07af0633d673979166515845565444b29037c89f
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "compiler/nir/nir.h"
41
42 #include "utils.h"
43 #include "xmlpool.h"
44
45 #ifndef DRM_FORMAT_MOD_INVALID
46 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
47 #endif
48
49 #ifndef DRM_FORMAT_MOD_LINEAR
50 #define DRM_FORMAT_MOD_LINEAR 0
51 #endif
52
53 static const __DRIconfigOptionsExtension brw_config_options = {
54 .base = { __DRI_CONFIG_OPTIONS, 1 },
55 .xml =
56 DRI_CONF_BEGIN
57 DRI_CONF_SECTION_PERFORMANCE
58 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_FORCE_S3TC_ENABLE("false")
72
73 DRI_CONF_PRECISE_TRIG("false")
74
75 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
76 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
77 "given integer. If negative, then do not clamp.")
78 DRI_CONF_OPT_END
79 DRI_CONF_SECTION_END
80
81 DRI_CONF_SECTION_DEBUG
82 DRI_CONF_NO_RAST("false")
83 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
84 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
85 DRI_CONF_DISABLE_THROTTLING("false")
86 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
87 DRI_CONF_FORCE_GLSL_VERSION(0)
88 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
89 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
90 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
91 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
92 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
93 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
94 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
95
96 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
97 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
98 DRI_CONF_OPT_END
99 DRI_CONF_SECTION_END
100
101 DRI_CONF_SECTION_MISCELLANEOUS
102 DRI_CONF_GLSL_ZERO_INIT("false")
103 DRI_CONF_SECTION_END
104 DRI_CONF_END
105 };
106
107 #include "intel_batchbuffer.h"
108 #include "intel_buffers.h"
109 #include "brw_bufmgr.h"
110 #include "intel_fbo.h"
111 #include "intel_mipmap_tree.h"
112 #include "intel_screen.h"
113 #include "intel_tex.h"
114 #include "intel_image.h"
115
116 #include "brw_context.h"
117
118 #include "i915_drm.h"
119
120 /**
121 * For debugging purposes, this returns a time in seconds.
122 */
123 double
124 get_time(void)
125 {
126 struct timespec tp;
127
128 clock_gettime(CLOCK_MONOTONIC, &tp);
129
130 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
131 }
132
133 static const __DRItexBufferExtension intelTexBufferExtension = {
134 .base = { __DRI_TEX_BUFFER, 3 },
135
136 .setTexBuffer = intelSetTexBuffer,
137 .setTexBuffer2 = intelSetTexBuffer2,
138 .releaseTexBuffer = NULL,
139 };
140
141 static void
142 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
143 __DRIdrawable *dPriv,
144 unsigned flags,
145 enum __DRI2throttleReason reason)
146 {
147 struct brw_context *brw = cPriv->driverPrivate;
148
149 if (!brw)
150 return;
151
152 struct gl_context *ctx = &brw->ctx;
153
154 FLUSH_VERTICES(ctx, 0);
155
156 if (flags & __DRI2_FLUSH_DRAWABLE)
157 intel_resolve_for_dri2_flush(brw, dPriv);
158
159 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
160 brw->need_swap_throttle = true;
161 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
162 brw->need_flush_throttle = true;
163
164 intel_batchbuffer_flush(brw);
165 }
166
167 /**
168 * Provides compatibility with loaders that only support the older (version
169 * 1-3) flush interface.
170 *
171 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
172 */
173 static void
174 intel_dri2_flush(__DRIdrawable *drawable)
175 {
176 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
177 __DRI2_FLUSH_DRAWABLE,
178 __DRI2_THROTTLE_SWAPBUFFER);
179 }
180
181 static const struct __DRI2flushExtensionRec intelFlushExtension = {
182 .base = { __DRI2_FLUSH, 4 },
183
184 .flush = intel_dri2_flush,
185 .invalidate = dri2InvalidateDrawable,
186 .flush_with_flags = intel_dri2_flush_with_flags,
187 };
188
189 static struct intel_image_format intel_image_formats[] = {
190 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
191 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
192
193 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
194 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
195
196 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
197 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
198
199 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
200 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
201
202 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
203 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
204
205 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
206 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
207
208 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
209 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
210
211 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
212 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
213
214 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
215 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
216
217 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
218 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
219
220 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
221 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
222
223 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
224 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
227
228 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
229 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
232
233 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
234 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
237
238 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
239 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
242
243 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
244 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
247
248 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
249 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
252
253 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
254 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
257
258 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
259 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
262
263 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
264 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
267
268 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
269 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
272
273 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
274 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
275 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
276
277 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
278 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
279 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
280
281 /* For YUYV buffers, we set up two overlapping DRI images and treat
282 * them as planar buffers in the compositors. Plane 0 is GR88 and
283 * samples YU or YV pairs and places Y into the R component, while
284 * plane 1 is ARGB and samples YUYV clusters and places pairs and
285 * places U into the G component and V into A. This lets the
286 * texture sampler interpolate the Y components correctly when
287 * sampling from plane 0, and interpolate U and V correctly when
288 * sampling from plane 1. */
289 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
290 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
291 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
292 };
293
294 static const struct {
295 uint32_t tiling;
296 uint64_t modifier;
297 } tiling_modifier_map[] = {
298 { .tiling = I915_TILING_NONE, .modifier = DRM_FORMAT_MOD_LINEAR },
299 { .tiling = I915_TILING_X, .modifier = I915_FORMAT_MOD_X_TILED },
300 { .tiling = I915_TILING_Y, .modifier = I915_FORMAT_MOD_Y_TILED },
301 };
302
303 static uint32_t
304 modifier_to_tiling(uint64_t modifier)
305 {
306 int i;
307
308 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
309 if (tiling_modifier_map[i].modifier == modifier)
310 return tiling_modifier_map[i].tiling;
311 }
312
313 unreachable("modifier_to_tiling should only receive known modifiers");
314 }
315
316 static uint64_t
317 tiling_to_modifier(uint32_t tiling)
318 {
319 int i;
320
321 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
322 if (tiling_modifier_map[i].tiling == tiling)
323 return tiling_modifier_map[i].modifier;
324 }
325
326 unreachable("tiling_to_modifier received unknown tiling mode");
327 }
328
329 static void
330 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
331 {
332 uint32_t tiling, swizzle;
333 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
334
335 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
336 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
337 func, image->offset);
338 }
339 }
340
341 static struct intel_image_format *
342 intel_image_format_lookup(int fourcc)
343 {
344 struct intel_image_format *f = NULL;
345
346 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
347 if (intel_image_formats[i].fourcc == fourcc) {
348 f = &intel_image_formats[i];
349 break;
350 }
351 }
352
353 return f;
354 }
355
356 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
357 {
358 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
359 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
360 *fourcc = intel_image_formats[i].fourcc;
361 return true;
362 }
363 }
364 return false;
365 }
366
367 static __DRIimage *
368 intel_allocate_image(struct intel_screen *screen, int dri_format,
369 void *loaderPrivate)
370 {
371 __DRIimage *image;
372
373 image = calloc(1, sizeof *image);
374 if (image == NULL)
375 return NULL;
376
377 image->screen = screen;
378 image->dri_format = dri_format;
379 image->offset = 0;
380
381 image->format = driImageFormatToGLFormat(dri_format);
382 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
383 image->format == MESA_FORMAT_NONE) {
384 free(image);
385 return NULL;
386 }
387
388 image->internal_format = _mesa_get_format_base_format(image->format);
389 image->data = loaderPrivate;
390
391 return image;
392 }
393
394 /**
395 * Sets up a DRIImage structure to point to a slice out of a miptree.
