63cedb200bafdcadc500b686e59f6274c1e3557f
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.h
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 /** @file intel_mipmap_tree.h
27 *
28 * This file defines the structure that wraps a BO and describes how the
29 * mipmap levels and slices of a texture are laid out.
30 *
31 * The hardware has a fixed layout of a texture depending on parameters such
32 * as the target/type (2D, 3D, CUBE), width, height, pitch, and number of
33 * mipmap levels. The individual level/layer slices are each 2D rectangles of
34 * pixels at some x/y offset from the start of the brw_bo.
35 *
36 * Original OpenGL allowed texture miplevels to be specified in arbitrary
37 * order, and a texture may change size over time. Thus, each
38 * intel_texture_image has a reference to a miptree that contains the pixel
39 * data sized appropriately for it, which will later be referenced by/copied
40 * to the intel_texture_object at draw time (intel_finalize_mipmap_tree()) so
41 * that there's a single miptree for the complete texture.
42 */
43
44 #ifndef INTEL_MIPMAP_TREE_H
45 #define INTEL_MIPMAP_TREE_H
46
47 #include <assert.h>
48
49 #include "main/mtypes.h"
50 #include "isl/isl.h"
51 #include "blorp/blorp.h"
52 #include "brw_bufmgr.h"
53 #include <GL/internal/dri_interface.h>
54
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58
59 struct brw_context;
60 struct intel_renderbuffer;
61
62 struct intel_texture_image;
63
64 /**
65 * This bit extends the set of GL_MAP_*_BIT enums.
66 *
67 * When calling intel_miptree_map() on an ETC-transcoded-to-RGB miptree or a
68 * depthstencil-split-to-separate-stencil miptree, we'll normally make a
69 * temporary and recreate the kind of data requested by Mesa core, since we're
70 * satisfying some glGetTexImage() request or something.
71 *
72 * However, occasionally you want to actually map the miptree's current data
73 * without transcoding back. This flag to intel_miptree_map() gets you that.
74 */
75 #define BRW_MAP_DIRECT_BIT 0x80000000
76
77 struct intel_miptree_map {
78 /** Bitfield of GL_MAP_*_BIT and BRW_MAP_*_BIT. */
79 GLbitfield mode;
80 /** Region of interest for the map. */
81 int x, y, w, h;
82 /** Possibly malloced temporary buffer for the mapping. */
83 void *buffer;
84 /** Possible pointer to a temporary linear miptree for the mapping. */
85 struct intel_mipmap_tree *linear_mt;
86 /** Pointer to the start of (map_x, map_y) returned by the mapping. */
87 void *ptr;
88 /** Stride of the mapping. */
89 int stride;
90 };
91
92 /**
93 * Describes the location of each texture image within a miptree.
94 */
95 struct intel_mipmap_level
96 {
97 /** Offset to this miptree level, used in computing x_offset. */
98 GLuint level_x;
99 /** Offset to this miptree level, used in computing y_offset. */
100 GLuint level_y;
101
102 /**
103 * \brief Number of 2D slices in this miplevel.
104 *
105 * The exact semantics of depth varies according to the texture target:
106 * - For GL_TEXTURE_CUBE_MAP, depth is 6.
107 * - For GL_TEXTURE_2D_ARRAY, depth is the number of array slices. It is
108 * identical for all miplevels in the texture.
109 * - For GL_TEXTURE_3D, it is the texture's depth at this miplevel. Its
110 * value, like width and height, varies with miplevel.
111 * - For other texture types, depth is 1.
112 * - Additionally, for UMS and CMS miptrees, depth is multiplied by
113 * sample count.
114 */
115 GLuint depth;
116
117 /**
118 * \brief Is HiZ enabled for this level?
119 *
120 * If \c mt->level[l].has_hiz is set, then (1) \c mt->hiz_mt has been
121 * allocated and (2) the HiZ memory for the slices in this level reside at
122 * \c mt->hiz_mt->level[l].
123 */
124 bool has_hiz;
125
126 /**
127 * \brief List of 2D images in this mipmap level.
128 *
129 * This may be a list of cube faces, array slices in 2D array texture, or
130 * layers in a 3D texture. The list's length is \c depth.
131 */
132 struct intel_mipmap_slice {
133 /**
134 * \name Offset to slice
135 * \{
136 *
137 * Hardware formats are so diverse that that there is no unified way to
138 * compute the slice offsets, so we store them in this table.
