_hiz_write(struct brw_context *brw,
2254 struct intel_mipmap_tree *mt,
2255 uint32_t level, uint32_t layer,
2256 enum isl_aux_usage aux_usage)
2257 {
2258 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2259
2260 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2261 case ISL_AUX_STATE_CLEAR:
2262 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2263 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2264 ISL_AUX_STATE_COMPRESSED_CLEAR);
2265 break;
2266
2267 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2268 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2269 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2270 break; /* Nothing to do */
2271
2272 case ISL_AUX_STATE_RESOLVED:
2273 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2274 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2275 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2276 } else {
2277 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2278 ISL_AUX_STATE_AUX_INVALID);
2279 }
2280 break;
2281
2282 case ISL_AUX_STATE_PASS_THROUGH:
2283 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2284 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2285 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2286 }
2287 break;
2288
2289 case ISL_AUX_STATE_AUX_INVALID:
2290 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2291 break;
2292
2293 case ISL_AUX_STATE_PARTIAL_CLEAR:
2294 unreachable("Invalid HiZ state");
2295 }
2296 }
2297
2298 void
2299 intel_miptree_prepare_access(struct brw_context *brw,
2300 struct intel_mipmap_tree *mt,
2301 uint32_t start_level, uint32_t num_levels,
2302 uint32_t start_layer, uint32_t num_layers,
2303 enum isl_aux_usage aux_usage,
2304 bool fast_clear_supported)
2305 {
2306 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2307
2308 switch (mt->aux_usage) {
2309 case ISL_AUX_USAGE_NONE:
2310 /* Nothing to do */
2311 break;
2312
2313 case ISL_AUX_USAGE_MCS:
2314 assert(mt->mcs_buf);
2315 assert(start_level == 0 && num_levels == 1);
2316 const uint32_t level_layers =
2317 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2318 for (uint32_t a = 0; a < level_layers; a++) {
2319 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2320 aux_usage, fast_clear_supported);
2321 }
2322 break;
2323
2324 case ISL_AUX_USAGE_CCS_D:
2325 case ISL_AUX_USAGE_CCS_E:
2326 if (!mt->mcs_buf)
2327 return;
2328
2329 for (uint32_t l = 0; l < num_levels; l++) {
2330 const uint32_t level = start_level + l;
2331 const uint32_t level_layers =
2332 miptree_layer_range_length(mt, level, start_layer, num_layers);
2333 for (uint32_t a = 0; a < level_layers; a++) {
2334 intel_miptree_prepare_ccs_access(brw, mt, level,
2335 start_layer + a,
2336 aux_usage, fast_clear_supported);
2337 }
2338 }
2339 break;
2340
2341 case ISL_AUX_USAGE_HIZ:
2342 assert(mt->hiz_buf);
2343 for (uint32_t l = 0; l < num_levels; l++) {
2344 const uint32_t level = start_level + l;
2345 if (!intel_miptree_level_has_hiz(mt, level))
2346 continue;
2347
2348 const uint32_t level_layers =
2349 miptree_layer_range_length(mt, level, start_layer, num_layers);
2350 for (uint32_t a = 0; a < level_layers; a++) {
2351 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2352 aux_usage, fast_clear_supported);
2353 }
2354 }
2355 break;
2356
2357 default:
2358 unreachable("Invalid aux usage");
2359 }
2360 }
2361
2362 void
2363 intel_miptree_finish_write(struct brw_context *brw,
2364 struct intel_mipmap_tree *mt, uint32_t level,
2365 uint32_t start_layer, uint32_t num_layers,
2366 enum isl_aux_usage aux_usage)
2367 {
2368 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2369
2370 switch (mt->aux_usage) {
2371 case ISL_AUX_USAGE_NONE:
2372 /* Nothing to do */
2373 break;
2374
2375 case ISL_AUX_USAGE_MCS:
2376 assert(mt->mcs_buf);
2377 for (uint32_t a = 0; a < num_layers; a++) {
2378 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2379 aux_usage);
2380 }
2381 break;
2382
2383 case ISL_AUX_USAGE_CCS_D:
2384 case ISL_AUX_USAGE_CCS_E:
2385 if (!mt->mcs_buf)
2386 return;
2387
2388 for (uint32_t a = 0; a < num_layers; a++) {
2389 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2390 aux_usage);
2391 }
2392 break;
2393
2394 case ISL_AUX_USAGE_HIZ:
2395 if (!intel_miptree_level_has_hiz(mt, level))
2396 return;
2397
2398 for (uint32_t a = 0; a < num_layers; a++) {
2399 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2400 aux_usage);
2401 }
2402 break;
2403
2404 default:
2405 unreachable("Invavlid aux usage");
2406 }
2407 }
2408
2409 enum isl_aux_state
2410 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2411 uint32_t level, uint32_t layer)
2412 {
2413 intel_miptree_check_level_layer(mt, level, layer);
2414
2415 if (_mesa_is_format_color_format(mt->format)) {
2416 assert(mt->mcs_buf != NULL);
2417 assert(mt->surf.samples == 1 ||
2418 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2419 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2420 unreachable("Cannot get aux state for stencil");
2421 } else {
2422 assert(intel_miptree_level_has_hiz(mt, level));
2423 }
2424
2425 return mt->aux_state[level][layer];
2426 }
2427
2428 void
2429 intel_miptree_set_aux_state(struct brw_context *brw,
2430 struct intel_mipmap_tree *mt, uint32_t level,
2431 uint32_t start_layer, uint32_t num_layers,
2432 enum isl_aux_state aux_state)
2433 {
2434 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2435
2436 if (_mesa_is_format_color_format(mt->format)) {
2437 assert(mt->mcs_buf != NULL);
2438 assert(mt->surf.samples == 1 ||
2439 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2440 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2441 unreachable("Cannot get aux state for stencil");
2442 } else {
2443 assert(intel_miptree_level_has_hiz(mt, level));
2444 }
2445
2446 for (unsigned a = 0; a < num_layers; a++)
2447 mt->aux_state[level][start_layer + a] = aux_state;
2448 }
2449
2450 /* On Gen9 color buffers may be compressed by the hardware (lossless
2451 * compression). There are, however, format restrictions and care needs to be
2452 * taken that the sampler engine is capable for re-interpreting a buffer with
2453 * format different the buffer was originally written with.
