i965: Enable ARB_gpu_shader_int64 on Gen8+
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.h
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /** @file intel_mipmap_tree.h
27 *
28 * This file defines the structure that wraps a BO and describes how the
29 * mipmap levels and slices of a texture are laid out.
30 *
31 * The hardware has a fixed layout of a texture depending on parameters such
32 * as the target/type (2D, 3D, CUBE), width, height, pitch, and number of
33 * mipmap levels. The individual level/layer slices are each 2D rectangles of
34 * pixels at some x/y offset from the start of the drm_intel_bo.
35 *
36 * Original OpenGL allowed texture miplevels to be specified in arbitrary
37 * order, and a texture may change size over time. Thus, each
38 * intel_texture_image has a reference to a miptree that contains the pixel
39 * data sized appropriately for it, which will later be referenced by/copied
40 * to the intel_texture_object at draw time (intel_finalize_mipmap_tree()) so
41 * that there's a single miptree for the complete texture.
42 */
43
44 #ifndef INTEL_MIPMAP_TREE_H
45 #define INTEL_MIPMAP_TREE_H
46
47 #include <assert.h>
48
49 #include "main/mtypes.h"
50 #include "isl/isl.h"
51 #include "intel_bufmgr.h"
52 #include "intel_resolve_map.h"
53 #include <GL/internal/dri_interface.h>
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 struct brw_context;
60 struct intel_renderbuffer;
61
62 struct intel_resolve_map;
63 struct intel_texture_image;
64
65 /**
66 * This bit extends the set of GL_MAP_*_BIT enums.
67 *
68 * When calling intel_miptree_map() on an ETC-transcoded-to-RGB miptree or a
69 * depthstencil-split-to-separate-stencil miptree, we'll normally make a
70 * temporary and recreate the kind of data requested by Mesa core, since we're
71 * satisfying some glGetTexImage() request or something.
72 *
73 * However, occasionally you want to actually map the miptree's current data
74 * without transcoding back. This flag to intel_miptree_map() gets you that.
75 */
76 #define BRW_MAP_DIRECT_BIT 0x80000000
77
78 struct intel_miptree_map {
79 /** Bitfield of GL_MAP_*_BIT and BRW_MAP_*_BIT. */
80 GLbitfield mode;
81 /** Region of interest for the map. */
82 int x, y, w, h;
83 /** Possibly malloced temporary buffer for the mapping. */
84 void *buffer;
85 /** Possible pointer to a temporary linear miptree for the mapping. */
86 struct intel_mipmap_tree *linear_mt;
87 /** Pointer to the start of (map_x, map_y) returned by the mapping. */
88 void *ptr;
89 /** Stride of the mapping. */
90 int stride;
91 };
92
93 /**
94 * Describes the location of each texture image within a miptree.
95 */
96 struct intel_mipmap_level
97 {
98 /** Offset to this miptree level, used in computing x_offset. */
99 GLuint level_x;
100 /** Offset to this miptree level, used in computing y_offset. */
101 GLuint level_y;
102
103 /**
104 * \brief Number of 2D slices in this miplevel.
105 *
106 * The exact semantics of depth varies according to the texture target:
107 * - For GL_TEXTURE_CUBE_MAP, depth is 6.
108 * - For GL_TEXTURE_2D_ARRAY, depth is the number of array slices. It is
109 * identical for all miplevels in the texture.
110 * - For GL_TEXTURE_3D, it is the texture's depth at this miplevel. Its
111 * value, like width and height, varies with miplevel.
112 * - For other texture types, depth is 1.
113 * - Additionally, for UMS and CMS miptrees, depth is multiplied by
114 * sample count.
115 */
116 GLuint depth;
117
118 /**
119 * \brief Is HiZ enabled for this level?
120 *
121 * If \c mt->level[l].has_hiz is set, then (1) \c mt->hiz_mt has been
122 * allocated and (2) the HiZ memory for the slices in this level reside at
123 * \c mt->hiz_mt->level[l].
124 */
125 bool has_hiz;
126
127 /**
128 * \brief List of 2D images in this mipmap level.
129 *
130 * This may be a list of cube faces, array slices in 2D array texture, or
131 * layers in a 3D texture. The list's length is \c depth.
