90223bab2b1ffd20a3dfe07c98980b5cd89f7700
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <errno.h>
27 #include <time.h>
28 #include <unistd.h>
29 #include "main/context.h"
30 #include "main/framebuffer.h"
31 #include "main/renderbuffer.h"
32 #include "main/texobj.h"
33 #include "main/hash.h"
34 #include "main/fbobject.h"
35 #include "main/version.h"
36 #include "swrast/s_renderbuffer.h"
37 #include "util/ralloc.h"
38 #include "brw_defines.h"
39 #include "compiler/nir/nir.h"
40
41 #include "utils.h"
42 #include "xmlpool.h"
43
44 #ifndef DRM_FORMAT_MOD_INVALID
45 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
46 #endif
47
48 static const __DRIconfigOptionsExtension brw_config_options = {
49 .base = { __DRI_CONFIG_OPTIONS, 1 },
50 .xml =
51 DRI_CONF_BEGIN
52 DRI_CONF_SECTION_PERFORMANCE
53 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
54 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
55 * DRI_CONF_BO_REUSE_ALL
56 */
57 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
58 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
59 DRI_CONF_ENUM(0, "Disable buffer object reuse")
60 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
61 DRI_CONF_DESC_END
62 DRI_CONF_OPT_END
63 DRI_CONF_SECTION_END
64
65 DRI_CONF_SECTION_QUALITY
66 DRI_CONF_FORCE_S3TC_ENABLE("false")
67
68 DRI_CONF_PRECISE_TRIG("false")
69
70 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
71 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
72 "given integer. If negative, then do not clamp.")
73 DRI_CONF_OPT_END
74 DRI_CONF_SECTION_END
75
76 DRI_CONF_SECTION_DEBUG
77 DRI_CONF_NO_RAST("false")
78 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
79 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
80 DRI_CONF_DISABLE_THROTTLING("false")
81 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
82 DRI_CONF_FORCE_GLSL_VERSION(0)
83 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
84 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
85 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
86 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
87 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
88
89 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
90 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
91 DRI_CONF_OPT_END
92 DRI_CONF_SECTION_END
93
94 DRI_CONF_SECTION_MISCELLANEOUS
95 DRI_CONF_GLSL_ZERO_INIT("false")
96 DRI_CONF_SECTION_END
97 DRI_CONF_END
98 };
99
100 #include "intel_batchbuffer.h"
101 #include "intel_buffers.h"
102 #include "intel_bufmgr.h"
103 #include "intel_fbo.h"
104 #include "intel_mipmap_tree.h"
105 #include "intel_screen.h"
106 #include "intel_tex.h"
107 #include "intel_image.h"
108
109 #include "brw_context.h"
110
111 #include "i915_drm.h"
112
113 /**
114 * For debugging purposes, this returns a time in seconds.
115 */
116 double
117 get_time(void)
118 {
119 struct timespec tp;
120
121 clock_gettime(CLOCK_MONOTONIC, &tp);
122
123 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
124 }
125
126 static const __DRItexBufferExtension intelTexBufferExtension = {
127 .base = { __DRI_TEX_BUFFER, 3 },
128
129 .setTexBuffer = intelSetTexBuffer,
130 .setTexBuffer2 = intelSetTexBuffer2,
131 .releaseTexBuffer = NULL,
132 };
133
134 static void
135 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
136 __DRIdrawable *dPriv,
137 unsigned flags,
138 enum __DRI2throttleReason reason)
139 {
140 struct brw_context *brw = cPriv->driverPrivate;
141
142 if (!brw)
143 return;
144
145 struct gl_context *ctx = &brw->ctx;
146
147 FLUSH_VERTICES(ctx, 0);
148
149 if (flags & __DRI2_FLUSH_DRAWABLE)
150 intel_resolve_for_dri2_flush(brw, dPriv);
151
152 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
153 brw->need_swap_throttle = true;
154 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
155 brw->need_flush_throttle = true;
156
157 intel_batchbuffer_flush(brw);
158 }
159
160 /**
161 * Provides compatibility with loaders that only support the older (version
162 * 1-3) flush interface.