396 */
397 static void
398 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
399 struct intel_mipmap_tree *mt, GLuint level,
400 GLuint zoffset)
401 {
402 intel_miptree_make_shareable(brw, mt);
403
404 intel_miptree_check_level_layer(mt, level, zoffset);
405
406 image->width = minify(mt->physical_width0, level - mt->first_level);
407 image->height = minify(mt->physical_height0, level - mt->first_level);
408 image->pitch = mt->pitch;
409
410 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
411 &image->tile_x,
412 &image->tile_y);
413
414 brw_bo_unreference(image->bo);
415 image->bo = mt->bo;
416 brw_bo_reference(mt->bo);
417 }
418
419 static __DRIimage *
420 intel_create_image_from_name(__DRIscreen *dri_screen,
421 int width, int height, int format,
422 int name, int pitch, void *loaderPrivate)
423 {
424 struct intel_screen *screen = dri_screen->driverPrivate;
425 __DRIimage *image;
426 int cpp;
427
428 image = intel_allocate_image(screen, format, loaderPrivate);
429 if (image == NULL)
430 return NULL;
431
432 if (image->format == MESA_FORMAT_NONE)
433 cpp = 1;
434 else
435 cpp = _mesa_get_format_bytes(image->format);
436
437 image->width = width;
438 image->height = height;
439 image->pitch = pitch * cpp;
440 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
441 name);
442 if (!image->bo) {
443 free(image);
444 return NULL;
445 }
446 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
447
448 return image;
449 }
450
451 static __DRIimage *
452 intel_create_image_from_renderbuffer(__DRIcontext *context,
453 int renderbuffer, void *loaderPrivate)
454 {
455 __DRIimage *image;
456 struct brw_context *brw = context->driverPrivate;
457 struct gl_context *ctx = &brw->ctx;
458 struct gl_renderbuffer *rb;
459 struct intel_renderbuffer *irb;
460
461 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
462 if (!rb) {
463 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
464 return NULL;
465 }
466
467 irb = intel_renderbuffer(rb);
468 intel_miptree_make_shareable(brw, irb->mt);
469 image = calloc(1, sizeof *image);
470 if (image == NULL)
471 return NULL;
472
473 image->internal_format = rb->InternalFormat;
474 image->format = rb->Format;
475 image->modifier = tiling_to_modifier(irb->mt->tiling);
476 image->offset = 0;
477 image->data = loaderPrivate;
478 brw_bo_unreference(image->bo);
479 image->bo = irb->mt->bo;
480 brw_bo_reference(irb->mt->bo);
481 image->width = rb->Width;
482 image->height = rb->Height;
483 image->pitch = irb->mt->pitch;
484 image->dri_format = driGLFormatToImageFormat(image->format);
485 image->has_depthstencil = irb->mt->stencil_mt? true : false;
486
487 rb->NeedsFinishRenderTexture = true;
488 return image;
489 }
490
491 static __DRIimage *
492 intel_create_image_from_texture(__DRIcontext *context, int target,
493 unsigned texture, int zoffset,
494 int level,
495 unsigned *error,
496 void *loaderPrivate)
497 {
498 __DRIimage *image;
499 struct brw_context *brw = context->driverPrivate;
500 struct gl_texture_object *obj;
501 struct intel_texture_object *iobj;
502 GLuint face = 0;
503
504 obj = _mesa_lookup_texture(&brw->ctx, texture);
505 if (!obj || obj->Target != target) {
506 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
507 return NULL;
508 }
509
510 if (target == GL_TEXTURE_CUBE_MAP)
511 face = zoffset;
512
513 _mesa_test_texobj_completeness(&brw->ctx, obj);
514 iobj = intel_texture_object(obj);
515 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
516 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
517 return NULL;
518 }
519
520 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
521 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
522 return NULL;
523 }
524
525 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
526 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
527 return NULL;
528 }
529 image = calloc(1, sizeof *image);
530 if (image == NULL) {
531 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
532 return NULL;
533 }
534
535 image->internal_format = obj->Image[face][level]->InternalFormat;
536 image->format = obj->Image[face][level]->TexFormat;
537 image->modifier = tiling_to_modifier(iobj->mt->tiling);
538 image->data = loaderPrivate;
539 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
540 image->dri_format = driGLFormatToImageFormat(image->format);
541 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
542 if (image->dri_format == MESA_FORMAT_NONE) {
543 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
544 free(image);
545 return NULL;
546 }
547
548 *error = __DRI_IMAGE_ERROR_SUCCESS;
549 return image;
550 }
551
552 static void
553 intel_destroy_image(__DRIimage *image)
554 {
555 brw_bo_unreference(image->bo);
556 free(image);
557 }
558
559 enum modifier_priority {
560 MODIFIER_PRIORITY_INVALID = 0,
561 MODIFIER_PRIORITY_LINEAR,
562 MODIFIER_PRIORITY_X,
563 MODIFIER_PRIORITY_Y,
564 };
565
566 const uint64_t priority_to_modifier[] = {
567 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
568 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
569 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
570 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
571 };
572
573 static uint64_t
574 select_best_modifier(struct gen_device_info *devinfo,
575 const uint64_t *modifiers,
576 const unsigned count)
577 {
578 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
579
580 for (int i = 0; i < count; i++) {
581 switch (modifiers[i]) {
582 case I915_FORMAT_MOD_Y_TILED:
583 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
584 break;
585 case I915_FORMAT_MOD_X_TILED:
586 prio = MAX2(prio, MODIFIER_PRIORITY_X);
587 break;
588 case DRM_FORMAT_MOD_LINEAR:
589 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
590 break;
591 case DRM_FORMAT_MOD_INVALID:
592 default:
593 break;
594 }
595 }
596
597 return priority_to_modifier[prio];
598 }
599
600 static __DRIimage *
601 intel_create_image_common(__DRIscreen *dri_screen,
602 int width, int height, int format,
603 unsigned int use,
604 const uint64_t *modifiers,
605 unsigned count,
606 void *loaderPrivate)
607 {
608 __DRIimage *image;
609 struct intel_screen *screen = dri_screen->driverPrivate;
610 uint32_t tiling;
611 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
612 int cpp;
613
614 /* Callers of this may specify a modifier, or a dri usage, but not both. The
615 * newer modifier interface deprecates the older usage flags newer modifier
616 * interface deprecates the older usage flags.
617 */
618 assert(!(use && count));
619
620 if (use & __DRI_IMAGE_USE_CURSOR) {
621 if (width != 64 || height != 64)
622 return NULL;
623 modifier = DRM_FORMAT_MOD_LINEAR;
624 }
625
626 if (use & __DRI_IMAGE_USE_LINEAR)
627 modifier = DRM_FORMAT_MOD_LINEAR;
628
629 if (modifier == DRM_FORMAT_MOD_INVALID) {
630 if (modifiers) {
631 /* User requested specific modifiers */
632 modifier = select_best_modifier(&screen->devinfo, modifiers, count);
633 if (modifier == DRM_FORMAT_MOD_INVALID)
634 return NULL;
635 } else {
636 /* Historically, X-tiled was the default, and so lack of modifier means
637 * X-tiled.