132 */
133 struct intel_mipmap_slice {
134 /**
135 * \name Offset to slice
136 * \{
137 *
138 * Hardware formats are so diverse that that there is no unified way to
139 * compute the slice offsets, so we store them in this table.
140 *
141 * The (x, y) offset to slice \c s at level \c l relative the miptrees
142 * base address is
143 * \code
144 * x = mt->level[l].slice[s].x_offset
145 * y = mt->level[l].slice[s].y_offset
146 *
147 * On some hardware generations, we program these offsets into
148 * RENDER_SURFACE_STATE.XOffset and RENDER_SURFACE_STATE.YOffset.
149 */
150 GLuint x_offset;
151 GLuint y_offset;
152 /** \} */
153
154 /**
155 * Mapping information. Persistent for the duration of
156 * intel_miptree_map/unmap on this slice.
157 */
158 struct intel_miptree_map *map;
159 } *slice;
160 };
161
162 /**
163 * Enum for keeping track of the different MSAA layouts supported by Gen7.
164 */
165 enum intel_msaa_layout
166 {
167 /**
168 * Ordinary surface with no MSAA.
169 */
170 INTEL_MSAA_LAYOUT_NONE,
171
172 /**
173 * Interleaved Multisample Surface. The additional samples are
174 * accommodated by scaling up the width and the height of the surface so
175 * that all the samples corresponding to a pixel are located at nearby
176 * memory locations.
177 *
178 * @see PRM section "Interleaved Multisampled Surfaces"
179 */
180 INTEL_MSAA_LAYOUT_IMS,
181
182 /**
183 * Uncompressed Multisample Surface. The surface is stored as a 2D array,
184 * with array slice n containing all pixel data for sample n.
185 *
186 * @see PRM section "Uncompressed Multisampled Surfaces"
187 */
188 INTEL_MSAA_LAYOUT_UMS,
189
190 /**
191 * Compressed Multisample Surface. The surface is stored as in
192 * INTEL_MSAA_LAYOUT_UMS, but there is an additional buffer called the MCS
193 * (Multisample Control Surface) buffer. Each pixel in the MCS buffer
194 * indicates the mapping from sample number to array slice. This allows
195 * the common case (where all samples constituting a pixel have the same
196 * color value) to be stored efficiently by just using a single array
197 * slice.
198 *
199 * @see PRM section "Compressed Multisampled Surfaces"
200 */
201 INTEL_MSAA_LAYOUT_CMS,
202 };
203
204 enum miptree_array_layout {
205 /* Each array slice contains all miplevels packed together.
206 *
207 * Gen hardware usually wants multilevel miptrees configured this way.
208 *
209 * A 2D Array texture with 2 slices and multiple LODs using
210 * ALL_LOD_IN_EACH_SLICE would look somewhat like this:
211 *
212 * +----------+
213 * | |
214 * | |
215 * +----------+
216 * +---+ +-+
217 * | | +-+
218 * +---+ *
219 * +----------+
220 * | |
221 * | |
222 * +----------+
223 * +---+ +-+
224 * | | +-+
225 * +---+ *
226 */
227 ALL_LOD_IN_EACH_SLICE,
228
229 /* Each LOD contains all slices of that LOD packed together.
230 *
231 * In some situations, Gen7+ hardware can use the array_spacing_lod0
232 * feature to save space when the surface only contains LOD 0.
233 *
234 * Gen6 uses this for separate stencil and hiz since gen6 does not support
235 * multiple LODs for separate stencil and hiz.
236 *
237 * A 2D Array texture with 2 slices and multiple LODs using
238 * ALL_SLICES_AT_EACH_LOD would look somewhat like this:
239 *
240 * +----------+
241 * | |
242 * | |
243 * +----------+
244 * | |
245 * | |
246 * +----------+
247 * +---+ +-+
248 * | | +-+
249 * +---+ +-+
250 * | | :
251 * +---+
252 */
253 ALL_SLICES_AT_EACH_LOD,
254 };
255
256 enum intel_aux_disable {
257 INTEL_AUX_DISABLE_NONE = 0,
258 INTEL_AUX_DISABLE_HIZ = 1 << 1,
259 INTEL_AUX_DISABLE_MCS = 1 << 2,
260 INTEL_AUX_DISABLE_CCS = 1 << 3,
261 INTEL_AUX_DISABLE_ALL = INTEL_AUX_DISABLE_HIZ |
262 INTEL_AUX_DISABLE_MCS |
263 INTEL_AUX_DISABLE_CCS
264 };
265
266 /**
267 * Miptree aux buffer. These buffers are associated with a miptree, but the
268 * format is managed by the hardware.
