Re-enable regular fast-clears (CCS_D) on gen9+
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 const struct gen_device_info *devinfo = &brw->screen->devinfo;
67
68 /* MCS compression only applies to multisampled miptrees */
69 if (mt->surf.samples <= 1)
70 return false;
71
72 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
73 if (devinfo->gen < 7)
74 return false;
75
76 /* See isl_surf_get_mcs_surf for details. */
77 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
78 return false;
79
80 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
81 switch (_mesa_get_format_base_format(mt->format)) {
82 case GL_DEPTH_COMPONENT:
83 case GL_STENCIL_INDEX:
84 case GL_DEPTH_STENCIL:
85 return false;
86 default:
87 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
88 *
89 * This field must be set to 0 for all SINT MSRTs when all RT channels
90 * are not written
91 *
92 * In practice this means that we have to disable MCS for all signed
93 * integer MSAA buffers. The alternative, to disable MCS only when one
94 * of the render target channels is disabled, is impractical because it
95 * would require converting between CMS and UMS MSAA layouts on the fly,
96 * which is expensive.
97 */
98 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
99 return false;
100 } else {
101 return true;
102 }
103 }
104 }
105
106 static bool
107 intel_tiling_supports_ccs(const struct brw_context *brw,
108 enum isl_tiling tiling)
109 {
110 const struct gen_device_info *devinfo = &brw->screen->devinfo;
111
112 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
113 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
114 *
115 * - Support is limited to tiled render targets.
116 *
117 * Gen9 changes the restriction to Y-tile only.
118 */
119 if (devinfo->gen >= 9)
120 return tiling == ISL_TILING_Y0;
121 else if (devinfo->gen >= 7)
122 return tiling != ISL_TILING_LINEAR;
123 else
124 return false;
125 }
126
127 /**
128 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
129 * can be used. This doesn't (and should not) inspect any of the properties of
130 * the miptree's BO.
131 *
132 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
133 * beneath the "Fast Color Clear" bullet (p326):
134 *
135 * - Support is for non-mip-mapped and non-array surface types only.
136 *
137 * And then later, on p327:
138 *
139 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
140 * 64bpp, and 128bpp.
141 *
142 * From the Skylake documentation, it is made clear that X-tiling is no longer
143 * supported:
144 *
145 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
146 * non-MSRTs only.
147 */
148 static bool
149 intel_miptree_supports_ccs(struct brw_context *brw,
150 const struct intel_mipmap_tree *mt)
151 {
152 const struct gen_device_info *devinfo = &brw->screen->devinfo;
153
154 /* MCS support does not exist prior to Gen7 */
155 if (devinfo->gen < 7)
156 return false;
157
158 /* This function applies only to non-multisampled render targets. */
159 if (mt->surf.samples > 1)
160 return false;
161
162 /* MCS is only supported for color buffers */
163 switch (_mesa_get_format_base_format(mt->format)) {
164 case GL_DEPTH_COMPONENT:
165 case GL_DEPTH_STENCIL:
166 case GL_STENCIL_INDEX:
167 return false;
168 }
169
170 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
171 return false;
172
173 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
174 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
175 mt->surf.logical_level0_px.depth > 1;
176
177 if (arrayed) {
178 /* Multisample surfaces with the CMS layout are not layered surfaces,
179 * yet still have physical_depth0 > 1. Assert that we don't
180 * accidentally reject a multisampled surface here. We should have
181 * rejected it earlier by explicitly checking the sample count.
182 */
183 assert(mt->surf.samples == 1);
184 }
185
186 /* Handle the hardware restrictions...
187 *
188 * All GENs have the following restriction: "MCS buffer for non-MSRT is
189 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
190 *
191 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
192 * Non-MultiSampler Render Target Restrictions) Support is for
193 * non-mip-mapped and non-array surface types only.
194 *
195 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
199 *
200 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
201 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
202 * surfaces are supported with MCS buffer layout with these alignments in
203 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
204 */
205 if (devinfo->gen < 8 && (mip_mapped || arrayed))
206 return false;
207
208 /* There's no point in using an MCS buffer if the surface isn't in a
209 * renderable format.
210 */
211 if (!brw->mesa_format_supports_render[mt->format])
212 return false;
213
214 return true;
215 }
216
217 static bool
218 intel_tiling_supports_hiz(const struct brw_context *brw,
219 enum isl_tiling tiling)
220 {
221 const struct gen_device_info *devinfo = &brw->screen->devinfo;
222
223 if (devinfo->gen < 6)
224 return false;
225
226 return tiling == ISL_TILING_Y0;
227 }
228
229 static bool
230 intel_miptree_supports_hiz(const struct brw_context *brw,
231 const struct intel_mipmap_tree *mt)
232 {
233 if (!brw->has_hiz)
234 return false;
235
236 switch (mt->format) {
237 case MESA_FORMAT_Z_FLOAT32:
238 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
239 case MESA_FORMAT_Z24_UNORM_X8_UINT:
240 case MESA_FORMAT_Z24_UNORM_S8_UINT:
241 case MESA_FORMAT_Z_UNORM16:
242 return true;
243 default:
244 return false;
245 }
246 }
247
248 /**
249 * Return true if the format that will be used to access the miptree is
250 * CCS_E-compatible with the miptree's linear/non-sRGB format.
251 *
252 * Why use the linear format? Well, although the miptree may be specified with
253 * an sRGB format, the usage of that color space/format can be toggled. Since
254 * our HW tends to support more linear formats than sRGB ones, we use this
255 * format variant for check for CCS_E compatibility.
256 */
257 static bool
258 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
259 const struct intel_mipmap_tree *mt,
260 enum isl_format access_format)
261 {
262 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
263
264 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
265 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
266 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
267 }
268
269 static bool
270 intel_miptree_supports_ccs_e(struct brw_context *brw,
271 const struct intel_mipmap_tree *mt)
272 {
273 const struct gen_device_info *devinfo = &brw->screen->devinfo;
274
275 if (devinfo->gen < 9)
276 return false;
277
278 /* For now compression is only enabled for integer formats even though
279 * there exist supported floating point formats also. This is a heuristic
280 * decision based on current public benchmarks. In none of the cases these
281 * formats provided any improvement but a few cases were seen to regress.
282 * Hence these are left to to be enabled in the future when they are known
283 * to improve things.
284 */
285 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
286 return false;
287
288 if (!intel_miptree_supports_ccs(brw, mt))
289 return false;
290
291 /* Many window system buffers are sRGB even if they are never rendered as
292 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
293 * surface is used as sRGB, we fall back to CCS_D.
294 */
295 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
296 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
297 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
298 }
299
300 /**
301 * Determine depth format corresponding to a depth+stencil format,
302 * for separate stencil.
303 */
304 mesa_format
305 intel_depth_format_for_depthstencil_format(mesa_format format) {
306 switch (format) {
307 case MESA_FORMAT_Z24_UNORM_S8_UINT:
308 return MESA_FORMAT_Z24_UNORM_X8_UINT;
309 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
310 return MESA_FORMAT_Z_FLOAT32;
311 default:
312 return format;
313 }
314 }
315
316 static bool
317 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
318 unsigned depth0, struct intel_mipmap_level *table)
319 {
320 for (unsigned level = first_level; level <= last_level; level++) {
321 const unsigned d =
322 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
323
324 table[level].slice = calloc(d, sizeof(*table[0].slice));
325 if (!table[level].slice)
326 goto unwind;
327 }
328
329 return true;
330
331 unwind:
332 for (unsigned level = first_level; level <= last_level; level++)
333 free(table[level].slice);
334
335 return false;
336 }
337
338 static bool
339 needs_separate_stencil(const struct brw_context *brw,
340 struct intel_mipmap_tree *mt,
341 mesa_format format)
342 {
343 const struct gen_device_info *devinfo = &brw->screen->devinfo;
344
345 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
346 return false;
347
348 if (devinfo->must_use_separate_stencil)
349 return true;
350
351 return brw->has_separate_stencil &&
352 intel_miptree_supports_hiz(brw, mt);
353 }
354
355 /**
356 * Choose the aux usage for this miptree. This function must be called fairly
357 * late in the miptree create process after we have a tiling.
358 */
359 static void
360 intel_miptree_choose_aux_usage(struct brw_context *brw,
361 struct intel_mipmap_tree *mt)
362 {
363 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
364
365 if (intel_miptree_supports_mcs(brw, mt)) {
366 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
367 mt->aux_usage = ISL_AUX_USAGE_MCS;
368 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
369 intel_miptree_supports_ccs(brw, mt)) {
370 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
371 intel_miptree_supports_ccs_e(brw, mt)) {
372 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
373 } else {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
375 }
376 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
377 intel_miptree_supports_hiz(brw, mt)) {
378 mt->aux_usage = ISL_AUX_USAGE_HIZ;
379 }
380
381 /* We can do fast-clear on all auxiliary surface types that are
382 * allocated through the normal texture creation paths.
383 */
384 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
385 mt->supports_fast_clear = true;
386 }
387
388
389 /**
390 * Choose an appropriate uncompressed format for a requested
391 * compressed format, if unsupported.
392 */
393 mesa_format
394 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
395 {
396 const struct gen_device_info *devinfo = &brw->screen->devinfo;
397
398 /* No need to lower ETC formats on these platforms,
399 * they are supported natively.
400 */
401 if (devinfo->gen >= 8 || devinfo->is_baytrail)
402 return format;
403
404 switch (format) {
405 case MESA_FORMAT_ETC1_RGB8:
406 return MESA_FORMAT_R8G8B8X8_UNORM;
407 case MESA_FORMAT_ETC2_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_SRGB8:
410 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
411 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
412 return MESA_FORMAT_B8G8R8A8_SRGB;
413 case MESA_FORMAT_ETC2_RGBA8_EAC:
414 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
415 return MESA_FORMAT_R8G8B8A8_UNORM;
416 case MESA_FORMAT_ETC2_R11_EAC:
417 return MESA_FORMAT_R_UNORM16;
418 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
419 return MESA_FORMAT_R_SNORM16;
420 case MESA_FORMAT_ETC2_RG11_EAC:
421 return MESA_FORMAT_R16G16_UNORM;
422 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
423 return MESA_FORMAT_R16G16_SNORM;
424 default:
425 /* Non ETC1 / ETC2 format */
426 return format;
427 }
428 }
429
430 unsigned
431 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
432 {
433 if (mt->surf.dim == ISL_SURF_DIM_3D)
434 return minify(mt->surf.logical_level0_px.depth, level);
435 else
436 return mt->surf.logical_level0_px.array_len;
437 }
438
439 UNUSED static unsigned
440 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
441 {
442 /* In case of physical dimensions one needs to consider also the layout.
443 * See isl_calc_phys_level0_extent_sa().
444 */
445 if (surf->dim != ISL_SURF_DIM_3D)
446 return surf->phys_level0_sa.array_len;
447
448 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
449 return minify(surf->phys_level0_sa.array_len, level);
450
451 return minify(surf->phys_level0_sa.depth, level);
452 }
453
454 /** \brief Assert that the level and layer are valid for the miptree. */
455 void
456 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
457 uint32_t level,
458 uint32_t layer)
459 {
460 (void) mt;
461 (void) level;
462 (void) layer;
463
464 assert(level >= mt->first_level);
465 assert(level <= mt->last_level);
466 assert(layer < get_num_phys_layers(&mt->surf, level));
467 }
468
469 static enum isl_aux_state **
470 create_aux_state_map(struct intel_mipmap_tree *mt,
471 enum isl_aux_state initial)
472 {
473 const uint32_t levels = mt->last_level + 1;
474
475 uint32_t total_slices = 0;
476 for (uint32_t level = 0; level < levels; level++)
477 total_slices += brw_get_num_logical_layers(mt, level);
478
479 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
480
481 /* We're going to allocate a single chunk of data for both the per-level
482 * reference array and the arrays of aux_state. This makes cleanup
483 * significantly easier.
484 */
485 const size_t total_size = per_level_array_size +
486 total_slices * sizeof(enum isl_aux_state);
487 void *data = malloc(total_size);
488 if (data == NULL)
489 return NULL;
490
491 enum isl_aux_state **per_level_arr = data;
492 enum isl_aux_state *s = data + per_level_array_size;
493 for (uint32_t level = 0; level < levels; level++) {
494 per_level_arr[level] = s;
495 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
496 for (uint32_t a = 0; a < level_layers; a++)
497 *(s++) = initial;
498 }
499 assert((void *)s == data + total_size);
500
501 return per_level_arr;
502 }
503
504 static void
505 free_aux_state_map(enum isl_aux_state **state)
506 {
507 free(state);
508 }
509
510 static bool
511 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
512 enum isl_tiling tiling, unsigned samples)
513 {
514 if (samples > 1)
515 return false;
516
517 if (tiling == ISL_TILING_LINEAR)
518 return false;
519
520 /* If the width is much smaller than a tile, don't bother tiling. */
521 if (row_pitch < 64)
522 return true;
523
524 if (ALIGN(row_pitch, 512) >= 32768) {
525 perf_debug("row pitch %u too large to blit, falling back to untiled",
526 row_pitch);
527 return true;
528 }
529
530 return false;
531 }
532
533 static bool
534 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
535 enum isl_tiling tiling)
536 {
537 const struct gen_device_info *devinfo = &brw->screen->devinfo;
538
539 /* If the BO is too large to fit in the aperture, we need to use the
540 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
541 * handle Y-tiling, so we need to fall back to X.