638 */
639 modifier = I915_FORMAT_MOD_X_TILED;
640 }
641 }
642 tiling = modifier_to_tiling(modifier);
643
644 image = intel_allocate_image(screen, format, loaderPrivate);
645 if (image == NULL)
646 return NULL;
647
648 cpp = _mesa_get_format_bytes(image->format);
649 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
650 width, height, cpp, tiling,
651 &image->pitch, 0);
652 if (image->bo == NULL) {
653 free(image);
654 return NULL;
655 }
656 image->width = width;
657 image->height = height;
658 image->modifier = modifier;
659
660 return image;
661 }
662
663 static __DRIimage *
664 intel_create_image(__DRIscreen *dri_screen,
665 int width, int height, int format,
666 unsigned int use,
667 void *loaderPrivate)
668 {
669 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
670 loaderPrivate);
671 }
672
673 static __DRIimage *
674 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
675 int width, int height, int format,
676 const uint64_t *modifiers,
677 const unsigned count,
678 void *loaderPrivate)
679 {
680 return intel_create_image_common(dri_screen, width, height, format, 0,
681 modifiers, count, loaderPrivate);
682 }
683
684 static GLboolean
685 intel_query_image(__DRIimage *image, int attrib, int *value)
686 {
687 switch (attrib) {
688 case __DRI_IMAGE_ATTRIB_STRIDE:
689 *value = image->pitch;
690 return true;
691 case __DRI_IMAGE_ATTRIB_HANDLE:
692 *value = image->bo->gem_handle;
693 return true;
694 case __DRI_IMAGE_ATTRIB_NAME:
695 return !brw_bo_flink(image->bo, (uint32_t *) value);
696 case __DRI_IMAGE_ATTRIB_FORMAT:
697 *value = image->dri_format;
698 return true;
699 case __DRI_IMAGE_ATTRIB_WIDTH:
700 *value = image->width;
701 return true;
702 case __DRI_IMAGE_ATTRIB_HEIGHT:
703 *value = image->height;
704 return true;
705 case __DRI_IMAGE_ATTRIB_COMPONENTS:
706 if (image->planar_format == NULL)
707 return false;
708 *value = image->planar_format->components;
709 return true;
710 case __DRI_IMAGE_ATTRIB_FD:
711 return !brw_bo_gem_export_to_prime(image->bo, value);
712 case __DRI_IMAGE_ATTRIB_FOURCC:
713 return intel_lookup_fourcc(image->dri_format, value);
714 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
715 *value = 1;
716 return true;
717 case __DRI_IMAGE_ATTRIB_OFFSET:
718 *value = image->offset;
719 return true;
720 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
721 *value = (image->modifier & 0xffffffff);
722 return true;
723 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
724 *value = ((image->modifier >> 32) & 0xffffffff);
725 return true;
726
727 default:
728 return false;
729 }
730 }
731
732 static __DRIimage *
733 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
734 {
735 __DRIimage *image;
736
737 image = calloc(1, sizeof *image);
738 if (image == NULL)
739 return NULL;
740
741 brw_bo_reference(orig_image->bo);
742 image->bo = orig_image->bo;
743 image->internal_format = orig_image->internal_format;
744 image->planar_format = orig_image->planar_format;
745 image->dri_format = orig_image->dri_format;
746 image->format = orig_image->format;
747 image->modifier = orig_image->modifier;
748 image->offset = orig_image->offset;
749 image->width = orig_image->width;
750 image->height = orig_image->height;
751 image->pitch = orig_image->pitch;
752 image->tile_x = orig_image->tile_x;
753 image->tile_y = orig_image->tile_y;
754 image->has_depthstencil = orig_image->has_depthstencil;
755 image->data = loaderPrivate;
756
757 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
758 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
759
760 return image;
761 }
762
763 static GLboolean
764 intel_validate_usage(__DRIimage *image, unsigned int use)
765 {
766 if (use & __DRI_IMAGE_USE_CURSOR) {
767 if (image->width != 64 || image->height != 64)
768 return GL_FALSE;
769 }
770
771 return GL_TRUE;
772 }
773
774 static __DRIimage *
775 intel_create_image_from_names(__DRIscreen *dri_screen,
776 int width, int height, int fourcc,
777 int *names, int num_names,
778 int *strides, int *offsets,
779 void *loaderPrivate)
780 {
781 struct intel_image_format *f = NULL;
782 __DRIimage *image;
783 int i, index;
784
785 if (dri_screen == NULL || names == NULL || num_names != 1)
786 return NULL;
787
788 f = intel_image_format_lookup(fourcc);
789 if (f == NULL)
790 return NULL;
791
792 image = intel_create_image_from_name(dri_screen, width, height,
793 __DRI_IMAGE_FORMAT_NONE,
794 names[0], strides[0],
795 loaderPrivate);
796
797 if (image == NULL)
798 return NULL;
799
800 image->planar_format = f;
801 for (i = 0; i < f->nplanes; i++) {
802 index = f->planes[i].buffer_index;
803 image->offsets[index] = offsets[index];
804 image->strides[index] = strides[index];
805 }
806
807 return image;
808 }
809
810 static __DRIimage *
811 intel_create_image_from_fds(__DRIscreen *dri_screen,
812 int width, int height, int fourcc,
813 int *fds, int num_fds, int *strides, int *offsets,
814 void *loaderPrivate)
815 {
816 struct intel_screen *screen = dri_screen->driverPrivate;
817 struct intel_image_format *f;
818 __DRIimage *image;
819 int i, index;
820
821 if (fds == NULL || num_fds < 1)
822 return NULL;
823
824 /* We only support all planes from the same bo */
825 for (i = 0; i < num_fds; i++)
826 if (fds[0] != fds[i])
827 return NULL;
828
829 f = intel_image_format_lookup(fourcc);
830 if (f == NULL)
831 return NULL;
832
833 if (f->nplanes == 1)
834 image = intel_allocate_image(screen, f->planes[0].dri_format,
835 loaderPrivate);
836 else
837 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
838 loaderPrivate);
839
840 if (image == NULL)
841 return NULL;
842
843 image->width = width;
844 image->height = height;
845 image->pitch = strides[0];
846
847 image->planar_format = f;
848 int size = 0;
849 for (i = 0; i < f->nplanes; i++) {
850 index = f->planes[i].buffer_index;
851 image->offsets[index] = offsets[index];
852 image->strides[index] = strides[index];
853
854 const int plane_height = height >> f->planes[i].height_shift;
855 const int end = offsets[index] + plane_height * strides[index];
856 if (size < end)
857 size = end;
858 }
859
860 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr,
861 fds[0], size);
862 if (image->bo == NULL) {
863 free(image);
864 return NULL;
865 }
866 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
867
868 if (f->nplanes == 1) {
869 image->offset = image->offsets[0];
870 intel_image_warn_if_unaligned(image, __func__);
871 }
872
873 return image;
874 }
875
876 static __DRIimage *
877 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
878 int width, int height, int fourcc,
879 int *fds, int num_fds,
880 int *strides, int *offsets,
881 enum __DRIYUVColorSpace yuv_color_space,
882 enum __DRISampleRange sample_range,
883 enum __DRIChromaSiting horizontal_siting,
884 enum __DRIChromaSiting vertical_siting,
885 unsigned *error,
886 void *loaderPrivate)
887 {
888 __DRIimage *image;
889 struct intel_image_format *f = intel_image_format_lookup(fourcc);
890
891 if (!f) {
892 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
893 return NULL;
894 }
895
896 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
897 num_fds, strides, offsets,
898 loaderPrivate);
899
900 /*
901 * Invalid parameters and any inconsistencies between are assumed to be
902 * checked by the caller. Therefore besides unsupported formats one can fail
903 * only in allocation.