269 *
270 * For Gen7+, we always give the hardware the start of the buffer, and let it
271 * handle all accesses to the buffer. Therefore we don't need the full miptree
272 * layout structure for this buffer.
273 */
274 struct intel_miptree_aux_buffer
275 {
276 /**
277 * Buffer object containing the pixel data.
278 *
279 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceBaseAddress
280 * @see 3DSTATE_HIER_DEPTH_BUFFER.AuxiliarySurfaceBaseAddress
281 */
282 drm_intel_bo *bo;
283
284 /**
285 * Offset into bo where the surface starts.
286 *
287 * @see intel_mipmap_aux_buffer::bo
288 *
289 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceBaseAddress
290 * @see 3DSTATE_DEPTH_BUFFER.SurfaceBaseAddress
291 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceBaseAddress
292 * @see 3DSTATE_STENCIL_BUFFER.SurfaceBaseAddress
293 */
294 uint32_t offset;
295
296 /*
297 * Size of the MCS surface.
298 *
299 * This is needed when doing any gtt mapped operations on the buffer (which
300 * will be Y-tiled). It is possible that it will not be the same as bo->size
301 * when the drm allocator rounds up the requested size.
302 */
303 size_t size;
304
305 /**
306 * Pitch in bytes.
307 *
308 * @see RENDER_SURFACE_STATE.AuxiliarySurfacePitch
309 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfacePitch
310 */
311 uint32_t pitch;
312
313 /**
314 * The distance in rows between array slices.
315 *
316 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceQPitch
317 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceQPitch
318 */
319 uint32_t qpitch;
320 };
321 /**
322 * The HiZ buffer requires extra attributes on earlier GENs. This is easily
323 * contained within an intel_mipmap_tree. To make sure we do not abuse this, we
324 * keep the hiz datastructure separate.
325 */
326 struct intel_miptree_hiz_buffer
327 {
328 struct intel_miptree_aux_buffer aux_base;
329
330 /**
331 * Hiz miptree. Used only by Gen6.
332 */
333 struct intel_mipmap_tree *mt;
334 };
335
336 /* Tile resource modes */
337 enum intel_miptree_tr_mode {
338 INTEL_MIPTREE_TRMODE_NONE,
339 INTEL_MIPTREE_TRMODE_YF,
340 INTEL_MIPTREE_TRMODE_YS
341 };
342
343 struct intel_mipmap_tree
344 {
345 /**
346 * Buffer object containing the surface.
347 *
348 * @see intel_mipmap_tree::offset
349 * @see RENDER_SURFACE_STATE.SurfaceBaseAddress
350 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceBaseAddress
351 * @see 3DSTATE_DEPTH_BUFFER.SurfaceBaseAddress
352 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceBaseAddress
353 * @see 3DSTATE_STENCIL_BUFFER.SurfaceBaseAddress
354 */
355 drm_intel_bo *bo;
356
357 /**
358 * Pitch in bytes.
359 *
360 * @see RENDER_SURFACE_STATE.SurfacePitch
361 * @see RENDER_SURFACE_STATE.AuxiliarySurfacePitch
362 * @see 3DSTATE_DEPTH_BUFFER.SurfacePitch
363 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfacePitch
364 * @see 3DSTATE_STENCIL_BUFFER.SurfacePitch
365 */
366 uint32_t pitch;
367
368 /**
369 * One of the I915_TILING_* flags.
370 *
371 * @see RENDER_SURFACE_STATE.TileMode
372 * @see 3DSTATE_DEPTH_BUFFER.TileMode
373 */
374 uint32_t tiling;
375
376 /**
377 * @see RENDER_SURFACE_STATE.TiledResourceMode
378 * @see 3DSTATE_DEPTH_BUFFER.TiledResourceMode
379 */
380 enum intel_miptree_tr_mode tr_mode;
381
382 /**
383 * @brief One of GL_TEXTURE_2D, GL_TEXTURE_2D_ARRAY, etc.