2454 *
2455 * For example, SRGB formats are not compressible and the sampler engine isn't
2456 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2457 * color buffer needs to be resolved so that the sampling surface can be
2458 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2459 * set).
2460 */
2461 static bool
2462 can_texture_with_ccs(struct brw_context *brw,
2463 struct intel_mipmap_tree *mt,
2464 enum isl_format view_format)
2465 {
2466 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2467 return false;
2468
2469 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2470 mt->surf.format, view_format)) {
2471 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2472 isl_format_get_layout(view_format)->name,
2473 _mesa_get_format_name(mt->format));
2474 return false;
2475 }
2476
2477 return true;
2478 }
2479
2480 enum isl_aux_usage
2481 intel_miptree_texture_aux_usage(struct brw_context *brw,
2482 struct intel_mipmap_tree *mt,
2483 enum isl_format view_format)
2484 {
2485 switch (mt->aux_usage) {
2486 case ISL_AUX_USAGE_HIZ:
2487 if (intel_miptree_sample_with_hiz(brw, mt))
2488 return ISL_AUX_USAGE_HIZ;
2489 break;
2490
2491 case ISL_AUX_USAGE_MCS:
2492 return ISL_AUX_USAGE_MCS;
2493
2494 case ISL_AUX_USAGE_CCS_D:
2495 case ISL_AUX_USAGE_CCS_E:
2496 if (mt->mcs_buf && can_texture_with_ccs(brw, mt, view_format))
2497 return ISL_AUX_USAGE_CCS_E;
2498 break;
2499
2500 default:
2501 break;
2502 }
2503
2504 return ISL_AUX_USAGE_NONE;
2505 }
2506
2507 static bool
2508 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2509 {
2510 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2511 * values so sRGB curve application was a no-op for all fast-clearable
2512 * formats.
2513 *
2514 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2515 * values, the hardware interprets the floats, not as what would be
2516 * returned from the sampler (or written by the shader), but as being
2517 * between format conversion and sRGB curve application. This means that
2518 * we can switch between sRGB and UNORM without having to whack the clear
2519 * color.
2520 */
2521 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2522 }
2523
2524 static void
2525 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2526 struct intel_mipmap_tree *mt,
2527 enum isl_format view_format,
2528 uint32_t start_level, uint32_t num_levels,
2529 uint32_t start_layer, uint32_t num_layers,
2530 bool *aux_supported_out)
2531 {
2532 enum isl_aux_usage aux_usage =
2533 intel_miptree_texture_aux_usage(brw, mt, view_format);
2534 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2535
2536 /* Clear color is specified as ints or floats and the conversion is done by
2537 * the sampler. If we have a texture view, we would have to perform the
2538 * clear color conversion manually. Just disable clear color.
2539 */
2540 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2541 clear_supported = false;
2542
2543 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2544 start_layer, num_layers,
2545 aux_usage, clear_supported);
2546 if (aux_supported_out)
2547 *aux_supported_out = aux_usage != ISL_AUX_USAGE_NONE;
2548 }
2549
2550 void
2551 intel_miptree_prepare_texture(struct brw_context *brw,
2552 struct intel_mipmap_tree *mt,
2553 enum isl_format view_format,
2554 bool *aux_supported_out)
2555 {
2556 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2557 0, INTEL_REMAINING_LEVELS,
2558 0, INTEL_REMAINING_LAYERS,
2559 aux_supported_out);
2560 }
2561
2562 void
2563 intel_miptree_prepare_image(struct brw_context *brw,
2564 struct intel_mipmap_tree *mt)
2565 {
2566 /* The data port doesn't understand any compression */
2567 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2568 0, INTEL_REMAINING_LAYERS,
2569 ISL_AUX_USAGE_NONE, false);
2570 }
2571
2572 void
2573 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2574 struct intel_mipmap_tree *mt, uint32_t level,
2575 uint32_t start_layer, uint32_t num_layers)
2576 {
2577 intel_miptree_prepare_texture_slices(brw, mt, mt->surf.format, level, 1,
2578 start_layer, num_layers, NULL);
2579 }
2580
2581 enum isl_aux_usage
2582 intel_miptree_render_aux_usage(struct brw_context *brw,
2583 struct intel_mipmap_tree *mt,
2584 bool srgb_enabled, bool blend_enabled)
2585 {
2586 switch (mt->aux_usage) {
2587 case ISL_AUX_USAGE_MCS:
2588 assert(mt->mcs_buf);
2589 return ISL_AUX_USAGE_MCS;
2590
2591 case ISL_AUX_USAGE_CCS_D:
2592 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2593
2594 case ISL_AUX_USAGE_CCS_E: {
2595 mesa_format mesa_format =
2596 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2597 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2598
2599 /* If the format supports CCS_E, then we can just use it */
2600 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2601 return ISL_AUX_USAGE_CCS_E;
2602
2603 /* Otherwise, we have to fall back to CCS_D */
2604
2605 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2606 * formats. However, there are issues with blending where it doesn't
2607 * properly apply the sRGB curve to the clear color when blending.