139 *
140 * The (x, y) offset to slice \c s at level \c l relative the miptrees
141 * base address is
142 * \code
143 * x = mt->level[l].slice[s].x_offset
144 * y = mt->level[l].slice[s].y_offset
145 *
146 * On some hardware generations, we program these offsets into
147 * RENDER_SURFACE_STATE.XOffset and RENDER_SURFACE_STATE.YOffset.
148 */
149 GLuint x_offset;
150 GLuint y_offset;
151 /** \} */
152
153 /**
154 * Mapping information. Persistent for the duration of
155 * intel_miptree_map/unmap on this slice.
156 */
157 struct intel_miptree_map *map;
158 } *slice;
159 };
160
161 /**
162 * Enum for keeping track of the different MSAA layouts supported by Gen7.
163 */
164 enum intel_msaa_layout
165 {
166 /**
167 * Ordinary surface with no MSAA.
168 */
169 INTEL_MSAA_LAYOUT_NONE,
170
171 /**
172 * Interleaved Multisample Surface. The additional samples are
173 * accommodated by scaling up the width and the height of the surface so
174 * that all the samples corresponding to a pixel are located at nearby
175 * memory locations.
176 *
177 * @see PRM section "Interleaved Multisampled Surfaces"
178 */
179 INTEL_MSAA_LAYOUT_IMS,
180
181 /**
182 * Uncompressed Multisample Surface. The surface is stored as a 2D array,
183 * with array slice n containing all pixel data for sample n.
184 *
185 * @see PRM section "Uncompressed Multisampled Surfaces"
186 */
187 INTEL_MSAA_LAYOUT_UMS,
188
189 /**
190 * Compressed Multisample Surface. The surface is stored as in
191 * INTEL_MSAA_LAYOUT_UMS, but there is an additional buffer called the MCS
192 * (Multisample Control Surface) buffer. Each pixel in the MCS buffer
193 * indicates the mapping from sample number to array slice. This allows
194 * the common case (where all samples constituting a pixel have the same
195 * color value) to be stored efficiently by just using a single array
196 * slice.
197 *
198 * @see PRM section "Compressed Multisampled Surfaces"
199 */
200 INTEL_MSAA_LAYOUT_CMS,
201 };
202
203 enum miptree_array_layout {
204 /* Each array slice contains all miplevels packed together.
205 *
206 * Gen hardware usually wants multilevel miptrees configured this way.
207 *
208 * A 2D Array texture with 2 slices and multiple LODs using
209 * ALL_LOD_IN_EACH_SLICE would look somewhat like this:
210 *
211 * +----------+
212 * | |
213 * | |
214 * +----------+
215 * +---+ +-+
216 * | | +-+
217 * +---+ *
218 * +----------+
219 * | |
220 * | |
221 * +----------+
222 * +---+ +-+
223 * | | +-+
224 * +---+ *
225 */
226 ALL_LOD_IN_EACH_SLICE,
227
228 /* Each LOD contains all slices of that LOD packed together.
229 *
230 * In some situations, Gen7+ hardware can use the array_spacing_lod0
231 * feature to save space when the surface only contains LOD 0.
232 *
233 * Gen6 uses this for separate stencil and hiz since gen6 does not support
234 * multiple LODs for separate stencil and hiz.
235 *
236 * A 2D Array texture with 2 slices and multiple LODs using
237 * ALL_SLICES_AT_EACH_LOD would look somewhat like this:
238 *
239 * +----------+
240 * | |
241 * | |
242 * +----------+
243 * | |
244 * | |
245 * +----------+
246 * +---+ +-+
247 * | | +-+
248 * +---+ +-+
249 * | | :
250 * +---+
251 */
252 ALL_SLICES_AT_EACH_LOD,
253
254 /* On Sandy Bridge, HiZ and stencil buffers work the same as on Ivy Bridge
255 * except that they don't technically support mipmapping. That does not,
256 * however, stop us from doing it. As far as Sandy Bridge hardware is
257 * concerned, HiZ and stencil always operates on a single miplevel 2D
258 * (possibly array) image. The dimensions of that image are NOT minified.
259 *
260 * In order to implement HiZ and stencil on Sandy Bridge, we create one
261 * full-sized 2D (possibly array) image for every LOD with every image
262 * aligned to a page boundary. In order to save memory, we pretend that
263 * the width of each miplevel is minified and we place LOD1 and above below
264 * LOD0 but horizontally adjacent to each other. When considered as
265 * full-sized images, LOD1 and above technically overlap. However, since
266 * we only write to part of that image, the hardware will never notice the
267 * overlap.
268 *
269 * This layout looks something like this:
270 *
271 * +---------+
272 * | |
273 * | |
274 * +---------+
275 * | |
276 * | |
277 * +---------+
278 *
279 * +----+ +-+ .
