872d70873728d3a5e038583643187a62c41f43b2
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "compiler/nir/nir.h"
41
42 #include "utils.h"
43 #include "xmlpool.h"
44
45 #ifndef DRM_FORMAT_MOD_INVALID
46 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
47 #endif
48
49 #ifndef DRM_FORMAT_MOD_LINEAR
50 #define DRM_FORMAT_MOD_LINEAR 0
51 #endif
52
53 static const __DRIconfigOptionsExtension brw_config_options = {
54 .base = { __DRI_CONFIG_OPTIONS, 1 },
55 .xml =
56 DRI_CONF_BEGIN
57 DRI_CONF_SECTION_PERFORMANCE
58 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_FORCE_S3TC_ENABLE("false")
72
73 DRI_CONF_PRECISE_TRIG("false")
74
75 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
76 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
77 "given integer. If negative, then do not clamp.")
78 DRI_CONF_OPT_END
79 DRI_CONF_SECTION_END
80
81 DRI_CONF_SECTION_DEBUG
82 DRI_CONF_NO_RAST("false")
83 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
84 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
85 DRI_CONF_DISABLE_THROTTLING("false")
86 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
87 DRI_CONF_FORCE_GLSL_VERSION(0)
88 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
89 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
90 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
91 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
92 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
93 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
94
95 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
96 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
97 DRI_CONF_OPT_END
98 DRI_CONF_SECTION_END
99
100 DRI_CONF_SECTION_MISCELLANEOUS
101 DRI_CONF_GLSL_ZERO_INIT("false")
102 DRI_CONF_SECTION_END
103 DRI_CONF_END
104 };
105
106 #include "intel_batchbuffer.h"
107 #include "intel_buffers.h"
108 #include "intel_bufmgr.h"
109 #include "intel_fbo.h"
110 #include "intel_mipmap_tree.h"
111 #include "intel_screen.h"
112 #include "intel_tex.h"
113 #include "intel_image.h"
114
115 #include "brw_context.h"
116
117 #include "i915_drm.h"
118
119 /**
120 * For debugging purposes, this returns a time in seconds.
121 */
122 double
123 get_time(void)
124 {
125 struct timespec tp;
126
127 clock_gettime(CLOCK_MONOTONIC, &tp);
128
129 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
130 }
131
132 static const __DRItexBufferExtension intelTexBufferExtension = {
133 .base = { __DRI_TEX_BUFFER, 3 },
134
135 .setTexBuffer = intelSetTexBuffer,
136 .setTexBuffer2 = intelSetTexBuffer2,
137 .releaseTexBuffer = NULL,
138 };
139
140 static void
141 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
142 __DRIdrawable *dPriv,
143 unsigned flags,
144 enum __DRI2throttleReason reason)
145 {
146 struct brw_context *brw = cPriv->driverPrivate;
147
148 if (!brw)
149 return;
150
151 struct gl_context *ctx = &brw->ctx;
152
153 FLUSH_VERTICES(ctx, 0);
154
155 if (flags & __DRI2_FLUSH_DRAWABLE)
156 intel_resolve_for_dri2_flush(brw, dPriv);
157
158 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
159 brw->need_swap_throttle = true;
160 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
161 brw->need_flush_throttle = true;
162
163 intel_batchbuffer_flush(brw);
164 }
165
166 /**
167 * Provides compatibility with loaders that only support the older (version
168 * 1-3) flush interface.
169 *
170 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
171 */
172 static void
173 intel_dri2_flush(__DRIdrawable *drawable)
174 {
175 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
176 __DRI2_FLUSH_DRAWABLE,
177 __DRI2_THROTTLE_SWAPBUFFER);
178 }
179
180 static const struct __DRI2flushExtensionRec intelFlushExtension = {
181 .base = { __DRI2_FLUSH, 4 },
182
183 .flush = intel_dri2_flush,
184 .invalidate = dri2InvalidateDrawable,
185 .flush_with_flags = intel_dri2_flush_with_flags,
186 };
187
188 static struct intel_image_format intel_image_formats[] = {
189 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
194
195 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
197
198 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
200
201 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
203
204 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
206
207 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
209
210 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
212
213 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
215
216 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
218
219 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
221
222 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
226
227 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
231
232 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
236
237 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
241
242 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
243 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
246
247 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
248 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
251
252 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
253 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
256
257 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
258 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
261
262 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
263 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
266
267 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
268 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
271
272 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
273 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
275
276 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 /* For YUYV buffers, we set up two overlapping DRI images and treat
281 * them as planar buffers in the compositors. Plane 0 is GR88 and
282 * samples YU or YV pairs and places Y into the R component, while
283 * plane 1 is ARGB and samples YUYV clusters and places pairs and
284 * places U into the G component and V into A. This lets the
285 * texture sampler interpolate the Y components correctly when
286 * sampling from plane 0, and interpolate U and V correctly when
287 * sampling from plane 1. */
288 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
289 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
290 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
291 };
292
293 static void
294 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
295 {
296 uint32_t tiling, swizzle;
297 drm_intel_bo_get_tiling(image->bo, &tiling, &swizzle);
298
299 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
300 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
301 func, image->offset);
302 }
303 }
304
305 static struct intel_image_format *
306 intel_image_format_lookup(int fourcc)
307 {
308 struct intel_image_format *f = NULL;
309
310 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
311 if (intel_image_formats[i].fourcc == fourcc) {
312 f = &intel_image_formats[i];
313 break;
314 }
315 }
316
317 return f;
318 }
319
320 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
321 {
322 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
323 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
324 *fourcc = intel_image_formats[i].fourcc;
325 return true;
326 }
327 }
328 return false;
329 }
330
331 static __DRIimage *
332 intel_allocate_image(struct intel_screen *screen, int dri_format,
333 void *loaderPrivate)
334 {
335 __DRIimage *image;
336
337 image = calloc(1, sizeof *image);
338 if (image == NULL)
339 return NULL;
340
341 image->screen = screen;
342 image->dri_format = dri_format;
343 image->offset = 0;
344
345 image->format = driImageFormatToGLFormat(dri_format);
346 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
347 image->format == MESA_FORMAT_NONE) {
348 free(image);
349 return NULL;
350 }
351
352 image->internal_format = _mesa_get_format_base_format(image->format);
353 image->data = loaderPrivate;
354
355 return image;
356 }
357
358 /**
359 * Sets up a DRIImage structure to point to a slice out of a miptree.