904 */
905 if (!image) {
906 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
907 return NULL;
908 }
909
910 image->dma_buf_imported = true;
911 image->yuv_color_space = yuv_color_space;
912 image->sample_range = sample_range;
913 image->horizontal_siting = horizontal_siting;
914 image->vertical_siting = vertical_siting;
915
916 *error = __DRI_IMAGE_ERROR_SUCCESS;
917 return image;
918 }
919
920 static __DRIimage *
921 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
922 {
923 int width, height, offset, stride, dri_format, index;
924 struct intel_image_format *f;
925 __DRIimage *image;
926
927 if (parent == NULL || parent->planar_format == NULL)
928 return NULL;
929
930 f = parent->planar_format;
931
932 if (plane >= f->nplanes)
933 return NULL;
934
935 width = parent->width >> f->planes[plane].width_shift;
936 height = parent->height >> f->planes[plane].height_shift;
937 dri_format = f->planes[plane].dri_format;
938 index = f->planes[plane].buffer_index;
939 offset = parent->offsets[index];
940 stride = parent->strides[index];
941
942 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
943 if (image == NULL)
944 return NULL;
945
946 if (offset + height * stride > parent->bo->size) {
947 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
948 free(image);
949 return NULL;
950 }
951
952 image->bo = parent->bo;
953 brw_bo_reference(parent->bo);
954 image->modifier = parent->modifier;
955
956 image->width = width;
957 image->height = height;
958 image->pitch = stride;
959 image->offset = offset;
960
961 intel_image_warn_if_unaligned(image, __func__);
962
963 return image;
964 }
965
966 static const __DRIimageExtension intelImageExtension = {
967 .base = { __DRI_IMAGE, 14 },
968
969 .createImageFromName = intel_create_image_from_name,
970 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
971 .destroyImage = intel_destroy_image,
972 .createImage = intel_create_image,
973 .queryImage = intel_query_image,
974 .dupImage = intel_dup_image,
975 .validateUsage = intel_validate_usage,
976 .createImageFromNames = intel_create_image_from_names,
977 .fromPlanar = intel_from_planar,
978 .createImageFromTexture = intel_create_image_from_texture,
979 .createImageFromFds = intel_create_image_from_fds,
980 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
981 .blitImage = NULL,
982 .getCapabilities = NULL,
983 .mapImage = NULL,
984 .unmapImage = NULL,
985 .createImageWithModifiers = intel_create_image_with_modifiers,
986 };
987
988 static uint64_t
989 get_aperture_size(int fd)
990 {
991 struct drm_i915_gem_get_aperture aperture;
992
993 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
994 return 0;
995
996 return aperture.aper_size;
997 }
998
999 static int
1000 brw_query_renderer_integer(__DRIscreen *dri_screen,
1001 int param, unsigned int *value)
1002 {
1003 const struct intel_screen *const screen =
1004 (struct intel_screen *) dri_screen->driverPrivate;
1005
1006 switch (param) {
1007 case __DRI2_RENDERER_VENDOR_ID:
1008 value[0] = 0x8086;
1009 return 0;
1010 case __DRI2_RENDERER_DEVICE_ID:
1011 value[0] = screen->deviceID;
1012 return 0;
1013 case __DRI2_RENDERER_ACCELERATED:
1014 value[0] = 1;
1015 return 0;
1016 case __DRI2_RENDERER_VIDEO_MEMORY: {
1017 /* Once a batch uses more than 75% of the maximum mappable size, we
1018 * assume that there's some fragmentation, and we start doing extra
1019 * flushing, etc. That's the big cliff apps will care about.
1020 */
1021 const unsigned gpu_mappable_megabytes =
1022 screen->aperture_threshold / (1024 * 1024);
1023
1024 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1025 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1026
1027 if (system_memory_pages <= 0 || system_page_size <= 0)
1028 return -1;
1029
1030 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1031 * (uint64_t) system_page_size;
1032
1033 const unsigned system_memory_megabytes =
1034 (unsigned) (system_memory_bytes / (1024 * 1024));
1035
1036 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1037 return 0;
1038 }
1039 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1040 value[0] = 1;
1041 return 0;
1042 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1043 value[0] = 1;
1044 return 0;
1045 default:
1046 return driQueryRendererIntegerCommon(dri_screen, param, value);
1047 }
1048
1049 return -1;
1050 }
1051
1052 static int
1053 brw_query_renderer_string(__DRIscreen *dri_screen,
1054 int param, const char **value)
1055 {
1056 const struct intel_screen *screen =
1057 (struct intel_screen *) dri_screen->driverPrivate;
1058
1059 switch (param) {
1060 case __DRI2_RENDERER_VENDOR_ID:
1061 value[0] = brw_vendor_string;
1062 return 0;
1063 case __DRI2_RENDERER_DEVICE_ID:
1064 value[0] = brw_get_renderer_string(screen);
1065 return 0;
1066 default:
1067 break;
1068 }
1069
1070 return -1;
1071 }
1072
1073 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1074 .base = { __DRI2_RENDERER_QUERY, 1 },
1075
1076 .queryInteger = brw_query_renderer_integer,
1077 .queryString = brw_query_renderer_string
1078 };
1079
1080 static const __DRIrobustnessExtension dri2Robustness = {
1081 .base = { __DRI2_ROBUSTNESS, 1 }
1082 };
1083
1084 static const __DRIextension *screenExtensions[] = {
1085 &intelTexBufferExtension.base,
1086 &intelFenceExtension.base,
1087 &intelFlushExtension.base,
1088 &intelImageExtension.base,
1089 &intelRendererQueryExtension.base,
1090 &dri2ConfigQueryExtension.base,
1091 NULL
1092 };
1093
1094 static const __DRIextension *intelRobustScreenExtensions[] = {
1095 &intelTexBufferExtension.base,
1096 &intelFenceExtension.base,
1097 &intelFlushExtension.base,
1098 &intelImageExtension.base,
1099 &intelRendererQueryExtension.base,
1100 &dri2ConfigQueryExtension.base,
1101 &dri2Robustness.base,
1102 NULL
1103 };
1104
1105 static int
1106 intel_get_param(struct intel_screen *screen, int param, int *value)
1107 {
1108 int ret = 0;
1109 struct drm_i915_getparam gp;
1110
1111 memset(&gp, 0, sizeof(gp));
1112 gp.param = param;
1113 gp.value = value;
1114
1115 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1116 ret = -errno;
1117 if (ret != -EINVAL)
1118 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1119 }
1120
1121 return ret;
1122 }
1123
1124 static bool
1125 intel_get_boolean(struct intel_screen *screen, int param)
1126 {
1127 int value = 0;
1128 return (intel_get_param(screen, param, &value) == 0) && value;
1129 }
1130
1131 static int
1132 intel_get_integer(struct intel_screen *screen, int param)
1133 {
1134 int value = -1;
1135
1136 if (intel_get_param(screen, param, &value) == 0)
1137 return value;
1138
1139 return -1;
1140 }
1141
1142 static void
1143 intelDestroyScreen(__DRIscreen * sPriv)
1144 {
1145 struct intel_screen *screen = sPriv->driverPrivate;
1146
1147 brw_bufmgr_destroy(screen->bufmgr);
1148 driDestroyOptionInfo(&screen->optionCache);
1149
1150 ralloc_free(screen);
1151 sPriv->driverPrivate = NULL;
1152 }
1153
1154
1155 /**
1156 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1157 *
1158 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1159 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1160 * this does not allocate GPU memory.
1161 */
1162 static GLboolean
1163 intelCreateBuffer(__DRIscreen *dri_screen,
1164 __DRIdrawable * driDrawPriv,
1165 const struct gl_config * mesaVis, GLboolean isPixmap)
1166 {
1167 struct intel_renderbuffer *rb;
1168 struct intel_screen *screen = (struct intel_screen *)
1169 dri_screen->driverPrivate;
1170 mesa_format rgbFormat;
1171 unsigned num_samples =
1172 intel_quantize_num_samples(screen, mesaVis->samples);
1173
1174 if (isPixmap)
1175 return false;
1176
1177 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1178 if (!fb)
1179 return false;
1180
1181 _mesa_initialize_window_framebuffer(fb, mesaVis);
1182
1183 if (screen->winsys_msaa_samples_override != -1) {
1184 num_samples = screen->winsys_msaa_samples_override;
1185 fb->Visual.samples = num_samples;
1186 }
1187
1188 if (mesaVis->redBits == 5) {
1189 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1190 : MESA_FORMAT_B5G6R5_UNORM;
1191 } else if (mesaVis->sRGBCapable) {
1192 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1193 : MESA_FORMAT_B8G8R8A8_SRGB;
1194 } else if (mesaVis->alphaBits == 0) {
1195 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1196 : MESA_FORMAT_B8G8R8X8_UNORM;
1197 } else {
1198 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1199 : MESA_FORMAT_B8G8R8A8_SRGB;
1200 fb->Visual.sRGBCapable = true;
1201 }
1202
1203 /* setup the hardware-based renderbuffers */
1204 rb = intel_create_winsys_renderbuffer(rgbFormat, num_samples);
1205 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1206
1207 if (mesaVis->doubleBufferMode) {
1208 rb = intel_create_winsys_renderbuffer(rgbFormat, num_samples);
1209 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1210 }
1211
1212 /*
1213 * Assert here that the gl_config has an expected depth/stencil bit
1214 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1215 * which constructs the advertised configs.)