280 * | | +-+
281 * +----+
282 *
283 * +----+ +-+ .
284 * | | +-+
285 * +----+
286 */
287 GEN6_HIZ_STENCIL,
288 };
289
290 enum intel_aux_disable {
291 INTEL_AUX_DISABLE_NONE = 0,
292 INTEL_AUX_DISABLE_HIZ = 1 << 1,
293 INTEL_AUX_DISABLE_MCS = 1 << 2,
294 INTEL_AUX_DISABLE_CCS = 1 << 3,
295 INTEL_AUX_DISABLE_ALL = INTEL_AUX_DISABLE_HIZ |
296 INTEL_AUX_DISABLE_MCS |
297 INTEL_AUX_DISABLE_CCS
298 };
299
300 /**
301 * Miptree aux buffer. These buffers are associated with a miptree, but the
302 * format is managed by the hardware.
303 *
304 * For Gen7+, we always give the hardware the start of the buffer, and let it
305 * handle all accesses to the buffer. Therefore we don't need the full miptree
306 * layout structure for this buffer.
307 */
308 struct intel_miptree_aux_buffer
309 {
310 /**
311 * Buffer object containing the pixel data.
312 *
313 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceBaseAddress
314 * @see 3DSTATE_HIER_DEPTH_BUFFER.AuxiliarySurfaceBaseAddress
315 */
316 struct brw_bo *bo;
317
318 /**
319 * Offset into bo where the surface starts.
320 *
321 * @see intel_mipmap_aux_buffer::bo
322 *
323 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceBaseAddress
324 * @see 3DSTATE_DEPTH_BUFFER.SurfaceBaseAddress
325 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceBaseAddress
326 * @see 3DSTATE_STENCIL_BUFFER.SurfaceBaseAddress
327 */
328 uint32_t offset;
329
330 /*
331 * Size of the MCS surface.
332 *
333 * This is needed when doing any gtt mapped operations on the buffer (which
334 * will be Y-tiled). It is possible that it will not be the same as bo->size
335 * when the drm allocator rounds up the requested size.
336 */
337 size_t size;
338
339 /**
340 * Pitch in bytes.
341 *
342 * @see RENDER_SURFACE_STATE.AuxiliarySurfacePitch
343 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfacePitch
344 */
345 uint32_t pitch;
346
347 /**
348 * The distance in rows between array slices.
349 *
350 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceQPitch
351 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceQPitch
352 */
353 uint32_t qpitch;
354 };
355 /**
356 * The HiZ buffer requires extra attributes on earlier GENs. This is easily
357 * contained within an intel_mipmap_tree. To make sure we do not abuse this, we
358 * keep the hiz datastructure separate.
359 */
360 struct intel_miptree_hiz_buffer
361 {
362 struct intel_miptree_aux_buffer aux_base;
363
364 /**
365 * Hiz miptree. Used only by Gen6.
366 */
367 struct intel_mipmap_tree *mt;
368 };
369
370 struct intel_mipmap_tree
371 {
372 struct isl_surf surf;
373
374 /**
375 * Buffer object containing the surface.
376 *
377 * @see intel_mipmap_tree::offset
378 * @see RENDER_SURFACE_STATE.SurfaceBaseAddress
379 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceBaseAddress
380 * @see 3DSTATE_DEPTH_BUFFER.SurfaceBaseAddress
381 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceBaseAddress
382 * @see 3DSTATE_STENCIL_BUFFER.SurfaceBaseAddress
383 */
384 struct brw_bo *bo;
385
386 /**
387 * Pitch in bytes.
388 *
389 * @see RENDER_SURFACE_STATE.SurfacePitch
390 * @see RENDER_SURFACE_STATE.AuxiliarySurfacePitch
391 * @see 3DSTATE_DEPTH_BUFFER.SurfacePitch
392 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfacePitch
393 * @see 3DSTATE_STENCIL_BUFFER.SurfacePitch
394 */
395 uint32_t pitch;
396
397 /**
398 * One of the I915_TILING_* flags.
399 *
400 * @see RENDER_SURFACE_STATE.TileMode
401 * @see 3DSTATE_DEPTH_BUFFER.TileMode
402 */
403 uint32_t tiling;
404
405 /**
406 * @brief One of GL_TEXTURE_2D, GL_TEXTURE_2D_ARRAY, etc.