360 */
361 static void
362 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
363 struct intel_mipmap_tree *mt, GLuint level,
364 GLuint zoffset)
365 {
366 intel_miptree_make_shareable(brw, mt);
367
368 intel_miptree_check_level_layer(mt, level, zoffset);
369
370 image->width = minify(mt->physical_width0, level - mt->first_level);
371 image->height = minify(mt->physical_height0, level - mt->first_level);
372 image->pitch = mt->pitch;
373
374 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
375 &image->tile_x,
376 &image->tile_y);
377
378 drm_intel_bo_unreference(image->bo);
379 image->bo = mt->bo;
380 drm_intel_bo_reference(mt->bo);
381 }
382
383 static __DRIimage *
384 intel_create_image_from_name(__DRIscreen *dri_screen,
385 int width, int height, int format,
386 int name, int pitch, void *loaderPrivate)
387 {
388 struct intel_screen *screen = dri_screen->driverPrivate;
389 __DRIimage *image;
390 int cpp;
391
392 image = intel_allocate_image(screen, format, loaderPrivate);
393 if (image == NULL)
394 return NULL;
395
396 if (image->format == MESA_FORMAT_NONE)
397 cpp = 1;
398 else
399 cpp = _mesa_get_format_bytes(image->format);
400
401 image->width = width;
402 image->height = height;
403 image->pitch = pitch * cpp;
404 image->bo = drm_intel_bo_gem_create_from_name(screen->bufmgr, "image",
405 name);
406 if (!image->bo) {
407 free(image);
408 return NULL;
409 }
410
411 return image;
412 }
413
414 static __DRIimage *
415 intel_create_image_from_renderbuffer(__DRIcontext *context,
416 int renderbuffer, void *loaderPrivate)
417 {
418 __DRIimage *image;
419 struct brw_context *brw = context->driverPrivate;
420 struct gl_context *ctx = &brw->ctx;
421 struct gl_renderbuffer *rb;
422 struct intel_renderbuffer *irb;
423
424 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
425 if (!rb) {
426 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
427 return NULL;
428 }
429
430 irb = intel_renderbuffer(rb);
431 intel_miptree_make_shareable(brw, irb->mt);
432 image = calloc(1, sizeof *image);
433 if (image == NULL)
434 return NULL;
435
436 image->internal_format = rb->InternalFormat;
437 image->format = rb->Format;
438 image->offset = 0;
439 image->data = loaderPrivate;
440 drm_intel_bo_unreference(image->bo);
441 image->bo = irb->mt->bo;
442 drm_intel_bo_reference(irb->mt->bo);
443 image->width = rb->Width;
444 image->height = rb->Height;
445 image->pitch = irb->mt->pitch;
446 image->dri_format = driGLFormatToImageFormat(image->format);
447 image->has_depthstencil = irb->mt->stencil_mt? true : false;
448
449 rb->NeedsFinishRenderTexture = true;
450 return image;
451 }
452
453 static __DRIimage *
454 intel_create_image_from_texture(__DRIcontext *context, int target,
455 unsigned texture, int zoffset,
456 int level,
457 unsigned *error,
458 void *loaderPrivate)
459 {
460 __DRIimage *image;
461 struct brw_context *brw = context->driverPrivate;
462 struct gl_texture_object *obj;
463 struct intel_texture_object *iobj;
464 GLuint face = 0;
465
466 obj = _mesa_lookup_texture(&brw->ctx, texture);
467 if (!obj || obj->Target != target) {
468 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
469 return NULL;
470 }
471
472 if (target == GL_TEXTURE_CUBE_MAP)
473 face = zoffset;
474
475 _mesa_test_texobj_completeness(&brw->ctx, obj);
476 iobj = intel_texture_object(obj);
477 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
478 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
479 return NULL;
480 }
481
482 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
483 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
484 return NULL;
485 }
486
487 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
488 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
489 return NULL;
490 }
491 image = calloc(1, sizeof *image);
492 if (image == NULL) {
493 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
494 return NULL;
495 }
496
497 image->internal_format = obj->Image[face][level]->InternalFormat;
498 image->format = obj->Image[face][level]->TexFormat;
499 image->data = loaderPrivate;
500 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
501 image->dri_format = driGLFormatToImageFormat(image->format);
502 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
503 if (image->dri_format == MESA_FORMAT_NONE) {
504 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
505 free(image);
506 return NULL;
507 }
508
509 *error = __DRI_IMAGE_ERROR_SUCCESS;
510 return image;
511 }
512
513 static void
514 intel_destroy_image(__DRIimage *image)
515 {
516 drm_intel_bo_unreference(image->bo);
517 free(image);
518 }
519
520 enum modifier_priority {
521 MODIFIER_PRIORITY_INVALID = 0,
522 MODIFIER_PRIORITY_LINEAR,
523 MODIFIER_PRIORITY_X,
524 MODIFIER_PRIORITY_Y,
525 };
526
527 const uint64_t priority_to_modifier[] = {
528 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
529 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
530 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
531 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
532 };
533
534 static uint64_t
535 select_best_modifier(struct gen_device_info *devinfo,
536 const uint64_t *modifiers,
537 const unsigned count)
538 {
539 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
540
541 for (int i = 0; i < count; i++) {
542 switch (modifiers[i]) {
543 case I915_FORMAT_MOD_Y_TILED:
544 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
545 break;
546 case I915_FORMAT_MOD_X_TILED:
547 prio = MAX2(prio, MODIFIER_PRIORITY_X);
548 break;
549 case DRM_FORMAT_MOD_LINEAR:
550 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
551 break;
552 case DRM_FORMAT_MOD_INVALID:
553 default:
554 break;
555 }
556 }
557
558 return priority_to_modifier[prio];
559 }
560
561 static __DRIimage *
562 intel_create_image_common(__DRIscreen *dri_screen,
563 int width, int height, int format,
564 unsigned int use,
565 const uint64_t *modifiers,
566 unsigned count,
567 void *loaderPrivate)
568 {
569 __DRIimage *image;
570 struct intel_screen *screen = dri_screen->driverPrivate;
571 /* Historically, X-tiled was the default, and so lack of modifier means
572 * X-tiled.
573 */
574 uint32_t tiling = I915_TILING_X;
575 int cpp;
576 unsigned long pitch;
577
578 /* Callers of this may specify a modifier, or a dri usage, but not both. The
579 * newer modifier interface deprecates the older usage flags newer modifier
580 * interface deprecates the older usage flags.
581 */
582 assert(!(use && count));
583
584 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
585 switch (modifier) {
586 case I915_FORMAT_MOD_X_TILED:
587 assert(tiling == I915_TILING_X);
588 break;
589 case DRM_FORMAT_MOD_LINEAR:
590 tiling = I915_TILING_NONE;
591 break;
592 case I915_FORMAT_MOD_Y_TILED:
593 tiling = I915_TILING_Y;
594 break;
595 case DRM_FORMAT_MOD_INVALID:
596 if (modifiers)
597 return NULL;
598 default:
599 break;
600 }
601
602 if (use & __DRI_IMAGE_USE_CURSOR) {
603 if (width != 64 || height != 64)
604 return NULL;
605 tiling = I915_TILING_NONE;
606 }
607
608 if (use & __DRI_IMAGE_USE_LINEAR)
609 tiling = I915_TILING_NONE;
610
611 image = intel_allocate_image(screen, format, loaderPrivate);