1216 */
1217 if (mesaVis->depthBits == 24) {
1218 assert(mesaVis->stencilBits == 8);
1219
1220 if (screen->devinfo.has_hiz_and_separate_stencil) {
1221 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1222 num_samples);
1223 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1224 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1225 num_samples);
1226 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1227 } else {
1228 /*
1229 * Use combined depth/stencil. Note that the renderbuffer is
1230 * attached to two attachment points.
1231 */
1232 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1233 num_samples);
1234 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1235 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1236 }
1237 }
1238 else if (mesaVis->depthBits == 16) {
1239 assert(mesaVis->stencilBits == 0);
1240 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1241 num_samples);
1242 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1243 }
1244 else {
1245 assert(mesaVis->depthBits == 0);
1246 assert(mesaVis->stencilBits == 0);
1247 }
1248
1249 /* now add any/all software-based renderbuffers we may need */
1250 _swrast_add_soft_renderbuffers(fb,
1251 false, /* never sw color */
1252 false, /* never sw depth */
1253 false, /* never sw stencil */
1254 mesaVis->accumRedBits > 0,
1255 false, /* never sw alpha */
1256 false /* never sw aux */ );
1257 driDrawPriv->driverPrivate = fb;
1258
1259 return true;
1260 }
1261
1262 static void
1263 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1264 {
1265 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1266
1267 _mesa_reference_framebuffer(&fb, NULL);
1268 }
1269
1270 static void
1271 intel_detect_sseu(struct intel_screen *screen)
1272 {
1273 assert(screen->devinfo.gen >= 8);
1274 int ret;
1275
1276 screen->subslice_total = -1;
1277 screen->eu_total = -1;
1278
1279 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1280 &screen->subslice_total);
1281 if (ret < 0 && ret != -EINVAL)
1282 goto err_out;
1283
1284 ret = intel_get_param(screen,
1285 I915_PARAM_EU_TOTAL, &screen->eu_total);
1286 if (ret < 0 && ret != -EINVAL)
1287 goto err_out;
1288
1289 /* Without this information, we cannot get the right Braswell brandstrings,
1290 * and we have to use conservative numbers for GPGPU on many platforms, but
1291 * otherwise, things will just work.
1292 */
1293 if (screen->subslice_total < 1 || screen->eu_total < 1)
1294 _mesa_warning(NULL,
1295 "Kernel 4.1 required to properly query GPU properties.\n");
1296
1297 return;
1298
1299 err_out:
1300 screen->subslice_total = -1;
1301 screen->eu_total = -1;
1302 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1303 }
1304
1305 static bool
1306 intel_init_bufmgr(struct intel_screen *screen)
1307 {
1308 __DRIscreen *dri_screen = screen->driScrnPriv;
1309
1310 if (getenv("INTEL_NO_HW") != NULL)
1311 screen->no_hw = true;
1312
1313 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1314 if (screen->bufmgr == NULL) {
1315 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1316 __func__, __LINE__);
1317 return false;
1318 }
1319
1320 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1321 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1322 return false;
1323 }
1324
1325 return true;
1326 }
1327
1328 static bool
1329 intel_detect_swizzling(struct intel_screen *screen)
1330 {
1331 struct brw_bo *buffer;
1332 unsigned flags = 0;
1333 uint32_t aligned_pitch;
1334 uint32_t tiling = I915_TILING_X;
1335 uint32_t swizzle_mode = 0;
1336
1337 buffer = brw_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1338 64, 64, 4, tiling, &aligned_pitch, flags);
1339 if (buffer == NULL)
1340 return false;
1341
1342 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1343 brw_bo_unreference(buffer);
1344
1345 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1346 return false;
1347 else
1348 return true;
1349 }
1350
1351 static int
1352 intel_detect_timestamp(struct intel_screen *screen)
1353 {
1354 uint64_t dummy = 0, last = 0;
1355 int upper, lower, loops;
1356
1357 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1358 * TIMESTAMP register being shifted and the low 32bits always zero.
1359 *
1360 * More recent kernels offer an interface to read the full 36bits
1361 * everywhere.
1362 */
1363 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1364 return 3;
1365
1366 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1367 * upper 32bits for a rapidly changing timestamp.
1368 */
1369 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1370 return 0;
1371
1372 upper = lower = 0;
1373 for (loops = 0; loops < 10; loops++) {
1374 /* The TIMESTAMP should change every 80ns, so several round trips
1375 * through the kernel should be enough to advance it.
1376 */
1377 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1378 return 0;
1379
1380 upper += (dummy >> 32) != (last >> 32);
1381 if (upper > 1) /* beware 32bit counter overflow */
1382 return 2; /* upper dword holds the low 32bits of the timestamp */
1383
1384 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1385 if (lower > 1)
1386 return 1; /* timestamp is unshifted */
1387
1388 last = dummy;
1389 }
1390
1391 /* No advancement? No timestamp! */
1392 return 0;
1393 }
1394
1395 /**
1396 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1397 *
1398 * Some combinations of hardware and kernel versions allow this feature,
1399 * while others don't. Instead of trying to enumerate every case, just
1400 * try and write a register and see if works.
1401 */
1402 static bool
1403 intel_detect_pipelined_register(struct intel_screen *screen,
1404 int reg, uint32_t expected_value, bool reset)
1405 {
1406 if (screen->no_hw)
1407 return false;
1408
1409 struct brw_bo *results, *bo;
1410 uint32_t *batch;
1411 uint32_t offset = 0;
1412 void *map;
1413 bool success = false;
1414
1415 /* Create a zero'ed temporary buffer for reading our results */
1416 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1417 if (results == NULL)
1418 goto err;
1419
1420 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1421 if (bo == NULL)
1422 goto err_results;
1423
1424 map = brw_bo_map(NULL, bo, MAP_WRITE);
1425 if (!map)
1426 goto err_batch;
1427
1428 batch = map;
1429
1430 /* Write the register. */
1431 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1432 *batch++ = reg;
1433 *batch++ = expected_value;
1434
1435 /* Save the register's value back to the buffer. */
1436 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1437 *batch++ = reg;
1438 struct drm_i915_gem_relocation_entry reloc = {
1439 .offset = (char *) batch - (char *) map,
1440 .delta = offset * sizeof(uint32_t),
1441 .target_handle = results->gem_handle,
1442 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1443 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1444 };
1445 *batch++ = reloc.presumed_offset + reloc.delta;
1446
1447 /* And afterwards clear the register */
1448 if (reset) {
1449 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1450 *batch++ = reg;
1451 *batch++ = 0;
1452 }
1453
1454 *batch++ = MI_BATCH_BUFFER_END;
1455
1456 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1457 {
1458 .handle = results->gem_handle,
1459 },
1460 {
1461 .handle = bo->gem_handle,
1462 .relocation_count = 1,
1463 .relocs_ptr = (uintptr_t) &reloc,
1464 }
1465 };
1466
1467 struct drm_i915_gem_execbuffer2 execbuf = {
1468 .buffers_ptr = (uintptr_t) exec_objects,
1469 .buffer_count = 2,
1470 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1471 .flags = I915_EXEC_RENDER,
1472 };
1473
1474 /* Don't bother with error checking - if the execbuf fails, the
1475 * value won't be written and we'll just report that there's no access.