163 *
164 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
165 */
166 static void
167 intel_dri2_flush(__DRIdrawable *drawable)
168 {
169 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
170 __DRI2_FLUSH_DRAWABLE,
171 __DRI2_THROTTLE_SWAPBUFFER);
172 }
173
174 static const struct __DRI2flushExtensionRec intelFlushExtension = {
175 .base = { __DRI2_FLUSH, 4 },
176
177 .flush = intel_dri2_flush,
178 .invalidate = dri2InvalidateDrawable,
179 .flush_with_flags = intel_dri2_flush_with_flags,
180 };
181
182 static struct intel_image_format intel_image_formats[] = {
183 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
184 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
185
186 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
187 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
188
189 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
194
195 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
197
198 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
200
201 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
203
204 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
206
207 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
209
210 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
212
213 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
215
216 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
218 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
219 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
220
221 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
223 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
225
226 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
227 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
228 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
230
231 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
233 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
235
236 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
237 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
238 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
240
241 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
243 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
245
246 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
248 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
250
251 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
252 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
253 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
255
256 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
257 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
258 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
260
261 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
262 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
263 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
265
266 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
267 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
268 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
269
270 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
271 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
273
274 /* For YUYV buffers, we set up two overlapping DRI images and treat
275 * them as planar buffers in the compositors. Plane 0 is GR88 and
276 * samples YU or YV pairs and places Y into the R component, while
277 * plane 1 is ARGB and samples YUYV clusters and places pairs and
278 * places U into the G component and V into A. This lets the
279 * texture sampler interpolate the Y components correctly when
280 * sampling from plane 0, and interpolate U and V correctly when
281 * sampling from plane 1. */
282 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
283 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
284 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
285 };
286
287 static void
288 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
289 {
290 uint32_t tiling, swizzle;
291 drm_intel_bo_get_tiling(image->bo, &tiling, &swizzle);
292
293 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
294 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
295 func, image->offset);
296 }
297 }
298
299 static struct intel_image_format *
300 intel_image_format_lookup(int fourcc)
301 {
302 struct intel_image_format *f = NULL;
303
304 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
305 if (intel_image_formats[i].fourcc == fourcc) {
306 f = &intel_image_formats[i];
307 break;
308 }
309 }
310
311 return f;
312 }
313
314 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
315 {
316 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
317 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
318 *fourcc = intel_image_formats[i].fourcc;
319 return true;
320 }
321 }
322 return false;
323 }
324
325 static __DRIimage *
326 intel_allocate_image(struct intel_screen *screen, int dri_format,
327 void *loaderPrivate)
328 {
329 __DRIimage *image;
330
331 image = calloc(1, sizeof *image);
332 if (image == NULL)
333 return NULL;
334
335 image->screen = screen;
336 image->dri_format = dri_format;
337 image->offset = 0;
338
339 image->format = driImageFormatToGLFormat(dri_format);
340 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
341 image->format == MESA_FORMAT_NONE) {
342 free(image);
343 return NULL;
344 }
345
346 image->internal_format = _mesa_get_format_base_format(image->format);
347 image->data = loaderPrivate;
348
349 return image;
350 }
351
352 /**
353 * Sets up a DRIImage structure to point to a slice out of a miptree.
354 */
355 static void
356 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