612 if (image == NULL)
613 return NULL;
614
615 cpp = _mesa_get_format_bytes(image->format);
616 image->bo = drm_intel_bo_alloc_tiled(screen->bufmgr, "image",
617 width, height, cpp, &tiling,
618 &pitch, 0);
619 if (image->bo == NULL) {
620 free(image);
621 return NULL;
622 }
623 image->width = width;
624 image->height = height;
625 image->pitch = pitch;
626 image->modifier = modifier;
627
628 return image;
629 }
630
631 static __DRIimage *
632 intel_create_image(__DRIscreen *dri_screen,
633 int width, int height, int format,
634 unsigned int use,
635 void *loaderPrivate)
636 {
637 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
638 loaderPrivate);
639 }
640
641 static __DRIimage *
642 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
643 int width, int height, int format,
644 const uint64_t *modifiers,
645 const unsigned count,
646 void *loaderPrivate)
647 {
648 return intel_create_image_common(dri_screen, width, height, format, 0,
649 modifiers, count, loaderPrivate);
650 }
651
652 static GLboolean
653 intel_query_image(__DRIimage *image, int attrib, int *value)
654 {
655 switch (attrib) {
656 case __DRI_IMAGE_ATTRIB_STRIDE:
657 *value = image->pitch;
658 return true;
659 case __DRI_IMAGE_ATTRIB_HANDLE:
660 *value = image->bo->handle;
661 return true;
662 case __DRI_IMAGE_ATTRIB_NAME:
663 return !drm_intel_bo_flink(image->bo, (uint32_t *) value);
664 case __DRI_IMAGE_ATTRIB_FORMAT:
665 *value = image->dri_format;
666 return true;
667 case __DRI_IMAGE_ATTRIB_WIDTH:
668 *value = image->width;
669 return true;
670 case __DRI_IMAGE_ATTRIB_HEIGHT:
671 *value = image->height;
672 return true;
673 case __DRI_IMAGE_ATTRIB_COMPONENTS:
674 if (image->planar_format == NULL)
675 return false;
676 *value = image->planar_format->components;
677 return true;
678 case __DRI_IMAGE_ATTRIB_FD:
679 return !drm_intel_bo_gem_export_to_prime(image->bo, value);
680 case __DRI_IMAGE_ATTRIB_FOURCC:
681 return intel_lookup_fourcc(image->dri_format, value);
682 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
683 *value = 1;
684 return true;
685 case __DRI_IMAGE_ATTRIB_OFFSET:
686 *value = image->offset;
687 return true;
688 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
689 *value = (image->modifier & 0xffffffff);
690 return true;
691 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
692 *value = ((image->modifier >> 32) & 0xffffffff);
693 return true;
694
695 default:
696 return false;
697 }
698 }
699
700 static __DRIimage *
701 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
702 {
703 __DRIimage *image;
704
705 image = calloc(1, sizeof *image);
706 if (image == NULL)
707 return NULL;
708
709 drm_intel_bo_reference(orig_image->bo);
710 image->bo = orig_image->bo;
711 image->internal_format = orig_image->internal_format;
712 image->planar_format = orig_image->planar_format;
713 image->dri_format = orig_image->dri_format;
714 image->format = orig_image->format;
715 image->offset = orig_image->offset;
716 image->width = orig_image->width;
717 image->height = orig_image->height;
718 image->pitch = orig_image->pitch;
719 image->tile_x = orig_image->tile_x;
720 image->tile_y = orig_image->tile_y;
721 image->has_depthstencil = orig_image->has_depthstencil;
722 image->data = loaderPrivate;
723
724 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
725 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
726
727 return image;
728 }
729
730 static GLboolean
731 intel_validate_usage(__DRIimage *image, unsigned int use)
732 {
733 if (use & __DRI_IMAGE_USE_CURSOR) {
734 if (image->width != 64 || image->height != 64)
735 return GL_FALSE;
736 }
737
738 return GL_TRUE;
739 }
740
741 static __DRIimage *
742 intel_create_image_from_names(__DRIscreen *dri_screen,
743 int width, int height, int fourcc,
744 int *names, int num_names,
745 int *strides, int *offsets,
746 void *loaderPrivate)
747 {
748 struct intel_image_format *f = NULL;
749 __DRIimage *image;
750 int i, index;
751
752 if (dri_screen == NULL || names == NULL || num_names != 1)
753 return NULL;
754
755 f = intel_image_format_lookup(fourcc);
756 if (f == NULL)
757 return NULL;
758
759 image = intel_create_image_from_name(dri_screen, width, height,
760 __DRI_IMAGE_FORMAT_NONE,
761 names[0], strides[0],
762 loaderPrivate);
763
764 if (image == NULL)
765 return NULL;
766
767 image->planar_format = f;
768 for (i = 0; i < f->nplanes; i++) {
769 index = f->planes[i].buffer_index;
770 image->offsets[index] = offsets[index];
771 image->strides[index] = strides[index];
772 }
773
774 return image;
775 }
776
777 static __DRIimage *
778 intel_create_image_from_fds(__DRIscreen *dri_screen,
779 int width, int height, int fourcc,
780 int *fds, int num_fds, int *strides, int *offsets,
781 void *loaderPrivate)
782 {
783 struct intel_screen *screen = dri_screen->driverPrivate;
784 struct intel_image_format *f;
785 __DRIimage *image;
786 int i, index;
787
788 if (fds == NULL || num_fds < 1)
789 return NULL;
790
791 /* We only support all planes from the same bo */
792 for (i = 0; i < num_fds; i++)
793 if (fds[0] != fds[i])
794 return NULL;
795
796 f = intel_image_format_lookup(fourcc);
797 if (f == NULL)
798 return NULL;
799
800 if (f->nplanes == 1)
801 image = intel_allocate_image(screen, f->planes[0].dri_format,
802 loaderPrivate);
803 else
804 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
805 loaderPrivate);
806
807 if (image == NULL)
808 return NULL;
809
810 image->width = width;
811 image->height = height;
812 image->pitch = strides[0];
813
814 image->planar_format = f;
815 int size = 0;
816 for (i = 0; i < f->nplanes; i++) {
817 index = f->planes[i].buffer_index;
818 image->offsets[index] = offsets[index];
819 image->strides[index] = strides[index];
820
821 const int plane_height = height >> f->planes[i].height_shift;
822 const int end = offsets[index] + plane_height * strides[index];
823 if (size < end)
824 size = end;
825 }
826
827 image->bo = drm_intel_bo_gem_create_from_prime(screen->bufmgr,
828 fds[0], size);
829 if (image->bo == NULL) {
830 free(image);
831 return NULL;
832 }
833
834 if (f->nplanes == 1) {
835 image->offset = image->offsets[0];
836 intel_image_warn_if_unaligned(image, __func__);
837 }
838
839 return image;
840 }
841
842 static __DRIimage *
843 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
844 int width, int height, int fourcc,
845 int *fds, int num_fds,
846 int *strides, int *offsets,
847 enum __DRIYUVColorSpace yuv_color_space,
848 enum __DRISampleRange sample_range,
849 enum __DRIChromaSiting horizontal_siting,
850 enum __DRIChromaSiting vertical_siting,
851 unsigned *error,
852 void *loaderPrivate)
853 {
854 __DRIimage *image;
855 struct intel_image_format *f = intel_image_format_lookup(fourcc);
856
857 if (!f) {
858 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
859 return NULL;
860 }
861
862 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
863 num_fds, strides, offsets,
864 loaderPrivate);
865
866 /*
867 * Invalid parameters and any inconsistencies between are assumed to be
868 * checked by the caller. Therefore besides unsupported formats one can fail
869 * only in allocation.