384 *
385 * @see RENDER_SURFACE_STATE.SurfaceType
386 * @see RENDER_SURFACE_STATE.SurfaceArray
387 * @see 3DSTATE_DEPTH_BUFFER.SurfaceType
388 */
389 GLenum target;
390
391 /**
392 * Generally, this is just the same as the gl_texture_image->TexFormat or
393 * gl_renderbuffer->Format.
394 *
395 * However, for textures and renderbuffers with packed depth/stencil formats
396 * on hardware where we want or need to use separate stencil, there will be
397 * two miptrees for storing the data. If the depthstencil texture or rb is
398 * MESA_FORMAT_Z32_FLOAT_S8X24_UINT, then mt->format will be
399 * MESA_FORMAT_Z_FLOAT32, otherwise for MESA_FORMAT_Z24_UNORM_S8_UINT objects it will be
400 * MESA_FORMAT_Z24_UNORM_X8_UINT.
401 *
402 * For ETC1/ETC2 textures, this is one of the uncompressed mesa texture
403 * formats if the hardware lacks support for ETC1/ETC2. See @ref etc_format.
404 *
405 * @see RENDER_SURFACE_STATE.SurfaceFormat
406 * @see 3DSTATE_DEPTH_BUFFER.SurfaceFormat
407 */
408 mesa_format format;
409
410 /**
411 * This variable stores the value of ETC compressed texture format
412 *
413 * @see RENDER_SURFACE_STATE.SurfaceFormat
414 */
415 mesa_format etc_format;
416
417 /**
418 * @name Surface Alignment
419 * @{
420 *
421 * This defines the alignment of the upperleft pixel of each "slice" in the
422 * surface. The alignment is in pixel coordinates relative to the surface's
423 * most upperleft pixel, which is the pixel at (x=0, y=0, layer=0,
424 * level=0).
425 *
426 * The hardware docs do not use the term "slice". We use "slice" to mean
427 * the pixels at a given miplevel and layer. For 2D surfaces, the layer is
428 * the array slice; for 3D surfaces, the layer is the z offset.
429 *
430 * In the surface layout equations found in the hardware docs, the
431 * horizontal and vertical surface alignments often appear as variables 'i'
432 * and 'j'.
433 */
434
435 /** @see RENDER_SURFACE_STATE.SurfaceHorizontalAlignment */
436 uint32_t halign;
437
438 /** @see RENDER_SURFACE_STATE.SurfaceVerticalAlignment */
439 uint32_t valign;
440 /** @} */
441
442 GLuint first_level;
443 GLuint last_level;
444
445 /**
446 * Level zero image dimensions. These dimensions correspond to the
447 * physical layout of data in memory. Accordingly, they account for the
448 * extra width, height, and or depth that must be allocated in order to
449 * accommodate multisample formats, and they account for the extra factor
450 * of 6 in depth that must be allocated in order to accommodate cubemap
451 * textures.
452 */
453 GLuint physical_width0, physical_height0, physical_depth0;
454
455 /** Bytes per pixel (or bytes per block if compressed) */
456 GLuint cpp;
457
458 /**
459 * @see RENDER_SURFACE_STATE.NumberOfMultisamples
460 * @see 3DSTATE_MULTISAMPLE.NumberOfMultisamples
461 */
462 GLuint num_samples;
463
464 bool compressed;
465
466 /**
467 * @name Level zero image dimensions
468 * @{
469 *
470 * These dimensions correspond to the
471 * logical width, height, and depth of the texture as seen by client code.
472 * Accordingly, they do not account for the extra width, height, and/or
473 * depth that must be allocated in order to accommodate multisample
474 * formats, nor do they account for the extra factor of 6 in depth that
475 * must be allocated in order to accommodate cubemap textures.
476 */
477
478 /**
479 * @see RENDER_SURFACE_STATE.Width
480 * @see 3DSTATE_DEPTH_BUFFER.Width
481 */
482 uint32_t logical_width0;
483
484 /**
485 * @see RENDER_SURFACE_STATE.Height
486 * @see 3DSTATE_DEPTH_BUFFER.Height
487 */
488 uint32_t logical_height0;
489
490 /**
491 * @see RENDER_SURFACE_STATE.Depth
492 * @see 3DSTATE_DEPTH_BUFFER.Depth
493 */
494 uint32_t logical_depth0;
495 /** @} */
496
497 /**
498 * Indicates if we use the standard miptree layout (ALL_LOD_IN_EACH_SLICE),
499 * or if we tightly pack array slices at each LOD (ALL_SLICES_AT_EACH_LOD).