357 struct intel_mipmap_tree *mt, GLuint level,
358 GLuint zoffset)
359 {
360 intel_miptree_make_shareable(brw, mt);
361
362 intel_miptree_check_level_layer(mt, level, zoffset);
363
364 image->width = minify(mt->physical_width0, level - mt->first_level);
365 image->height = minify(mt->physical_height0, level - mt->first_level);
366 image->pitch = mt->pitch;
367
368 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
369 &image->tile_x,
370 &image->tile_y);
371
372 drm_intel_bo_unreference(image->bo);
373 image->bo = mt->bo;
374 drm_intel_bo_reference(mt->bo);
375 }
376
377 static __DRIimage *
378 intel_create_image_from_name(__DRIscreen *dri_screen,
379 int width, int height, int format,
380 int name, int pitch, void *loaderPrivate)
381 {
382 struct intel_screen *screen = dri_screen->driverPrivate;
383 __DRIimage *image;
384 int cpp;
385
386 image = intel_allocate_image(screen, format, loaderPrivate);
387 if (image == NULL)
388 return NULL;
389
390 if (image->format == MESA_FORMAT_NONE)
391 cpp = 1;
392 else
393 cpp = _mesa_get_format_bytes(image->format);
394
395 image->width = width;
396 image->height = height;
397 image->pitch = pitch * cpp;
398 image->bo = drm_intel_bo_gem_create_from_name(screen->bufmgr, "image",
399 name);
400 if (!image->bo) {
401 free(image);
402 return NULL;
403 }
404
405 return image;
406 }
407
408 static __DRIimage *
409 intel_create_image_from_renderbuffer(__DRIcontext *context,
410 int renderbuffer, void *loaderPrivate)
411 {
412 __DRIimage *image;
413 struct brw_context *brw = context->driverPrivate;
414 struct gl_context *ctx = &brw->ctx;
415 struct gl_renderbuffer *rb;
416 struct intel_renderbuffer *irb;
417
418 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
419 if (!rb) {
420 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
421 return NULL;
422 }
423
424 irb = intel_renderbuffer(rb);
425 intel_miptree_make_shareable(brw, irb->mt);
426 image = calloc(1, sizeof *image);
427 if (image == NULL)
428 return NULL;
429
430 image->internal_format = rb->InternalFormat;
431 image->format = rb->Format;
432 image->offset = 0;
433 image->data = loaderPrivate;
434 drm_intel_bo_unreference(image->bo);
435 image->bo = irb->mt->bo;
436 drm_intel_bo_reference(irb->mt->bo);
437 image->width = rb->Width;
438 image->height = rb->Height;
439 image->pitch = irb->mt->pitch;
440 image->dri_format = driGLFormatToImageFormat(image->format);
441 image->has_depthstencil = irb->mt->stencil_mt? true : false;
442
443 rb->NeedsFinishRenderTexture = true;
444 return image;
445 }
446
447 static __DRIimage *
448 intel_create_image_from_texture(__DRIcontext *context, int target,
449 unsigned texture, int zoffset,
450 int level,
451 unsigned *error,
452 void *loaderPrivate)
453 {
454 __DRIimage *image;
455 struct brw_context *brw = context->driverPrivate;
456 struct gl_texture_object *obj;
457 struct intel_texture_object *iobj;
458 GLuint face = 0;
459
460 obj = _mesa_lookup_texture(&brw->ctx, texture);
461 if (!obj || obj->Target != target) {
462 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
463 return NULL;
464 }
465
466 if (target == GL_TEXTURE_CUBE_MAP)
467 face = zoffset;
468
469 _mesa_test_texobj_completeness(&brw->ctx, obj);
470 iobj = intel_texture_object(obj);
471 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
472 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
473 return NULL;
474 }
475
476 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
477 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
478 return NULL;
479 }
480
481 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
482 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
483 return NULL;
484 }
485 image = calloc(1, sizeof *image);
486 if (image == NULL) {
487 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
488 return NULL;
489 }
490
491 image->internal_format = obj->Image[face][level]->InternalFormat;
492 image->format = obj->Image[face][level]->TexFormat;
493 image->data = loaderPrivate;
494 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
495 image->dri_format = driGLFormatToImageFormat(image->format);
496 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
497 if (image->dri_format == MESA_FORMAT_NONE) {
498 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
499 free(image);
500 return NULL;
501 }
502
503 *error = __DRI_IMAGE_ERROR_SUCCESS;
504 return image;
505 }
506
507 static void
508 intel_destroy_image(__DRIimage *image)
509 {
510 drm_intel_bo_unreference(image->bo);
511 free(image);
512 }
513
514 static uint64_t
515 select_best_modifier(struct gen_device_info *devinfo,
516 const uint64_t *modifiers,
517 const unsigned count)
518 {
519 /* Modifiers are not supported by this DRI driver */
520 return DRM_FORMAT_MOD_INVALID;
521 }
522
523 static __DRIimage *
524 intel_create_image_common(__DRIscreen *dri_screen,
525 int width, int height, int format,
526 unsigned int use,
527 const uint64_t *modifiers,
528 unsigned count,
529 void *loaderPrivate)
530 {
531 __DRIimage *image;
532 struct intel_screen *screen = dri_screen->driverPrivate;
533 uint32_t tiling;
534 int cpp;
535 unsigned long pitch;
536
537 /* Callers of this may specify a modifier, or a dri usage, but not both. The
538 * newer modifier interface deprecates the older usage flags newer modifier
539 * interface deprecates the older usage flags.
540 */
541 assert(!(use && count));
542
543 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
544 assert(modifier == DRM_FORMAT_MOD_INVALID);
545
546 if (modifier == DRM_FORMAT_MOD_INVALID && modifiers)
547 return NULL;
548
549 /* Historically, X-tiled was the default, and so lack of modifier means
550 * X-tiled.