542 */
543 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
544 tiling == ISL_TILING_Y0)
545 return true;
546
547 return false;
548 }
549
550 static struct intel_mipmap_tree *
551 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
552 unsigned first_level, unsigned last_level,
553 unsigned width0, unsigned height0, unsigned depth0,
554 unsigned num_samples, isl_tiling_flags_t tiling_flags,
555 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
556 unsigned row_pitch, struct brw_bo *bo)
557 {
558 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
559 if (!mt)
560 return NULL;
561
562 if (!create_mapping_table(target, first_level, last_level, depth0,
563 mt->level)) {
564 free(mt);
565 return NULL;
566 }
567
568 mt->refcount = 1;
569
570 if (target == GL_TEXTURE_CUBE_MAP ||
571 target == GL_TEXTURE_CUBE_MAP_ARRAY)
572 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
573
574 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
575 __func__,
576 _mesa_enum_to_string(target),
577 _mesa_get_format_name(format),
578 num_samples, width0, height0, depth0,
579 first_level, last_level, mt);
580
581 struct isl_surf_init_info init_info = {
582 .dim = get_isl_surf_dim(target),
583 .format = translate_tex_format(brw, format, false),
584 .width = width0,
585 .height = height0,
586 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
587 .levels = last_level - first_level + 1,
588 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
589 .samples = num_samples,
590 .row_pitch = row_pitch,
591 .usage = isl_usage_flags,
592 .tiling_flags = tiling_flags,
593 };
594
595 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
596 goto fail;
597
598 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
599 * on gen7 platforms we also need to create Y-tiled copies of stencil for
600 * texturing since the hardware can't sample from W-tiled surfaces. For
601 * everything else, check for corner cases needing special treatment.
602 */
603 bool is_depth_stencil =
604 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
605 if (!is_depth_stencil) {
606 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
607 mt->surf.tiling, mt->surf.samples)) {
608 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
609 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
610 goto fail;
611 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
612 init_info.tiling_flags = 1u << ISL_TILING_X;
613 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
614 goto fail;
615 }
616 }
617
618 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
619 * the size may not be multiple of row_pitch.
620 * See isl_apply_surface_padding().
621 */
622 if (mt->surf.tiling != ISL_TILING_LINEAR)
623 assert(mt->surf.size % mt->surf.row_pitch == 0);
624
625 if (!bo) {
626 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
627 mt->surf.size,
628 isl_tiling_to_i915_tiling(
629 mt->surf.tiling),
630 mt->surf.row_pitch, alloc_flags);
631 if (!mt->bo)
632 goto fail;
633 } else {
634 mt->bo = bo;
635 }
636
637 mt->first_level = first_level;
638 mt->last_level = last_level;
639 mt->target = target;
640 mt->format = format;
641 mt->aux_state = NULL;
642 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
643 mt->compressed = _mesa_is_format_compressed(format);
644 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
645
646 return mt;
647
648 fail:
649 intel_miptree_release(&mt);
650 return NULL;
651 }
652
653 static bool
654 make_separate_stencil_surface(struct brw_context *brw,
655 struct intel_mipmap_tree *mt)
656 {
657 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
658 0, mt->surf.levels - 1,
659 mt->surf.logical_level0_px.width,
660 mt->surf.logical_level0_px.height,
661 mt->surf.dim == ISL_SURF_DIM_3D ?
662 mt->surf.logical_level0_px.depth :
663 mt->surf.logical_level0_px.array_len,
664 mt->surf.samples, ISL_TILING_W_BIT,
665 ISL_SURF_USAGE_STENCIL_BIT |
666 ISL_SURF_USAGE_TEXTURE_BIT,
667 BO_ALLOC_BUSY, 0, NULL);
668
669 if (!mt->stencil_mt)
670 return false;
671
672 mt->stencil_mt->r8stencil_needs_update = true;
673
674 return true;
675 }
676
677 static struct intel_mipmap_tree *
678 miptree_create(struct brw_context *brw,
679 GLenum target,
680 mesa_format format,
681 GLuint first_level,
682 GLuint last_level,
683 GLuint width0,
684 GLuint height0,
685 GLuint depth0,
686 GLuint num_samples,
687 enum intel_miptree_create_flags flags)
688 {
689 const struct gen_device_info *devinfo = &brw->screen->devinfo;
690
691 if (format == MESA_FORMAT_S_UINT8)
692 return make_surface(brw, target, format, first_level, last_level,
693 width0, height0, depth0, num_samples,
694 ISL_TILING_W_BIT,
695 ISL_SURF_USAGE_STENCIL_BIT |
696 ISL_SURF_USAGE_TEXTURE_BIT,
697 BO_ALLOC_BUSY,
698 0,
699 NULL);
700
701 const GLenum base_format = _mesa_get_format_base_format(format);
702 if ((base_format == GL_DEPTH_COMPONENT ||
703 base_format == GL_DEPTH_STENCIL) &&
704 !(flags & MIPTREE_CREATE_LINEAR)) {
705 /* Fix up the Z miptree format for how we're splitting out separate
706 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
707 */
708 const mesa_format depth_only_format =
709 intel_depth_format_for_depthstencil_format(format);
710 struct intel_mipmap_tree *mt = make_surface(
711 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
712 first_level, last_level,
713 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
714 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
715 BO_ALLOC_BUSY, 0, NULL);
716
717 if (needs_separate_stencil(brw, mt, format) &&
718 !make_separate_stencil_surface(brw, mt)) {
719 intel_miptree_release(&mt);
720 return NULL;
721 }
722
723 if (!(flags & MIPTREE_CREATE_NO_AUX))
724 intel_miptree_choose_aux_usage(brw, mt);
725
726 return mt;
727 }
728
729 mesa_format tex_format = format;
730 mesa_format etc_format = MESA_FORMAT_NONE;
731 uint32_t alloc_flags = 0;
732
733 format = intel_lower_compressed_format(brw, format);
734
735 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
736
737 if (flags & MIPTREE_CREATE_BUSY)
738 alloc_flags |= BO_ALLOC_BUSY;
739
740 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
741 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
742
743 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
744 if (devinfo->gen < 6)
745 tiling_flags &= ~ISL_TILING_Y0_BIT;
746
747 struct intel_mipmap_tree *mt = make_surface(
748 brw, target, format,
749 first_level, last_level,
750 width0, height0, depth0,
751 num_samples, tiling_flags,
752 ISL_SURF_USAGE_RENDER_TARGET_BIT |
753 ISL_SURF_USAGE_TEXTURE_BIT,
754 alloc_flags, 0, NULL);
755 if (!mt)
756 return NULL;
757
758 mt->etc_format = etc_format;
759
760 if (!(flags & MIPTREE_CREATE_NO_AUX))
761 intel_miptree_choose_aux_usage(brw, mt);
762
763 return mt;
764 }
765
766 struct intel_mipmap_tree *
767 intel_miptree_create(struct brw_context *brw,
768 GLenum target,
769 mesa_format format,
770 GLuint first_level,
771 GLuint last_level,
772 GLuint width0,
773 GLuint height0,
774 GLuint depth0,
775 GLuint num_samples,
776 enum intel_miptree_create_flags flags)
777 {
778 assert(num_samples > 0);
779
780 struct intel_mipmap_tree *mt = miptree_create(
781 brw, target, format,
782 first_level, last_level,
783 width0, height0, depth0, num_samples,
784 flags);
785 if (!mt)
786 return NULL;
787
788 mt->offset = 0;
789
790 if (!intel_miptree_alloc_aux(brw, mt)) {
791 intel_miptree_release(&mt);
792 return NULL;
793 }
794
795 return mt;
796 }
797
798 struct intel_mipmap_tree *
799 intel_miptree_create_for_bo(struct brw_context *brw,
800 struct brw_bo *bo,
801 mesa_format format,
802 uint32_t offset,
803 uint32_t width,
804 uint32_t height,
805 uint32_t depth,
806 int pitch,
807 enum intel_miptree_create_flags flags)
808 {
809 const struct gen_device_info *devinfo = &brw->screen->devinfo;
810 struct intel_mipmap_tree *mt;
811 uint32_t tiling, swizzle;
812 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
813 const GLenum base_format = _mesa_get_format_base_format(format);
814
815 if ((base_format == GL_DEPTH_COMPONENT ||
816 base_format == GL_DEPTH_STENCIL)) {
817 const mesa_format depth_only_format =
818 intel_depth_format_for_depthstencil_format(format);
819 mt = make_surface(brw, target,
820 devinfo->gen >= 6 ? depth_only_format : format,
821 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
822 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
823 BO_ALLOC_BUSY, pitch, bo);
824 if (!mt)
825 return NULL;
826
827 brw_bo_reference(bo);
828
829 if (!(flags & MIPTREE_CREATE_NO_AUX))
830 intel_miptree_choose_aux_usage(brw, mt);
831
832 return mt;
833 } else if (format == MESA_FORMAT_S_UINT8) {
834 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
835 0, 0, width, height, depth, 1,
836 ISL_TILING_W_BIT,
837 ISL_SURF_USAGE_STENCIL_BIT |
838 ISL_SURF_USAGE_TEXTURE_BIT,
839 BO_ALLOC_BUSY, pitch, bo);
840 if (!mt)
841 return NULL;
842
843 assert(bo->size >= mt->surf.size);
844
845 brw_bo_reference(bo);
846 return mt;
847 }
848
849 brw_bo_get_tiling(bo, &tiling, &swizzle);
850
851 /* Nothing will be able to use this miptree with the BO if the offset isn't
852 * aligned.
853 */
854 if (tiling != I915_TILING_NONE)
855 assert(offset % 4096 == 0);
856
857 /* miptrees can't handle negative pitch. If you need flipping of images,
858 * that's outside of the scope of the mt.
859 */
860 assert(pitch >= 0);
861
862 /* The BO already has a tiling format and we shouldn't confuse the lower
863 * layers by making it try to find a tiling format again.
864 */
865 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
866
867 mt = make_surface(brw, target, format,
868 0, 0, width, height, depth, 1,
869 1lu << isl_tiling_from_i915_tiling(tiling),
870 ISL_SURF_USAGE_RENDER_TARGET_BIT |
871 ISL_SURF_USAGE_TEXTURE_BIT,
872 0, pitch, bo);
873 if (!mt)
874 return NULL;
875
876 brw_bo_reference(bo);
877 mt->bo = bo;
878 mt->offset = offset;
879
880 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
881 intel_miptree_choose_aux_usage(brw, mt);
882
883 if (!intel_miptree_alloc_aux(brw, mt)) {
884 intel_miptree_release(&mt);
885 return NULL;
886 }
887 }
888
889 return mt;
890 }
891
892 static struct intel_mipmap_tree *
893 miptree_create_for_planar_image(struct brw_context *brw,
894 __DRIimage *image, GLenum target)
895 {
896 const struct intel_image_format *f = image->planar_format;
897 struct intel_mipmap_tree *planar_mt = NULL;
898
899 for (int i = 0; i < f->nplanes; i++) {
900 const int index = f->planes[i].buffer_index;
901 const uint32_t dri_format = f->planes[i].dri_format;
902 const mesa_format format = driImageFormatToGLFormat(dri_format);
903 const uint32_t width = image->width >> f->planes[i].width_shift;
904 const uint32_t height = image->height >> f->planes[i].height_shift;
905
906 /* Disable creation of the texture's aux buffers because the driver
907 * exposes no EGL API to manage them. That is, there is no API for
908 * resolving the aux buffer's content to the main buffer nor for
909 * invalidating the aux buffer's content.
910 */
911 struct intel_mipmap_tree *mt =
912 intel_miptree_create_for_bo(brw, image->bo, format,
913 image->offsets[index],
914 width, height, 1,
915 image->strides[index],
916 MIPTREE_CREATE_NO_AUX);
917 if (mt == NULL)
918 return NULL;
919
920 mt->target = target;
921
922 if (i == 0)
923 planar_mt = mt;
924 else
925 planar_mt->plane[i - 1] = mt;
926 }
927
928 planar_mt->drm_modifier = image->modifier;
929
930 return planar_mt;
931 }
932
933 static bool
934 create_ccs_buf_for_image(struct brw_context *brw,
935 __DRIimage *image,
936 struct intel_mipmap_tree *mt,
937 enum isl_aux_state initial_state)
938 {
939 struct isl_surf temp_ccs_surf;
940
941 /* CCS is only supported for very simple miptrees */
942 assert(image->aux_offset != 0 && image->aux_pitch != 0);
943 assert(image->tile_x == 0 && image->tile_y == 0);
944 assert(mt->surf.samples == 1);
945 assert(mt->surf.levels == 1);
946 assert(mt->surf.logical_level0_px.depth == 1);
947 assert(mt->surf.logical_level0_px.array_len == 1);
948 assert(mt->first_level == 0);
949 assert(mt->last_level == 0);
950
951 /* We shouldn't already have a CCS */
952 assert(!mt->mcs_buf);
953
954 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
955 image->aux_pitch))
956 return false;
957
958 assert(image->aux_offset < image->bo->size);
959 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
960
961 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
962 if (mt->mcs_buf == NULL)
963 return false;
964
965 mt->aux_state = create_aux_state_map(mt, initial_state);
966 if (!mt->aux_state) {
967 free(mt->mcs_buf);
968 mt->mcs_buf = NULL;
969 return false;
970 }
971
972 mt->mcs_buf->bo = image->bo;
973 brw_bo_reference(image->bo);
974
975 mt->mcs_buf->offset = image->aux_offset;
976 mt->mcs_buf->size = image->bo->size - image->aux_offset;
977 mt->mcs_buf->pitch = image->aux_pitch;
978 mt->mcs_buf->qpitch = 0;
979 mt->mcs_buf->surf = temp_ccs_surf;
980
981 return true;
982 }
983
984 struct intel_mipmap_tree *
985 intel_miptree_create_for_dri_image(struct brw_context *brw,
986 __DRIimage *image, GLenum target,
987 mesa_format format,
988 bool is_winsys_image)
989 {
990 if (image->planar_format && image->planar_format->nplanes > 1)
991 return miptree_create_for_planar_image(brw, image, target);
992
993 if (image->planar_format)
994 assert(image->planar_format->planes[0].dri_format == image->dri_format);
995
996 if (!brw->ctx.TextureFormatSupported[format]) {
997 /* The texture storage paths in core Mesa detect if the driver does not
998 * support the user-requested format, and then searches for a
999 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1000 * do the fallbacks here for important formats.