500 */
501 enum miptree_array_layout array_layout;
502
503 /**
504 * The distance in between array slices.
505 *
506 * The value is the one that is sent in the surface state. The actual
507 * meaning depends on certain criteria. Usually it is simply the number of
508 * uncompressed rows between each slice. However on Gen9+ for compressed
509 * surfaces it is the number of blocks. For 1D array surfaces that have the
510 * mipmap tree stored horizontally it is the number of pixels between each
511 * slice.
512 *
513 * @see RENDER_SURFACE_STATE.SurfaceQPitch
514 * @see 3DSTATE_DEPTH_BUFFER.SurfaceQPitch
515 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceQPitch
516 * @see 3DSTATE_STENCIL_BUFFER.SurfaceQPitch
517 */
518 uint32_t qpitch;
519
520 /**
521 * MSAA layout used by this buffer.
522 *
523 * @see RENDER_SURFACE_STATE.MultisampledSurfaceStorageFormat
524 */
525 enum intel_msaa_layout msaa_layout;
526
527 /* Derived from the above:
528 */
529 GLuint total_width;
530 GLuint total_height;
531
532 /**
533 * The depth value used during the most recent fast depth clear performed
534 * on the surface. This field is invalid only if surface has never
535 * underwent a fast depth clear.
536 *
537 * @see 3DSTATE_CLEAR_PARAMS.DepthClearValue
538 */
539 uint32_t depth_clear_value;
540
541 /* Includes image offset tables: */
542 struct intel_mipmap_level level[MAX_TEXTURE_LEVELS];
543
544 /**
545 * Offset into bo where the surface starts.
546 *
547 * @see intel_mipmap_tree::bo
548 *
549 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceBaseAddress
550 * @see 3DSTATE_DEPTH_BUFFER.SurfaceBaseAddress
551 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceBaseAddress
552 * @see 3DSTATE_STENCIL_BUFFER.SurfaceBaseAddress
553 */
554 uint32_t offset;
555
556 /**
557 * \brief HiZ aux buffer
558 *
559 * To allocate the hiz buffer, use intel_miptree_alloc_hiz().
560 *
561 * To determine if hiz is enabled, do not check this pointer. Instead, use
562 * intel_miptree_slice_has_hiz().
563 */
564 struct intel_miptree_hiz_buffer *hiz_buf;
565
566 /**
567 * \brief Maps of miptree slices to needed resolves.
568 *
569 * hiz_map is used only when the miptree has a child HiZ miptree.
570 *
571 * Let \c mt be a depth miptree with HiZ enabled. Then the resolve map is
572 * \c mt->hiz_map. The resolve map of the child HiZ miptree, \c
573 * mt->hiz_mt->hiz_map, is unused.
574 *
575 *
576 * color_resolve_map is used only when the miptree uses fast clear (Gen7+)
577 * lossless compression (Gen9+). It should be noted that absence in the
578 * map means implicitly RESOLVED state. If item is found it always
579 * indicates state other than RESOLVED.
580 */
581 struct exec_list hiz_map; /* List of intel_resolve_map. */
582 struct exec_list color_resolve_map; /* List of intel_resolve_map. */
583
584 /**
585 * \brief Stencil miptree for depthstencil textures.
586 *
587 * This miptree is used for depthstencil textures and renderbuffers that
588 * require separate stencil. It always has the true copy of the stencil
589 * bits, regardless of mt->format.
590 *
591 * \see 3DSTATE_STENCIL_BUFFER
592 * \see intel_miptree_map_depthstencil()
593 * \see intel_miptree_unmap_depthstencil()
594 */
595 struct intel_mipmap_tree *stencil_mt;
596
597 /**
598 * \brief Stencil texturing miptree for sampling from a stencil texture
599 *
600 * Some hardware doesn't support sampling from the stencil texture as
601 * required by the GL_ARB_stencil_texturing extenion. To workaround this we
602 * blit the texture into a new texture that can be sampled.