407 *
408 * @see RENDER_SURFACE_STATE.SurfaceType
409 * @see RENDER_SURFACE_STATE.SurfaceArray
410 * @see 3DSTATE_DEPTH_BUFFER.SurfaceType
411 */
412 GLenum target;
413
414 /**
415 * Generally, this is just the same as the gl_texture_image->TexFormat or
416 * gl_renderbuffer->Format.
417 *
418 * However, for textures and renderbuffers with packed depth/stencil formats
419 * on hardware where we want or need to use separate stencil, there will be
420 * two miptrees for storing the data. If the depthstencil texture or rb is
421 * MESA_FORMAT_Z32_FLOAT_S8X24_UINT, then mt->format will be
422 * MESA_FORMAT_Z_FLOAT32, otherwise for MESA_FORMAT_Z24_UNORM_S8_UINT objects it will be
423 * MESA_FORMAT_Z24_UNORM_X8_UINT.
424 *
425 * For ETC1/ETC2 textures, this is one of the uncompressed mesa texture
426 * formats if the hardware lacks support for ETC1/ETC2. See @ref etc_format.
427 *
428 * @see RENDER_SURFACE_STATE.SurfaceFormat
429 * @see 3DSTATE_DEPTH_BUFFER.SurfaceFormat
430 */
431 mesa_format format;
432
433 /**
434 * This variable stores the value of ETC compressed texture format
435 *
436 * @see RENDER_SURFACE_STATE.SurfaceFormat
437 */
438 mesa_format etc_format;
439
440 /**
441 * @name Surface Alignment
442 * @{
443 *
444 * This defines the alignment of the upperleft pixel of each "slice" in the
445 * surface. The alignment is in pixel coordinates relative to the surface's
446 * most upperleft pixel, which is the pixel at (x=0, y=0, layer=0,
447 * level=0).
448 *
449 * The hardware docs do not use the term "slice". We use "slice" to mean
450 * the pixels at a given miplevel and layer. For 2D surfaces, the layer is
451 * the array slice; for 3D surfaces, the layer is the z offset.
452 *
453 * In the surface layout equations found in the hardware docs, the
454 * horizontal and vertical surface alignments often appear as variables 'i'
455 * and 'j'.
456 */
457
458 /** @see RENDER_SURFACE_STATE.SurfaceHorizontalAlignment */
459 uint32_t halign;
460
461 /** @see RENDER_SURFACE_STATE.SurfaceVerticalAlignment */
462 uint32_t valign;
463 /** @} */
464
465 GLuint first_level;
466 GLuint last_level;
467
468 /**
469 * Level zero image dimensions. These dimensions correspond to the
470 * physical layout of data in memory. Accordingly, they account for the
471 * extra width, height, and or depth that must be allocated in order to
472 * accommodate multisample formats, and they account for the extra factor
473 * of 6 in depth that must be allocated in order to accommodate cubemap
474 * textures.
475 */
476 GLuint physical_width0, physical_height0, physical_depth0;
477
478 /** Bytes per pixel (or bytes per block if compressed) */
479 GLuint cpp;
480
481 /**
482 * @see RENDER_SURFACE_STATE.NumberOfMultisamples
483 * @see 3DSTATE_MULTISAMPLE.NumberOfMultisamples
484 */
485 GLuint num_samples;
486
487 bool compressed;
488
489 /**
490 * @name Level zero image dimensions
491 * @{
492 *
493 * These dimensions correspond to the
494 * logical width, height, and depth of the texture as seen by client code.
495 * Accordingly, they do not account for the extra width, height, and/or
496 * depth that must be allocated in order to accommodate multisample
497 * formats, nor do they account for the extra factor of 6 in depth that
498 * must be allocated in order to accommodate cubemap textures.
499 */
500
501 /**
502 * @see RENDER_SURFACE_STATE.Width
503 * @see 3DSTATE_DEPTH_BUFFER.Width
504 */
505 uint32_t logical_width0;
506
507 /**
508 * @see RENDER_SURFACE_STATE.Height
509 * @see 3DSTATE_DEPTH_BUFFER.Height
510 */
511 uint32_t logical_height0;
512
513 /**
514 * @see RENDER_SURFACE_STATE.Depth
515 * @see 3DSTATE_DEPTH_BUFFER.Depth
516 */
517 uint32_t logical_depth0;
518 /** @} */
519
520 /**
521 * Indicates if we use the standard miptree layout (ALL_LOD_IN_EACH_SLICE),
522 * or if we tightly pack array slices at each LOD (ALL_SLICES_AT_EACH_LOD).
523 */
524 enum miptree_array_layout array_layout;
525
526 /**
527 * The distance in between array slices.