2608 */
2609 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2610 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2611 return ISL_AUX_USAGE_NONE;
2612
2613 return ISL_AUX_USAGE_CCS_D;
2614 }
2615
2616 default:
2617 return ISL_AUX_USAGE_NONE;
2618 }
2619 }
2620
2621 void
2622 intel_miptree_prepare_render(struct brw_context *brw,
2623 struct intel_mipmap_tree *mt, uint32_t level,
2624 uint32_t start_layer, uint32_t layer_count,
2625 bool srgb_enabled, bool blend_enabled)
2626 {
2627 enum isl_aux_usage aux_usage =
2628 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2629 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2630 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2631 }
2632
2633 void
2634 intel_miptree_finish_render(struct brw_context *brw,
2635 struct intel_mipmap_tree *mt, uint32_t level,
2636 uint32_t start_layer, uint32_t layer_count,
2637 bool srgb_enabled, bool blend_enabled)
2638 {
2639 assert(_mesa_is_format_color_format(mt->format));
2640
2641 enum isl_aux_usage aux_usage =
2642 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2643 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2644 aux_usage);
2645 }
2646
2647 void
2648 intel_miptree_prepare_depth(struct brw_context *brw,
2649 struct intel_mipmap_tree *mt, uint32_t level,
2650 uint32_t start_layer, uint32_t layer_count)
2651 {
2652 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2653 mt->aux_usage, mt->hiz_buf != NULL);
2654 }
2655
2656 void
2657 intel_miptree_finish_depth(struct brw_context *brw,
2658 struct intel_mipmap_tree *mt, uint32_t level,
2659 uint32_t start_layer, uint32_t layer_count,
2660 bool depth_written)
2661 {
2662 if (depth_written) {
2663 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2664 mt->hiz_buf != NULL);
2665 }
2666 }
2667
2668 /**
2669 * Make it possible to share the BO backing the given miptree with another
2670 * process or another miptree.
2671 *
2672 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2673 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2674 * ensure that no MCS buffer gets allocated in the future.
2675 *
2676 * HiZ is similarly unsafe with shared buffers.
2677 */
2678 void
2679 intel_miptree_make_shareable(struct brw_context *brw,
2680 struct intel_mipmap_tree *mt)
2681 {
2682 /* MCS buffers are also used for multisample buffers, but we can't resolve
2683 * away a multisample MCS buffer because it's an integral part of how the
2684 * pixel data is stored. Fortunately this code path should never be
2685 * reached for multisample buffers.
2686 */
2687 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2688 mt->surf.samples == 1);
2689
2690 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2691 0, INTEL_REMAINING_LAYERS,
2692 ISL_AUX_USAGE_NONE, false);
2693
2694 if (mt->mcs_buf) {
2695 brw_bo_unreference(mt->mcs_buf->bo);
2696 free(mt->mcs_buf);
2697 mt->mcs_buf = NULL;
2698
2699 /* Any pending MCS/CCS operations are no longer needed. Trying to
2700 * execute any will likely crash due to the missing aux buffer. So let's
2701 * delete all pending ops.
2702 */
2703 free(mt->aux_state);
2704 mt->aux_state = NULL;
2705 }
2706
2707 if (mt->hiz_buf) {
2708 intel_miptree_aux_buffer_free(mt->hiz_buf);
2709 mt->hiz_buf = NULL;
2710
2711 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2712 mt->level[l].has_hiz = false;
2713 }
2714
2715 /* Any pending HiZ operations are no longer needed. Trying to execute
2716 * any will likely crash due to the missing aux buffer. So let's delete
2717 * all pending ops.
2718 */
2719 free(mt->aux_state);
2720 mt->aux_state = NULL;
2721 }
2722
2723 mt->aux_usage = ISL_AUX_USAGE_NONE;
2724 }
2725
2726
2727 /**
2728 * \brief Get pointer offset into stencil buffer.
2729 *
2730 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2731 * must decode the tile's layout in software.
2732 *
2733 * See
2734 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2735 * Format.