603 *
604 * \see intel_update_r8stencil()
605 */
606 struct intel_mipmap_tree *r8stencil_mt;
607 bool r8stencil_needs_update;
608
609 /**
610 * \brief MCS auxiliary buffer.
611 *
612 * This buffer contains the "multisample control surface", which stores
613 * the necessary information to implement compressed MSAA
614 * (INTEL_MSAA_FORMAT_CMS) and "fast color clear" behaviour on Gen7+.
615 *
616 * NULL if no MCS buffer is in use for this surface.
617 */
618 struct intel_miptree_aux_buffer *mcs_buf;
619
620 /**
621 * Planes 1 and 2 in case this is a planar surface.
622 */
623 struct intel_mipmap_tree *plane[2];
624
625 /**
626 * The SURFACE_STATE bits associated with the last fast color clear to this
627 * color mipmap tree, if any.
628 *
629 * Prior to GEN9 there is a single bit for RGBA clear values which gives you
630 * the option of 2^4 clear colors. Each bit determines if the color channel
631 * is fully saturated or unsaturated (Cherryview does add a 32b value per
632 * channel, but it is globally applied instead of being part of the render
633 * surface state). Starting with GEN9, the surface state accepts a 32b value
634 * for each color channel.
635 *
636 * @see RENDER_SURFACE_STATE.RedClearColor
637 * @see RENDER_SURFACE_STATE.GreenClearColor
638 * @see RENDER_SURFACE_STATE.BlueClearColor
639 * @see RENDER_SURFACE_STATE.AlphaClearColor
640 */
641 union {
642 uint32_t fast_clear_color_value;
643 union gl_color_union gen9_fast_clear_color;
644 };
645
646 /**
647 * Disable allocation of auxiliary buffers, such as the HiZ buffer and MCS
648 * buffer. This is useful for sharing the miptree bo with an external client
649 * that doesn't understand auxiliary buffers.
650 */
651 enum intel_aux_disable aux_disable;
652
653 /**
654 * Tells if the underlying buffer is to be also consumed by entities other
655 * than the driver. This allows logic to turn off features such as lossless
656 * compression which is not currently understood by client applications.
657 */
658 bool is_scanout;
659
660 /* These are also refcounted:
661 */
662 GLuint refcount;
663 };
664
665 bool
666 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
667 const struct intel_mipmap_tree *mt);
668
669 bool
670 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
671 unsigned tiling);
672
673 bool
674 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
675 const struct intel_mipmap_tree *mt);
676
677 bool
678 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
679 const struct intel_mipmap_tree *mt);
680
681 bool
682 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
683 struct intel_mipmap_tree *mt,
684 bool is_lossless_compressed);
685
686 enum {
687 MIPTREE_LAYOUT_ACCELERATED_UPLOAD = 1 << 0,
688 MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD = 1 << 1,
689 MIPTREE_LAYOUT_FOR_BO = 1 << 2,
690 MIPTREE_LAYOUT_DISABLE_AUX = 1 << 3,
691 MIPTREE_LAYOUT_FORCE_HALIGN16 = 1 << 4,
692
693 MIPTREE_LAYOUT_TILING_Y = 1 << 5,
694 MIPTREE_LAYOUT_TILING_NONE = 1 << 6,
695 MIPTREE_LAYOUT_TILING_ANY = MIPTREE_LAYOUT_TILING_Y |
696 MIPTREE_LAYOUT_TILING_NONE,
697
698 MIPTREE_LAYOUT_FOR_SCANOUT = 1 << 7,
699 };
700
701 struct intel_mipmap_tree *intel_miptree_create(struct brw_context *brw,
702 GLenum target,
703 mesa_format format,
704 GLuint first_level,
705 GLuint last_level,
706 GLuint width0,
707 GLuint height0,
708 GLuint depth0,
709 GLuint num_samples,
710 uint32_t flags);
711
712 struct intel_mipmap_tree *
713 intel_miptree_create_for_bo(struct brw_context *brw,
714 drm_intel_bo *bo,
715 mesa_format format,
716 uint32_t offset,
717 uint32_t width,
718 uint32_t height,
719 uint32_t depth,
720 int pitch,
721 uint32_t layout_flags);
722
723 void
724 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
725 struct intel_renderbuffer *irb,
726 drm_intel_bo *bo,
727 uint32_t width, uint32_t height,
728 uint32_t pitch);
729
730 /**
731 * Create a miptree appropriate as the storage for a non-texture renderbuffer.