1476 */
1477 __DRIscreen *dri_screen = screen->driScrnPriv;
1478 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1479
1480 /* Check whether the value got written. */
1481 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1482 if (results_map) {
1483 success = *((uint32_t *)results_map + offset) == expected_value;
1484 brw_bo_unmap(results);
1485 }
1486
1487 err_batch:
1488 brw_bo_unreference(bo);
1489 err_results:
1490 brw_bo_unreference(results);
1491 err:
1492 return success;
1493 }
1494
1495 static bool
1496 intel_detect_pipelined_so(struct intel_screen *screen)
1497 {
1498 const struct gen_device_info *devinfo = &screen->devinfo;
1499
1500 /* Supposedly, Broadwell just works. */
1501 if (devinfo->gen >= 8)
1502 return true;
1503
1504 if (devinfo->gen <= 6)
1505 return false;
1506
1507 /* See the big explanation about command parser versions below */
1508 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1509 return true;
1510
1511 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1512 * statistics registers), and we already reset it to zero before using it.
1513 */
1514 return intel_detect_pipelined_register(screen,
1515 GEN7_SO_WRITE_OFFSET(0),
1516 0x1337d0d0,
1517 false);
1518 }
1519
1520 /**
1521 * Return array of MSAA modes supported by the hardware. The array is
1522 * zero-terminated and sorted in decreasing order.
1523 */
1524 const int*
1525 intel_supported_msaa_modes(const struct intel_screen *screen)
1526 {
1527 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1528 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1529 static const int gen7_modes[] = {8, 4, 0, -1};
1530 static const int gen6_modes[] = {4, 0, -1};
1531 static const int gen4_modes[] = {0, -1};
1532
1533 if (screen->devinfo.gen >= 9) {
1534 return gen9_modes;
1535 } else if (screen->devinfo.gen >= 8) {
1536 return gen8_modes;
1537 } else if (screen->devinfo.gen >= 7) {
1538 return gen7_modes;
1539 } else if (screen->devinfo.gen == 6) {
1540 return gen6_modes;
1541 } else {
1542 return gen4_modes;
1543 }
1544 }
1545
1546 static __DRIconfig**
1547 intel_screen_make_configs(__DRIscreen *dri_screen)
1548 {
1549 static const mesa_format formats[] = {
1550 MESA_FORMAT_B5G6R5_UNORM,
1551 MESA_FORMAT_B8G8R8A8_UNORM,
1552 MESA_FORMAT_B8G8R8X8_UNORM
1553 };
1554
1555 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1556 static const GLenum back_buffer_modes[] = {
1557 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1558 };
1559
1560 static const uint8_t singlesample_samples[1] = {0};
1561 static const uint8_t multisample_samples[2] = {4, 8};
1562
1563 struct intel_screen *screen = dri_screen->driverPrivate;
1564 const struct gen_device_info *devinfo = &screen->devinfo;
1565 uint8_t depth_bits[4], stencil_bits[4];
1566 __DRIconfig **configs = NULL;
1567
1568 /* Generate singlesample configs without accumulation buffer. */
1569 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1570 __DRIconfig **new_configs;
1571 int num_depth_stencil_bits = 2;
1572
1573 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1574 * buffer that has a different number of bits per pixel than the color
1575 * buffer, gen >= 6 supports this.
1576 */
1577 depth_bits[0] = 0;
1578 stencil_bits[0] = 0;
1579
1580 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1581 depth_bits[1] = 16;
1582 stencil_bits[1] = 0;
1583 if (devinfo->gen >= 6) {
1584 depth_bits[2] = 24;
1585 stencil_bits[2] = 8;
1586 num_depth_stencil_bits = 3;
1587 }
1588 } else {
1589 depth_bits[1] = 24;
1590 stencil_bits[1] = 8;
1591 }
1592
1593 new_configs = driCreateConfigs(formats[i],
1594 depth_bits,
1595 stencil_bits,
1596 num_depth_stencil_bits,
1597 back_buffer_modes, 2,
1598 singlesample_samples, 1,
1599 false, false);
1600 configs = driConcatConfigs(configs, new_configs);
1601 }
1602
1603 /* Generate the minimum possible set of configs that include an
1604 * accumulation buffer.
1605 */
1606 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1607 __DRIconfig **new_configs;
1608
1609 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1610 depth_bits[0] = 16;
1611 stencil_bits[0] = 0;
1612 } else {
1613 depth_bits[0] = 24;
1614 stencil_bits[0] = 8;
1615 }
1616
1617 new_configs = driCreateConfigs(formats[i],
1618 depth_bits, stencil_bits, 1,
1619 back_buffer_modes, 1,
1620 singlesample_samples, 1,
1621 true, false);
1622 configs = driConcatConfigs(configs, new_configs);
1623 }
1624
1625 /* Generate multisample configs.
1626 *
1627 * This loop breaks early, and hence is a no-op, on gen < 6.
1628 *
1629 * Multisample configs must follow the singlesample configs in order to
1630 * work around an X server bug present in 1.12. The X server chooses to
1631 * associate the first listed RGBA888-Z24S8 config, regardless of its
1632 * sample count, with the 32-bit depth visual used for compositing.
1633 *
1634 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1635 * supported. Singlebuffer configs are not supported because no one wants
1636 * them.
1637 */
1638 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1639 if (devinfo->gen < 6)
1640 break;
1641
1642 __DRIconfig **new_configs;
1643 const int num_depth_stencil_bits = 2;
1644 int num_msaa_modes = 0;
1645
1646 depth_bits[0] = 0;
1647 stencil_bits[0] = 0;
1648
1649 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1650 depth_bits[1] = 16;
1651 stencil_bits[1] = 0;
1652 } else {
1653 depth_bits[1] = 24;
1654 stencil_bits[1] = 8;
1655 }
1656
1657 if (devinfo->gen >= 7)
1658 num_msaa_modes = 2;
1659 else if (devinfo->gen == 6)
1660 num_msaa_modes = 1;
1661
1662 new_configs = driCreateConfigs(formats[i],
1663 depth_bits,
1664 stencil_bits,
1665 num_depth_stencil_bits,
1666 back_buffer_modes, 1,
1667 multisample_samples,
1668 num_msaa_modes,
1669 false, false);
1670 configs = driConcatConfigs(configs, new_configs);
1671 }
1672
1673 if (configs == NULL) {
1674 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1675 __LINE__);
1676 return NULL;
1677 }
1678
1679 return configs;
1680 }
1681
1682 static void
1683 set_max_gl_versions(struct intel_screen *screen)
1684 {
1685 __DRIscreen *dri_screen = screen->driScrnPriv;
1686 const bool has_astc = screen->devinfo.gen >= 9;
1687
1688 switch (screen->devinfo.gen) {
1689 case 9:
1690 case 8:
1691 dri_screen->max_gl_core_version = 45;
1692 dri_screen->max_gl_compat_version = 30;
1693 dri_screen->max_gl_es1_version = 11;
1694 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1695 break;
1696 case 7:
1697 dri_screen->max_gl_core_version = 33;
1698 if (can_do_pipelined_register_writes(screen)) {
1699 dri_screen->max_gl_core_version = 42;
1700 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1701 dri_screen->max_gl_core_version = 43;
1702 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1703 dri_screen->max_gl_core_version = 45;
1704 }
1705 dri_screen->max_gl_compat_version = 30;
1706 dri_screen->max_gl_es1_version = 11;
1707 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1708 break;
1709 case 6:
1710 dri_screen->max_gl_core_version = 33;
1711 dri_screen->max_gl_compat_version = 30;
1712 dri_screen->max_gl_es1_version = 11;
1713 dri_screen->max_gl_es2_version = 30;
1714 break;
1715 case 5:
1716 case 4:
1717 dri_screen->max_gl_core_version = 0;
1718 dri_screen->max_gl_compat_version = 21;
1719 dri_screen->max_gl_es1_version = 11;
1720 dri_screen->max_gl_es2_version = 20;
1721 break;
1722 default:
1723 unreachable("unrecognized intel_screen::gen");
1724 }
1725 }
1726
1727 /**
1728 * Return the revision (generally the revid field of the PCI header) of the
1729 * graphics device.