2736 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2737 *
2738 * Even though the returned offset is always positive, the return type is
2739 * signed due to
2740 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2741 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2742 */
2743 static intptr_t
2744 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2745 {
2746 uint32_t tile_size = 4096;
2747 uint32_t tile_width = 64;
2748 uint32_t tile_height = 64;
2749 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2750
2751 uint32_t tile_x = x / tile_width;
2752 uint32_t tile_y = y / tile_height;
2753
2754 /* The byte's address relative to the tile's base addres. */
2755 uint32_t byte_x = x % tile_width;
2756 uint32_t byte_y = y % tile_height;
2757
2758 uintptr_t u = tile_y * row_size
2759 + tile_x * tile_size
2760 + 512 * (byte_x / 8)
2761 + 64 * (byte_y / 8)
2762 + 32 * ((byte_y / 4) % 2)
2763 + 16 * ((byte_x / 4) % 2)
2764 + 8 * ((byte_y / 2) % 2)
2765 + 4 * ((byte_x / 2) % 2)
2766 + 2 * (byte_y % 2)
2767 + 1 * (byte_x % 2);
2768
2769 if (swizzled) {
2770 /* adjust for bit6 swizzling */
2771 if (((byte_x / 8) % 2) == 1) {
2772 if (((byte_y / 8) % 2) == 0) {
2773 u += 64;
2774 } else {
2775 u -= 64;
2776 }
2777 }
2778 }
2779
2780 return u;
2781 }
2782
2783 void
2784 intel_miptree_updownsample(struct brw_context *brw,
2785 struct intel_mipmap_tree *src,
2786 struct intel_mipmap_tree *dst)
2787 {
2788 unsigned src_w = src->surf.logical_level0_px.width;
2789 unsigned src_h = src->surf.logical_level0_px.height;
2790 unsigned dst_w = dst->surf.logical_level0_px.width;
2791 unsigned dst_h = dst->surf.logical_level0_px.height;
2792
2793 brw_blorp_blit_miptrees(brw,
2794 src, 0 /* level */, 0 /* layer */,
2795 src->format, SWIZZLE_XYZW,
2796 dst, 0 /* level */, 0 /* layer */, dst->format,
2797 0, 0, src_w, src_h,
2798 0, 0, dst_w, dst_h,
2799 GL_NEAREST, false, false /*mirror x, y*/,
2800 false, false);
2801
2802 if (src->stencil_mt) {
2803 src_w = src->stencil_mt->surf.logical_level0_px.width;
2804 src_h = src->stencil_mt->surf.logical_level0_px.height;
2805 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2806 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2807
2808 brw_blorp_blit_miptrees(brw,
2809 src->stencil_mt, 0 /* level */, 0 /* layer */,
2810 src->stencil_mt->format, SWIZZLE_XYZW,
2811 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2812 dst->stencil_mt->format,
2813 0, 0, src_w, src_h,
2814 0, 0, dst_w, dst_h,
2815 GL_NEAREST, false, false /*mirror x, y*/,
2816 false, false /* decode/encode srgb */);
2817 }
2818 }
2819
2820 void
2821 intel_update_r8stencil(struct brw_context *brw,
2822 struct intel_mipmap_tree *mt)
2823 {
2824 assert(brw->gen >= 7);
2825 struct intel_mipmap_tree *src =
2826 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2827 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2828 return;
2829
2830 assert(src->surf.size > 0);
2831
2832 if (!mt->r8stencil_mt) {
2833 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2834 mt->r8stencil_mt = make_surface(
2835 brw,
2836 src->target,
2837 MESA_FORMAT_R_UINT8,
2838 src->first_level, src->last_level,
2839 src->surf.logical_level0_px.width,
2840 src->surf.logical_level0_px.height,
2841 src->surf.dim == ISL_SURF_DIM_3D ?
2842 src->surf.logical_level0_px.depth :
2843 src->surf.logical_level0_px.array_len,
2844 src->surf.samples,
2845 ISL_TILING_Y0_BIT,
2846 ISL_SURF_USAGE_TEXTURE_BIT,
2847 BO_ALLOC_FOR_RENDER, 0, NULL);
2848 assert(mt->r8stencil_mt);
2849 }
2850
2851 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2852
2853 for (int level = src->first_level; level <= src->last_level; level++) {
2854 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2855 minify(src->surf.phys_level0_sa.depth, level) :
2856 src->surf.phys_level0_sa.array_len;
2857
2858 for (unsigned layer = 0; layer < depth; layer++) {
2859 brw_blorp_copy_miptrees(brw,
2860 src, level, layer,
2861 dst, level, layer,
2862 0, 0, 0, 0,
2863 minify(src->surf.logical_level0_px.width,
2864 level),
2865 minify(src->surf.logical_level0_px.height,
2866 level));
2867 }
2868 }
2869
2870 brw_render_cache_set_check_flush(brw, dst->bo);
2871 src->r8stencil_needs_update = false;
2872 }
2873
2874 static void *
2875 intel_miptree_map_raw(struct brw_context *brw,
2876 struct intel_mipmap_tree *mt,
2877 GLbitfield mode)
2878 {
2879 struct brw_bo *bo = mt->bo;
2880
2881 if (brw_batch_references(&brw->batch, bo))
2882 intel_batchbuffer_flush(brw);
2883
2884 return brw_bo_map(brw, bo, mode);
2885 }
2886
2887 static void
2888 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2889 {
2890 brw_bo_unmap(mt->bo);
2891 }
2892
2893 static void
2894 intel_miptree_map_gtt(struct brw_context *brw,
2895 struct intel_mipmap_tree *mt,
2896 struct intel_miptree_map *map,
2897 unsigned int level, unsigned int slice)
2898 {
2899 unsigned int bw, bh;
2900 void *base;
2901 unsigned int image_x, image_y;
2902 intptr_t x = map->x;
2903 intptr_t y = map->y;
2904
2905 /* For compressed formats, the stride is the number of bytes per
2906 * row of blocks. intel_miptree_get_image_offset() already does
2907 * the divide.