870 */
871 if (!image) {
872 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
873 return NULL;
874 }
875
876 image->dma_buf_imported = true;
877 image->yuv_color_space = yuv_color_space;
878 image->sample_range = sample_range;
879 image->horizontal_siting = horizontal_siting;
880 image->vertical_siting = vertical_siting;
881
882 *error = __DRI_IMAGE_ERROR_SUCCESS;
883 return image;
884 }
885
886 static __DRIimage *
887 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
888 {
889 int width, height, offset, stride, dri_format, index;
890 struct intel_image_format *f;
891 __DRIimage *image;
892
893 if (parent == NULL || parent->planar_format == NULL)
894 return NULL;
895
896 f = parent->planar_format;
897
898 if (plane >= f->nplanes)
899 return NULL;
900
901 width = parent->width >> f->planes[plane].width_shift;
902 height = parent->height >> f->planes[plane].height_shift;
903 dri_format = f->planes[plane].dri_format;
904 index = f->planes[plane].buffer_index;
905 offset = parent->offsets[index];
906 stride = parent->strides[index];
907
908 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
909 if (image == NULL)
910 return NULL;
911
912 if (offset + height * stride > parent->bo->size) {
913 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
914 free(image);
915 return NULL;
916 }
917
918 image->bo = parent->bo;
919 drm_intel_bo_reference(parent->bo);
920
921 image->width = width;
922 image->height = height;
923 image->pitch = stride;
924 image->offset = offset;
925
926 intel_image_warn_if_unaligned(image, __func__);
927
928 return image;
929 }
930
931 static const __DRIimageExtension intelImageExtension = {
932 .base = { __DRI_IMAGE, 14 },
933
934 .createImageFromName = intel_create_image_from_name,
935 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
936 .destroyImage = intel_destroy_image,
937 .createImage = intel_create_image,
938 .queryImage = intel_query_image,
939 .dupImage = intel_dup_image,
940 .validateUsage = intel_validate_usage,
941 .createImageFromNames = intel_create_image_from_names,
942 .fromPlanar = intel_from_planar,
943 .createImageFromTexture = intel_create_image_from_texture,
944 .createImageFromFds = intel_create_image_from_fds,
945 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
946 .blitImage = NULL,
947 .getCapabilities = NULL,
948 .mapImage = NULL,
949 .unmapImage = NULL,
950 .createImageWithModifiers = intel_create_image_with_modifiers,
951 };
952
953 static uint64_t
954 get_aperture_size(int fd)
955 {
956 struct drm_i915_gem_get_aperture aperture;
957
958 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
959 return 0;
960
961 return aperture.aper_size;
962 }
963
964 static int
965 brw_query_renderer_integer(__DRIscreen *dri_screen,
966 int param, unsigned int *value)
967 {
968 const struct intel_screen *const screen =
969 (struct intel_screen *) dri_screen->driverPrivate;
970
971 switch (param) {
972 case __DRI2_RENDERER_VENDOR_ID:
973 value[0] = 0x8086;
974 return 0;
975 case __DRI2_RENDERER_DEVICE_ID:
976 value[0] = screen->deviceID;
977 return 0;
978 case __DRI2_RENDERER_ACCELERATED:
979 value[0] = 1;
980 return 0;
981 case __DRI2_RENDERER_VIDEO_MEMORY: {
982 /* Once a batch uses more than 75% of the maximum mappable size, we
983 * assume that there's some fragmentation, and we start doing extra
984 * flushing, etc. That's the big cliff apps will care about.
985 */
986 uint64_t aper_size = get_aperture_size(dri_screen->fd);
987
988 const unsigned gpu_mappable_megabytes =
989 (aper_size / (1024 * 1024)) * 3 / 4;
990
991 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
992 const long system_page_size = sysconf(_SC_PAGE_SIZE);
993
994 if (system_memory_pages <= 0 || system_page_size <= 0)
995 return -1;
996
997 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
998 * (uint64_t) system_page_size;
999
1000 const unsigned system_memory_megabytes =
1001 (unsigned) (system_memory_bytes / (1024 * 1024));
1002
1003 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1004 return 0;
1005 }
1006 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1007 value[0] = 1;
1008 return 0;
1009 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1010 value[0] = 1;
1011 return 0;
1012 default:
1013 return driQueryRendererIntegerCommon(dri_screen, param, value);
1014 }
1015
1016 return -1;
1017 }
1018
1019 static int
1020 brw_query_renderer_string(__DRIscreen *dri_screen,
1021 int param, const char **value)
1022 {
1023 const struct intel_screen *screen =
1024 (struct intel_screen *) dri_screen->driverPrivate;
1025
1026 switch (param) {
1027 case __DRI2_RENDERER_VENDOR_ID:
1028 value[0] = brw_vendor_string;
1029 return 0;
1030 case __DRI2_RENDERER_DEVICE_ID:
1031 value[0] = brw_get_renderer_string(screen);
1032 return 0;
1033 default:
1034 break;
1035 }
1036
1037 return -1;
1038 }
1039
1040 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1041 .base = { __DRI2_RENDERER_QUERY, 1 },
1042
1043 .queryInteger = brw_query_renderer_integer,
1044 .queryString = brw_query_renderer_string
1045 };
1046
1047 static const __DRIrobustnessExtension dri2Robustness = {
1048 .base = { __DRI2_ROBUSTNESS, 1 }
1049 };
1050
1051 static const __DRIextension *screenExtensions[] = {
1052 &intelTexBufferExtension.base,
1053 &intelFenceExtension.base,
1054 &intelFlushExtension.base,
1055 &intelImageExtension.base,
1056 &intelRendererQueryExtension.base,
1057 &dri2ConfigQueryExtension.base,
1058 NULL
1059 };
1060
1061 static const __DRIextension *intelRobustScreenExtensions[] = {
1062 &intelTexBufferExtension.base,
1063 &intelFenceExtension.base,
1064 &intelFlushExtension.base,
1065 &intelImageExtension.base,
1066 &intelRendererQueryExtension.base,
1067 &dri2ConfigQueryExtension.base,
1068 &dri2Robustness.base,
1069 NULL
1070 };
1071
1072 static int
1073 intel_get_param(struct intel_screen *screen, int param, int *value)
1074 {
1075 int ret = 0;
1076 struct drm_i915_getparam gp;
1077
1078 memset(&gp, 0, sizeof(gp));
1079 gp.param = param;
1080 gp.value = value;
1081
1082 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1083 ret = -errno;
1084 if (ret != -EINVAL)
1085 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1086 }
1087
1088 return ret;
1089 }
1090
1091 static bool
1092 intel_get_boolean(struct intel_screen *screen, int param)
1093 {
1094 int value = 0;
1095 return (intel_get_param(screen, param, &value) == 0) && value;
1096 }
1097
1098 static int
1099 intel_get_integer(struct intel_screen *screen, int param)
1100 {
1101 int value = -1;
1102
1103 if (intel_get_param(screen, param, &value) == 0)
1104 return value;
1105
1106 return -1;
1107 }
1108
1109 static void
1110 intelDestroyScreen(__DRIscreen * sPriv)
1111 {
1112 struct intel_screen *screen = sPriv->driverPrivate;
1113
1114 drm_intel_bufmgr_destroy(screen->bufmgr);
1115 driDestroyOptionInfo(&screen->optionCache);
1116
1117 ralloc_free(screen);
1118 sPriv->driverPrivate = NULL;
1119 }
1120
1121
1122 /**
1123 * This is called when we need to set up GL rendering to a new X window.
1124 */
1125 static GLboolean
1126 intelCreateBuffer(__DRIscreen *dri_screen,
1127 __DRIdrawable * driDrawPriv,
1128 const struct gl_config * mesaVis, GLboolean isPixmap)
1129 {
1130 struct intel_renderbuffer *rb;
1131 struct intel_screen *screen = (struct intel_screen *)
1132 dri_screen->driverPrivate;
1133 mesa_format rgbFormat;
1134 unsigned num_samples =
1135 intel_quantize_num_samples(screen, mesaVis->samples);
1136 struct gl_framebuffer *fb;
1137
1138 if (isPixmap)
1139 return false;
1140
1141 fb = CALLOC_STRUCT(gl_framebuffer);
1142 if (!fb)
1143 return false;
1144
1145 _mesa_initialize_window_framebuffer(fb, mesaVis);
1146
1147 if (screen->winsys_msaa_samples_override != -1) {
1148 num_samples = screen->winsys_msaa_samples_override;
1149 fb->Visual.samples = num_samples;
1150 }
1151
1152 if (mesaVis->redBits == 5) {
1153 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1154 : MESA_FORMAT_B5G6R5_UNORM;
1155 } else if (mesaVis->sRGBCapable) {
1156 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1157 : MESA_FORMAT_B8G8R8A8_SRGB;
1158 } else if (mesaVis->alphaBits == 0) {
1159 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1160 : MESA_FORMAT_B8G8R8X8_UNORM;
1161 } else {
1162 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1163 : MESA_FORMAT_B8G8R8A8_SRGB;
1164 fb->Visual.sRGBCapable = true;
1165 }
1166
1167 /* setup the hardware-based renderbuffers */
1168 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1169 _mesa_add_renderbuffer_without_ref(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1170
1171 if (mesaVis->doubleBufferMode) {
1172 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1173 _mesa_add_renderbuffer_without_ref(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1174 }
1175
1176 /*
1177 * Assert here that the gl_config has an expected depth/stencil bit
1178 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1179 * which constructs the advertised configs.)