732 * The miptree has the following properties:
733 * - The target is GL_TEXTURE_2D.
734 * - There are no levels other than the base level 0.
735 * - Depth is 1.
736 */
737 struct intel_mipmap_tree*
738 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
739 mesa_format format,
740 uint32_t width,
741 uint32_t height,
742 uint32_t num_samples);
743
744 mesa_format
745 intel_depth_format_for_depthstencil_format(mesa_format format);
746
747 mesa_format
748 intel_lower_compressed_format(struct brw_context *brw, mesa_format format);
749
750 /** \brief Assert that the level and layer are valid for the miptree. */
751 static inline void
752 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
753 uint32_t level,
754 uint32_t layer)
755 {
756 (void) mt;
757 (void) level;
758 (void) layer;
759
760 assert(level >= mt->first_level);
761 assert(level <= mt->last_level);
762 assert(layer < mt->level[level].depth);
763 }
764
765 void intel_miptree_reference(struct intel_mipmap_tree **dst,
766 struct intel_mipmap_tree *src);
767
768 void intel_miptree_release(struct intel_mipmap_tree **mt);
769
770 /* Check if an image fits an existing mipmap tree layout
771 */
772 bool intel_miptree_match_image(struct intel_mipmap_tree *mt,
773 struct gl_texture_image *image);
774
775 void
776 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
777 GLuint level, GLuint slice,
778 GLuint *x, GLuint *y);
779
780 enum isl_surf_dim
781 get_isl_surf_dim(GLenum target);
782
783 enum isl_dim_layout
784 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
785 GLenum target);
786
787 enum isl_tiling
788 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt);
789
790 void
791 intel_miptree_get_isl_surf(struct brw_context *brw,
792 const struct intel_mipmap_tree *mt,
793 struct isl_surf *surf);
794 void
795 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
796 const struct intel_mipmap_tree *mt,
797 struct isl_surf *surf,
798 enum isl_aux_usage *usage);
799
800 union isl_color_value
801 intel_miptree_get_isl_clear_color(struct brw_context *brw,
802 const struct intel_mipmap_tree *mt);
803
804 void
805 intel_get_image_dims(struct gl_texture_image *image,
806 int *width, int *height, int *depth);
807
808 void
809 intel_get_tile_masks(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
810 uint32_t *mask_x, uint32_t *mask_y);
811
812 void
813 intel_get_tile_dims(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
814 uint32_t *tile_w, uint32_t *tile_h);
815
816 uint32_t
817 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
818 GLuint level, GLuint slice,
819 uint32_t *tile_x,
820 uint32_t *tile_y);
821 uint32_t
822 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
823 uint32_t x, uint32_t y);
824
825 void intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
826 GLuint level,
827 GLuint x, GLuint y, GLuint d);
828
829 void intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
830 GLuint level,
831 GLuint img, GLuint x, GLuint y);
832
833 void
834 intel_miptree_copy_teximage(struct brw_context *brw,
835 struct intel_texture_image *intelImage,
836 struct intel_mipmap_tree *dst_mt, bool invalidate);
837
838 /**
839 * \name Miptree HiZ functions
840 * \{
841 *
842 * It is safe to call the "slice_set_need_resolve" and "slice_resolve"
843 * functions on a miptree without HiZ. In that case, each function is a no-op.
844 */
845
846 bool
847 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
848 struct intel_mipmap_tree *mt);
849
850 /**
851 * \brief Allocate the miptree's embedded HiZ miptree.