528 *
529 * The value is the one that is sent in the surface state. The actual
530 * meaning depends on certain criteria. Usually it is simply the number of
531 * uncompressed rows between each slice. However on Gen9+ for compressed
532 * surfaces it is the number of blocks. For 1D array surfaces that have the
533 * mipmap tree stored horizontally it is the number of pixels between each
534 * slice.
535 *
536 * @see RENDER_SURFACE_STATE.SurfaceQPitch
537 * @see 3DSTATE_DEPTH_BUFFER.SurfaceQPitch
538 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceQPitch
539 * @see 3DSTATE_STENCIL_BUFFER.SurfaceQPitch
540 */
541 uint32_t qpitch;
542
543 /**
544 * MSAA layout used by this buffer.
545 *
546 * @see RENDER_SURFACE_STATE.MultisampledSurfaceStorageFormat
547 */
548 enum intel_msaa_layout msaa_layout;
549
550 /* Derived from the above:
551 */
552 GLuint total_width;
553 GLuint total_height;
554
555 /* Includes image offset tables: */
556 struct intel_mipmap_level level[MAX_TEXTURE_LEVELS];
557
558 /**
559 * Offset into bo where the surface starts.
560 *
561 * @see intel_mipmap_tree::bo
562 *
563 * @see RENDER_SURFACE_STATE.AuxiliarySurfaceBaseAddress
564 * @see 3DSTATE_DEPTH_BUFFER.SurfaceBaseAddress
565 * @see 3DSTATE_HIER_DEPTH_BUFFER.SurfaceBaseAddress
566 * @see 3DSTATE_STENCIL_BUFFER.SurfaceBaseAddress
567 */
568 uint32_t offset;
569
570 /**
571 * \brief HiZ aux buffer
572 *
573 * To allocate the hiz buffer, use intel_miptree_alloc_hiz().
574 *
575 * To determine if hiz is enabled, do not check this pointer. Instead, use
576 * intel_miptree_slice_has_hiz().
577 */
578 struct intel_miptree_hiz_buffer *hiz_buf;
579
580 /**
581 * \brief Maps miptree slices to their current aux state
582 *
583 * This two-dimensional array is indexed as [level][layer] and stores an
584 * aux state for each slice.
585 */
586 enum isl_aux_state **aux_state;
587
588 /**
589 * \brief Stencil miptree for depthstencil textures.
590 *
591 * This miptree is used for depthstencil textures and renderbuffers that
592 * require separate stencil. It always has the true copy of the stencil
593 * bits, regardless of mt->format.
594 *
595 * \see 3DSTATE_STENCIL_BUFFER
596 * \see intel_miptree_map_depthstencil()
597 * \see intel_miptree_unmap_depthstencil()
598 */
599 struct intel_mipmap_tree *stencil_mt;
600
601 /**
602 * \brief Stencil texturing miptree for sampling from a stencil texture
603 *
604 * Some hardware doesn't support sampling from the stencil texture as
605 * required by the GL_ARB_stencil_texturing extenion. To workaround this we
606 * blit the texture into a new texture that can be sampled.
607 *
608 * \see intel_update_r8stencil()
609 */
610 struct intel_mipmap_tree *r8stencil_mt;
611 bool r8stencil_needs_update;
612
613 /**
614 * \brief MCS auxiliary buffer.
615 *
616 * This buffer contains the "multisample control surface", which stores
617 * the necessary information to implement compressed MSAA
618 * (INTEL_MSAA_FORMAT_CMS) and "fast color clear" behaviour on Gen7+.
619 *
620 * NULL if no MCS buffer is in use for this surface.
621 */
622 struct intel_miptree_aux_buffer *mcs_buf;
623
624 /**
625 * Planes 1 and 2 in case this is a planar surface.
626 */
627 struct intel_mipmap_tree *plane[2];
628
629 /**
630 * Fast clear color for this surface. For depth surfaces, the clear value
631 * is stored as a float32 in the red component.
632 */
633 union isl_color_value fast_clear_color;
634
635 /**
636 * Disable allocation of auxiliary buffers, such as the HiZ buffer and MCS
637 * buffer. This is useful for sharing the miptree bo with an external client
638 * that doesn't understand auxiliary buffers.
639 */
640 enum intel_aux_disable aux_disable;
641
642 /**
643 * Tells if the underlying buffer is to be also consumed by entities other
644 * than the driver. This allows logic to turn off features such as lossless
645 * compression which is not currently understood by client applications.