1001 *
1002 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1003 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1004 * the Chrome OS compositor consumes as dma_buf EGLImages.
1005 */
1006 format = _mesa_format_fallback_rgbx_to_rgba(format);
1007 }
1008
1009 if (!brw->ctx.TextureFormatSupported[format])
1010 return NULL;
1011
1012 const struct isl_drm_modifier_info *mod_info =
1013 isl_drm_modifier_get_info(image->modifier);
1014
1015 enum intel_miptree_create_flags mt_create_flags = 0;
1016
1017 /* If this image comes in from a window system, we have different
1018 * requirements than if it comes in via an EGL import operation. Window
1019 * system images can use any form of auxiliary compression we wish because
1020 * they get "flushed" before being handed off to the window system and we
1021 * have the opportunity to do resolves. Non window-system images, on the
1022 * other hand, have no resolve point so we can't have aux without a
1023 * modifier.
1024 */
1025 if (!is_winsys_image)
1026 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1027
1028 /* If we have a modifier which specifies aux, don't create one yet */
1029 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1030 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1031
1032 /* Disable creation of the texture's aux buffers because the driver exposes
1033 * no EGL API to manage them. That is, there is no API for resolving the aux
1034 * buffer's content to the main buffer nor for invalidating the aux buffer's
1035 * content.
1036 */
1037 struct intel_mipmap_tree *mt =
1038 intel_miptree_create_for_bo(brw, image->bo, format,
1039 image->offset, image->width, image->height, 1,
1040 image->pitch, mt_create_flags);
1041 if (mt == NULL)
1042 return NULL;
1043
1044 mt->target = target;
1045 mt->level[0].level_x = image->tile_x;
1046 mt->level[0].level_y = image->tile_y;
1047 mt->drm_modifier = image->modifier;
1048
1049 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1050 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1051 * trouble resolving back to destination image due to alignment issues.
1052 */
1053 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1054 if (!devinfo->has_surface_tile_offset) {
1055 uint32_t draw_x, draw_y;
1056 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1057
1058 if (draw_x != 0 || draw_y != 0) {
1059 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1060 intel_miptree_release(&mt);
1061 return NULL;
1062 }
1063 }
1064
1065 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1066 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1067
1068 mt->aux_usage = mod_info->aux_usage;
1069 /* If we are a window system buffer, then we can support fast-clears
1070 * even if the modifier doesn't support them by doing a partial resolve
1071 * as part of the flush operation.
1072 */
1073 mt->supports_fast_clear =
1074 is_winsys_image || mod_info->supports_clear_color;
1075
1076 /* We don't know the actual state of the surface when we get it but we
1077 * can make a pretty good guess based on the modifier. What we do know
1078 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1079 * a worst case of compression.
1080 */
1081 enum isl_aux_state initial_state =
1082 isl_drm_modifier_get_default_aux_state(image->modifier);
1083
1084 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1085 intel_miptree_release(&mt);
1086 return NULL;
1087 }
1088 }
1089
1090 /* Don't assume coherency for imported EGLimages. We don't know what
1091 * external clients are going to do with it. They may scan it out.
1092 */
1093 image->bo->cache_coherent = false;
1094
1095 return mt;
1096 }
1097
1098 /**
1099 * For a singlesample renderbuffer, this simply wraps the given BO with a
1100 * miptree.
1101 *
1102 * For a multisample renderbuffer, this wraps the window system's
1103 * (singlesample) BO with a singlesample miptree attached to the
1104 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1105 * that will contain the actual rendering (which is lazily resolved to
1106 * irb->singlesample_mt).
1107 */
1108 bool
1109 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1110 struct intel_renderbuffer *irb,
1111 struct intel_mipmap_tree *singlesample_mt,
1112 uint32_t width, uint32_t height,
1113 uint32_t pitch)
1114 {
1115 struct intel_mipmap_tree *multisample_mt = NULL;
1116 struct gl_renderbuffer *rb = &irb->Base.Base;
1117 mesa_format format = rb->Format;
1118 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1119
1120 /* Only the front and back buffers, which are color buffers, are allocated
1121 * through the image loader.
1122 */
1123 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1124 _mesa_get_format_base_format(format) == GL_RGBA);
1125
1126 assert(singlesample_mt);
1127
1128 if (num_samples == 1) {
1129 intel_miptree_release(&irb->mt);
1130 irb->mt = singlesample_mt;
1131
1132 assert(!irb->singlesample_mt);
1133 } else {
1134 intel_miptree_release(&irb->singlesample_mt);
1135 irb->singlesample_mt = singlesample_mt;
1136
1137 if (!irb->mt ||
1138 irb->mt->surf.logical_level0_px.width != width ||
1139 irb->mt->surf.logical_level0_px.height != height) {
1140 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1141 format,
1142 width,
1143 height,
1144 num_samples);
1145 if (!multisample_mt)
1146 goto fail;
1147
1148 irb->need_downsample = false;
1149 intel_miptree_release(&irb->mt);
1150 irb->mt = multisample_mt;
1151 }
1152 }
1153 return true;
1154
1155 fail:
1156 intel_miptree_release(&irb->mt);
1157 return false;
1158 }
1159
1160 struct intel_mipmap_tree*
1161 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1162 mesa_format format,
1163 uint32_t width,
1164 uint32_t height,
1165 uint32_t num_samples)
1166 {
1167 struct intel_mipmap_tree *mt;
1168 uint32_t depth = 1;
1169 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1170
1171 mt = intel_miptree_create(brw, target, format, 0, 0,
1172 width, height, depth, num_samples,
1173 MIPTREE_CREATE_BUSY);
1174 if (!mt)
1175 goto fail;
1176
1177 return mt;
1178
1179 fail:
1180 intel_miptree_release(&mt);
1181 return NULL;
1182 }
1183
1184 void
1185 intel_miptree_reference(struct intel_mipmap_tree **dst,
1186 struct intel_mipmap_tree *src)
1187 {
1188 if (*dst == src)
1189 return;
1190
1191 intel_miptree_release(dst);
1192
1193 if (src) {
1194 src->refcount++;
1195 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1196 }
1197
1198 *dst = src;
1199 }
1200
1201 static void
1202 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1203 {
1204 if (aux_buf == NULL)
1205 return;
1206
1207 brw_bo_unreference(aux_buf->bo);
1208
1209 free(aux_buf);
1210 }
1211
1212 void
1213 intel_miptree_release(struct intel_mipmap_tree **mt)
1214 {
1215 if (!*mt)
1216 return;
1217
1218 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1219 if (--(*mt)->refcount <= 0) {
1220 GLuint i;
1221
1222 DBG("%s deleting %p\n", __func__, *mt);
1223
1224 brw_bo_unreference((*mt)->bo);
1225 intel_miptree_release(&(*mt)->stencil_mt);
1226 intel_miptree_release(&(*mt)->r8stencil_mt);
1227 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1228 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1229 free_aux_state_map((*mt)->aux_state);
1230
1231 intel_miptree_release(&(*mt)->plane[0]);
1232 intel_miptree_release(&(*mt)->plane[1]);
1233
1234 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1235 free((*mt)->level[i].slice);
1236 }
1237
1238 free(*mt);
1239 }
1240 *mt = NULL;
1241 }
1242
1243
1244 void
1245 intel_get_image_dims(struct gl_texture_image *image,
1246 int *width, int *height, int *depth)
1247 {
1248 switch (image->TexObject->Target) {
1249 case GL_TEXTURE_1D_ARRAY:
1250 /* For a 1D Array texture the OpenGL API will treat the image height as
1251 * the number of array slices. For Intel hardware, we treat the 1D array
1252 * as a 2D Array with a height of 1. So, here we want to swap image
1253 * height and depth.
1254 */
1255 assert(image->Depth == 1);
1256 *width = image->Width;
1257 *height = 1;
1258 *depth = image->Height;
1259 break;
1260 case GL_TEXTURE_CUBE_MAP:
1261 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1262 * though we really have 6 slices.
1263 */
1264 assert(image->Depth == 1);
1265 *width = image->Width;
1266 *height = image->Height;
1267 *depth = 6;
1268 break;
1269 default:
1270 *width = image->Width;
1271 *height = image->Height;
1272 *depth = image->Depth;
1273 break;
1274 }
1275 }
1276
1277 /**
1278 * Can the image be pulled into a unified mipmap tree? This mirrors
1279 * the completeness test in a lot of ways.
1280 *
1281 * Not sure whether I want to pass gl_texture_image here.
1282 */
1283 bool
1284 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1285 struct gl_texture_image *image)
1286 {
1287 struct intel_texture_image *intelImage = intel_texture_image(image);
1288 GLuint level = intelImage->base.Base.Level;
1289 int width, height, depth;
1290
1291 /* glTexImage* choose the texture object based on the target passed in, and
1292 * objects can't change targets over their lifetimes, so this should be
1293 * true.
1294 */
1295 assert(image->TexObject->Target == mt->target);
1296
1297 mesa_format mt_format = mt->format;
1298 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1299 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1300 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1301 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1302 if (mt->etc_format != MESA_FORMAT_NONE)
1303 mt_format = mt->etc_format;
1304
1305 if (image->TexFormat != mt_format)
1306 return false;
1307
1308 intel_get_image_dims(image, &width, &height, &depth);
1309
1310 if (mt->target == GL_TEXTURE_CUBE_MAP)
1311 depth = 6;
1312
1313 if (level >= mt->surf.levels)
1314 return false;
1315
1316 const unsigned level_depth =
1317 mt->surf.dim == ISL_SURF_DIM_3D ?
1318 minify(mt->surf.logical_level0_px.depth, level) :
1319 mt->surf.logical_level0_px.array_len;
1320
1321 return width == minify(mt->surf.logical_level0_px.width, level) &&
1322 height == minify(mt->surf.logical_level0_px.height, level) &&
1323 depth == level_depth &&
1324 MAX2(image->NumSamples, 1) == mt->surf.samples;
1325 }
1326
1327 void
1328 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1329 GLuint level, GLuint slice,
1330 GLuint *x, GLuint *y)
1331 {
1332 if (level == 0 && slice == 0) {
1333 *x = mt->level[0].level_x;
1334 *y = mt->level[0].level_y;
1335 return;
1336 }
1337
1338 uint32_t x_offset_sa, y_offset_sa;
1339
1340 /* Miptree itself can have an offset only if it represents a single
1341 * slice in an imported buffer object.
1342 * See intel_miptree_create_for_dri_image().
1343 */
1344 assert(mt->level[0].level_x == 0);
1345 assert(mt->level[0].level_y == 0);
1346
1347 /* Given level is relative to level zero while the miptree may be
1348 * represent just a subset of all levels starting from 'first_level'.
1349 */
1350 assert(level >= mt->first_level);
1351 level -= mt->first_level;
1352
1353 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1354 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1355 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1356 &x_offset_sa, &y_offset_sa);
1357
1358 *x = x_offset_sa;
1359 *y = y_offset_sa;
1360 }
1361
1362
1363 /**
1364 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1365 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1366 * and tile_h is set to 1.
1367 */
1368 void
1369 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1370 uint32_t *tile_w, uint32_t *tile_h)
1371 {
1372 switch (tiling) {
1373 case ISL_TILING_X:
1374 *tile_w = 512;
1375 *tile_h = 8;
1376 break;
1377 case ISL_TILING_Y0:
1378 *tile_w = 128;
1379 *tile_h = 32;
1380 break;
1381 case ISL_TILING_LINEAR:
1382 *tile_w = cpp;
1383 *tile_h = 1;
1384 break;
1385 default:
1386 unreachable("not reached");
1387 }
1388 }
1389
1390
1391 /**
1392 * This function computes masks that may be used to select the bits of the X
1393 * and Y coordinates that indicate the offset within a tile. If the BO is
1394 * untiled, the masks are set to 0.
1395 */
1396 void
1397 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1398 uint32_t *mask_x, uint32_t *mask_y)
1399 {
1400 uint32_t tile_w_bytes, tile_h;
1401
1402 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1403
1404 *mask_x = tile_w_bytes / cpp - 1;
1405 *mask_y = tile_h - 1;
1406 }
1407
1408 /**
1409 * Compute the offset (in bytes) from the start of the BO to the given x
1410 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1411 * multiples of the tile size.
1412 */
1413 uint32_t
1414 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1415 uint32_t x, uint32_t y)
1416 {
1417 int cpp = mt->cpp;
1418 uint32_t pitch = mt->surf.row_pitch;
1419
1420 switch (mt->surf.tiling) {
1421 default:
1422 unreachable("not reached");
1423 case ISL_TILING_LINEAR:
1424 return y * pitch + x * cpp;
1425 case ISL_TILING_X:
1426 assert((x % (512 / cpp)) == 0);
1427 assert((y % 8) == 0);
1428 return y * pitch + x / (512 / cpp) * 4096;
1429 case ISL_TILING_Y0:
1430 assert((x % (128 / cpp)) == 0);
1431 assert((y % 32) == 0);
1432 return y * pitch + x / (128 / cpp) * 4096;
1433 }
1434 }
1435
1436 /**
1437 * Rendering with tiled buffers requires that the base address of the buffer
1438 * be aligned to a page boundary. For renderbuffers, and sometimes with
1439 * textures, we may want the surface to point at a texture image level that
1440 * isn't at a page boundary.
1441 *
1442 * This function returns an appropriately-aligned base offset
1443 * according to the tiling restrictions, plus any required x/y offset
1444 * from there.