551 */
552 tiling = I915_TILING_X;
553 if (use & __DRI_IMAGE_USE_CURSOR) {
554 if (width != 64 || height != 64)
555 return NULL;
556 tiling = I915_TILING_NONE;
557 }
558
559 if (use & __DRI_IMAGE_USE_LINEAR)
560 tiling = I915_TILING_NONE;
561
562 image = intel_allocate_image(screen, format, loaderPrivate);
563 if (image == NULL)
564 return NULL;
565
566 cpp = _mesa_get_format_bytes(image->format);
567 image->bo = drm_intel_bo_alloc_tiled(screen->bufmgr, "image",
568 width, height, cpp, &tiling,
569 &pitch, 0);
570 if (image->bo == NULL) {
571 free(image);
572 return NULL;
573 }
574 image->width = width;
575 image->height = height;
576 image->pitch = pitch;
577
578 return image;
579 }
580
581 static __DRIimage *
582 intel_create_image(__DRIscreen *dri_screen,
583 int width, int height, int format,
584 unsigned int use,
585 void *loaderPrivate)
586 {
587 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
588 loaderPrivate);
589 }
590
591 static __DRIimage *
592 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
593 int width, int height, int format,
594 const uint64_t *modifiers,
595 const unsigned count,
596 void *loaderPrivate)
597 {
598 return intel_create_image_common(dri_screen, width, height, format, 0, NULL,
599 0, loaderPrivate);
600 }
601
602 static GLboolean
603 intel_query_image(__DRIimage *image, int attrib, int *value)
604 {
605 switch (attrib) {
606 case __DRI_IMAGE_ATTRIB_STRIDE:
607 *value = image->pitch;
608 return true;
609 case __DRI_IMAGE_ATTRIB_HANDLE:
610 *value = image->bo->handle;
611 return true;
612 case __DRI_IMAGE_ATTRIB_NAME:
613 return !drm_intel_bo_flink(image->bo, (uint32_t *) value);
614 case __DRI_IMAGE_ATTRIB_FORMAT:
615 *value = image->dri_format;
616 return true;
617 case __DRI_IMAGE_ATTRIB_WIDTH:
618 *value = image->width;
619 return true;
620 case __DRI_IMAGE_ATTRIB_HEIGHT:
621 *value = image->height;
622 return true;
623 case __DRI_IMAGE_ATTRIB_COMPONENTS:
624 if (image->planar_format == NULL)
625 return false;
626 *value = image->planar_format->components;
627 return true;
628 case __DRI_IMAGE_ATTRIB_FD:
629 return !drm_intel_bo_gem_export_to_prime(image->bo, value);
630 case __DRI_IMAGE_ATTRIB_FOURCC:
631 return intel_lookup_fourcc(image->dri_format, value);
632 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
633 *value = 1;
634 return true;
635 case __DRI_IMAGE_ATTRIB_OFFSET:
636 *value = image->offset;
637 return true;
638
639 default:
640 return false;
641 }
642 }
643
644 static __DRIimage *
645 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
646 {
647 __DRIimage *image;
648
649 image = calloc(1, sizeof *image);
650 if (image == NULL)
651 return NULL;
652
653 drm_intel_bo_reference(orig_image->bo);
654 image->bo = orig_image->bo;
655 image->internal_format = orig_image->internal_format;
656 image->planar_format = orig_image->planar_format;
657 image->dri_format = orig_image->dri_format;
658 image->format = orig_image->format;
659 image->offset = orig_image->offset;
660 image->width = orig_image->width;
661 image->height = orig_image->height;
662 image->pitch = orig_image->pitch;
663 image->tile_x = orig_image->tile_x;
664 image->tile_y = orig_image->tile_y;
665 image->has_depthstencil = orig_image->has_depthstencil;
666 image->data = loaderPrivate;
667
668 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
669 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
670
671 return image;
672 }
673
674 static GLboolean
675 intel_validate_usage(__DRIimage *image, unsigned int use)
676 {
677 if (use & __DRI_IMAGE_USE_CURSOR) {
678 if (image->width != 64 || image->height != 64)
679 return GL_FALSE;
680 }
681
682 return GL_TRUE;
683 }
684
685 static __DRIimage *
686 intel_create_image_from_names(__DRIscreen *dri_screen,
687 int width, int height, int fourcc,
688 int *names, int num_names,
689 int *strides, int *offsets,
690 void *loaderPrivate)
691 {
692 struct intel_image_format *f = NULL;
693 __DRIimage *image;
694 int i, index;
695
696 if (dri_screen == NULL || names == NULL || num_names != 1)
697 return NULL;
698
699 f = intel_image_format_lookup(fourcc);
700 if (f == NULL)
701 return NULL;
702
703 image = intel_create_image_from_name(dri_screen, width, height,
704 __DRI_IMAGE_FORMAT_NONE,
705 names[0], strides[0],
706 loaderPrivate);
707
708 if (image == NULL)
709 return NULL;
710
711 image->planar_format = f;
712 for (i = 0; i < f->nplanes; i++) {
713 index = f->planes[i].buffer_index;
714 image->offsets[index] = offsets[index];
715 image->strides[index] = strides[index];
716 }
717
718 return image;
719 }
720
721 static __DRIimage *
722 intel_create_image_from_fds(__DRIscreen *dri_screen,
723 int width, int height, int fourcc,
724 int *fds, int num_fds, int *strides, int *offsets,
725 void *loaderPrivate)
726 {
727 struct intel_screen *screen = dri_screen->driverPrivate;
728 struct intel_image_format *f;
729 __DRIimage *image;
730 int i, index;
731
732 if (fds == NULL || num_fds < 1)
733 return NULL;
734
735 /* We only support all planes from the same bo */
736 for (i = 0; i < num_fds; i++)
737 if (fds[0] != fds[i])
738 return NULL;
739
740 f = intel_image_format_lookup(fourcc);