646 */
647 bool is_scanout;
648
649 /* These are also refcounted:
650 */
651 GLuint refcount;
652 };
653
654 bool
655 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
656 const struct intel_mipmap_tree *mt);
657
658 bool
659 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
660 unsigned tiling);
661
662 bool
663 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
664 const struct intel_mipmap_tree *mt);
665
666 bool
667 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
668 const struct intel_mipmap_tree *mt);
669
670 bool
671 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
672 struct intel_mipmap_tree *mt,
673 bool is_lossless_compressed);
674
675 enum {
676 MIPTREE_LAYOUT_ACCELERATED_UPLOAD = 1 << 0,
677 MIPTREE_LAYOUT_GEN6_HIZ_STENCIL = 1 << 1,
678 MIPTREE_LAYOUT_FOR_BO = 1 << 2,
679 MIPTREE_LAYOUT_DISABLE_AUX = 1 << 3,
680 MIPTREE_LAYOUT_FORCE_HALIGN16 = 1 << 4,
681
682 MIPTREE_LAYOUT_TILING_Y = 1 << 5,
683 MIPTREE_LAYOUT_TILING_NONE = 1 << 6,
684 MIPTREE_LAYOUT_TILING_ANY = MIPTREE_LAYOUT_TILING_Y |
685 MIPTREE_LAYOUT_TILING_NONE,
686
687 MIPTREE_LAYOUT_FOR_SCANOUT = 1 << 7,
688 };
689
690 struct intel_mipmap_tree *intel_miptree_create(struct brw_context *brw,
691 GLenum target,
692 mesa_format format,
693 GLuint first_level,
694 GLuint last_level,
695 GLuint width0,
696 GLuint height0,
697 GLuint depth0,
698 GLuint num_samples,
699 uint32_t flags);
700
701 struct intel_mipmap_tree *
702 intel_miptree_create_for_bo(struct brw_context *brw,
703 struct brw_bo *bo,
704 mesa_format format,
705 uint32_t offset,
706 uint32_t width,
707 uint32_t height,
708 uint32_t depth,
709 int pitch,
710 uint32_t layout_flags);
711
712 void
713 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
714 struct intel_renderbuffer *irb,
715 struct brw_bo *bo,
716 uint32_t width, uint32_t height,
717 uint32_t pitch);
718
719 /**
720 * Create a miptree appropriate as the storage for a non-texture renderbuffer.
721 * The miptree has the following properties:
722 * - The target is GL_TEXTURE_2D.
723 * - There are no levels other than the base level 0.
724 * - Depth is 1.
725 */
726 struct intel_mipmap_tree*
727 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
728 mesa_format format,
729 uint32_t width,
730 uint32_t height,
731 uint32_t num_samples);
732
733 mesa_format
734 intel_depth_format_for_depthstencil_format(mesa_format format);
735
736 mesa_format
737 intel_lower_compressed_format(struct brw_context *brw, mesa_format format);
738
739 /** \brief Assert that the level and layer are valid for the miptree. */
740 static inline void
741 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
742 uint32_t level,
743 uint32_t layer)
744 {
745 (void) mt;
746 (void) level;
747 (void) layer;
748
749 assert(level >= mt->first_level);
750 assert(level <= mt->last_level);
751 assert(layer < mt->level[level].depth);
752 }
753
754 void intel_miptree_reference(struct intel_mipmap_tree **dst,
755 struct intel_mipmap_tree *src);
756
757 void intel_miptree_release(struct intel_mipmap_tree **mt);
758
759 /* Check if an image fits an existing mipmap tree layout
760 */
761 bool intel_miptree_match_image(struct intel_mipmap_tree *mt,
762 struct gl_texture_image *image);
763
764 void
765 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
766 GLuint level, GLuint slice,
767 GLuint *x, GLuint *y);
768
769 enum isl_surf_dim
770 get_isl_surf_dim(GLenum target);
771
772 enum isl_dim_layout
773 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
774 GLenum target, enum miptree_array_layout array_layout);
775
776 enum isl_tiling
777 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt);
778
779 void
780 intel_miptree_get_isl_surf(struct brw_context *brw,
781 const struct intel_mipmap_tree *mt,
782 struct isl_surf *surf);
783 void
784 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
785 const struct intel_mipmap_tree *mt,
786 struct isl_surf *surf,
787 enum isl_aux_usage *usage);
788
789 void
790 intel_get_image_dims(struct gl_texture_image *image,
791 int *width, int *height, int *depth);
792
793 void
794 intel_get_tile_masks(uint32_t tiling, uint32_t cpp,
795 uint32_t *mask_x, uint32_t *mask_y);
796
797 void
798 intel_get_tile_dims(uint32_t tiling, uint32_t cpp,
799 uint32_t *tile_w, uint32_t *tile_h);
800
801 uint32_t
802 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
803 GLuint level, GLuint slice,
804 uint32_t *tile_x,
805 uint32_t *tile_y);
806 uint32_t
807 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
808 uint32_t x, uint32_t y);
809
810 void intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
811 GLuint level,
812 GLuint x, GLuint y, GLuint d);
813
814 void intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
815 GLuint level,
816 GLuint img, GLuint x, GLuint y);
817
818 void
819 intel_miptree_copy_slice(struct brw_context *brw,
820 struct intel_mipmap_tree *src_mt,
821 unsigned src_level, unsigned src_layer,
822 struct intel_mipmap_tree *dst_mt,
823 unsigned dst_level, unsigned dst_layer);
824
825 void
826 intel_miptree_copy_teximage(struct brw_context *brw,
827 struct intel_texture_image *intelImage,
828 struct intel_mipmap_tree *dst_mt, bool invalidate);
829
830 /**
831 * \name Miptree HiZ functions
832 * \{
833 *
834 * It is safe to call the "slice_set_need_resolve" and "slice_resolve"
835 * functions on a miptree without HiZ. In that case, each function is a no-op.