1445 */
1446 uint32_t
1447 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1448 GLuint level, GLuint slice,
1449 uint32_t *tile_x,
1450 uint32_t *tile_y)
1451 {
1452 uint32_t x, y;
1453 uint32_t mask_x, mask_y;
1454
1455 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1456 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1457
1458 *tile_x = x & mask_x;
1459 *tile_y = y & mask_y;
1460
1461 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1462 }
1463
1464 static void
1465 intel_miptree_copy_slice_sw(struct brw_context *brw,
1466 struct intel_mipmap_tree *src_mt,
1467 unsigned src_level, unsigned src_layer,
1468 struct intel_mipmap_tree *dst_mt,
1469 unsigned dst_level, unsigned dst_layer,
1470 unsigned width, unsigned height)
1471 {
1472 void *src, *dst;
1473 ptrdiff_t src_stride, dst_stride;
1474 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1475
1476 intel_miptree_map(brw, src_mt,
1477 src_level, src_layer,
1478 0, 0,
1479 width, height,
1480 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1481 &src, &src_stride);
1482
1483 intel_miptree_map(brw, dst_mt,
1484 dst_level, dst_layer,
1485 0, 0,
1486 width, height,
1487 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1488 BRW_MAP_DIRECT_BIT,
1489 &dst, &dst_stride);
1490
1491 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1492 _mesa_get_format_name(src_mt->format),
1493 src_mt, src, src_stride,
1494 _mesa_get_format_name(dst_mt->format),
1495 dst_mt, dst, dst_stride,
1496 width, height);
1497
1498 int row_size = cpp * width;
1499 if (src_stride == row_size &&
1500 dst_stride == row_size) {
1501 memcpy(dst, src, row_size * height);
1502 } else {
1503 for (int i = 0; i < height; i++) {
1504 memcpy(dst, src, row_size);
1505 dst += dst_stride;
1506 src += src_stride;
1507 }
1508 }
1509
1510 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1511 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1512
1513 /* Don't forget to copy the stencil data over, too. We could have skipped
1514 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1515 * shuffling the two data sources in/out of temporary storage instead of
1516 * the direct mapping we get this way.
1517 */
1518 if (dst_mt->stencil_mt) {
1519 assert(src_mt->stencil_mt);
1520 intel_miptree_copy_slice_sw(brw,
1521 src_mt->stencil_mt, src_level, src_layer,
1522 dst_mt->stencil_mt, dst_level, dst_layer,
1523 width, height);
1524 }
1525 }
1526
1527 void
1528 intel_miptree_copy_slice(struct brw_context *brw,
1529 struct intel_mipmap_tree *src_mt,
1530 unsigned src_level, unsigned src_layer,
1531 struct intel_mipmap_tree *dst_mt,
1532 unsigned dst_level, unsigned dst_layer)
1533
1534 {
1535 mesa_format format = src_mt->format;
1536 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1537 src_level - src_mt->first_level);
1538 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1539 src_level - src_mt->first_level);
1540
1541 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1542 src_level - src_mt->first_level));
1543
1544 assert(src_mt->format == dst_mt->format);
1545
1546 if (dst_mt->compressed) {
1547 unsigned int i, j;
1548 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1549 height = ALIGN_NPOT(height, j) / j;
1550 width = ALIGN_NPOT(width, i) / i;
1551 }
1552
1553 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1554 * below won't apply since we can't do the depth's Y tiling or the
1555 * stencil's W tiling in the blitter.
1556 */
1557 if (src_mt->stencil_mt) {
1558 intel_miptree_copy_slice_sw(brw,
1559 src_mt, src_level, src_layer,
1560 dst_mt, dst_level, dst_layer,
1561 width, height);
1562 return;
1563 }
1564
1565 uint32_t dst_x, dst_y, src_x, src_y;
1566 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1567 &dst_x, &dst_y);
1568 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1569 &src_x, &src_y);
1570
1571 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1572 _mesa_get_format_name(src_mt->format),
1573 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1574 _mesa_get_format_name(dst_mt->format),
1575 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1576 width, height);
1577
1578 if (!intel_miptree_blit(brw,
1579 src_mt, src_level, src_layer, 0, 0, false,
1580 dst_mt, dst_level, dst_layer, 0, 0, false,
1581 width, height, GL_COPY)) {
1582 perf_debug("miptree validate blit for %s failed\n",
1583 _mesa_get_format_name(format));
1584
1585 intel_miptree_copy_slice_sw(brw,
1586 src_mt, src_level, src_layer,
1587 dst_mt, dst_level, dst_layer,
1588 width, height);
1589 }
1590 }
1591
1592 /**
1593 * Copies the image's current data to the given miptree, and associates that
1594 * miptree with the image.
1595 */
1596 void
1597 intel_miptree_copy_teximage(struct brw_context *brw,
1598 struct intel_texture_image *intelImage,
1599 struct intel_mipmap_tree *dst_mt)
1600 {
1601 struct intel_mipmap_tree *src_mt = intelImage->mt;
1602 struct intel_texture_object *intel_obj =
1603 intel_texture_object(intelImage->base.Base.TexObject);
1604 int level = intelImage->base.Base.Level;
1605 const unsigned face = intelImage->base.Base.Face;
1606 unsigned start_layer, end_layer;
1607
1608 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1609 assert(face == 0);
1610 assert(intelImage->base.Base.Height);
1611 start_layer = 0;
1612 end_layer = intelImage->base.Base.Height - 1;
1613 } else if (face > 0) {
1614 start_layer = face;
1615 end_layer = face;
1616 } else {
1617 assert(intelImage->base.Base.Depth);
1618 start_layer = 0;
1619 end_layer = intelImage->base.Base.Depth - 1;
1620 }
1621
1622 for (unsigned i = start_layer; i <= end_layer; i++) {
1623 intel_miptree_copy_slice(brw,
1624 src_mt, level, i,
1625 dst_mt, level, i);
1626 }
1627
1628 intel_miptree_reference(&intelImage->mt, dst_mt);
1629 intel_obj->needs_validate = true;
1630 }
1631
1632 static void
1633 intel_miptree_init_mcs(struct brw_context *brw,
1634 struct intel_mipmap_tree *mt,
1635 int init_value)
1636 {
1637 assert(mt->mcs_buf != NULL);
1638
1639 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1640 *
1641 * When MCS buffer is enabled and bound to MSRT, it is required that it
1642 * is cleared prior to any rendering.
1643 *
1644 * Since we don't use the MCS buffer for any purpose other than rendering,
1645 * it makes sense to just clear it immediately upon allocation.
1646 *
1647 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1648 */
1649 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1650 if (unlikely(map == NULL)) {
1651 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1652 brw_bo_unreference(mt->mcs_buf->bo);
1653 free(mt->mcs_buf);
1654 return;
1655 }
1656 void *data = map;
1657 memset(data, init_value, mt->mcs_buf->size);
1658 brw_bo_unmap(mt->mcs_buf->bo);
1659 }
1660
1661 static struct intel_miptree_aux_buffer *
1662 intel_alloc_aux_buffer(struct brw_context *brw,
1663 const char *name,
1664 const struct isl_surf *aux_surf,
1665 uint32_t alloc_flags,
1666 struct intel_mipmap_tree *mt)
1667 {
1668 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1669 if (!buf)
1670 return false;
1671
1672 buf->size = aux_surf->size;
1673 buf->pitch = aux_surf->row_pitch;
1674 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1675
1676 /* ISL has stricter set of alignment rules then the drm allocator.
1677 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1678 * trying to recalculate based on different format block sizes.
1679 */
1680 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1681 I915_TILING_Y, buf->pitch, alloc_flags);
1682 if (!buf->bo) {
1683 free(buf);
1684 return NULL;
1685 }
1686
1687 buf->surf = *aux_surf;
1688
1689 return buf;
1690 }
1691
1692 static bool
1693 intel_miptree_alloc_mcs(struct brw_context *brw,
1694 struct intel_mipmap_tree *mt,
1695 GLuint num_samples)
1696 {
1697 assert(brw->screen->devinfo.gen >= 7); /* MCS only used on Gen7+ */
1698 assert(mt->mcs_buf == NULL);
1699 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1700
1701 /* Multisampled miptrees are only supported for single level. */
1702 assert(mt->first_level == 0);
1703 enum isl_aux_state **aux_state =
1704 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1705 if (!aux_state)
1706 return false;
1707
1708 struct isl_surf temp_mcs_surf;
1709
1710 MAYBE_UNUSED bool ok =
1711 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1712 assert(ok);
1713
1714 /* Buffer needs to be initialised requiring the buffer to be immediately
1715 * mapped to cpu space for writing. Therefore do not use the gpu access
1716 * flag which can cause an unnecessary delay if the backing pages happened
1717 * to be just used by the GPU.
1718 */
1719 const uint32_t alloc_flags = 0;
1720 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1721 &temp_mcs_surf, alloc_flags, mt);
1722 if (!mt->mcs_buf) {
1723 free(aux_state);
1724 return false;
1725 }
1726
1727 mt->aux_state = aux_state;
1728
1729 intel_miptree_init_mcs(brw, mt, 0xFF);
1730
1731 return true;
1732 }
1733
1734 bool
1735 intel_miptree_alloc_ccs(struct brw_context *brw,
1736 struct intel_mipmap_tree *mt)
1737 {
1738 assert(mt->mcs_buf == NULL);
1739 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1740 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1741
1742 struct isl_surf temp_ccs_surf;
1743
1744 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1745 return false;
1746
1747 assert(temp_ccs_surf.size &&
1748 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1749
1750 enum isl_aux_state **aux_state =
1751 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1752 if (!aux_state)
1753 return false;
1754
1755 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1756 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1757 *
1758 * "If Software wants to enable Color Compression without Fast clear,
1759 * Software needs to initialize MCS with zeros."
1760 *
1761 * A CCS value of 0 indicates that the corresponding block is in the
1762 * pass-through state which is what we want.
1763 *
1764 * For CCS_D, on the other hand, we don't care as we're about to perform a
1765 * fast-clear operation. In that case, being hot in caches more useful.
1766 */
1767 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1768 BO_ALLOC_ZEROED : BO_ALLOC_BUSY;
1769 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1770 &temp_ccs_surf, alloc_flags, mt);
1771 if (!mt->mcs_buf) {
1772 free(aux_state);
1773 return false;
1774 }
1775
1776 mt->aux_state = aux_state;
1777
1778 return true;
1779 }
1780
1781 /**
1782 * Helper for intel_miptree_alloc_hiz() that sets
1783 * \c mt->level[level].has_hiz. Return true if and only if
1784 * \c has_hiz was set.
1785 */
1786 static bool
1787 intel_miptree_level_enable_hiz(struct brw_context *brw,
1788 struct intel_mipmap_tree *mt,
1789 uint32_t level)
1790 {
1791 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1792
1793 assert(mt->hiz_buf);
1794 assert(mt->surf.size > 0);
1795
1796 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1797 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1798 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1799
1800 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1801 * and the height is 4 aligned. This allows our HiZ support
1802 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1803 * we can grow the width & height to allow the HiZ op to
1804 * force the proper size alignments.
1805 */
1806 if (level > 0 && ((width & 7) || (height & 3))) {
1807 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1808 return false;
1809 }
1810 }
1811
1812 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1813 mt->level[level].has_hiz = true;
1814 return true;
1815 }
1816
1817 bool
1818 intel_miptree_alloc_hiz(struct brw_context *brw,
1819 struct intel_mipmap_tree *mt)
1820 {
1821 assert(mt->hiz_buf == NULL);
1822 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1823
1824 enum isl_aux_state **aux_state =
1825 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1826 if (!aux_state)
1827 return false;
1828
1829 struct isl_surf temp_hiz_surf;
1830
1831 MAYBE_UNUSED bool ok =
1832 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1833 assert(ok);
1834
1835 const uint32_t alloc_flags = BO_ALLOC_BUSY;
1836 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1837 &temp_hiz_surf, alloc_flags, mt);
1838
1839 if (!mt->hiz_buf) {
1840 free(aux_state);
1841 return false;
1842 }
1843
1844 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1845 intel_miptree_level_enable_hiz(brw, mt, level);
1846
1847 mt->aux_state = aux_state;
1848
1849 return true;
1850 }
1851
1852
1853 /**
1854 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1855 *
1856 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1857 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1858 * compress clear color so we wait until an actual fast-clear to allocate it.
1859 */
1860 static bool
1861 intel_miptree_alloc_aux(struct brw_context *brw,
1862 struct intel_mipmap_tree *mt)
1863 {
1864 switch (mt->aux_usage) {
1865 case ISL_AUX_USAGE_NONE:
1866 return true;
1867
1868 case ISL_AUX_USAGE_HIZ:
1869 assert(!_mesa_is_format_color_format(mt->format));
1870 if (!intel_miptree_alloc_hiz(brw, mt))
1871 return false;
1872 return true;
1873
1874 case ISL_AUX_USAGE_MCS:
1875 assert(_mesa_is_format_color_format(mt->format));
1876 assert(mt->surf.samples > 1);
1877 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1878 return false;
1879 return true;
1880
1881 case ISL_AUX_USAGE_CCS_D:
1882 /* Since CCS_D can only compress clear color so we wait until an actual
1883 * fast-clear to allocate it.
1884 */
1885 return true;
1886
1887 case ISL_AUX_USAGE_CCS_E:
1888 assert(_mesa_is_format_color_format(mt->format));
1889 assert(mt->surf.samples == 1);
1890 if (!intel_miptree_alloc_ccs(brw, mt))
1891 return false;
1892 return true;
1893 }
1894
1895 unreachable("Invalid aux usage");
1896 }
1897
1898
1899 /**
1900 * Can the miptree sample using the hiz buffer?
1901 */
1902 bool
1903 intel_miptree_sample_with_hiz(struct brw_context *brw,
1904 struct intel_mipmap_tree *mt)
1905 {
1906 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1907
1908 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1909 * so keep things conservative for now and never enable it unless we're SKL+.
1910 */
1911 if (devinfo->gen < 9) {
1912 return false;
1913 }
1914
1915 if (!mt->hiz_buf) {
1916 return false;
1917 }
1918
1919 /* It seems the hardware won't fallback to the depth buffer if some of the
1920 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1921 * of the texture to be HiZ enabled.
1922 */
1923 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1924 if (!intel_miptree_level_has_hiz(mt, level))
1925 return false;
1926 }
1927
1928 /* If compressed multisampling is enabled, then we use it for the auxiliary
1929 * buffer instead.