741 if (f == NULL)
742 return NULL;
743
744 if (f->nplanes == 1)
745 image = intel_allocate_image(screen, f->planes[0].dri_format,
746 loaderPrivate);
747 else
748 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
749 loaderPrivate);
750
751 if (image == NULL)
752 return NULL;
753
754 image->width = width;
755 image->height = height;
756 image->pitch = strides[0];
757
758 image->planar_format = f;
759 int size = 0;
760 for (i = 0; i < f->nplanes; i++) {
761 index = f->planes[i].buffer_index;
762 image->offsets[index] = offsets[index];
763 image->strides[index] = strides[index];
764
765 const int plane_height = height >> f->planes[i].height_shift;
766 const int end = offsets[index] + plane_height * strides[index];
767 if (size < end)
768 size = end;
769 }
770
771 image->bo = drm_intel_bo_gem_create_from_prime(screen->bufmgr,
772 fds[0], size);
773 if (image->bo == NULL) {
774 free(image);
775 return NULL;
776 }
777
778 if (f->nplanes == 1) {
779 image->offset = image->offsets[0];
780 intel_image_warn_if_unaligned(image, __func__);
781 }
782
783 return image;
784 }
785
786 static __DRIimage *
787 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
788 int width, int height, int fourcc,
789 int *fds, int num_fds,
790 int *strides, int *offsets,
791 enum __DRIYUVColorSpace yuv_color_space,
792 enum __DRISampleRange sample_range,
793 enum __DRIChromaSiting horizontal_siting,
794 enum __DRIChromaSiting vertical_siting,
795 unsigned *error,
796 void *loaderPrivate)
797 {
798 __DRIimage *image;
799 struct intel_image_format *f = intel_image_format_lookup(fourcc);
800
801 if (!f) {
802 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
803 return NULL;
804 }
805
806 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
807 num_fds, strides, offsets,
808 loaderPrivate);
809
810 /*
811 * Invalid parameters and any inconsistencies between are assumed to be
812 * checked by the caller. Therefore besides unsupported formats one can fail
813 * only in allocation.
814 */
815 if (!image) {
816 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
817 return NULL;
818 }
819
820 image->dma_buf_imported = true;
821 image->yuv_color_space = yuv_color_space;
822 image->sample_range = sample_range;
823 image->horizontal_siting = horizontal_siting;
824 image->vertical_siting = vertical_siting;
825
826 *error = __DRI_IMAGE_ERROR_SUCCESS;
827 return image;
828 }
829
830 static __DRIimage *
831 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
832 {
833 int width, height, offset, stride, dri_format, index;
834 struct intel_image_format *f;
835 __DRIimage *image;
836
837 if (parent == NULL || parent->planar_format == NULL)
838 return NULL;
839
840 f = parent->planar_format;
841
842 if (plane >= f->nplanes)
843 return NULL;
844
845 width = parent->width >> f->planes[plane].width_shift;
846 height = parent->height >> f->planes[plane].height_shift;
847 dri_format = f->planes[plane].dri_format;
848 index = f->planes[plane].buffer_index;
849 offset = parent->offsets[index];
850 stride = parent->strides[index];
851
852 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
853 if (image == NULL)
854 return NULL;
855
856 if (offset + height * stride > parent->bo->size) {
857 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
858 free(image);
859 return NULL;
860 }
861
862 image->bo = parent->bo;
863 drm_intel_bo_reference(parent->bo);
864
865 image->width = width;
866 image->height = height;
867 image->pitch = stride;
868 image->offset = offset;
869
870 intel_image_warn_if_unaligned(image, __func__);
871
872 return image;
873 }
874
875 static const __DRIimageExtension intelImageExtension = {
876 .base = { __DRI_IMAGE, 13 },
877
878 .createImageFromName = intel_create_image_from_name,
879 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
880 .destroyImage = intel_destroy_image,
881 .createImage = intel_create_image,
882 .queryImage = intel_query_image,
883 .dupImage = intel_dup_image,
884 .validateUsage = intel_validate_usage,
885 .createImageFromNames = intel_create_image_from_names,
886 .fromPlanar = intel_from_planar,
887 .createImageFromTexture = intel_create_image_from_texture,
888 .createImageFromFds = intel_create_image_from_fds,
889 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
890 .blitImage = NULL,
891 .getCapabilities = NULL,
892 .mapImage = NULL,
893 .unmapImage = NULL,
894 .createImageWithModifiers = intel_create_image_with_modifiers,
895 };
896
897 static int
898 brw_query_renderer_integer(__DRIscreen *dri_screen,
899 int param, unsigned int *value)
900 {
901 const struct intel_screen *const screen =
902 (struct intel_screen *) dri_screen->driverPrivate;
903
904 switch (param) {
905 case __DRI2_RENDERER_VENDOR_ID:
906 value[0] = 0x8086;
907 return 0;
908 case __DRI2_RENDERER_DEVICE_ID:
909 value[0] = screen->deviceID;
910 return 0;
911 case __DRI2_RENDERER_ACCELERATED:
912 value[0] = 1;
913 return 0;
914 case __DRI2_RENDERER_VIDEO_MEMORY: {
915 /* Once a batch uses more than 75% of the maximum mappable size, we
916 * assume that there's some fragmentation, and we start doing extra
917 * flushing, etc. That's the big cliff apps will care about.