2908 */
2909 _mesa_get_format_block_size(mt->format, &bw, &bh);
2910 assert(y % bh == 0);
2911 assert(x % bw == 0);
2912 y /= bh;
2913 x /= bw;
2914
2915 base = intel_miptree_map_raw(brw, mt, map->mode);
2916
2917 if (base == NULL)
2918 map->ptr = NULL;
2919 else {
2920 base += mt->offset;
2921
2922 /* Note that in the case of cube maps, the caller must have passed the
2923 * slice number referencing the face.
2924 */
2925 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2926 x += image_x;
2927 y += image_y;
2928
2929 map->stride = mt->surf.row_pitch;
2930 map->ptr = base + y * map->stride + x * mt->cpp;
2931 }
2932
2933 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2934 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2935 map->x, map->y, map->w, map->h,
2936 mt, _mesa_get_format_name(mt->format),
2937 x, y, map->ptr, map->stride);
2938 }
2939
2940 static void
2941 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2942 {
2943 intel_miptree_unmap_raw(mt);
2944 }
2945
2946 static void
2947 intel_miptree_map_blit(struct brw_context *brw,
2948 struct intel_mipmap_tree *mt,
2949 struct intel_miptree_map *map,
2950 unsigned int level, unsigned int slice)
2951 {
2952 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2953 /* first_level */ 0,
2954 /* last_level */ 0,
2955 map->w, map->h, 1,
2956 /* samples */ 1,
2957 MIPTREE_LAYOUT_TILING_NONE);
2958
2959 if (!map->linear_mt) {
2960 fprintf(stderr, "Failed to allocate blit temporary\n");
2961 goto fail;
2962 }
2963 map->stride = map->linear_mt->surf.row_pitch;
2964
2965 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2966 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2967 * invalidate is set, since we'll be writing the whole rectangle from our
2968 * temporary buffer back out.
2969 */
2970 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2971 if (!intel_miptree_copy(brw,
2972 mt, level, slice, map->x, map->y,
2973 map->linear_mt, 0, 0, 0, 0,
2974 map->w, map->h)) {
2975 fprintf(stderr, "Failed to blit\n");
2976 goto fail;
2977 }
2978 }
2979
2980 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
2981
2982 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2983 map->x, map->y, map->w, map->h,
2984 mt, _mesa_get_format_name(mt->format),
2985 level, slice, map->ptr, map->stride);
2986
2987 return;
2988
2989 fail:
2990 intel_miptree_release(&map->linear_mt);
2991 map->ptr = NULL;
2992 map->stride = 0;
2993 }
2994
2995 static void
2996 intel_miptree_unmap_blit(struct brw_context *brw,
2997 struct intel_mipmap_tree *mt,
2998 struct intel_miptree_map *map,
2999 unsigned int level,
3000 unsigned int slice)
3001 {
3002 struct gl_context *ctx = &brw->ctx;
3003
3004 intel_miptree_unmap_raw(map->linear_mt);
3005
3006 if (map->mode & GL_MAP_WRITE_BIT) {
3007 bool ok = intel_miptree_copy(brw,
3008 map->linear_mt, 0, 0, 0, 0,
3009 mt, level, slice, map->x, map->y,
3010 map->w, map->h);
3011 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3012 }
3013
3014 intel_miptree_release(&map->linear_mt);
3015 }
3016
3017 /**
3018 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3019 */
3020 #if defined(USE_SSE41)
3021 static void
3022 intel_miptree_map_movntdqa(struct brw_context *brw,
3023 struct intel_mipmap_tree *mt,
3024 struct intel_miptree_map *map,
3025 unsigned int level, unsigned int slice)
3026 {
3027 assert(map->mode & GL_MAP_READ_BIT);
3028 assert(!(map->mode & GL_MAP_WRITE_BIT));
3029
3030 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3031 map->x, map->y, map->w, map->h,
3032 mt, _mesa_get_format_name(mt->format),
3033 level, slice, map->ptr, map->stride);
3034
3035 /* Map the original image */
3036 uint32_t image_x;
3037 uint32_t image_y;
3038 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3039 image_x += map->x;
3040 image_y += map->y;
3041
3042 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3043 if (!src)
3044 return;
3045
3046 src += mt->offset;
3047
3048 src += image_y * mt->surf.row_pitch;
3049 src += image_x * mt->cpp;
3050
3051 /* Due to the pixel offsets for the particular image being mapped, our
3052 * src pointer may not be 16-byte aligned. However, if the pitch is
3053 * divisible by 16, then the amount by which it's misaligned will remain
3054 * consistent from row to row.
3055 */
3056 assert((mt->surf.row_pitch % 16) == 0);
3057 const int misalignment = ((uintptr_t) src) & 15;
3058
3059 /* Create an untiled temporary buffer for the mapping. */
3060 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3061
3062 map->stride = ALIGN(misalignment + width_bytes, 16);
3063
3064 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3065 /* Offset the destination so it has the same misalignment as src. */
3066 map->ptr = map->buffer + misalignment;
3067
3068 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3069
3070 for (uint32_t y = 0; y < map->h; y++) {
3071 void *dst_ptr = map->ptr + y * map->stride;
3072 void *src_ptr = src + y * mt->surf.row_pitch;
3073
3074 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3075 }
3076
3077 intel_miptree_unmap_raw(mt);
3078 }
3079
3080 static void
3081 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3082 struct intel_mipmap_tree *mt,
3083 struct intel_miptree_map *map,
3084 unsigned int level,
3085 unsigned int slice)
3086 {
3087 _mesa_align_free(map->buffer);
3088 map->buffer = NULL;
3089 map->ptr = NULL;
3090 }
3091 #endif
3092
3093 static void
3094 intel_miptree_map_s8(struct brw_context *brw,
3095 struct intel_mipmap_tree *mt,
3096 struct intel_miptree_map *map,
3097 unsigned int level, unsigned int slice)
3098 {
3099 map->stride = map->w;
3100 map->buffer = map->ptr = malloc(map->stride * map->h);
3101 if (!map->buffer)
3102 return;
3103
3104 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3105 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3106 * invalidate is set, since we'll be writing the whole rectangle from our
3107 * temporary buffer back out.