1930 *
1931 * From the BDW PRM (Volume 2d: Command Reference: Structures
1932 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1933 *
1934 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1935 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1936 *
1937 * There is no such blurb for 1D textures, but there is sufficient evidence
1938 * that this is broken on SKL+.
1939 */
1940 return (mt->surf.samples == 1 &&
1941 mt->target != GL_TEXTURE_3D &&
1942 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1943 }
1944
1945 /**
1946 * Does the miptree slice have hiz enabled?
1947 */
1948 bool
1949 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1950 {
1951 intel_miptree_check_level_layer(mt, level, 0);
1952 return mt->level[level].has_hiz;
1953 }
1954
1955 static inline uint32_t
1956 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1957 uint32_t start_level, uint32_t num_levels)
1958 {
1959 assert(start_level >= mt->first_level);
1960 assert(start_level <= mt->last_level);
1961
1962 if (num_levels == INTEL_REMAINING_LAYERS)
1963 num_levels = mt->last_level - start_level + 1;
1964 /* Check for overflow */
1965 assert(start_level + num_levels >= start_level);
1966 assert(start_level + num_levels <= mt->last_level + 1);
1967
1968 return num_levels;
1969 }
1970
1971 static inline uint32_t
1972 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1973 uint32_t start_layer, uint32_t num_layers)
1974 {
1975 assert(level <= mt->last_level);
1976
1977 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1978 assert(start_layer < total_num_layers);
1979 if (num_layers == INTEL_REMAINING_LAYERS)
1980 num_layers = total_num_layers - start_layer;
1981 /* Check for overflow */
1982 assert(start_layer + num_layers >= start_layer);
1983 assert(start_layer + num_layers <= total_num_layers);
1984
1985 return num_layers;
1986 }
1987
1988 bool
1989 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1990 unsigned start_level, unsigned num_levels,
1991 unsigned start_layer, unsigned num_layers)
1992 {
1993 assert(_mesa_is_format_color_format(mt->format));
1994
1995 if (!mt->mcs_buf)
1996 return false;
1997
1998 /* Clamp the level range to fit the miptree */
1999 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2000
2001 for (uint32_t l = 0; l < num_levels; l++) {
2002 const uint32_t level = start_level + l;
2003 const uint32_t level_layers =
2004 miptree_layer_range_length(mt, level, start_layer, num_layers);
2005 for (unsigned a = 0; a < level_layers; a++) {
2006 enum isl_aux_state aux_state =
2007 intel_miptree_get_aux_state(mt, level, start_layer + a);
2008 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
2009 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
2010 return true;
2011 }
2012 }
2013
2014 return false;
2015 }
2016
2017 static void
2018 intel_miptree_check_color_resolve(const struct brw_context *brw,
2019 const struct intel_mipmap_tree *mt,
2020 unsigned level, unsigned layer)
2021 {
2022 if (!mt->mcs_buf)
2023 return;
2024
2025 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2026 assert(brw->screen->devinfo.gen >= 8 ||
2027 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2028
2029 /* Compression of arrayed msaa surfaces is supported. */
2030 if (mt->surf.samples > 1)
2031 return;
2032
2033 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2034 assert(brw->screen->devinfo.gen >= 8 ||
2035 (layer == 0 &&
2036 mt->surf.logical_level0_px.depth == 1 &&
2037 mt->surf.logical_level0_px.array_len == 1));
2038
2039 (void)level;
2040 (void)layer;
2041 }
2042
2043 static enum blorp_fast_clear_op
2044 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2045 enum isl_aux_usage aux_usage,
2046 bool fast_clear_supported)
2047 {
2048 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2049
2050 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2051
2052 assert(ccs_supported == fast_clear_supported);
2053
2054 switch (aux_state) {
2055 case ISL_AUX_STATE_CLEAR:
2056 case ISL_AUX_STATE_PARTIAL_CLEAR:
2057 if (!ccs_supported)
2058 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2059 else
2060 return BLORP_FAST_CLEAR_OP_NONE;
2061
2062 case ISL_AUX_STATE_PASS_THROUGH:
2063 return BLORP_FAST_CLEAR_OP_NONE;
2064
2065 case ISL_AUX_STATE_RESOLVED:
2066 case ISL_AUX_STATE_AUX_INVALID:
2067 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2068 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2069 break;
2070 }
2071
2072 unreachable("Invalid aux state for CCS_D");
2073 }
2074
2075 static enum blorp_fast_clear_op
2076 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2077 enum isl_aux_usage aux_usage,
2078 bool fast_clear_supported)
2079 {
2080 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2081 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2082 aux_usage == ISL_AUX_USAGE_CCS_D ||
2083 aux_usage == ISL_AUX_USAGE_CCS_E);
2084
2085 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2086 assert(fast_clear_supported);
2087
2088 switch (aux_state) {
2089 case ISL_AUX_STATE_CLEAR:
2090 case ISL_AUX_STATE_PARTIAL_CLEAR:
2091 if (fast_clear_supported)
2092 return BLORP_FAST_CLEAR_OP_NONE;
2093 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2094 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2095 else
2096 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2097
2098 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2099 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2100 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2101 else if (!fast_clear_supported)
2102 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2103 else
2104 return BLORP_FAST_CLEAR_OP_NONE;
2105
2106 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2107 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2108 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2109 else
2110 return BLORP_FAST_CLEAR_OP_NONE;
2111
2112 case ISL_AUX_STATE_PASS_THROUGH:
2113 return BLORP_FAST_CLEAR_OP_NONE;
2114
2115 case ISL_AUX_STATE_RESOLVED:
2116 case ISL_AUX_STATE_AUX_INVALID:
2117 break;
2118 }
2119
2120 unreachable("Invalid aux state for CCS_E");
2121 }
2122
2123 static void
2124 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2125 struct intel_mipmap_tree *mt,
2126 uint32_t level, uint32_t layer,
2127 enum isl_aux_usage aux_usage,
2128 bool fast_clear_supported)
2129 {
2130 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2131
2132 enum blorp_fast_clear_op resolve_op;
2133 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2134 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2135 fast_clear_supported);
2136 } else {
2137 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2138 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2139 fast_clear_supported);
2140 }
2141
2142 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2143 intel_miptree_check_color_resolve(brw, mt, level, layer);
2144 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2145
2146 switch (resolve_op) {
2147 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2148 /* The CCS full resolve operation destroys the CCS and sets it to the
2149 * pass-through state. (You can also think of this as being both a
2150 * resolve and an ambiguate in one operation.)
2151 */
2152 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2153 ISL_AUX_STATE_PASS_THROUGH);
2154 break;
2155
2156 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2157 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2158 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2159 break;
2160
2161 default:
2162 unreachable("Invalid resolve op");
2163 }
2164 }
2165 }
2166
2167 static void
2168 intel_miptree_finish_ccs_write(struct brw_context *brw,
2169 struct intel_mipmap_tree *mt,
2170 uint32_t level, uint32_t layer,
2171 enum isl_aux_usage aux_usage)
2172 {
2173 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2174 aux_usage == ISL_AUX_USAGE_CCS_D ||
2175 aux_usage == ISL_AUX_USAGE_CCS_E);
2176
2177 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2178
2179 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2180 switch (aux_state) {
2181 case ISL_AUX_STATE_CLEAR:
2182 case ISL_AUX_STATE_PARTIAL_CLEAR:
2183 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2184 aux_usage == ISL_AUX_USAGE_CCS_D);
2185
2186 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2187 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2188 ISL_AUX_STATE_COMPRESSED_CLEAR);
2189 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2190 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2191 ISL_AUX_STATE_PARTIAL_CLEAR);
2192 }
2193 break;
2194
2195 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2196 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2197 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2198 break; /* Nothing to do */
2199
2200 case ISL_AUX_STATE_PASS_THROUGH:
2201 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2202 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2203 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2204 } else {
2205 /* Nothing to do */
2206 }
2207 break;
2208
2209 case ISL_AUX_STATE_RESOLVED:
2210 case ISL_AUX_STATE_AUX_INVALID:
2211 unreachable("Invalid aux state for CCS_E");
2212 }
2213 } else {
2214 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2215 /* CCS_D is a bit simpler */
2216 switch (aux_state) {
2217 case ISL_AUX_STATE_CLEAR:
2218 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2219 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2220 ISL_AUX_STATE_PARTIAL_CLEAR);
2221 break;
2222
2223 case ISL_AUX_STATE_PARTIAL_CLEAR:
2224 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2225 break; /* Nothing to do */
2226
2227 case ISL_AUX_STATE_PASS_THROUGH:
2228 /* Nothing to do */
2229 break;
2230
2231 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2232 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2233 case ISL_AUX_STATE_RESOLVED:
2234 case ISL_AUX_STATE_AUX_INVALID:
2235 unreachable("Invalid aux state for CCS_D");
2236 }
2237 }
2238 }
2239
2240 static void
2241 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2242 struct intel_mipmap_tree *mt,
2243 uint32_t layer,
2244 enum isl_aux_usage aux_usage,
2245 bool fast_clear_supported)
2246 {
2247 assert(aux_usage == ISL_AUX_USAGE_MCS);
2248
2249 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2250 case ISL_AUX_STATE_CLEAR:
2251 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2252 if (!fast_clear_supported) {
2253 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2254 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2255 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2256 }
2257 break;
2258
2259 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2260 break; /* Nothing to do */
2261
2262 case ISL_AUX_STATE_RESOLVED:
2263 case ISL_AUX_STATE_PASS_THROUGH:
2264 case ISL_AUX_STATE_AUX_INVALID:
2265 case ISL_AUX_STATE_PARTIAL_CLEAR:
2266 unreachable("Invalid aux state for MCS");
2267 }
2268 }
2269
2270 static void
2271 intel_miptree_finish_mcs_write(struct brw_context *brw,
2272 struct intel_mipmap_tree *mt,
2273 uint32_t layer,
2274 enum isl_aux_usage aux_usage)
2275 {
2276 assert(aux_usage == ISL_AUX_USAGE_MCS);
2277
2278 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2279 case ISL_AUX_STATE_CLEAR:
2280 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2281 ISL_AUX_STATE_COMPRESSED_CLEAR);
2282 break;
2283
2284 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2285 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2286 break; /* Nothing to do */
2287
2288 case ISL_AUX_STATE_RESOLVED:
2289 case ISL_AUX_STATE_PASS_THROUGH:
2290 case ISL_AUX_STATE_AUX_INVALID:
2291 case ISL_AUX_STATE_PARTIAL_CLEAR:
2292 unreachable("Invalid aux state for MCS");
2293 }
2294 }
2295
2296 static void
2297 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2298 struct intel_mipmap_tree *mt,
2299 uint32_t level, uint32_t layer,
2300 enum isl_aux_usage aux_usage,
2301 bool fast_clear_supported)
2302 {
2303 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2304
2305 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2306 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2307 case ISL_AUX_STATE_CLEAR:
2308 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2309 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2310 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2311 break;
2312
2313 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2314 if (aux_usage != ISL_AUX_USAGE_HIZ)
2315 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2316 break;
2317
2318 case ISL_AUX_STATE_PASS_THROUGH:
2319 case ISL_AUX_STATE_RESOLVED:
2320 break;
2321
2322 case ISL_AUX_STATE_AUX_INVALID:
2323 if (aux_usage == ISL_AUX_USAGE_HIZ)
2324 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2325 break;
2326
2327 case ISL_AUX_STATE_PARTIAL_CLEAR:
2328 unreachable("Invalid HiZ state");
2329 }
2330
2331 if (hiz_op != BLORP_HIZ_OP_NONE) {
2332 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2333
2334 switch (hiz_op) {
2335 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2336 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2337 ISL_AUX_STATE_RESOLVED);
2338 break;
2339
2340 case BLORP_HIZ_OP_HIZ_RESOLVE:
2341 /* The HiZ resolve operation is actually an ambiguate */
2342 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2343 ISL_AUX_STATE_PASS_THROUGH);
2344 break;
2345
2346 default:
2347 unreachable("Invalid HiZ op");
2348 }
2349 }
2350 }
2351
2352 static void
2353 intel_miptree_finish_hiz_write(struct brw_context *brw,
2354 struct intel_mipmap_tree *mt,
2355 uint32_t level, uint32_t layer,
2356 enum isl_aux_usage aux_usage)
2357 {
2358 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2359
2360 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2361 case ISL_AUX_STATE_CLEAR:
2362 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2363 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2364 ISL_AUX_STATE_COMPRESSED_CLEAR);
2365 break;
2366
2367 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2368 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2369 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2370 break; /* Nothing to do */
2371
2372 case ISL_AUX_STATE_RESOLVED:
2373 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2374 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2375 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2376 } else {
2377 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2378 ISL_AUX_STATE_AUX_INVALID);
2379 }
2380 break;
2381
2382 case ISL_AUX_STATE_PASS_THROUGH:
2383 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2384 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2385 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2386 }