918 */
919 size_t aper_size;
920 size_t mappable_size;
921
922 drm_intel_get_aperture_sizes(dri_screen->fd, &mappable_size, &aper_size);
923
924 const unsigned gpu_mappable_megabytes =
925 (aper_size / (1024 * 1024)) * 3 / 4;
926
927 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
928 const long system_page_size = sysconf(_SC_PAGE_SIZE);
929
930 if (system_memory_pages <= 0 || system_page_size <= 0)
931 return -1;
932
933 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
934 * (uint64_t) system_page_size;
935
936 const unsigned system_memory_megabytes =
937 (unsigned) (system_memory_bytes / (1024 * 1024));
938
939 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
940 return 0;
941 }
942 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
943 value[0] = 1;
944 return 0;
945 case __DRI2_RENDERER_HAS_TEXTURE_3D:
946 value[0] = 1;
947 return 0;
948 default:
949 return driQueryRendererIntegerCommon(dri_screen, param, value);
950 }
951
952 return -1;
953 }
954
955 static int
956 brw_query_renderer_string(__DRIscreen *dri_screen,
957 int param, const char **value)
958 {
959 const struct intel_screen *screen =
960 (struct intel_screen *) dri_screen->driverPrivate;
961
962 switch (param) {
963 case __DRI2_RENDERER_VENDOR_ID:
964 value[0] = brw_vendor_string;
965 return 0;
966 case __DRI2_RENDERER_DEVICE_ID:
967 value[0] = brw_get_renderer_string(screen);
968 return 0;
969 default:
970 break;
971 }
972
973 return -1;
974 }
975
976 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
977 .base = { __DRI2_RENDERER_QUERY, 1 },
978
979 .queryInteger = brw_query_renderer_integer,
980 .queryString = brw_query_renderer_string
981 };
982
983 static const __DRIrobustnessExtension dri2Robustness = {
984 .base = { __DRI2_ROBUSTNESS, 1 }
985 };
986
987 static const __DRIextension *screenExtensions[] = {
988 &intelTexBufferExtension.base,
989 &intelFenceExtension.base,
990 &intelFlushExtension.base,
991 &intelImageExtension.base,
992 &intelRendererQueryExtension.base,
993 &dri2ConfigQueryExtension.base,
994 NULL
995 };
996
997 static const __DRIextension *intelRobustScreenExtensions[] = {
998 &intelTexBufferExtension.base,
999 &intelFenceExtension.base,
1000 &intelFlushExtension.base,
1001 &intelImageExtension.base,
1002 &intelRendererQueryExtension.base,
1003 &dri2ConfigQueryExtension.base,
1004 &dri2Robustness.base,
1005 NULL
1006 };
1007
1008 static int
1009 intel_get_param(struct intel_screen *screen, int param, int *value)
1010 {
1011 int ret = 0;
1012 struct drm_i915_getparam gp;
1013
1014 memset(&gp, 0, sizeof(gp));
1015 gp.param = param;
1016 gp.value = value;
1017
1018 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1019 ret = -errno;
1020 if (ret != -EINVAL)
1021 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1022 }
1023
1024 return ret;
1025 }
1026
1027 static bool
1028 intel_get_boolean(struct intel_screen *screen, int param)
1029 {
1030 int value = 0;
1031 return (intel_get_param(screen, param, &value) == 0) && value;
1032 }
1033
1034 static int
1035 intel_get_integer(struct intel_screen *screen, int param)
1036 {
1037 int value = -1;
1038
1039 if (intel_get_param(screen, param, &value) == 0)
1040 return value;
1041
1042 return -1;
1043 }
1044
1045 static void
1046 intelDestroyScreen(__DRIscreen * sPriv)
1047 {
1048 struct intel_screen *screen = sPriv->driverPrivate;
1049
1050 dri_bufmgr_destroy(screen->bufmgr);
1051 driDestroyOptionInfo(&screen->optionCache);
1052
1053 ralloc_free(screen);
1054 sPriv->driverPrivate = NULL;
1055 }
1056
1057
1058 /**
1059 * This is called when we need to set up GL rendering to a new X window.