1180 */
1181 if (mesaVis->depthBits == 24) {
1182 assert(mesaVis->stencilBits == 8);
1183
1184 if (screen->devinfo.has_hiz_and_separate_stencil) {
1185 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1186 num_samples);
1187 _mesa_add_renderbuffer_without_ref(fb, BUFFER_DEPTH, &rb->Base.Base);
1188 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1189 num_samples);
1190 _mesa_add_renderbuffer_without_ref(fb, BUFFER_STENCIL,
1191 &rb->Base.Base);
1192 } else {
1193 /*
1194 * Use combined depth/stencil. Note that the renderbuffer is
1195 * attached to two attachment points.
1196 */
1197 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1198 num_samples);
1199 _mesa_add_renderbuffer_without_ref(fb, BUFFER_DEPTH, &rb->Base.Base);
1200 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1201 }
1202 }
1203 else if (mesaVis->depthBits == 16) {
1204 assert(mesaVis->stencilBits == 0);
1205 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1206 num_samples);
1207 _mesa_add_renderbuffer_without_ref(fb, BUFFER_DEPTH, &rb->Base.Base);
1208 }
1209 else {
1210 assert(mesaVis->depthBits == 0);
1211 assert(mesaVis->stencilBits == 0);
1212 }
1213
1214 /* now add any/all software-based renderbuffers we may need */
1215 _swrast_add_soft_renderbuffers(fb,
1216 false, /* never sw color */
1217 false, /* never sw depth */
1218 false, /* never sw stencil */
1219 mesaVis->accumRedBits > 0,
1220 false, /* never sw alpha */
1221 false /* never sw aux */ );
1222 driDrawPriv->driverPrivate = fb;
1223
1224 return true;
1225 }
1226
1227 static void
1228 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1229 {
1230 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1231
1232 _mesa_reference_framebuffer(&fb, NULL);
1233 }
1234
1235 static void
1236 intel_detect_sseu(struct intel_screen *screen)
1237 {
1238 assert(screen->devinfo.gen >= 8);
1239 int ret;
1240
1241 screen->subslice_total = -1;
1242 screen->eu_total = -1;
1243
1244 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1245 &screen->subslice_total);
1246 if (ret < 0 && ret != -EINVAL)
1247 goto err_out;
1248
1249 ret = intel_get_param(screen,
1250 I915_PARAM_EU_TOTAL, &screen->eu_total);
1251 if (ret < 0 && ret != -EINVAL)
1252 goto err_out;
1253
1254 /* Without this information, we cannot get the right Braswell brandstrings,
1255 * and we have to use conservative numbers for GPGPU on many platforms, but
1256 * otherwise, things will just work.
1257 */
1258 if (screen->subslice_total < 1 || screen->eu_total < 1)
1259 _mesa_warning(NULL,
1260 "Kernel 4.1 required to properly query GPU properties.\n");
1261
1262 return;
1263
1264 err_out:
1265 screen->subslice_total = -1;
1266 screen->eu_total = -1;
1267 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1268 }
1269
1270 static bool
1271 intel_init_bufmgr(struct intel_screen *screen)
1272 {
1273 __DRIscreen *dri_screen = screen->driScrnPriv;
1274
1275 screen->no_hw = getenv("INTEL_NO_HW") != NULL;
1276
1277 screen->bufmgr = drm_intel_bufmgr_gem_init(dri_screen->fd, BATCH_SZ);
1278 if (screen->bufmgr == NULL) {
1279 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1280 __func__, __LINE__);
1281 return false;
1282 }
1283
1284 drm_intel_bufmgr_gem_enable_fenced_relocs(screen->bufmgr);
1285
1286 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1287 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1288 return false;
1289 }
1290
1291 return true;
1292 }
1293
1294 static bool
1295 intel_detect_swizzling(struct intel_screen *screen)
1296 {
1297 drm_intel_bo *buffer;
1298 unsigned long flags = 0;
1299 unsigned long aligned_pitch;
1300 uint32_t tiling = I915_TILING_X;
1301 uint32_t swizzle_mode = 0;
1302
1303 buffer = drm_intel_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1304 64, 64, 4,
1305 &tiling, &aligned_pitch, flags);
1306 if (buffer == NULL)
1307 return false;
1308
1309 drm_intel_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1310 drm_intel_bo_unreference(buffer);
1311
1312 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1313 return false;
1314 else
1315 return true;
1316 }
1317
1318 static int
1319 intel_detect_timestamp(struct intel_screen *screen)
1320 {
1321 uint64_t dummy = 0, last = 0;
1322 int upper, lower, loops;
1323
1324 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1325 * TIMESTAMP register being shifted and the low 32bits always zero.
1326 *
1327 * More recent kernels offer an interface to read the full 36bits
1328 * everywhere.
1329 */
1330 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1331 return 3;
1332
1333 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1334 * upper 32bits for a rapidly changing timestamp.
1335 */
1336 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &last))
1337 return 0;
1338
1339 upper = lower = 0;
1340 for (loops = 0; loops < 10; loops++) {
1341 /* The TIMESTAMP should change every 80ns, so several round trips
1342 * through the kernel should be enough to advance it.
1343 */
1344 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1345 return 0;
1346
1347 upper += (dummy >> 32) != (last >> 32);
1348 if (upper > 1) /* beware 32bit counter overflow */
1349 return 2; /* upper dword holds the low 32bits of the timestamp */
1350
1351 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1352 if (lower > 1)
1353 return 1; /* timestamp is unshifted */
1354
1355 last = dummy;
1356 }
1357
1358 /* No advancement? No timestamp! */
1359 return 0;
1360 }
1361
1362 /**
1363 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1364 *
1365 * Some combinations of hardware and kernel versions allow this feature,
1366 * while others don't. Instead of trying to enumerate every case, just
1367 * try and write a register and see if works.
1368 */
1369 static bool
1370 intel_detect_pipelined_register(struct intel_screen *screen,
1371 int reg, uint32_t expected_value, bool reset)
1372 {
1373 drm_intel_bo *results, *bo;
1374 uint32_t *batch;
1375 uint32_t offset = 0;
1376 bool success = false;
1377
1378 /* Create a zero'ed temporary buffer for reading our results */
1379 results = drm_intel_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1380 if (results == NULL)
1381 goto err;
1382
1383 bo = drm_intel_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1384 if (bo == NULL)
1385 goto err_results;
1386
1387 if (drm_intel_bo_map(bo, 1))
1388 goto err_batch;
1389
1390 batch = bo->virtual;
1391
1392 /* Write the register. */
1393 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1394 *batch++ = reg;
1395 *batch++ = expected_value;
1396
1397 /* Save the register's value back to the buffer. */
1398 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1399 *batch++ = reg;
1400 drm_intel_bo_emit_reloc(bo, (char *)batch -(char *)bo->virtual,
1401 results, offset*sizeof(uint32_t),
1402 I915_GEM_DOMAIN_INSTRUCTION,
1403 I915_GEM_DOMAIN_INSTRUCTION);
1404 *batch++ = results->offset + offset*sizeof(uint32_t);
1405
1406 /* And afterwards clear the register */
1407 if (reset) {
1408 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1409 *batch++ = reg;
1410 *batch++ = 0;
1411 }
1412
1413 *batch++ = MI_BATCH_BUFFER_END;
1414
1415 drm_intel_bo_mrb_exec(bo, ALIGN((char *)batch - (char *)bo->virtual, 8),
1416 NULL, 0, 0,
1417 I915_EXEC_RENDER);
1418
1419 /* Check whether the value got written. */
1420 if (drm_intel_bo_map(results, false) == 0) {
1421 success = *((uint32_t *)results->virtual + offset) == expected_value;
1422 drm_intel_bo_unmap(results);
1423 }
1424
1425 err_batch:
1426 drm_intel_bo_unreference(bo);
1427 err_results:
1428 drm_intel_bo_unreference(results);
1429 err:
1430 return success;
1431 }
1432
1433 static bool
1434 intel_detect_pipelined_so(struct intel_screen *screen)
1435 {
1436 const struct gen_device_info *devinfo = &screen->devinfo;
1437
1438 /* Supposedly, Broadwell just works. */
1439 if (devinfo->gen >= 8)
1440 return true;
1441
1442 if (devinfo->gen <= 6)
1443 return false;
1444
1445 /* See the big explanation about command parser versions below */
1446 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1447 return true;
1448
1449 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1450 * statistics registers), and we already reset it to zero before using it.