2387 break;
2388
2389 case ISL_AUX_STATE_AUX_INVALID:
2390 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2391 break;
2392
2393 case ISL_AUX_STATE_PARTIAL_CLEAR:
2394 unreachable("Invalid HiZ state");
2395 }
2396 }
2397
2398 void
2399 intel_miptree_prepare_access(struct brw_context *brw,
2400 struct intel_mipmap_tree *mt,
2401 uint32_t start_level, uint32_t num_levels,
2402 uint32_t start_layer, uint32_t num_layers,
2403 enum isl_aux_usage aux_usage,
2404 bool fast_clear_supported)
2405 {
2406 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2407
2408 switch (mt->aux_usage) {
2409 case ISL_AUX_USAGE_NONE:
2410 /* Nothing to do */
2411 break;
2412
2413 case ISL_AUX_USAGE_MCS:
2414 assert(mt->mcs_buf);
2415 assert(start_level == 0 && num_levels == 1);
2416 const uint32_t level_layers =
2417 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2418 for (uint32_t a = 0; a < level_layers; a++) {
2419 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2420 aux_usage, fast_clear_supported);
2421 }
2422 break;
2423
2424 case ISL_AUX_USAGE_CCS_D:
2425 case ISL_AUX_USAGE_CCS_E:
2426 if (!mt->mcs_buf)
2427 return;
2428
2429 for (uint32_t l = 0; l < num_levels; l++) {
2430 const uint32_t level = start_level + l;
2431 const uint32_t level_layers =
2432 miptree_layer_range_length(mt, level, start_layer, num_layers);
2433 for (uint32_t a = 0; a < level_layers; a++) {
2434 intel_miptree_prepare_ccs_access(brw, mt, level,
2435 start_layer + a,
2436 aux_usage, fast_clear_supported);
2437 }
2438 }
2439 break;
2440
2441 case ISL_AUX_USAGE_HIZ:
2442 assert(mt->hiz_buf);
2443 for (uint32_t l = 0; l < num_levels; l++) {
2444 const uint32_t level = start_level + l;
2445 if (!intel_miptree_level_has_hiz(mt, level))
2446 continue;
2447
2448 const uint32_t level_layers =
2449 miptree_layer_range_length(mt, level, start_layer, num_layers);
2450 for (uint32_t a = 0; a < level_layers; a++) {
2451 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2452 aux_usage, fast_clear_supported);
2453 }
2454 }
2455 break;
2456
2457 default:
2458 unreachable("Invalid aux usage");
2459 }
2460 }
2461
2462 void
2463 intel_miptree_finish_write(struct brw_context *brw,
2464 struct intel_mipmap_tree *mt, uint32_t level,
2465 uint32_t start_layer, uint32_t num_layers,
2466 enum isl_aux_usage aux_usage)
2467 {
2468 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2469
2470 switch (mt->aux_usage) {
2471 case ISL_AUX_USAGE_NONE:
2472 /* Nothing to do */
2473 break;
2474
2475 case ISL_AUX_USAGE_MCS:
2476 assert(mt->mcs_buf);
2477 for (uint32_t a = 0; a < num_layers; a++) {
2478 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2479 aux_usage);
2480 }
2481 break;
2482
2483 case ISL_AUX_USAGE_CCS_D:
2484 case ISL_AUX_USAGE_CCS_E:
2485 if (!mt->mcs_buf)
2486 return;
2487
2488 for (uint32_t a = 0; a < num_layers; a++) {
2489 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2490 aux_usage);
2491 }
2492 break;
2493
2494 case ISL_AUX_USAGE_HIZ:
2495 if (!intel_miptree_level_has_hiz(mt, level))
2496 return;
2497
2498 for (uint32_t a = 0; a < num_layers; a++) {
2499 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2500 aux_usage);
2501 }
2502 break;
2503
2504 default:
2505 unreachable("Invavlid aux usage");
2506 }
2507 }
2508
2509 enum isl_aux_state
2510 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2511 uint32_t level, uint32_t layer)
2512 {
2513 intel_miptree_check_level_layer(mt, level, layer);
2514
2515 if (_mesa_is_format_color_format(mt->format)) {
2516 assert(mt->mcs_buf != NULL);
2517 assert(mt->surf.samples == 1 ||
2518 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2519 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2520 unreachable("Cannot get aux state for stencil");
2521 } else {
2522 assert(intel_miptree_level_has_hiz(mt, level));
2523 }
2524
2525 return mt->aux_state[level][layer];
2526 }
2527
2528 void
2529 intel_miptree_set_aux_state(struct brw_context *brw,
2530 struct intel_mipmap_tree *mt, uint32_t level,
2531 uint32_t start_layer, uint32_t num_layers,
2532 enum isl_aux_state aux_state)
2533 {
2534 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2535
2536 if (_mesa_is_format_color_format(mt->format)) {
2537 assert(mt->mcs_buf != NULL);
2538 assert(mt->surf.samples == 1 ||
2539 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2540 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2541 unreachable("Cannot get aux state for stencil");
2542 } else {
2543 assert(intel_miptree_level_has_hiz(mt, level));
2544 }
2545
2546 for (unsigned a = 0; a < num_layers; a++) {
2547 if (mt->aux_state[level][start_layer + a] != aux_state) {
2548 mt->aux_state[level][start_layer + a] = aux_state;
2549 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2550 }
2551 }
2552 }
2553
2554 /* On Gen9 color buffers may be compressed by the hardware (lossless
2555 * compression). There are, however, format restrictions and care needs to be
2556 * taken that the sampler engine is capable for re-interpreting a buffer with
2557 * format different the buffer was originally written with.
2558 *
2559 * For example, SRGB formats are not compressible and the sampler engine isn't
2560 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2561 * color buffer needs to be resolved so that the sampling surface can be
2562 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2563 * set).
2564 */
2565 static bool
2566 can_texture_with_ccs(struct brw_context *brw,
2567 struct intel_mipmap_tree *mt,
2568 enum isl_format view_format)
2569 {
2570 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2571 return false;
2572
2573 /* TODO: Replace with format_ccs_e_compat_with_miptree for better perf. */
2574 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2575 mt->surf.format, view_format)) {
2576 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2577 isl_format_get_layout(view_format)->name,
2578 _mesa_get_format_name(mt->format));
2579 return false;
2580 }
2581
2582 return true;
2583 }
2584
2585 enum isl_aux_usage
2586 intel_miptree_texture_aux_usage(struct brw_context *brw,
2587 struct intel_mipmap_tree *mt,
2588 enum isl_format view_format)
2589 {
2590 switch (mt->aux_usage) {
2591 case ISL_AUX_USAGE_HIZ:
2592 if (intel_miptree_sample_with_hiz(brw, mt))
2593 return ISL_AUX_USAGE_HIZ;
2594 break;
2595
2596 case ISL_AUX_USAGE_MCS:
2597 return ISL_AUX_USAGE_MCS;
2598
2599 case ISL_AUX_USAGE_CCS_D:
2600 case ISL_AUX_USAGE_CCS_E:
2601 if (!mt->mcs_buf) {
2602 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2603 return ISL_AUX_USAGE_NONE;
2604 }
2605
2606 /* If we don't have any unresolved color, report an aux usage of
2607 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2608 * aux surface and we can save some bandwidth.
2609 */
2610 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2611 0, INTEL_REMAINING_LAYERS))
2612 return ISL_AUX_USAGE_NONE;
2613
2614 if (can_texture_with_ccs(brw, mt, view_format))
2615 return ISL_AUX_USAGE_CCS_E;
2616 break;
2617
2618 default:
2619 break;
2620 }
2621
2622 return ISL_AUX_USAGE_NONE;
2623 }
2624
2625 static bool
2626 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2627 {
2628 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2629 * values so sRGB curve application was a no-op for all fast-clearable
2630 * formats.
2631 *
2632 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2633 * values, the hardware interprets the floats, not as what would be
2634 * returned from the sampler (or written by the shader), but as being
2635 * between format conversion and sRGB curve application. This means that
2636 * we can switch between sRGB and UNORM without having to whack the clear
2637 * color.
2638 */
2639 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2640 }
2641
2642 void
2643 intel_miptree_prepare_texture(struct brw_context *brw,
2644 struct intel_mipmap_tree *mt,
2645 enum isl_format view_format,
2646 uint32_t start_level, uint32_t num_levels,
2647 uint32_t start_layer, uint32_t num_layers,
2648 bool disable_aux)
2649 {
2650 enum isl_aux_usage aux_usage = disable_aux ? ISL_AUX_USAGE_NONE :
2651 intel_miptree_texture_aux_usage(brw, mt, view_format);
2652 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2653
2654 /* Clear color is specified as ints or floats and the conversion is done by
2655 * the sampler. If we have a texture view, we would have to perform the
2656 * clear color conversion manually. Just disable clear color.
2657 */
2658 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2659 clear_supported = false;
2660
2661 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2662 start_layer, num_layers,
2663 aux_usage, clear_supported);
2664 }
2665
2666 void
2667 intel_miptree_prepare_image(struct brw_context *brw,
2668 struct intel_mipmap_tree *mt)
2669 {
2670 /* The data port doesn't understand any compression */
2671 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2672 0, INTEL_REMAINING_LAYERS,
2673 ISL_AUX_USAGE_NONE, false);
2674 }
2675
2676 enum isl_aux_usage
2677 intel_miptree_render_aux_usage(struct brw_context *brw,
2678 struct intel_mipmap_tree *mt,
2679 enum isl_format render_format,
2680 bool blend_enabled)
2681 {
2682 switch (mt->aux_usage) {
2683 case ISL_AUX_USAGE_MCS:
2684 assert(mt->mcs_buf);
2685 return ISL_AUX_USAGE_MCS;
2686
2687 case ISL_AUX_USAGE_CCS_D:
2688 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2689
2690 case ISL_AUX_USAGE_CCS_E: {
2691 /* If the format supports CCS_E and is compatible with the miptree,
2692 * then we can use it.
2693 */
2694 if (format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2695 mt, render_format))
2696 return ISL_AUX_USAGE_CCS_E;
2697
2698 /* Otherwise, we have to fall back to CCS_D */
2699
2700 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2701 * formats. However, there are issues with blending where it doesn't
2702 * properly apply the sRGB curve to the clear color when blending.
2703 */
2704 if (blend_enabled && isl_format_is_srgb(render_format) &&
2705 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2706 return ISL_AUX_USAGE_NONE;
2707
2708 return ISL_AUX_USAGE_CCS_D;
2709 }
2710
2711 default:
2712 return ISL_AUX_USAGE_NONE;
2713 }
2714 }
2715
2716 void
2717 intel_miptree_prepare_render(struct brw_context *brw,
2718 struct intel_mipmap_tree *mt, uint32_t level,
2719 uint32_t start_layer, uint32_t layer_count,
2720 enum isl_format render_format,
2721 bool blend_enabled)
2722 {
2723 enum isl_aux_usage aux_usage =
2724 intel_miptree_render_aux_usage(brw, mt, render_format, blend_enabled);
2725 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2726 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2727 }
2728
2729 void
2730 intel_miptree_finish_render(struct brw_context *brw,
2731 struct intel_mipmap_tree *mt, uint32_t level,
2732 uint32_t start_layer, uint32_t layer_count,
2733 enum isl_format render_format,
2734 bool blend_enabled)
2735 {
2736 assert(_mesa_is_format_color_format(mt->format));
2737
2738 enum isl_aux_usage aux_usage =
2739 intel_miptree_render_aux_usage(brw, mt, render_format, blend_enabled);
2740 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2741 aux_usage);
2742 }
2743
2744 void
2745 intel_miptree_prepare_depth(struct brw_context *brw,
2746 struct intel_mipmap_tree *mt, uint32_t level,
2747 uint32_t start_layer, uint32_t layer_count)
2748 {
2749 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2750 mt->aux_usage, mt->hiz_buf != NULL);
2751 }
2752
2753 void
2754 intel_miptree_finish_depth(struct brw_context *brw,
2755 struct intel_mipmap_tree *mt, uint32_t level,
2756 uint32_t start_layer, uint32_t layer_count,
2757 bool depth_written)
2758 {
2759 if (depth_written) {
2760 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2761 mt->hiz_buf != NULL);
2762 }
2763 }
2764
2765 void
2766 intel_miptree_prepare_external(struct brw_context *brw,
2767 struct intel_mipmap_tree *mt)
2768 {
2769 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2770 bool supports_fast_clear = false;
2771
2772 const struct isl_drm_modifier_info *mod_info =
2773 isl_drm_modifier_get_info(mt->drm_modifier);
2774
2775 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2776 /* CCS_E is the only supported aux for external images and it's only
2777 * supported on very simple images.
2778 */
2779 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2780 assert(_mesa_is_format_color_format(mt->format));
2781 assert(mt->first_level == 0 && mt->last_level == 0);
2782 assert(mt->surf.logical_level0_px.depth == 1);
2783 assert(mt->surf.logical_level0_px.array_len == 1);
2784 assert(mt->surf.samples == 1);
2785 assert(mt->mcs_buf != NULL);
2786
2787 aux_usage = mod_info->aux_usage;
2788 supports_fast_clear = mod_info->supports_clear_color;
2789 }
2790
2791 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2792 0, INTEL_REMAINING_LAYERS,
2793 aux_usage, supports_fast_clear);
2794 }
2795
2796 /**
2797 * Make it possible to share the BO backing the given miptree with another
2798 * process or another miptree.
2799 *
2800 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2801 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2802 * ensure that no MCS buffer gets allocated in the future.
2803 *
2804 * HiZ is similarly unsafe with shared buffers.
2805 */
2806 void
2807 intel_miptree_make_shareable(struct brw_context *brw,
2808 struct intel_mipmap_tree *mt)
2809 {
2810 /* MCS buffers are also used for multisample buffers, but we can't resolve
2811 * away a multisample MCS buffer because it's an integral part of how the
2812 * pixel data is stored. Fortunately this code path should never be
2813 * reached for multisample buffers.
2814 */
2815 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2816 mt->surf.samples == 1);
2817
2818 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2819 0, INTEL_REMAINING_LAYERS,
2820 ISL_AUX_USAGE_NONE, false);
2821
2822 if (mt->mcs_buf) {
2823 brw_bo_unreference(mt->mcs_buf->bo);
2824 free(mt->mcs_buf);
2825 mt->mcs_buf = NULL;
2826
2827 /* Any pending MCS/CCS operations are no longer needed. Trying to
2828 * execute any will likely crash due to the missing aux buffer. So let's
2829 * delete all pending ops.
2830 */
2831 free(mt->aux_state);
2832 mt->aux_state = NULL;
2833 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2834 }
2835
2836 if (mt->hiz_buf) {
2837 intel_miptree_aux_buffer_free(mt->hiz_buf);
2838 mt->hiz_buf = NULL;
2839
2840 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2841 mt->level[l].has_hiz = false;
2842 }
2843
2844 /* Any pending HiZ operations are no longer needed. Trying to execute
2845 * any will likely crash due to the missing aux buffer. So let's delete
2846 * all pending ops.