1060 */
1061 static GLboolean
1062 intelCreateBuffer(__DRIscreen *dri_screen,
1063 __DRIdrawable * driDrawPriv,
1064 const struct gl_config * mesaVis, GLboolean isPixmap)
1065 {
1066 struct intel_renderbuffer *rb;
1067 struct intel_screen *screen = (struct intel_screen *)
1068 dri_screen->driverPrivate;
1069 mesa_format rgbFormat;
1070 unsigned num_samples =
1071 intel_quantize_num_samples(screen, mesaVis->samples);
1072 struct gl_framebuffer *fb;
1073
1074 if (isPixmap)
1075 return false;
1076
1077 fb = CALLOC_STRUCT(gl_framebuffer);
1078 if (!fb)
1079 return false;
1080
1081 _mesa_initialize_window_framebuffer(fb, mesaVis);
1082
1083 if (screen->winsys_msaa_samples_override != -1) {
1084 num_samples = screen->winsys_msaa_samples_override;
1085 fb->Visual.samples = num_samples;
1086 }
1087
1088 if (mesaVis->redBits == 5) {
1089 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1090 : MESA_FORMAT_B5G6R5_UNORM;
1091 } else if (mesaVis->sRGBCapable) {
1092 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1093 : MESA_FORMAT_B8G8R8A8_SRGB;
1094 } else if (mesaVis->alphaBits == 0) {
1095 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1096 : MESA_FORMAT_B8G8R8X8_UNORM;
1097 } else {
1098 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1099 : MESA_FORMAT_B8G8R8A8_SRGB;
1100 fb->Visual.sRGBCapable = true;
1101 }
1102
1103 /* setup the hardware-based renderbuffers */
1104 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1105 _mesa_add_renderbuffer(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1106
1107 if (mesaVis->doubleBufferMode) {
1108 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1109 _mesa_add_renderbuffer(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1110 }
1111
1112 /*
1113 * Assert here that the gl_config has an expected depth/stencil bit
1114 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1115 * which constructs the advertised configs.)
1116 */
1117 if (mesaVis->depthBits == 24) {
1118 assert(mesaVis->stencilBits == 8);
1119
1120 if (screen->devinfo.has_hiz_and_separate_stencil) {
1121 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1122 num_samples);
1123 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1124 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1125 num_samples);
1126 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1127 } else {
1128 /*
1129 * Use combined depth/stencil. Note that the renderbuffer is
1130 * attached to two attachment points.
1131 */
1132 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1133 num_samples);
1134 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1135 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1136 }
1137 }
1138 else if (mesaVis->depthBits == 16) {
1139 assert(mesaVis->stencilBits == 0);
1140 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1141 num_samples);
1142 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1143 }
1144 else {
1145 assert(mesaVis->depthBits == 0);
1146 assert(mesaVis->stencilBits == 0);
1147 }
1148
1149 /* now add any/all software-based renderbuffers we may need */
1150 _swrast_add_soft_renderbuffers(fb,
1151 false, /* never sw color */
1152 false, /* never sw depth */
1153 false, /* never sw stencil */
1154 mesaVis->accumRedBits > 0,
1155 false, /* never sw alpha */
1156 false /* never sw aux */ );
1157 driDrawPriv->driverPrivate = fb;
1158
1159 return true;
1160 }
1161
1162 static void
1163 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1164 {
1165 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1166
1167 _mesa_reference_framebuffer(&fb, NULL);
1168 }
1169
1170 static void
1171 intel_detect_sseu(struct intel_screen *screen)
1172 {
1173 assert(screen->devinfo.gen >= 8);
1174 int ret;
1175
1176 screen->subslice_total = -1;
1177 screen->eu_total = -1;
1178
1179 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1180 &screen->subslice_total);
1181 if (ret < 0 && ret != -EINVAL)
1182 goto err_out;
1183
1184 ret = intel_get_param(screen,
1185 I915_PARAM_EU_TOTAL, &screen->eu_total);
1186 if (ret < 0 && ret != -EINVAL)
1187 goto err_out;
1188
1189 /* Without this information, we cannot get the right Braswell brandstrings,
1190 * and we have to use conservative numbers for GPGPU on many platforms, but
1191 * otherwise, things will just work.