1451 */
1452 return intel_detect_pipelined_register(screen,
1453 GEN7_SO_WRITE_OFFSET(0),
1454 0x1337d0d0,
1455 false);
1456 }
1457
1458 /**
1459 * Return array of MSAA modes supported by the hardware. The array is
1460 * zero-terminated and sorted in decreasing order.
1461 */
1462 const int*
1463 intel_supported_msaa_modes(const struct intel_screen *screen)
1464 {
1465 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1466 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1467 static const int gen7_modes[] = {8, 4, 0, -1};
1468 static const int gen6_modes[] = {4, 0, -1};
1469 static const int gen4_modes[] = {0, -1};
1470
1471 if (screen->devinfo.gen >= 9) {
1472 return gen9_modes;
1473 } else if (screen->devinfo.gen >= 8) {
1474 return gen8_modes;
1475 } else if (screen->devinfo.gen >= 7) {
1476 return gen7_modes;
1477 } else if (screen->devinfo.gen == 6) {
1478 return gen6_modes;
1479 } else {
1480 return gen4_modes;
1481 }
1482 }
1483
1484 static __DRIconfig**
1485 intel_screen_make_configs(__DRIscreen *dri_screen)
1486 {
1487 static const mesa_format formats[] = {
1488 MESA_FORMAT_B5G6R5_UNORM,
1489 MESA_FORMAT_B8G8R8A8_UNORM,
1490 MESA_FORMAT_B8G8R8X8_UNORM
1491 };
1492
1493 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1494 static const GLenum back_buffer_modes[] = {
1495 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1496 };
1497
1498 static const uint8_t singlesample_samples[1] = {0};
1499 static const uint8_t multisample_samples[2] = {4, 8};
1500
1501 struct intel_screen *screen = dri_screen->driverPrivate;
1502 const struct gen_device_info *devinfo = &screen->devinfo;
1503 uint8_t depth_bits[4], stencil_bits[4];
1504 __DRIconfig **configs = NULL;
1505
1506 /* Generate singlesample configs without accumulation buffer. */
1507 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1508 __DRIconfig **new_configs;
1509 int num_depth_stencil_bits = 2;
1510
1511 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1512 * buffer that has a different number of bits per pixel than the color
1513 * buffer, gen >= 6 supports this.
1514 */
1515 depth_bits[0] = 0;
1516 stencil_bits[0] = 0;
1517
1518 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1519 depth_bits[1] = 16;
1520 stencil_bits[1] = 0;
1521 if (devinfo->gen >= 6) {
1522 depth_bits[2] = 24;
1523 stencil_bits[2] = 8;
1524 num_depth_stencil_bits = 3;
1525 }
1526 } else {
1527 depth_bits[1] = 24;
1528 stencil_bits[1] = 8;
1529 }
1530
1531 new_configs = driCreateConfigs(formats[i],
1532 depth_bits,
1533 stencil_bits,
1534 num_depth_stencil_bits,
1535 back_buffer_modes, 2,
1536 singlesample_samples, 1,
1537 false, false);
1538 configs = driConcatConfigs(configs, new_configs);
1539 }
1540
1541 /* Generate the minimum possible set of configs that include an
1542 * accumulation buffer.
1543 */
1544 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1545 __DRIconfig **new_configs;
1546
1547 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1548 depth_bits[0] = 16;
1549 stencil_bits[0] = 0;
1550 } else {
1551 depth_bits[0] = 24;
1552 stencil_bits[0] = 8;
1553 }
1554
1555 new_configs = driCreateConfigs(formats[i],
1556 depth_bits, stencil_bits, 1,
1557 back_buffer_modes, 1,
1558 singlesample_samples, 1,
1559 true, false);
1560 configs = driConcatConfigs(configs, new_configs);
1561 }
1562
1563 /* Generate multisample configs.
1564 *
1565 * This loop breaks early, and hence is a no-op, on gen < 6.
1566 *
1567 * Multisample configs must follow the singlesample configs in order to
1568 * work around an X server bug present in 1.12. The X server chooses to
1569 * associate the first listed RGBA888-Z24S8 config, regardless of its
1570 * sample count, with the 32-bit depth visual used for compositing.
1571 *
1572 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1573 * supported. Singlebuffer configs are not supported because no one wants
1574 * them.
1575 */
1576 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1577 if (devinfo->gen < 6)
1578 break;
1579
1580 __DRIconfig **new_configs;
1581 const int num_depth_stencil_bits = 2;
1582 int num_msaa_modes = 0;
1583
1584 depth_bits[0] = 0;
1585 stencil_bits[0] = 0;
1586
1587 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1588 depth_bits[1] = 16;
1589 stencil_bits[1] = 0;
1590 } else {
1591 depth_bits[1] = 24;
1592 stencil_bits[1] = 8;
1593 }
1594
1595 if (devinfo->gen >= 7)
1596 num_msaa_modes = 2;
1597 else if (devinfo->gen == 6)
1598 num_msaa_modes = 1;
1599
1600 new_configs = driCreateConfigs(formats[i],
1601 depth_bits,
1602 stencil_bits,
1603 num_depth_stencil_bits,
1604 back_buffer_modes, 1,
1605 multisample_samples,
1606 num_msaa_modes,
1607 false, false);
1608 configs = driConcatConfigs(configs, new_configs);
1609 }
1610
1611 if (configs == NULL) {
1612 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1613 __LINE__);
1614 return NULL;
1615 }
1616
1617 return configs;
1618 }
1619
1620 static void
1621 set_max_gl_versions(struct intel_screen *screen)
1622 {
1623 __DRIscreen *dri_screen = screen->driScrnPriv;
1624 const bool has_astc = screen->devinfo.gen >= 9;
1625
1626 switch (screen->devinfo.gen) {
1627 case 9:
1628 case 8:
1629 dri_screen->max_gl_core_version = 45;
1630 dri_screen->max_gl_compat_version = 30;
1631 dri_screen->max_gl_es1_version = 11;
1632 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1633 break;
1634 case 7:
1635 dri_screen->max_gl_core_version = 33;
1636 if (screen->devinfo.is_haswell &&
1637 can_do_pipelined_register_writes(screen)) {
1638 dri_screen->max_gl_core_version = 42;
1639 if (can_do_compute_dispatch(screen))
1640 dri_screen->max_gl_core_version = 43;
1641 if (can_do_mi_math_and_lrr(screen))
1642 dri_screen->max_gl_core_version = 45;
1643 }
1644 dri_screen->max_gl_compat_version = 30;
1645 dri_screen->max_gl_es1_version = 11;
1646 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1647 break;
1648 case 6:
1649 dri_screen->max_gl_core_version = 33;
1650 dri_screen->max_gl_compat_version = 30;
1651 dri_screen->max_gl_es1_version = 11;
1652 dri_screen->max_gl_es2_version = 30;
1653 break;
1654 case 5:
1655 case 4:
1656 dri_screen->max_gl_core_version = 0;
1657 dri_screen->max_gl_compat_version = 21;
1658 dri_screen->max_gl_es1_version = 11;
1659 dri_screen->max_gl_es2_version = 20;
1660 break;
1661 default:
1662 unreachable("unrecognized intel_screen::gen");
1663 }
1664 }
1665
1666 /**
1667 * Return the revision (generally the revid field of the PCI header) of the
1668 * graphics device.