3108 */
3109 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3110 uint8_t *untiled_s8_map = map->ptr;
3111 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3112 unsigned int image_x, image_y;
3113
3114 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3115
3116 for (uint32_t y = 0; y < map->h; y++) {
3117 for (uint32_t x = 0; x < map->w; x++) {
3118 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3119 x + image_x + map->x,
3120 y + image_y + map->y,
3121 brw->has_swizzling);
3122 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3123 }
3124 }
3125
3126 intel_miptree_unmap_raw(mt);
3127
3128 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3129 map->x, map->y, map->w, map->h,
3130 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3131 } else {
3132 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3133 map->x, map->y, map->w, map->h,
3134 mt, map->ptr, map->stride);
3135 }
3136 }
3137
3138 static void
3139 intel_miptree_unmap_s8(struct brw_context *brw,
3140 struct intel_mipmap_tree *mt,
3141 struct intel_miptree_map *map,
3142 unsigned int level,
3143 unsigned int slice)
3144 {
3145 if (map->mode & GL_MAP_WRITE_BIT) {
3146 unsigned int image_x, image_y;
3147 uint8_t *untiled_s8_map = map->ptr;
3148 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3149
3150 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3151
3152 for (uint32_t y = 0; y < map->h; y++) {
3153 for (uint32_t x = 0; x < map->w; x++) {
3154 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3155 image_x + x + map->x,
3156 image_y + y + map->y,
3157 brw->has_swizzling);
3158 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3159 }
3160 }
3161
3162 intel_miptree_unmap_raw(mt);
3163 }
3164
3165 free(map->buffer);
3166 }
3167
3168 static void
3169 intel_miptree_map_etc(struct brw_context *brw,
3170 struct intel_mipmap_tree *mt,
3171 struct intel_miptree_map *map,
3172 unsigned int level,
3173 unsigned int slice)
3174 {
3175 assert(mt->etc_format != MESA_FORMAT_NONE);
3176 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3177 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3178 }
3179
3180 assert(map->mode & GL_MAP_WRITE_BIT);
3181 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3182
3183 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3184 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3185 map->w, map->h, 1));
3186 map->ptr = map->buffer;
3187 }
3188
3189 static void
3190 intel_miptree_unmap_etc(struct brw_context *brw,
3191 struct intel_mipmap_tree *mt,
3192 struct intel_miptree_map *map,
3193 unsigned int level,
3194 unsigned int slice)
3195 {
3196 uint32_t image_x;
3197 uint32_t image_y;
3198 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3199
3200 image_x += map->x;
3201 image_y += map->y;
3202
3203 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3204 + image_y * mt->surf.row_pitch
3205 + image_x * mt->cpp;
3206
3207 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3208 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3209 map->ptr, map->stride,
3210 map->w, map->h);
3211 else
3212 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3213 map->ptr, map->stride,
3214 map->w, map->h, mt->etc_format);
3215
3216 intel_miptree_unmap_raw(mt);
3217 free(map->buffer);
3218 }
3219
3220 /**
3221 * Mapping function for packed depth/stencil miptrees backed by real separate
3222 * miptrees for depth and stencil.
3223 *
3224 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3225 * separate from the depth buffer. Yet at the GL API level, we have to expose
3226 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3227 * be able to map that memory for texture storage and glReadPixels-type
3228 * operations. We give Mesa core that access by mallocing a temporary and
3229 * copying the data between the actual backing store and the temporary.
3230 */
3231 static void
3232 intel_miptree_map_depthstencil(struct brw_context *brw,
3233 struct intel_mipmap_tree *mt,
3234 struct intel_miptree_map *map,
3235 unsigned int level, unsigned int slice)
3236 {
3237 struct intel_mipmap_tree *z_mt = mt;
3238 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3239 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3240 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3241
3242 map->stride = map->w * packed_bpp;
3243 map->buffer = map->ptr = malloc(map->stride * map->h);
3244 if (!map->buffer)
3245 return;
3246
3247 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3248 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3249 * invalidate is set, since we'll be writing the whole rectangle from our
3250 * temporary buffer back out.