836 */
837
838 bool
839 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
840 struct intel_mipmap_tree *mt);
841
842 /**
843 * \brief Allocate the miptree's embedded HiZ miptree.
844 * \see intel_mipmap_tree:hiz_mt
845 * \return false if allocation failed
846 */
847 bool
848 intel_miptree_alloc_hiz(struct brw_context *brw,
849 struct intel_mipmap_tree *mt);
850
851 bool
852 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level);
853
854 /**\}*/
855
856 bool
857 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
858 unsigned start_level, unsigned num_levels,
859 unsigned start_layer, unsigned num_layers);
860
861
862 #define INTEL_REMAINING_LAYERS UINT32_MAX
863 #define INTEL_REMAINING_LEVELS UINT32_MAX
864
865 /** Prepare a miptree for access
866 *
867 * This function should be called prior to any access to miptree in order to
868 * perform any needed resolves.
869 *
870 * \param[in] start_level The first mip level to be accessed
871 *
872 * \param[in] num_levels The number of miplevels to be accessed or
873 * INTEL_REMAINING_LEVELS to indicate every level
874 * above start_level will be accessed
875 *
876 * \param[in] start_layer The first array slice or 3D layer to be accessed
877 *
878 * \param[in] num_layers The number of array slices or 3D layers be
879 * accessed or INTEL_REMAINING_LAYERS to indicate
880 * every layer above start_layer will be accessed
881 *
882 * \param[in] aux_supported Whether or not the access will support the
883 * miptree's auxiliary compression format; this
884 * must be false for uncompressed miptrees
885 *
886 * \param[in] fast_clear_supported Whether or not the access will support
887 * fast clears in the miptree's auxiliary
888 * compression format
889 */
890 void
891 intel_miptree_prepare_access(struct brw_context *brw,
892 struct intel_mipmap_tree *mt,
893 uint32_t start_level, uint32_t num_levels,
894 uint32_t start_layer, uint32_t num_layers,
895 bool aux_supported, bool fast_clear_supported);
896
897 /** Complete a write operation
898 *
899 * This function should be called after any operation writes to a miptree.
900 * This will update the miptree's compression state so that future resolves
901 * happen correctly. Technically, this function can be called before the
902 * write occurs but the caller must ensure that they don't interlace
903 * intel_miptree_prepare_access and intel_miptree_finish_write calls to
904 * overlapping layer/level ranges.
905 *
906 * \param[in] level The mip level that was written
907 *
908 * \param[in] start_layer The first array slice or 3D layer written
909 *
910 * \param[in] num_layers The number of array slices or 3D layers
911 * written or INTEL_REMAINING_LAYERS to indicate
912 * every layer above start_layer was written
913 *
914 * \param[in] written_with_aux Whether or not the write was done with
915 * auxiliary compression enabled
916 */
917 void
918 intel_miptree_finish_write(struct brw_context *brw,
919 struct intel_mipmap_tree *mt, uint32_t level,
920 uint32_t start_layer, uint32_t num_layers,
921 bool written_with_aux);
922
923 /** Get the auxiliary compression state of a miptree slice */
924 enum isl_aux_state
925 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
926 uint32_t level, uint32_t layer);
927
928 /** Set the auxiliary compression state of a miptree slice range
929 *
930 * This function directly sets the auxiliary compression state of a slice
931 * range of a miptree. It only modifies data structures and does not do any
932 * resolves. This should only be called by code which directly performs
933 * compression operations such as fast clears and resolves. Most code should
934 * use intel_miptree_prepare_access or intel_miptree_finish_write.