1730 *
1731 * XXX: This function is useful to keep around even if it is not currently in
1732 * use. It is necessary for new platforms and revision specific workarounds or
1733 * features. Please don't remove it so that we know it at least continues to
1734 * build.
1735 */
1736 static __attribute__((__unused__)) int
1737 brw_get_revision(int fd)
1738 {
1739 struct drm_i915_getparam gp;
1740 int revision;
1741 int ret;
1742
1743 memset(&gp, 0, sizeof(gp));
1744 gp.param = I915_PARAM_REVISION;
1745 gp.value = &revision;
1746
1747 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1748 if (ret)
1749 revision = -1;
1750
1751 return revision;
1752 }
1753
1754 static void
1755 shader_debug_log_mesa(void *data, const char *fmt, ...)
1756 {
1757 struct brw_context *brw = (struct brw_context *)data;
1758 va_list args;
1759
1760 va_start(args, fmt);
1761 GLuint msg_id = 0;
1762 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1763 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1764 MESA_DEBUG_TYPE_OTHER,
1765 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1766 va_end(args);
1767 }
1768
1769 static void
1770 shader_perf_log_mesa(void *data, const char *fmt, ...)
1771 {
1772 struct brw_context *brw = (struct brw_context *)data;
1773
1774 va_list args;
1775 va_start(args, fmt);
1776
1777 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1778 va_list args_copy;
1779 va_copy(args_copy, args);
1780 vfprintf(stderr, fmt, args_copy);
1781 va_end(args_copy);
1782 }
1783
1784 if (brw->perf_debug) {
1785 GLuint msg_id = 0;
1786 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1787 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1788 MESA_DEBUG_TYPE_PERFORMANCE,
1789 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1790 }
1791 va_end(args);
1792 }
1793
1794 static int
1795 parse_devid_override(const char *devid_override)
1796 {
1797 static const struct {
1798 const char *name;
1799 int pci_id;
1800 } name_map[] = {
1801 { "brw", 0x2a02 },
1802 { "g4x", 0x2a42 },
1803 { "ilk", 0x0042 },
1804 { "snb", 0x0126 },
1805 { "ivb", 0x016a },
1806 { "hsw", 0x0d2e },
1807 { "byt", 0x0f33 },
1808 { "bdw", 0x162e },
1809 { "skl", 0x1912 },
1810 { "kbl", 0x5912 },
1811 };
1812
1813 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
1814 if (!strcmp(name_map[i].name, devid_override))
1815 return name_map[i].pci_id;
1816 }
1817
1818 return strtod(devid_override, NULL);
1819 }
1820
1821 /**
1822 * Get the PCI ID for the device. This can be overridden by setting the
1823 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
1824 *
1825 * Returns -1 on ioctl failure.
1826 */
1827 static int
1828 get_pci_device_id(struct intel_screen *screen)
1829 {
1830 if (geteuid() == getuid()) {
1831 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
1832 if (devid_override) {
1833 screen->no_hw = true;
1834 return parse_devid_override(devid_override);
1835 }
1836 }
1837
1838 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
1839 }
1840
1841 /**
1842 * This is the driver specific part of the createNewScreen entry point.
1843 * Called when using DRI2.
1844 *
1845 * \return the struct gl_config supported by this driver
1846 */
1847 static const
1848 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1849 {
1850 struct intel_screen *screen;
1851
1852 if (dri_screen->image.loader) {
1853 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1854 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1855 fprintf(stderr,
1856 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1857 "support required\n");
1858 return NULL;
1859 }
1860
1861 /* Allocate the private area */
1862 screen = rzalloc(NULL, struct intel_screen);
1863 if (!screen) {
1864 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1865 return NULL;
1866 }
1867 /* parse information in __driConfigOptions */
1868 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1869
1870 screen->driScrnPriv = dri_screen;
1871 dri_screen->driverPrivate = (void *) screen;
1872
1873 screen->deviceID = get_pci_device_id(screen);
1874
1875 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1876 return NULL;
1877
1878 if (!intel_init_bufmgr(screen))
1879 return NULL;
1880
1881 const struct gen_device_info *devinfo = &screen->devinfo;
1882
1883 brw_process_intel_debug_variable();
1884
1885 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1886 fprintf(stderr,
1887 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1888 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1889 }
1890
1891 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1892 /* Theorectically unlimited! At least for individual objects...
1893 *
1894 * Currently the entire (global) address space for all GTT maps is
1895 * limited to 64bits. That is all objects on the system that are
1896 * setup for GTT mmapping must fit within 64bits. An attempt to use
1897 * one that exceeds the limit with fail in brw_bo_map_gtt().
1898 *
1899 * Long before we hit that limit, we will be practically limited by
1900 * that any single object must fit in physical memory (RAM). The upper
1901 * limit on the CPU's address space is currently 48bits (Skylake), of
1902 * which only 39bits can be physical memory. (The GPU itself also has
1903 * a 48bit addressable virtual space.) We can fit over 32 million
1904 * objects of the current maximum allocable size before running out
1905 * of mmap space.
1906 */
1907 screen->max_gtt_map_object_size = UINT64_MAX;
1908 } else {
1909 /* Estimate the size of the mappable aperture into the GTT. There's an
1910 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1911 * It turns out it's basically always 256MB, though some ancient hardware
1912 * was smaller.
1913 */
1914 uint32_t gtt_size = 256 * 1024 * 1024;
1915
1916 /* We don't want to map two objects such that a memcpy between them would
1917 * just fault one mapping in and then the other over and over forever. So
1918 * we would need to divide the GTT size by 2. Additionally, some GTT is
1919 * taken up by things like the framebuffer and the ringbuffer and such, so
1920 * be more conservative.
1921 */
1922 screen->max_gtt_map_object_size = gtt_size / 4;
1923 }
1924
1925 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
1926
1927 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1928 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1929
1930 /* GENs prior to 8 do not support EU/Subslice info */
1931 if (devinfo->gen >= 8) {
1932 intel_detect_sseu(screen);
1933 } else if (devinfo->gen == 7) {
1934 screen->subslice_total = 1 << (devinfo->gt - 1);
1935 }
1936
1937 /* Gen7-7.5 kernel requirements / command parser saga:
1938 *
1939 * - pre-v3.16:
1940 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1941 *
1942 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1943 * all batches secure, allowing them to use any feature with no checking.
1944 * This is effectively equivalent to a command parser version of
1945 * \infinity - everything is possible.
1946 *
1947 * The command parser does not exist, and querying the version will
1948 * return -EINVAL.
1949 *
1950 * - v3.16:
1951 * The kernel enables the command parser by default, for systems with
1952 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1953 * hardware checker is still enabled, so Haswell and Baytrail cannot
1954 * do anything.
1955 *
1956 * Ivybridge goes from "everything is possible" to "only what the
1957 * command parser allows" (if the user boots with i915.cmd_parser=0,
1958 * then everything is possible again). We can only safely use features
1959 * allowed by the supported command parser version.
1960 *
1961 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1962 * implemented by the kernel, even if it's turned off. So, checking
1963 * for version > 0 does not mean that you can write registers. We have
1964 * to try it and see. The version does, however, indicate the age of
1965 * the kernel.
1966 *
1967 * Instead of matching the hardware checker's behavior of converting
1968 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1969 * -EINVAL, making it dangerous to try and use privileged features.
1970 *
1971 * Effective command parser versions:
1972 * - Haswell: 0 (reporting 1, writes don't work)
1973 * - Baytrail: 0 (reporting 1, writes don't work)
1974 * - Ivybridge: 1 (enabled) or infinite (disabled)
1975 *
1976 * - v3.17:
1977 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1978 * effectively version 1 (enabled) or infinite (disabled).