852 * \see intel_mipmap_tree:hiz_mt
853 * \return false if allocation failed
854 */
855 bool
856 intel_miptree_alloc_hiz(struct brw_context *brw,
857 struct intel_mipmap_tree *mt);
858
859 bool
860 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level);
861
862 void
863 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
864 uint32_t level,
865 uint32_t depth);
866 void
867 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
868 uint32_t level,
869 uint32_t depth);
870
871 void
872 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
873 uint32_t level);
874
875 /**
876 * \return false if no resolve was needed
877 */
878 bool
879 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
880 struct intel_mipmap_tree *mt,
881 unsigned int level,
882 unsigned int depth);
883
884 /**
885 * \return false if no resolve was needed
886 */
887 bool
888 intel_miptree_slice_resolve_depth(struct brw_context *brw,
889 struct intel_mipmap_tree *mt,
890 unsigned int level,
891 unsigned int depth);
892
893 /**
894 * \return false if no resolve was needed
895 */
896 bool
897 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
898 struct intel_mipmap_tree *mt);
899
900 /**
901 * \return false if no resolve was needed
902 */
903 bool
904 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
905 struct intel_mipmap_tree *mt);
906
907 /**\}*/
908
909 enum intel_fast_clear_state
910 intel_miptree_get_fast_clear_state(const struct intel_mipmap_tree *mt,
911 unsigned level, unsigned layer);
912
913 void
914 intel_miptree_set_fast_clear_state(const struct brw_context *brw,
915 struct intel_mipmap_tree *mt,
916 unsigned level,
917 unsigned first_layer,
918 unsigned num_layers,
919 enum intel_fast_clear_state new_state);
920
921 bool
922 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
923 unsigned start_level, unsigned num_levels,
924 unsigned start_layer, unsigned num_layers);
925
926 /**
927 * Update the fast clear state for a miptree to indicate that it has been used
928 * for rendering.
929 */
930 void
931 intel_miptree_used_for_rendering(const struct brw_context *brw,
932 struct intel_mipmap_tree *mt, unsigned level,
933 unsigned start_layer, unsigned num_layers);
934
935 /**
936 * Flag values telling color resolve pass which special types of buffers
937 * can be ignored.
938 *
939 * INTEL_MIPTREE_IGNORE_CCS_E: Lossless compressed (single-sample
940 * compression scheme since gen9)
941 */
942 #define INTEL_MIPTREE_IGNORE_CCS_E (1 << 0)
943
944 bool
945 intel_miptree_resolve_color(struct brw_context *brw,
946 struct intel_mipmap_tree *mt, unsigned level,
947 unsigned start_layer, unsigned num_layers,
948 int flags);
949
950 void
951 intel_miptree_all_slices_resolve_color(struct brw_context *brw,
952 struct intel_mipmap_tree *mt,
953 int flags);
954
955 void
956 intel_miptree_make_shareable(struct brw_context *brw,
957 struct intel_mipmap_tree *mt);
958
959 void
960 intel_miptree_updownsample(struct brw_context *brw,
961 struct intel_mipmap_tree *src,
962 struct intel_mipmap_tree *dst);
963
964 void
965 intel_update_r8stencil(struct brw_context *brw,
966 struct intel_mipmap_tree *mt);
967
968 /**
969 * Horizontal distance from one slice to the next in the two-dimensional
970 * miptree layout.
971 */
972 unsigned
973 brw_miptree_get_horizontal_slice_pitch(const struct brw_context *brw,
974 const struct intel_mipmap_tree *mt,
975 unsigned level);
976
977 /**
978 * Vertical distance from one slice to the next in the two-dimensional miptree
979 * layout.
980 */
981 unsigned
982 brw_miptree_get_vertical_slice_pitch(const struct brw_context *brw,
983 const struct intel_mipmap_tree *mt,
984 unsigned level);
985
986 void
987 brw_miptree_layout(struct brw_context *brw,
988 struct intel_mipmap_tree *mt,
989 uint32_t layout_flags);
990
991 void
992 intel_miptree_map(struct brw_context *brw,
993 struct intel_mipmap_tree *mt,
994 unsigned int level,
995 unsigned int slice,
996 unsigned int x,
997 unsigned int y,
998 unsigned int w,
999 unsigned int h,
1000 GLbitfield mode,
1001 void **out_ptr,
1002 ptrdiff_t *out_stride);
1003
1004 void
1005 intel_miptree_unmap(struct brw_context *brw,
1006 struct intel_mipmap_tree *mt,
1007 unsigned int level,
1008 unsigned int slice);
1009
1010 void
1011 intel_hiz_exec(struct brw_context *brw, struct intel_mipmap_tree *mt,
1012 unsigned int level, unsigned int layer, enum blorp_hiz_op op);
1013
1014 bool
1015 intel_miptree_sample_with_hiz(struct brw_context *brw,
1016 struct intel_mipmap_tree *mt);
1017
1018 #ifdef __cplusplus
1019 }
1020 #endif
1021
1022 #endif