1669 *
1670 * XXX: This function is useful to keep around even if it is not currently in
1671 * use. It is necessary for new platforms and revision specific workarounds or
1672 * features. Please don't remove it so that we know it at least continues to
1673 * build.
1674 */
1675 static __attribute__((__unused__)) int
1676 brw_get_revision(int fd)
1677 {
1678 struct drm_i915_getparam gp;
1679 int revision;
1680 int ret;
1681
1682 memset(&gp, 0, sizeof(gp));
1683 gp.param = I915_PARAM_REVISION;
1684 gp.value = &revision;
1685
1686 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1687 if (ret)
1688 revision = -1;
1689
1690 return revision;
1691 }
1692
1693 static void
1694 shader_debug_log_mesa(void *data, const char *fmt, ...)
1695 {
1696 struct brw_context *brw = (struct brw_context *)data;
1697 va_list args;
1698
1699 va_start(args, fmt);
1700 GLuint msg_id = 0;
1701 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1702 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1703 MESA_DEBUG_TYPE_OTHER,
1704 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1705 va_end(args);
1706 }
1707
1708 static void
1709 shader_perf_log_mesa(void *data, const char *fmt, ...)
1710 {
1711 struct brw_context *brw = (struct brw_context *)data;
1712
1713 va_list args;
1714 va_start(args, fmt);
1715
1716 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1717 va_list args_copy;
1718 va_copy(args_copy, args);
1719 vfprintf(stderr, fmt, args_copy);
1720 va_end(args_copy);
1721 }
1722
1723 if (brw->perf_debug) {
1724 GLuint msg_id = 0;
1725 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1726 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1727 MESA_DEBUG_TYPE_PERFORMANCE,
1728 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1729 }
1730 va_end(args);
1731 }
1732
1733 /**
1734 * This is the driver specific part of the createNewScreen entry point.
1735 * Called when using DRI2.
1736 *
1737 * \return the struct gl_config supported by this driver
1738 */
1739 static const
1740 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1741 {
1742 struct intel_screen *screen;
1743
1744 if (dri_screen->image.loader) {
1745 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1746 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1747 fprintf(stderr,
1748 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1749 "support required\n");
1750 return NULL;
1751 }
1752
1753 /* Allocate the private area */
1754 screen = rzalloc(NULL, struct intel_screen);
1755 if (!screen) {
1756 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1757 return NULL;
1758 }
1759 /* parse information in __driConfigOptions */
1760 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1761
1762 screen->driScrnPriv = dri_screen;
1763 dri_screen->driverPrivate = (void *) screen;
1764
1765 if (!intel_init_bufmgr(screen))
1766 return NULL;
1767
1768 screen->deviceID = drm_intel_bufmgr_gem_get_devid(screen->bufmgr);
1769 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1770 return NULL;
1771
1772 const struct gen_device_info *devinfo = &screen->devinfo;
1773
1774 brw_process_intel_debug_variable();
1775
1776 if (INTEL_DEBUG & DEBUG_BUFMGR)
1777 drm_intel_bufmgr_set_debug(screen->bufmgr, true);
1778
1779 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1780 fprintf(stderr,
1781 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1782 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1783 }
1784
1785 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1786 /* Theorectically unlimited! At least for individual objects...
1787 *
1788 * Currently the entire (global) address space for all GTT maps is
1789 * limited to 64bits. That is all objects on the system that are
1790 * setup for GTT mmapping must fit within 64bits. An attempt to use
1791 * one that exceeds the limit with fail in drm_intel_bo_map_gtt().
1792 *
1793 * Long before we hit that limit, we will be practically limited by
1794 * that any single object must fit in physical memory (RAM). The upper
1795 * limit on the CPU's address space is currently 48bits (Skylake), of
1796 * which only 39bits can be physical memory. (The GPU itself also has
1797 * a 48bit addressable virtual space.) We can fit over 32 million
1798 * objects of the current maximum allocable size before running out
1799 * of mmap space.
1800 */
1801 screen->max_gtt_map_object_size = UINT64_MAX;
1802 } else {
1803 /* Estimate the size of the mappable aperture into the GTT. There's an
1804 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1805 * It turns out it's basically always 256MB, though some ancient hardware
1806 * was smaller.
1807 */
1808 uint32_t gtt_size = 256 * 1024 * 1024;
1809
1810 /* We don't want to map two objects such that a memcpy between them would
1811 * just fault one mapping in and then the other over and over forever. So
1812 * we would need to divide the GTT size by 2. Additionally, some GTT is
1813 * taken up by things like the framebuffer and the ringbuffer and such, so
1814 * be more conservative.
1815 */
1816 screen->max_gtt_map_object_size = gtt_size / 4;
1817 }
1818
1819 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1820 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1821
1822 /* GENs prior to 8 do not support EU/Subslice info */
1823 if (devinfo->gen >= 8) {
1824 intel_detect_sseu(screen);
1825 } else if (devinfo->gen == 7) {
1826 screen->subslice_total = 1 << (devinfo->gt - 1);
1827 }
1828
1829 /* Gen7-7.5 kernel requirements / command parser saga:
1830 *
1831 * - pre-v3.16:
1832 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1833 *
1834 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1835 * all batches secure, allowing them to use any feature with no checking.
1836 * This is effectively equivalent to a command parser version of
1837 * \infinity - everything is possible.
1838 *
1839 * The command parser does not exist, and querying the version will
1840 * return -EINVAL.
1841 *
1842 * - v3.16:
1843 * The kernel enables the command parser by default, for systems with
1844 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1845 * hardware checker is still enabled, so Haswell and Baytrail cannot
1846 * do anything.
1847 *
1848 * Ivybridge goes from "everything is possible" to "only what the
1849 * command parser allows" (if the user boots with i915.cmd_parser=0,
1850 * then everything is possible again). We can only safely use features
1851 * allowed by the supported command parser version.
1852 *
1853 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1854 * implemented by the kernel, even if it's turned off. So, checking
1855 * for version > 0 does not mean that you can write registers. We have
1856 * to try it and see. The version does, however, indicate the age of
1857 * the kernel.
1858 *
1859 * Instead of matching the hardware checker's behavior of converting
1860 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1861 * -EINVAL, making it dangerous to try and use privileged features.
1862 *
1863 * Effective command parser versions:
1864 * - Haswell: 0 (reporting 1, writes don't work)
1865 * - Baytrail: 0 (reporting 1, writes don't work)
1866 * - Ivybridge: 1 (enabled) or infinite (disabled)
1867 *
1868 * - v3.17:
1869 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1870 * effectively version 1 (enabled) or infinite (disabled).
1871 *
1872 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1873 * Command parser v2 supports predicate writes.