2847 */
2848 free(mt->aux_state);
2849 mt->aux_state = NULL;
2850 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2851 }
2852
2853 mt->aux_usage = ISL_AUX_USAGE_NONE;
2854 mt->supports_fast_clear = false;
2855 }
2856
2857
2858 /**
2859 * \brief Get pointer offset into stencil buffer.
2860 *
2861 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2862 * must decode the tile's layout in software.
2863 *
2864 * See
2865 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2866 * Format.
2867 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2868 *
2869 * Even though the returned offset is always positive, the return type is
2870 * signed due to
2871 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2872 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2873 */
2874 static intptr_t
2875 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2876 {
2877 uint32_t tile_size = 4096;
2878 uint32_t tile_width = 64;
2879 uint32_t tile_height = 64;
2880 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2881
2882 uint32_t tile_x = x / tile_width;
2883 uint32_t tile_y = y / tile_height;
2884
2885 /* The byte's address relative to the tile's base addres. */
2886 uint32_t byte_x = x % tile_width;
2887 uint32_t byte_y = y % tile_height;
2888
2889 uintptr_t u = tile_y * row_size
2890 + tile_x * tile_size
2891 + 512 * (byte_x / 8)
2892 + 64 * (byte_y / 8)
2893 + 32 * ((byte_y / 4) % 2)
2894 + 16 * ((byte_x / 4) % 2)
2895 + 8 * ((byte_y / 2) % 2)
2896 + 4 * ((byte_x / 2) % 2)
2897 + 2 * (byte_y % 2)
2898 + 1 * (byte_x % 2);
2899
2900 if (swizzled) {
2901 /* adjust for bit6 swizzling */
2902 if (((byte_x / 8) % 2) == 1) {
2903 if (((byte_y / 8) % 2) == 0) {
2904 u += 64;
2905 } else {
2906 u -= 64;
2907 }
2908 }
2909 }
2910
2911 return u;
2912 }
2913
2914 void
2915 intel_miptree_updownsample(struct brw_context *brw,
2916 struct intel_mipmap_tree *src,
2917 struct intel_mipmap_tree *dst)
2918 {
2919 unsigned src_w = src->surf.logical_level0_px.width;
2920 unsigned src_h = src->surf.logical_level0_px.height;
2921 unsigned dst_w = dst->surf.logical_level0_px.width;
2922 unsigned dst_h = dst->surf.logical_level0_px.height;
2923
2924 brw_blorp_blit_miptrees(brw,
2925 src, 0 /* level */, 0 /* layer */,
2926 src->format, SWIZZLE_XYZW,
2927 dst, 0 /* level */, 0 /* layer */, dst->format,
2928 0, 0, src_w, src_h,
2929 0, 0, dst_w, dst_h,
2930 GL_NEAREST, false, false /*mirror x, y*/,
2931 false, false);
2932
2933 if (src->stencil_mt) {
2934 src_w = src->stencil_mt->surf.logical_level0_px.width;
2935 src_h = src->stencil_mt->surf.logical_level0_px.height;
2936 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2937 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2938
2939 brw_blorp_blit_miptrees(brw,
2940 src->stencil_mt, 0 /* level */, 0 /* layer */,
2941 src->stencil_mt->format, SWIZZLE_XYZW,
2942 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2943 dst->stencil_mt->format,
2944 0, 0, src_w, src_h,
2945 0, 0, dst_w, dst_h,
2946 GL_NEAREST, false, false /*mirror x, y*/,
2947 false, false /* decode/encode srgb */);
2948 }
2949 }
2950
2951 void
2952 intel_update_r8stencil(struct brw_context *brw,
2953 struct intel_mipmap_tree *mt)
2954 {
2955 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2956
2957 assert(devinfo->gen >= 7);
2958 struct intel_mipmap_tree *src =
2959 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2960 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2961 return;
2962
2963 assert(src->surf.size > 0);
2964
2965 if (!mt->r8stencil_mt) {
2966 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2967 mt->r8stencil_mt = make_surface(
2968 brw,
2969 src->target,
2970 MESA_FORMAT_R_UINT8,
2971 src->first_level, src->last_level,
2972 src->surf.logical_level0_px.width,
2973 src->surf.logical_level0_px.height,
2974 src->surf.dim == ISL_SURF_DIM_3D ?
2975 src->surf.logical_level0_px.depth :
2976 src->surf.logical_level0_px.array_len,
2977 src->surf.samples,
2978 ISL_TILING_Y0_BIT,
2979 ISL_SURF_USAGE_TEXTURE_BIT,
2980 BO_ALLOC_BUSY, 0, NULL);
2981 assert(mt->r8stencil_mt);
2982 }
2983
2984 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2985
2986 for (int level = src->first_level; level <= src->last_level; level++) {
2987 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2988 minify(src->surf.phys_level0_sa.depth, level) :
2989 src->surf.phys_level0_sa.array_len;
2990
2991 for (unsigned layer = 0; layer < depth; layer++) {
2992 brw_blorp_copy_miptrees(brw,
2993 src, level, layer,
2994 dst, level, layer,
2995 0, 0, 0, 0,
2996 minify(src->surf.logical_level0_px.width,
2997 level),
2998 minify(src->surf.logical_level0_px.height,
2999 level));
3000 }
3001 }
3002
3003 brw_cache_flush_for_read(brw, dst->bo);
3004 src->r8stencil_needs_update = false;
3005 }
3006
3007 static void *
3008 intel_miptree_map_raw(struct brw_context *brw,
3009 struct intel_mipmap_tree *mt,
3010 GLbitfield mode)
3011 {
3012 struct brw_bo *bo = mt->bo;
3013
3014 if (brw_batch_references(&brw->batch, bo))
3015 intel_batchbuffer_flush(brw);
3016
3017 return brw_bo_map(brw, bo, mode);
3018 }
3019
3020 static void
3021 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3022 {
3023 brw_bo_unmap(mt->bo);
3024 }
3025
3026 static void
3027 intel_miptree_map_gtt(struct brw_context *brw,
3028 struct intel_mipmap_tree *mt,
3029 struct intel_miptree_map *map,
3030 unsigned int level, unsigned int slice)
3031 {
3032 unsigned int bw, bh;
3033 void *base;
3034 unsigned int image_x, image_y;
3035 intptr_t x = map->x;
3036 intptr_t y = map->y;
3037
3038 /* For compressed formats, the stride is the number of bytes per
3039 * row of blocks. intel_miptree_get_image_offset() already does
3040 * the divide.
3041 */
3042 _mesa_get_format_block_size(mt->format, &bw, &bh);
3043 assert(y % bh == 0);
3044 assert(x % bw == 0);
3045 y /= bh;
3046 x /= bw;
3047
3048 base = intel_miptree_map_raw(brw, mt, map->mode);
3049
3050 if (base == NULL)
3051 map->ptr = NULL;
3052 else {
3053 base += mt->offset;
3054
3055 /* Note that in the case of cube maps, the caller must have passed the
3056 * slice number referencing the face.
3057 */
3058 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3059 x += image_x;
3060 y += image_y;
3061
3062 map->stride = mt->surf.row_pitch;
3063 map->ptr = base + y * map->stride + x * mt->cpp;
3064 }
3065
3066 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3067 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3068 map->x, map->y, map->w, map->h,
3069 mt, _mesa_get_format_name(mt->format),
3070 x, y, map->ptr, map->stride);
3071 }
3072
3073 static void
3074 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3075 {
3076 intel_miptree_unmap_raw(mt);
3077 }
3078
3079 static void
3080 intel_miptree_map_blit(struct brw_context *brw,
3081 struct intel_mipmap_tree *mt,
3082 struct intel_miptree_map *map,
3083 unsigned int level, unsigned int slice)
3084 {
3085 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3086 /* first_level */ 0,
3087 /* last_level */ 0,
3088 map->w, map->h, 1,
3089 /* samples */ 1,
3090 MIPTREE_CREATE_LINEAR);
3091
3092 if (!map->linear_mt) {
3093 fprintf(stderr, "Failed to allocate blit temporary\n");
3094 goto fail;
3095 }
3096 map->stride = map->linear_mt->surf.row_pitch;
3097
3098 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3099 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3100 * invalidate is set, since we'll be writing the whole rectangle from our
3101 * temporary buffer back out.
3102 */
3103 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3104 if (!intel_miptree_copy(brw,
3105 mt, level, slice, map->x, map->y,
3106 map->linear_mt, 0, 0, 0, 0,
3107 map->w, map->h)) {
3108 fprintf(stderr, "Failed to blit\n");
3109 goto fail;
3110 }
3111 }
3112
3113 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3114
3115 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3116 map->x, map->y, map->w, map->h,
3117 mt, _mesa_get_format_name(mt->format),
3118 level, slice, map->ptr, map->stride);
3119
3120 return;
3121
3122 fail:
3123 intel_miptree_release(&map->linear_mt);
3124 map->ptr = NULL;
3125 map->stride = 0;
3126 }
3127
3128 static void
3129 intel_miptree_unmap_blit(struct brw_context *brw,
3130 struct intel_mipmap_tree *mt,
3131 struct intel_miptree_map *map,
3132 unsigned int level,
3133 unsigned int slice)
3134 {
3135 struct gl_context *ctx = &brw->ctx;
3136
3137 intel_miptree_unmap_raw(map->linear_mt);
3138
3139 if (map->mode & GL_MAP_WRITE_BIT) {
3140 bool ok = intel_miptree_copy(brw,
3141 map->linear_mt, 0, 0, 0, 0,
3142 mt, level, slice, map->x, map->y,
3143 map->w, map->h);
3144 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3145 }
3146
3147 intel_miptree_release(&map->linear_mt);
3148 }
3149
3150 /**
3151 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3152 */
3153 #if defined(USE_SSE41)
3154 static void
3155 intel_miptree_map_movntdqa(struct brw_context *brw,
3156 struct intel_mipmap_tree *mt,
3157 struct intel_miptree_map *map,
3158 unsigned int level, unsigned int slice)
3159 {
3160 assert(map->mode & GL_MAP_READ_BIT);
3161 assert(!(map->mode & GL_MAP_WRITE_BIT));
3162
3163 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3164 map->x, map->y, map->w, map->h,
3165 mt, _mesa_get_format_name(mt->format),
3166 level, slice, map->ptr, map->stride);
3167
3168 /* Map the original image */
3169 uint32_t image_x;
3170 uint32_t image_y;
3171 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3172 image_x += map->x;
3173 image_y += map->y;
3174
3175 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3176 if (!src)
3177 return;
3178
3179 src += mt->offset;
3180
3181 src += image_y * mt->surf.row_pitch;
3182 src += image_x * mt->cpp;
3183
3184 /* Due to the pixel offsets for the particular image being mapped, our
3185 * src pointer may not be 16-byte aligned. However, if the pitch is
3186 * divisible by 16, then the amount by which it's misaligned will remain
3187 * consistent from row to row.
3188 */
3189 assert((mt->surf.row_pitch % 16) == 0);
3190 const int misalignment = ((uintptr_t) src) & 15;
3191
3192 /* Create an untiled temporary buffer for the mapping. */
3193 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3194
3195 map->stride = ALIGN(misalignment + width_bytes, 16);
3196
3197 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3198 /* Offset the destination so it has the same misalignment as src. */
3199 map->ptr = map->buffer + misalignment;
3200
3201 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3202
3203 for (uint32_t y = 0; y < map->h; y++) {
3204 void *dst_ptr = map->ptr + y * map->stride;
3205 void *src_ptr = src + y * mt->surf.row_pitch;
3206
3207 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3208 }
3209
3210 intel_miptree_unmap_raw(mt);
3211 }
3212
3213 static void
3214 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3215 struct intel_mipmap_tree *mt,
3216 struct intel_miptree_map *map,
3217 unsigned int level,
3218 unsigned int slice)
3219 {
3220 _mesa_align_free(map->buffer);
3221 map->buffer = NULL;
3222 map->ptr = NULL;
3223 }
3224 #endif
3225
3226 static void
3227 intel_miptree_map_s8(struct brw_context *brw,
3228 struct intel_mipmap_tree *mt,
3229 struct intel_miptree_map *map,
3230 unsigned int level, unsigned int slice)
3231 {
3232 map->stride = map->w;
3233 map->buffer = map->ptr = malloc(map->stride * map->h);
3234 if (!map->buffer)
3235 return;
3236
3237 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3238 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3239 * invalidate is set, since we'll be writing the whole rectangle from our
3240 * temporary buffer back out.