935 */
936 void
937 intel_miptree_set_aux_state(struct brw_context *brw,
938 struct intel_mipmap_tree *mt, uint32_t level,
939 uint32_t start_layer, uint32_t num_layers,
940 enum isl_aux_state aux_state);
941
942 /**
943 * Prepare a miptree for raw access
944 *
945 * This helper prepares the miptree for access that knows nothing about any
946 * sort of compression whatsoever. This is useful when mapping the surface or
947 * using it with the blitter.
948 */
949 static inline void
950 intel_miptree_access_raw(struct brw_context *brw,
951 struct intel_mipmap_tree *mt,
952 uint32_t level, uint32_t layer,
953 bool write)
954 {
955 intel_miptree_prepare_access(brw, mt, level, 1, layer, 1, false, false);
956 if (write)
957 intel_miptree_finish_write(brw, mt, level, layer, 1, false);
958 }
959
960 void
961 intel_miptree_prepare_texture(struct brw_context *brw,
962 struct intel_mipmap_tree *mt,
963 mesa_format view_format,
964 bool *aux_supported_out);
965 void
966 intel_miptree_prepare_image(struct brw_context *brw,
967 struct intel_mipmap_tree *mt);
968 void
969 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
970 struct intel_mipmap_tree *mt, uint32_t level,
971 uint32_t start_layer, uint32_t num_layers);
972 void
973 intel_miptree_prepare_render(struct brw_context *brw,
974 struct intel_mipmap_tree *mt, uint32_t level,
975 uint32_t start_layer, uint32_t layer_count,
976 bool srgb_enabled);
977 void
978 intel_miptree_finish_render(struct brw_context *brw,
979 struct intel_mipmap_tree *mt, uint32_t level,
980 uint32_t start_layer, uint32_t layer_count);
981 void
982 intel_miptree_prepare_depth(struct brw_context *brw,
983 struct intel_mipmap_tree *mt, uint32_t level,
984 uint32_t start_layer, uint32_t layer_count);
985 void
986 intel_miptree_finish_depth(struct brw_context *brw,
987 struct intel_mipmap_tree *mt, uint32_t level,
988 uint32_t start_layer, uint32_t layer_count,
989 bool depth_written);
990
991 void
992 intel_miptree_make_shareable(struct brw_context *brw,
993 struct intel_mipmap_tree *mt);
994
995 void
996 intel_miptree_updownsample(struct brw_context *brw,
997 struct intel_mipmap_tree *src,
998 struct intel_mipmap_tree *dst);
999
1000 void
1001 intel_update_r8stencil(struct brw_context *brw,
1002 struct intel_mipmap_tree *mt);
1003
1004 /**
1005 * Horizontal distance from one slice to the next in the two-dimensional
1006 * miptree layout.
1007 */
1008 unsigned
1009 brw_miptree_get_horizontal_slice_pitch(const struct brw_context *brw,
1010 const struct intel_mipmap_tree *mt,
1011 unsigned level);
1012
1013 /**
1014 * Vertical distance from one slice to the next in the two-dimensional miptree
1015 * layout.
1016 */
1017 unsigned
1018 brw_miptree_get_vertical_slice_pitch(const struct brw_context *brw,
1019 const struct intel_mipmap_tree *mt,
1020 unsigned level);
1021
1022 bool
1023 brw_miptree_layout(struct brw_context *brw,
1024 struct intel_mipmap_tree *mt,
1025 uint32_t layout_flags);
1026
1027 void
1028 intel_miptree_map(struct brw_context *brw,
1029 struct intel_mipmap_tree *mt,
1030 unsigned int level,
1031 unsigned int slice,
1032 unsigned int x,
1033 unsigned int y,
1034 unsigned int w,
1035 unsigned int h,
1036 GLbitfield mode,
1037 void **out_ptr,
1038 ptrdiff_t *out_stride);
1039
1040 void
1041 intel_miptree_unmap(struct brw_context *brw,
1042 struct intel_mipmap_tree *mt,
1043 unsigned int level,
1044 unsigned int slice);
1045
1046 bool
1047 intel_miptree_sample_with_hiz(struct brw_context *brw,
1048 struct intel_mipmap_tree *mt);
1049
1050 #ifdef __cplusplus
1051 }
1052 #endif
1053
1054 #endif