3251 */
3252 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3253 uint32_t *packed_map = map->ptr;
3254 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3255 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3256 unsigned int s_image_x, s_image_y;
3257 unsigned int z_image_x, z_image_y;
3258
3259 intel_miptree_get_image_offset(s_mt, level, slice,
3260 &s_image_x, &s_image_y);
3261 intel_miptree_get_image_offset(z_mt, level, slice,
3262 &z_image_x, &z_image_y);
3263
3264 for (uint32_t y = 0; y < map->h; y++) {
3265 for (uint32_t x = 0; x < map->w; x++) {
3266 int map_x = map->x + x, map_y = map->y + y;
3267 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3268 map_x + s_image_x,
3269 map_y + s_image_y,
3270 brw->has_swizzling);
3271 ptrdiff_t z_offset = ((map_y + z_image_y) *
3272 (z_mt->surf.row_pitch / 4) +
3273 (map_x + z_image_x));
3274 uint8_t s = s_map[s_offset];
3275 uint32_t z = z_map[z_offset];
3276
3277 if (map_z32f_x24s8) {
3278 packed_map[(y * map->w + x) * 2 + 0] = z;
3279 packed_map[(y * map->w + x) * 2 + 1] = s;
3280 } else {
3281 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3282 }
3283 }
3284 }
3285
3286 intel_miptree_unmap_raw(s_mt);
3287 intel_miptree_unmap_raw(z_mt);
3288
3289 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3290 __func__,
3291 map->x, map->y, map->w, map->h,
3292 z_mt, map->x + z_image_x, map->y + z_image_y,
3293 s_mt, map->x + s_image_x, map->y + s_image_y,
3294 map->ptr, map->stride);
3295 } else {
3296 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3297 map->x, map->y, map->w, map->h,
3298 mt, map->ptr, map->stride);
3299 }
3300 }
3301
3302 static void
3303 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3304 struct intel_mipmap_tree *mt,
3305 struct intel_miptree_map *map,
3306 unsigned int level,
3307 unsigned int slice)
3308 {
3309 struct intel_mipmap_tree *z_mt = mt;
3310 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3311 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3312
3313 if (map->mode & GL_MAP_WRITE_BIT) {
3314 uint32_t *packed_map = map->ptr;
3315 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3316 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3317 unsigned int s_image_x, s_image_y;
3318 unsigned int z_image_x, z_image_y;
3319
3320 intel_miptree_get_image_offset(s_mt, level, slice,
3321 &s_image_x, &s_image_y);
3322 intel_miptree_get_image_offset(z_mt, level, slice,
3323 &z_image_x, &z_image_y);
3324
3325 for (uint32_t y = 0; y < map->h; y++) {
3326 for (uint32_t x = 0; x < map->w; x++) {
3327 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3328 x + s_image_x + map->x,
3329 y + s_image_y + map->y,
3330 brw->has_swizzling);
3331 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3332 (z_mt->surf.row_pitch / 4) +
3333 (x + z_image_x + map->x));
3334
3335 if (map_z32f_x24s8) {
3336 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3337 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3338 } else {
3339 uint32_t packed = packed_map[y * map->w + x];
3340 s_map[s_offset] = packed >> 24;
3341 z_map[z_offset] = packed;
3342 }
3343 }
3344 }
3345
3346 intel_miptree_unmap_raw(s_mt);
3347 intel_miptree_unmap_raw(z_mt);
3348
3349 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3350 __func__,
3351 map->x, map->y, map->w, map->h,
3352 z_mt, _mesa_get_format_name(z_mt->format),
3353 map->x + z_image_x, map->y + z_image_y,
3354 s_mt, map->x + s_image_x, map->y + s_image_y,
3355 map->ptr, map->stride);
3356 }
3357
3358 free(map->buffer);
3359 }
3360
3361 /**
3362 * Create and attach a map to the miptree at (level, slice). Return the
3363 * attached map.
3364 */
3365 static struct intel_miptree_map*
3366 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3367 unsigned int level,
3368 unsigned int slice,
3369 unsigned int x,
3370 unsigned int y,
3371 unsigned int w,
3372 unsigned int h,
3373 GLbitfield mode)
3374 {
3375 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3376
3377 if (!map)
3378 return NULL;
3379
3380 assert(mt->level[level].slice[slice].map == NULL);
3381 mt->level[level].slice[slice].map = map;
3382
3383 map->mode = mode;
3384 map->x = x;
3385 map->y = y;
3386 map->w = w;
3387 map->h = h;
3388
3389 return map;
3390 }
3391
3392 /**
3393 * Release the map at (level, slice).
3394 */
3395 static void
3396 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3397 unsigned int level,
3398 unsigned int slice)
3399 {
3400 struct intel_miptree_map **map;
3401
3402 map = &mt->level[level].slice[slice].map;
3403 free(*map);
3404 *map = NULL;
3405 }
3406
3407 static bool
3408 can_blit_slice(struct intel_mipmap_tree *mt,
3409 unsigned int level, unsigned int slice)
3410 {
3411 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3412 if (mt->surf.row_pitch >= 32768)
3413 return false;
3414
3415 return true;
3416 }
3417
3418 static bool
3419 use_intel_mipree_map_blit(struct brw_context *brw,
3420 struct intel_mipmap_tree *mt,
3421 GLbitfield mode,
3422 unsigned int level,
3423 unsigned int slice)
3424 {
3425 if (brw->has_llc &&
3426 /* It's probably not worth swapping to the blit ring because of
3427 * all the overhead involved.
3428 */
3429 !(mode & GL_MAP_WRITE_BIT) &&
3430 !mt->compressed &&
3431 (mt->surf.tiling == ISL_TILING_X ||
3432 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3433 (brw->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3434 /* Fast copy blit on skl+ supports all tiling formats. */
3435 brw->gen >= 9) &&
3436 can_blit_slice(mt, level, slice))
3437 return true;
3438
3439 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3440 mt->bo->size >= brw->max_gtt_map_object_size) {
3441 assert(can_blit_slice(mt, level, slice));
3442 return true;
3443 }
3444
3445 return false;
3446 }
3447
3448 /**
3449 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3450 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3451 * arithmetic overflow.