3241 */
3242 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3243 uint8_t *untiled_s8_map = map->ptr;
3244 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3245 unsigned int image_x, image_y;
3246
3247 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3248
3249 for (uint32_t y = 0; y < map->h; y++) {
3250 for (uint32_t x = 0; x < map->w; x++) {
3251 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3252 x + image_x + map->x,
3253 y + image_y + map->y,
3254 brw->has_swizzling);
3255 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3256 }
3257 }
3258
3259 intel_miptree_unmap_raw(mt);
3260
3261 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3262 map->x, map->y, map->w, map->h,
3263 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3264 } else {
3265 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3266 map->x, map->y, map->w, map->h,
3267 mt, map->ptr, map->stride);
3268 }
3269 }
3270
3271 static void
3272 intel_miptree_unmap_s8(struct brw_context *brw,
3273 struct intel_mipmap_tree *mt,
3274 struct intel_miptree_map *map,
3275 unsigned int level,
3276 unsigned int slice)
3277 {
3278 if (map->mode & GL_MAP_WRITE_BIT) {
3279 unsigned int image_x, image_y;
3280 uint8_t *untiled_s8_map = map->ptr;
3281 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3282
3283 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3284
3285 for (uint32_t y = 0; y < map->h; y++) {
3286 for (uint32_t x = 0; x < map->w; x++) {
3287 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3288 image_x + x + map->x,
3289 image_y + y + map->y,
3290 brw->has_swizzling);
3291 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3292 }
3293 }
3294
3295 intel_miptree_unmap_raw(mt);
3296 }
3297
3298 free(map->buffer);
3299 }
3300
3301 static void
3302 intel_miptree_map_etc(struct brw_context *brw,
3303 struct intel_mipmap_tree *mt,
3304 struct intel_miptree_map *map,
3305 unsigned int level,
3306 unsigned int slice)
3307 {
3308 assert(mt->etc_format != MESA_FORMAT_NONE);
3309 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3310 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3311 }
3312
3313 assert(map->mode & GL_MAP_WRITE_BIT);
3314 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3315
3316 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3317 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3318 map->w, map->h, 1));
3319 map->ptr = map->buffer;
3320 }
3321
3322 static void
3323 intel_miptree_unmap_etc(struct brw_context *brw,
3324 struct intel_mipmap_tree *mt,
3325 struct intel_miptree_map *map,
3326 unsigned int level,
3327 unsigned int slice)
3328 {
3329 uint32_t image_x;
3330 uint32_t image_y;
3331 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3332
3333 image_x += map->x;
3334 image_y += map->y;
3335
3336 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3337 + image_y * mt->surf.row_pitch
3338 + image_x * mt->cpp;
3339
3340 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3341 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3342 map->ptr, map->stride,
3343 map->w, map->h);
3344 else
3345 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3346 map->ptr, map->stride,
3347 map->w, map->h, mt->etc_format);
3348
3349 intel_miptree_unmap_raw(mt);
3350 free(map->buffer);
3351 }
3352
3353 /**
3354 * Mapping function for packed depth/stencil miptrees backed by real separate
3355 * miptrees for depth and stencil.
3356 *
3357 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3358 * separate from the depth buffer. Yet at the GL API level, we have to expose
3359 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3360 * be able to map that memory for texture storage and glReadPixels-type
3361 * operations. We give Mesa core that access by mallocing a temporary and
3362 * copying the data between the actual backing store and the temporary.
3363 */
3364 static void
3365 intel_miptree_map_depthstencil(struct brw_context *brw,
3366 struct intel_mipmap_tree *mt,
3367 struct intel_miptree_map *map,
3368 unsigned int level, unsigned int slice)
3369 {
3370 struct intel_mipmap_tree *z_mt = mt;
3371 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3372 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3373 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3374
3375 map->stride = map->w * packed_bpp;
3376 map->buffer = map->ptr = malloc(map->stride * map->h);
3377 if (!map->buffer)
3378 return;
3379
3380 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3381 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3382 * invalidate is set, since we'll be writing the whole rectangle from our
3383 * temporary buffer back out.
3384 */
3385 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3386 uint32_t *packed_map = map->ptr;
3387 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3388 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3389 unsigned int s_image_x, s_image_y;
3390 unsigned int z_image_x, z_image_y;
3391
3392 intel_miptree_get_image_offset(s_mt, level, slice,
3393 &s_image_x, &s_image_y);
3394 intel_miptree_get_image_offset(z_mt, level, slice,
3395 &z_image_x, &z_image_y);
3396
3397 for (uint32_t y = 0; y < map->h; y++) {
3398 for (uint32_t x = 0; x < map->w; x++) {
3399 int map_x = map->x + x, map_y = map->y + y;
3400 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3401 map_x + s_image_x,
3402 map_y + s_image_y,
3403 brw->has_swizzling);
3404 ptrdiff_t z_offset = ((map_y + z_image_y) *
3405 (z_mt->surf.row_pitch / 4) +
3406 (map_x + z_image_x));
3407 uint8_t s = s_map[s_offset];
3408 uint32_t z = z_map[z_offset];
3409
3410 if (map_z32f_x24s8) {
3411 packed_map[(y * map->w + x) * 2 + 0] = z;
3412 packed_map[(y * map->w + x) * 2 + 1] = s;
3413 } else {
3414 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3415 }
3416 }
3417 }
3418
3419 intel_miptree_unmap_raw(s_mt);
3420 intel_miptree_unmap_raw(z_mt);
3421
3422 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3423 __func__,
3424 map->x, map->y, map->w, map->h,
3425 z_mt, map->x + z_image_x, map->y + z_image_y,
3426 s_mt, map->x + s_image_x, map->y + s_image_y,
3427 map->ptr, map->stride);
3428 } else {
3429 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3430 map->x, map->y, map->w, map->h,
3431 mt, map->ptr, map->stride);
3432 }
3433 }
3434
3435 static void
3436 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3437 struct intel_mipmap_tree *mt,
3438 struct intel_miptree_map *map,
3439 unsigned int level,
3440 unsigned int slice)
3441 {
3442 struct intel_mipmap_tree *z_mt = mt;
3443 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3444 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3445
3446 if (map->mode & GL_MAP_WRITE_BIT) {
3447 uint32_t *packed_map = map->ptr;
3448 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3449 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3450 unsigned int s_image_x, s_image_y;
3451 unsigned int z_image_x, z_image_y;
3452
3453 intel_miptree_get_image_offset(s_mt, level, slice,
3454 &s_image_x, &s_image_y);
3455 intel_miptree_get_image_offset(z_mt, level, slice,
3456 &z_image_x, &z_image_y);
3457
3458 for (uint32_t y = 0; y < map->h; y++) {
3459 for (uint32_t x = 0; x < map->w; x++) {
3460 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3461 x + s_image_x + map->x,
3462 y + s_image_y + map->y,
3463 brw->has_swizzling);
3464 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3465 (z_mt->surf.row_pitch / 4) +
3466 (x + z_image_x + map->x));
3467
3468 if (map_z32f_x24s8) {
3469 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3470 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3471 } else {
3472 uint32_t packed = packed_map[y * map->w + x];
3473 s_map[s_offset] = packed >> 24;
3474 z_map[z_offset] = packed;
3475 }
3476 }
3477 }
3478
3479 intel_miptree_unmap_raw(s_mt);
3480 intel_miptree_unmap_raw(z_mt);
3481
3482 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3483 __func__,
3484 map->x, map->y, map->w, map->h,
3485 z_mt, _mesa_get_format_name(z_mt->format),
3486 map->x + z_image_x, map->y + z_image_y,
3487 s_mt, map->x + s_image_x, map->y + s_image_y,
3488 map->ptr, map->stride);
3489 }
3490
3491 free(map->buffer);
3492 }
3493
3494 /**
3495 * Create and attach a map to the miptree at (level, slice). Return the
3496 * attached map.
3497 */
3498 static struct intel_miptree_map*
3499 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3500 unsigned int level,
3501 unsigned int slice,
3502 unsigned int x,
3503 unsigned int y,
3504 unsigned int w,
3505 unsigned int h,
3506 GLbitfield mode)
3507 {
3508 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3509
3510 if (!map)
3511 return NULL;
3512
3513 assert(mt->level[level].slice[slice].map == NULL);
3514 mt->level[level].slice[slice].map = map;
3515
3516 map->mode = mode;
3517 map->x = x;
3518 map->y = y;
3519 map->w = w;
3520 map->h = h;
3521
3522 return map;
3523 }
3524
3525 /**
3526 * Release the map at (level, slice).
3527 */
3528 static void
3529 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3530 unsigned int level,
3531 unsigned int slice)
3532 {
3533 struct intel_miptree_map **map;
3534
3535 map = &mt->level[level].slice[slice].map;
3536 free(*map);
3537 *map = NULL;
3538 }
3539
3540 static bool
3541 can_blit_slice(struct intel_mipmap_tree *mt,
3542 unsigned int level, unsigned int slice)
3543 {
3544 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3545 if (mt->surf.row_pitch >= 32768)
3546 return false;
3547
3548 return true;
3549 }
3550
3551 static bool
3552 use_intel_mipree_map_blit(struct brw_context *brw,
3553 struct intel_mipmap_tree *mt,
3554 GLbitfield mode,
3555 unsigned int level,
3556 unsigned int slice)
3557 {
3558 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3559
3560 if (devinfo->has_llc &&
3561 /* It's probably not worth swapping to the blit ring because of
3562 * all the overhead involved.
3563 */
3564 !(mode & GL_MAP_WRITE_BIT) &&
3565 !mt->compressed &&
3566 (mt->surf.tiling == ISL_TILING_X ||
3567 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3568 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3569 /* Fast copy blit on skl+ supports all tiling formats. */
3570 devinfo->gen >= 9) &&
3571 can_blit_slice(mt, level, slice))
3572 return true;
3573
3574 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3575 mt->bo->size >= brw->max_gtt_map_object_size) {
3576 assert(can_blit_slice(mt, level, slice));
3577 return true;
3578 }
3579
3580 return false;
3581 }
3582
3583 /**
3584 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3585 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3586 * arithmetic overflow.
3587 *
3588 * If you call this function and use \a out_stride, then you're doing pointer
3589 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3590 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3591 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3592 * which usually have type uint32_t or GLuint.
3593 */
3594 void
3595 intel_miptree_map(struct brw_context *brw,
3596 struct intel_mipmap_tree *mt,
3597 unsigned int level,
3598 unsigned int slice,
3599 unsigned int x,
3600 unsigned int y,
3601 unsigned int w,
3602 unsigned int h,
3603 GLbitfield mode,
3604 void **out_ptr,
3605 ptrdiff_t *out_stride)
3606 {
3607 struct intel_miptree_map *map;
3608
3609 assert(mt->surf.samples == 1);
3610
3611 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3612 if (!map){
3613 *out_ptr = NULL;
3614 *out_stride = 0;
3615 return;
3616 }
3617
3618 intel_miptree_access_raw(brw, mt, level, slice,
3619 map->mode & GL_MAP_WRITE_BIT);
3620
3621 if (mt->format == MESA_FORMAT_S_UINT8) {
3622 intel_miptree_map_s8(brw, mt, map, level, slice);
3623 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3624 !(mode & BRW_MAP_DIRECT_BIT)) {
3625 intel_miptree_map_etc(brw, mt, map, level, slice);
3626 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3627 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3628 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3629 intel_miptree_map_blit(brw, mt, map, level, slice);
3630 #if defined(USE_SSE41)
3631 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3632 !mt->compressed && cpu_has_sse4_1 &&
3633 (mt->surf.row_pitch % 16 == 0)) {
3634 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3635 #endif
3636 } else {
3637 intel_miptree_map_gtt(brw, mt, map, level, slice);
3638 }
3639
3640 *out_ptr = map->ptr;
3641 *out_stride = map->stride;
3642
3643 if (map->ptr == NULL)
3644 intel_miptree_release_map(mt, level, slice);
3645 }
3646
3647 void
3648 intel_miptree_unmap(struct brw_context *brw,
3649 struct intel_mipmap_tree *mt,
3650 unsigned int level,
3651 unsigned int slice)
3652 {
3653 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3654
3655 assert(mt->surf.samples == 1);
3656
3657 if (!map)
3658 return;
3659
3660 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3661 mt, _mesa_get_format_name(mt->format), level, slice);
3662
3663 if (mt->format == MESA_FORMAT_S_UINT8) {
3664 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3665 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3666 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3667 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3668 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3669 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3670 } else if (map->linear_mt) {
3671 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3672 #if defined(USE_SSE41)
3673 } else if (map->buffer && cpu_has_sse4_1) {
3674 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3675 #endif
3676 } else {
3677 intel_miptree_unmap_gtt(mt);
3678 }
3679
3680 intel_miptree_release_map(mt, level, slice);
3681 }
3682
3683 enum isl_surf_dim
3684 get_isl_surf_dim(GLenum target)
3685 {
3686 switch (target) {
3687 case GL_TEXTURE_1D:
3688 case GL_TEXTURE_1D_ARRAY:
3689 return ISL_SURF_DIM_1D;
3690
3691 case GL_TEXTURE_2D:
3692 case GL_TEXTURE_2D_ARRAY:
3693 case GL_TEXTURE_RECTANGLE:
3694 case GL_TEXTURE_CUBE_MAP:
3695 case GL_TEXTURE_CUBE_MAP_ARRAY:
3696 case GL_TEXTURE_2D_MULTISAMPLE:
3697 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3698 case GL_TEXTURE_EXTERNAL_OES:
3699 return ISL_SURF_DIM_2D;
3700
3701 case GL_TEXTURE_3D:
3702 return ISL_SURF_DIM_3D;
3703 }
3704
3705 unreachable("Invalid texture target");
3706 }
3707
3708 enum isl_dim_layout
3709 get_isl_dim_layout(const struct gen_device_info *devinfo,
3710 enum isl_tiling tiling, GLenum target)
3711 {
3712 switch (target) {
3713 case GL_TEXTURE_1D:
3714 case GL_TEXTURE_1D_ARRAY:
3715 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3716 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3717
3718 case GL_TEXTURE_2D:
3719 case GL_TEXTURE_2D_ARRAY:
3720 case GL_TEXTURE_RECTANGLE:
3721 case GL_TEXTURE_2D_MULTISAMPLE:
3722 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3723 case GL_TEXTURE_EXTERNAL_OES:
3724 return ISL_DIM_LAYOUT_GEN4_2D;
3725
3726 case GL_TEXTURE_CUBE_MAP:
3727 case GL_TEXTURE_CUBE_MAP_ARRAY:
3728 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3729 ISL_DIM_LAYOUT_GEN4_2D);
3730
3731 case GL_TEXTURE_3D:
3732 return (devinfo->gen >= 9 ?
3733 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3734 }
3735
3736 unreachable("Invalid texture target");
3737 }
3738
3739 enum isl_aux_usage
3740 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3741 const struct intel_mipmap_tree *mt)
3742 {
3743 if (mt->hiz_buf)
3744 return ISL_AUX_USAGE_HIZ;
3745
3746 if (!mt->mcs_buf)
3747 return ISL_AUX_USAGE_NONE;
3748
3749 return mt->aux_usage;
3750 }