1979 *
1980 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1981 * Command parser v2 supports predicate writes.
1982 *
1983 * - Haswell: 0 (reporting 1, writes don't work)
1984 * - Baytrail: 2 (enabled) or infinite (disabled)
1985 * - Ivybridge: 2 (enabled) or infinite (disabled)
1986 *
1987 * So version >= 2 is enough to know that Ivybridge and Baytrail
1988 * will work. Haswell still can't do anything.
1989 *
1990 * - v4.0: Version 3 happened. Largely not relevant.
1991 *
1992 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1993 * L3 config registers are properly saved and restored as part
1994 * of the hardware context. We can approximately detect this point
1995 * in time by checking if I915_PARAM_REVISION is recognized - it
1996 * landed in a later commit, but in the same release cycle.
1997 *
1998 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1999 * Command parser finally gains secure batch promotion. On Haswell,
2000 * the hardware checker gets disabled, which finally allows it to do
2001 * privileged commands.
2002 *
2003 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2004 * - Haswell: 3 (enabled) or 0 (disabled)
2005 * - Baytrail: 3 (enabled) or infinite (disabled)
2006 * - Ivybridge: 3 (enabled) or infinite (disabled)
2007 *
2008 * Unfortunately, detecting this point in time is tricky, because
2009 * no version bump happened when this important change occurred.
2010 * On Haswell, if we can write any register, then the kernel is at
2011 * least this new, and we can start trusting the version number.
2012 *
2013 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2014 * Command parser reaches version 4, allowing access to Haswell
2015 * atomic scratch and chicken3 registers. If version >= 4, we know
2016 * the kernel is new enough to support privileged features on all
2017 * hardware. However, the user might have disabled it...and the
2018 * kernel will still report version 4. So we still have to guess
2019 * and check.
2020 *
2021 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2022 * Command parser v5 whitelists indirect compute shader dispatch
2023 * registers, needed for OpenGL 4.3 and later.
2024 *
2025 * - v4.8:
2026 * Command parser v7 lets us use MI_MATH on Haswell.
2027 *
2028 * Additionally, the kernel begins reporting version 0 when
2029 * the command parser is disabled, allowing us to skip the
2030 * guess-and-check step on Haswell. Unfortunately, this also
2031 * means that we can no longer use it as an indicator of the
2032 * age of the kernel.
2033 */
2034 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2035 &screen->cmd_parser_version) < 0) {
2036 /* Command parser does not exist - getparam is unrecognized */
2037 screen->cmd_parser_version = 0;
2038 }
2039
2040 /* Kernel 4.13 retuired for exec object capture */
2041 #ifndef I915_PARAM_HAS_EXEC_CAPTURE
2042 #define I915_PARAM_HAS_EXEC_CAPTURE 45
2043 #endif
2044 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2045 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2046 }
2047
2048 if (!intel_detect_pipelined_so(screen)) {
2049 /* We can't do anything, so the effective version is 0. */
2050 screen->cmd_parser_version = 0;
2051 } else {
2052 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2053 }
2054
2055 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2056 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2057
2058 /* Haswell requires command parser version 4 in order to have L3
2059 * atomic scratch1 and chicken3 bits
2060 */
2061 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2062 screen->kernel_features |=
2063 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2064 }
2065
2066 /* Haswell requires command parser version 6 in order to write to the
2067 * MI_MATH GPR registers, and version 7 in order to use
2068 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2069 */
2070 if (devinfo->gen >= 8 ||
2071 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2072 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2073 }
2074
2075 /* Gen7 needs at least command parser version 5 to support compute */
2076 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2077 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2078
2079 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2080 if (force_msaa) {
2081 screen->winsys_msaa_samples_override =
2082 intel_quantize_num_samples(screen, atoi(force_msaa));
2083 printf("Forcing winsys sample count to %d\n",
2084 screen->winsys_msaa_samples_override);
2085 } else {
2086 screen->winsys_msaa_samples_override = -1;
2087 }
2088
2089 set_max_gl_versions(screen);
2090
2091 /* Notification of GPU resets requires hardware contexts and a kernel new
2092 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2093 * supported, calling it with a context of 0 will either generate EPERM or
2094 * no error. If the ioctl is not supported, it always generate EINVAL.
2095 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2096 * extension to the loader.
2097 *
2098 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2099 */
2100 if (devinfo->gen >= 6) {
2101 struct drm_i915_reset_stats stats;
2102 memset(&stats, 0, sizeof(stats));
2103
2104 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2105
2106 screen->has_context_reset_notification =
2107 (ret != -1 || errno != EINVAL);
2108 }
2109
2110 dri_screen->extensions = !screen->has_context_reset_notification
2111 ? screenExtensions : intelRobustScreenExtensions;
2112
2113 screen->compiler = brw_compiler_create(screen, devinfo);
2114 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2115 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2116 screen->program_id = 1;
2117
2118 screen->has_exec_fence =
2119 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2120
2121 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2122 }
2123
2124 struct intel_buffer {
2125 __DRIbuffer base;
2126 struct brw_bo *bo;
2127 };
2128
2129 static __DRIbuffer *
2130 intelAllocateBuffer(__DRIscreen *dri_screen,
2131 unsigned attachment, unsigned format,
2132 int width, int height)
2133 {
2134 struct intel_buffer *intelBuffer;
2135 struct intel_screen *screen = dri_screen->driverPrivate;
2136
2137 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2138 attachment == __DRI_BUFFER_BACK_LEFT);
2139
2140 intelBuffer = calloc(1, sizeof *intelBuffer);
2141 if (intelBuffer == NULL)
2142 return NULL;
2143
2144 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2145 * supports Y tiled and compressed buffers, but there is no way to plumb that
2146 * through to here. */
2147 uint32_t pitch;
2148 int cpp = format / 8;
2149 intelBuffer->bo = brw_bo_alloc_tiled(screen->bufmgr,
2150 "intelAllocateBuffer",
2151 width,
2152 height,
2153 cpp,
2154 I915_TILING_X, &pitch,
2155 BO_ALLOC_FOR_RENDER);
2156
2157 if (intelBuffer->bo == NULL) {
2158 free(intelBuffer);
2159 return NULL;
2160 }
2161
2162 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2163
2164 intelBuffer->base.attachment = attachment;
2165 intelBuffer->base.cpp = cpp;
2166 intelBuffer->base.pitch = pitch;
2167
2168 return &intelBuffer->base;
2169 }
2170
2171 static void
2172 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2173 {
2174 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2175
2176 brw_bo_unreference(intelBuffer->bo);
2177 free(intelBuffer);
2178 }
2179
2180 static const struct __DriverAPIRec brw_driver_api = {
2181 .InitScreen = intelInitScreen2,
2182 .DestroyScreen = intelDestroyScreen,
2183 .CreateContext = brwCreateContext,
2184 .DestroyContext = intelDestroyContext,
2185 .CreateBuffer = intelCreateBuffer,
2186 .DestroyBuffer = intelDestroyBuffer,
2187 .MakeCurrent = intelMakeCurrent,
2188 .UnbindContext = intelUnbindContext,
2189 .AllocateBuffer = intelAllocateBuffer,
2190 .ReleaseBuffer = intelReleaseBuffer
2191 };
2192
2193 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2194 .base = { __DRI_DRIVER_VTABLE, 1 },
2195 .vtable = &brw_driver_api,
2196 };
2197
2198 static const __DRIextension *brw_driver_extensions[] = {
2199 &driCoreExtension.base,
2200 &driImageDriverExtension.base,
2201 &driDRI2Extension.base,
2202 &brw_vtable.base,
2203 &brw_config_options.base,
2204 NULL
2205 };
2206
2207 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2208 {
2209 globalDriverAPI = &brw_driver_api;
2210
2211 return brw_driver_extensions;
2212 }