3452 *
3453 * If you call this function and use \a out_stride, then you're doing pointer
3454 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3455 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3456 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3457 * which usually have type uint32_t or GLuint.
3458 */
3459 void
3460 intel_miptree_map(struct brw_context *brw,
3461 struct intel_mipmap_tree *mt,
3462 unsigned int level,
3463 unsigned int slice,
3464 unsigned int x,
3465 unsigned int y,
3466 unsigned int w,
3467 unsigned int h,
3468 GLbitfield mode,
3469 void **out_ptr,
3470 ptrdiff_t *out_stride)
3471 {
3472 struct intel_miptree_map *map;
3473
3474 assert(mt->surf.samples == 1);
3475
3476 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3477 if (!map){
3478 *out_ptr = NULL;
3479 *out_stride = 0;
3480 return;
3481 }
3482
3483 intel_miptree_access_raw(brw, mt, level, slice,
3484 map->mode & GL_MAP_WRITE_BIT);
3485
3486 if (mt->format == MESA_FORMAT_S_UINT8) {
3487 intel_miptree_map_s8(brw, mt, map, level, slice);
3488 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3489 !(mode & BRW_MAP_DIRECT_BIT)) {
3490 intel_miptree_map_etc(brw, mt, map, level, slice);
3491 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3492 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3493 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3494 intel_miptree_map_blit(brw, mt, map, level, slice);
3495 #if defined(USE_SSE41)
3496 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3497 !mt->compressed && cpu_has_sse4_1 &&
3498 (mt->surf.row_pitch % 16 == 0)) {
3499 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3500 #endif
3501 } else {
3502 intel_miptree_map_gtt(brw, mt, map, level, slice);
3503 }
3504
3505 *out_ptr = map->ptr;
3506 *out_stride = map->stride;
3507
3508 if (map->ptr == NULL)
3509 intel_miptree_release_map(mt, level, slice);
3510 }
3511
3512 void
3513 intel_miptree_unmap(struct brw_context *brw,
3514 struct intel_mipmap_tree *mt,
3515 unsigned int level,
3516 unsigned int slice)
3517 {
3518 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3519
3520 assert(mt->surf.samples == 1);
3521
3522 if (!map)
3523 return;
3524
3525 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3526 mt, _mesa_get_format_name(mt->format), level, slice);
3527
3528 if (mt->format == MESA_FORMAT_S_UINT8) {
3529 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3530 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3531 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3532 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3533 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3534 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3535 } else if (map->linear_mt) {
3536 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3537 #if defined(USE_SSE41)
3538 } else if (map->buffer && cpu_has_sse4_1) {
3539 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3540 #endif
3541 } else {
3542 intel_miptree_unmap_gtt(mt);
3543 }
3544
3545 intel_miptree_release_map(mt, level, slice);
3546 }
3547
3548 enum isl_surf_dim
3549 get_isl_surf_dim(GLenum target)
3550 {
3551 switch (target) {
3552 case GL_TEXTURE_1D:
3553 case GL_TEXTURE_1D_ARRAY:
3554 return ISL_SURF_DIM_1D;
3555
3556 case GL_TEXTURE_2D:
3557 case GL_TEXTURE_2D_ARRAY:
3558 case GL_TEXTURE_RECTANGLE:
3559 case GL_TEXTURE_CUBE_MAP:
3560 case GL_TEXTURE_CUBE_MAP_ARRAY:
3561 case GL_TEXTURE_2D_MULTISAMPLE:
3562 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3563 case GL_TEXTURE_EXTERNAL_OES:
3564 return ISL_SURF_DIM_2D;
3565
3566 case GL_TEXTURE_3D:
3567 return ISL_SURF_DIM_3D;
3568 }
3569
3570 unreachable("Invalid texture target");
3571 }
3572
3573 enum isl_dim_layout
3574 get_isl_dim_layout(const struct gen_device_info *devinfo,
3575 enum isl_tiling tiling, GLenum target)
3576 {
3577 switch (target) {
3578 case GL_TEXTURE_1D:
3579 case GL_TEXTURE_1D_ARRAY:
3580 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3581 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3582
3583 case GL_TEXTURE_2D:
3584 case GL_TEXTURE_2D_ARRAY:
3585 case GL_TEXTURE_RECTANGLE:
3586 case GL_TEXTURE_2D_MULTISAMPLE:
3587 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3588 case GL_TEXTURE_EXTERNAL_OES:
3589 return ISL_DIM_LAYOUT_GEN4_2D;
3590
3591 case GL_TEXTURE_CUBE_MAP:
3592 case GL_TEXTURE_CUBE_MAP_ARRAY:
3593 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3594 ISL_DIM_LAYOUT_GEN4_2D);
3595
3596 case GL_TEXTURE_3D:
3597 return (devinfo->gen >= 9 ?
3598 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3599 }
3600
3601 unreachable("Invalid texture target");
3602 }
3603
3604 enum isl_aux_usage
3605 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3606 const struct intel_mipmap_tree *mt)
3607 {
3608 if (mt->hiz_buf)
3609 return ISL_AUX_USAGE_HIZ;
3610
3611 if (!mt->mcs_buf)
3612 return ISL_AUX_USAGE_NONE;
3613
3614 return mt->aux_usage;
3615 }