1874 *
1875 * - Haswell: 0 (reporting 1, writes don't work)
1876 * - Baytrail: 2 (enabled) or infinite (disabled)
1877 * - Ivybridge: 2 (enabled) or infinite (disabled)
1878 *
1879 * So version >= 2 is enough to know that Ivybridge and Baytrail
1880 * will work. Haswell still can't do anything.
1881 *
1882 * - v4.0: Version 3 happened. Largely not relevant.
1883 *
1884 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1885 * L3 config registers are properly saved and restored as part
1886 * of the hardware context. We can approximately detect this point
1887 * in time by checking if I915_PARAM_REVISION is recognized - it
1888 * landed in a later commit, but in the same release cycle.
1889 *
1890 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1891 * Command parser finally gains secure batch promotion. On Haswell,
1892 * the hardware checker gets disabled, which finally allows it to do
1893 * privileged commands.
1894 *
1895 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1896 * - Haswell: 3 (enabled) or 0 (disabled)
1897 * - Baytrail: 3 (enabled) or infinite (disabled)
1898 * - Ivybridge: 3 (enabled) or infinite (disabled)
1899 *
1900 * Unfortunately, detecting this point in time is tricky, because
1901 * no version bump happened when this important change occurred.
1902 * On Haswell, if we can write any register, then the kernel is at
1903 * least this new, and we can start trusting the version number.
1904 *
1905 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
1906 * Command parser reaches version 4, allowing access to Haswell
1907 * atomic scratch and chicken3 registers. If version >= 4, we know
1908 * the kernel is new enough to support privileged features on all
1909 * hardware. However, the user might have disabled it...and the
1910 * kernel will still report version 4. So we still have to guess
1911 * and check.
1912 *
1913 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
1914 * Command parser v5 whitelists indirect compute shader dispatch
1915 * registers, needed for OpenGL 4.3 and later.
1916 *
1917 * - v4.8:
1918 * Command parser v7 lets us use MI_MATH on Haswell.
1919 *
1920 * Additionally, the kernel begins reporting version 0 when
1921 * the command parser is disabled, allowing us to skip the
1922 * guess-and-check step on Haswell. Unfortunately, this also
1923 * means that we can no longer use it as an indicator of the
1924 * age of the kernel.
1925 */
1926 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
1927 &screen->cmd_parser_version) < 0) {
1928 /* Command parser does not exist - getparam is unrecognized */
1929 screen->cmd_parser_version = 0;
1930 }
1931
1932 if (!intel_detect_pipelined_so(screen)) {
1933 /* We can't do anything, so the effective version is 0. */
1934 screen->cmd_parser_version = 0;
1935 } else {
1936 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
1937 }
1938
1939 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
1940 if (force_msaa) {
1941 screen->winsys_msaa_samples_override =
1942 intel_quantize_num_samples(screen, atoi(force_msaa));
1943 printf("Forcing winsys sample count to %d\n",
1944 screen->winsys_msaa_samples_override);
1945 } else {
1946 screen->winsys_msaa_samples_override = -1;
1947 }
1948
1949 set_max_gl_versions(screen);
1950
1951 /* Notification of GPU resets requires hardware contexts and a kernel new
1952 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
1953 * supported, calling it with a context of 0 will either generate EPERM or
1954 * no error. If the ioctl is not supported, it always generate EINVAL.
1955 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
1956 * extension to the loader.
1957 *
1958 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
1959 */
1960 if (devinfo->gen >= 6) {
1961 struct drm_i915_reset_stats stats;
1962 memset(&stats, 0, sizeof(stats));
1963
1964 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
1965
1966 screen->has_context_reset_notification =
1967 (ret != -1 || errno != EINVAL);
1968 }
1969
1970 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
1971 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
1972
1973 /* Haswell requires command parser version 4 in order to have L3
1974 * atomic scratch1 and chicken3 bits
1975 */
1976 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
1977 screen->kernel_features |=
1978 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
1979 }
1980
1981 /* Haswell requires command parser version 6 in order to write to the
1982 * MI_MATH GPR registers, and version 7 in order to use
1983 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
1984 */
1985 if (devinfo->gen >= 8 ||
1986 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
1987 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
1988 }
1989
1990 /* Gen7 needs at least command parser version 5 to support compute */
1991 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
1992 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
1993
1994 dri_screen->extensions = !screen->has_context_reset_notification
1995 ? screenExtensions : intelRobustScreenExtensions;
1996
1997 screen->compiler = brw_compiler_create(screen, devinfo);
1998 screen->compiler->shader_debug_log = shader_debug_log_mesa;
1999 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2000 screen->program_id = 1;
2001
2002 screen->has_exec_fence =
2003 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2004
2005 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2006 }
2007
2008 struct intel_buffer {
2009 __DRIbuffer base;
2010 drm_intel_bo *bo;
2011 };
2012
2013 static __DRIbuffer *
2014 intelAllocateBuffer(__DRIscreen *dri_screen,
2015 unsigned attachment, unsigned format,
2016 int width, int height)
2017 {
2018 struct intel_buffer *intelBuffer;
2019 struct intel_screen *screen = dri_screen->driverPrivate;
2020
2021 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2022 attachment == __DRI_BUFFER_BACK_LEFT);
2023
2024 intelBuffer = calloc(1, sizeof *intelBuffer);
2025 if (intelBuffer == NULL)
2026 return NULL;
2027
2028 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2029 * supports Y tiled and compressed buffers, but there is no way to plumb that
2030 * through to here. */
2031 uint32_t tiling = I915_TILING_X;
2032 unsigned long pitch;
2033 int cpp = format / 8;
2034 intelBuffer->bo = drm_intel_bo_alloc_tiled(screen->bufmgr,
2035 "intelAllocateBuffer",
2036 width,
2037 height,
2038 cpp,
2039 &tiling, &pitch,
2040 BO_ALLOC_FOR_RENDER);
2041
2042 if (intelBuffer->bo == NULL) {
2043 free(intelBuffer);
2044 return NULL;
2045 }
2046
2047 drm_intel_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2048
2049 intelBuffer->base.attachment = attachment;
2050 intelBuffer->base.cpp = cpp;
2051 intelBuffer->base.pitch = pitch;
2052
2053 return &intelBuffer->base;
2054 }
2055
2056 static void
2057 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2058 {
2059 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2060
2061 drm_intel_bo_unreference(intelBuffer->bo);
2062 free(intelBuffer);
2063 }
2064
2065 static const struct __DriverAPIRec brw_driver_api = {
2066 .InitScreen = intelInitScreen2,
2067 .DestroyScreen = intelDestroyScreen,
2068 .CreateContext = brwCreateContext,
2069 .DestroyContext = intelDestroyContext,
2070 .CreateBuffer = intelCreateBuffer,
2071 .DestroyBuffer = intelDestroyBuffer,
2072 .MakeCurrent = intelMakeCurrent,
2073 .UnbindContext = intelUnbindContext,
2074 .AllocateBuffer = intelAllocateBuffer,
2075 .ReleaseBuffer = intelReleaseBuffer
2076 };
2077
2078 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2079 .base = { __DRI_DRIVER_VTABLE, 1 },
2080 .vtable = &brw_driver_api,
2081 };
2082
2083 static const __DRIextension *brw_driver_extensions[] = {
2084 &driCoreExtension.base,
2085 &driImageDriverExtension.base,
2086 &driDRI2Extension.base,
2087 &brw_vtable.base,
2088 &brw_config_options.base,
2089 NULL
2090 };
2091
2092 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2093 {
2094 globalDriverAPI = &brw_driver_api;
2095
2096 return brw_driver_extensions;
2097 }