1192 */
1193 if (screen->subslice_total < 1 || screen->eu_total < 1)
1194 _mesa_warning(NULL,
1195 "Kernel 4.1 required to properly query GPU properties.\n");
1196
1197 return;
1198
1199 err_out:
1200 screen->subslice_total = -1;
1201 screen->eu_total = -1;
1202 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1203 }
1204
1205 static bool
1206 intel_init_bufmgr(struct intel_screen *screen)
1207 {
1208 __DRIscreen *dri_screen = screen->driScrnPriv;
1209
1210 screen->no_hw = getenv("INTEL_NO_HW") != NULL;
1211
1212 screen->bufmgr = intel_bufmgr_gem_init(dri_screen->fd, BATCH_SZ);
1213 if (screen->bufmgr == NULL) {
1214 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1215 __func__, __LINE__);
1216 return false;
1217 }
1218
1219 drm_intel_bufmgr_gem_enable_fenced_relocs(screen->bufmgr);
1220
1221 if (!intel_get_boolean(screen, I915_PARAM_HAS_RELAXED_DELTA)) {
1222 fprintf(stderr, "[%s: %u] Kernel 2.6.39 required.\n", __func__, __LINE__);
1223 return false;
1224 }
1225
1226 return true;
1227 }
1228
1229 static bool
1230 intel_detect_swizzling(struct intel_screen *screen)
1231 {
1232 drm_intel_bo *buffer;
1233 unsigned long flags = 0;
1234 unsigned long aligned_pitch;
1235 uint32_t tiling = I915_TILING_X;
1236 uint32_t swizzle_mode = 0;
1237
1238 buffer = drm_intel_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1239 64, 64, 4,
1240 &tiling, &aligned_pitch, flags);
1241 if (buffer == NULL)
1242 return false;
1243
1244 drm_intel_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1245 drm_intel_bo_unreference(buffer);
1246
1247 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1248 return false;
1249 else
1250 return true;
1251 }
1252
1253 static int
1254 intel_detect_timestamp(struct intel_screen *screen)
1255 {
1256 uint64_t dummy = 0, last = 0;
1257 int upper, lower, loops;
1258
1259 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1260 * TIMESTAMP register being shifted and the low 32bits always zero.
1261 *
1262 * More recent kernels offer an interface to read the full 36bits
1263 * everywhere.
1264 */
1265 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1266 return 3;
1267
1268 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1269 * upper 32bits for a rapidly changing timestamp.
1270 */
1271 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &last))
1272 return 0;
1273
1274 upper = lower = 0;
1275 for (loops = 0; loops < 10; loops++) {
1276 /* The TIMESTAMP should change every 80ns, so several round trips
1277 * through the kernel should be enough to advance it.
1278 */
1279 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1280 return 0;
1281
1282 upper += (dummy >> 32) != (last >> 32);
1283 if (upper > 1) /* beware 32bit counter overflow */
1284 return 2; /* upper dword holds the low 32bits of the timestamp */
1285
1286 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1287 if (lower > 1)
1288 return 1; /* timestamp is unshifted */
1289
1290 last = dummy;
1291 }
1292
1293 /* No advancement? No timestamp! */
1294 return 0;
1295 }
1296
1297 /**
1298 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1299 *
1300 * Some combinations of hardware and kernel versions allow this feature,
1301 * while others don't. Instead of trying to enumerate every case, just
1302 * try and write a register and see if works.
1303 */
1304 static bool
1305 intel_detect_pipelined_register(struct intel_screen *screen,
1306 int reg, uint32_t expected_value, bool reset)
1307 {
1308 drm_intel_bo *results, *bo;
1309 uint32_t *batch;
1310 uint32_t offset = 0;
1311 bool success = false;
1312
1313 /* Create a zero'ed temporary buffer for reading our results */
1314 results = drm_intel_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1315 if (results == NULL)
1316 goto err;
1317
1318 bo = drm_intel_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1319 if (bo == NULL)
1320 goto err_results;
1321
1322 if (drm_intel_bo_map(bo, 1))
1323 goto err_batch;
1324
1325 batch = bo->virtual;
1326
1327 /* Write the register. */
1328 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1329 *batch++ = reg;
1330 *batch++ = expected_value;
1331
1332 /* Save the register's value back to the buffer. */
1333 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1334 *batch++ = reg;
1335 drm_intel_bo_emit_reloc(bo, (char *)batch -(char *)bo->virtual,
1336 results, offset*sizeof(uint32_t),
1337 I915_GEM_DOMAIN_INSTRUCTION,
1338 I915_GEM_DOMAIN_INSTRUCTION);
1339 *batch++ = results->offset + offset*sizeof(uint32_t);
1340
1341 /* And afterwards clear the register */
1342 if (reset) {
1343 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1344 *batch++ = reg;
1345 *batch++ = 0;
1346 }
1347
1348 *batch++ = MI_BATCH_BUFFER_END;
1349
1350 drm_intel_bo_mrb_exec(bo, ALIGN((char *)batch - (char *)bo->virtual, 8),
1351 NULL, 0, 0,
1352 I915_EXEC_RENDER);
1353
1354 /* Check whether the value got written. */
1355 if (drm_intel_bo_map(results, false) == 0) {
1356 success = *((uint32_t *)results->virtual + offset) == expected_value;
1357 drm_intel_bo_unmap(results);
1358 }
1359
1360 err_batch:
1361 drm_intel_bo_unreference(bo);
1362 err_results:
1363 drm_intel_bo_unreference(results);
1364 err:
1365 return success;
1366 }
1367
1368 static bool
1369 intel_detect_pipelined_so(struct intel_screen *screen)
1370 {
1371 const struct gen_device_info *devinfo = &screen->devinfo;
1372
1373 /* Supposedly, Broadwell just works. */
1374 if (devinfo->gen >= 8)
1375 return true;
1376
1377 if (devinfo->gen <= 6)
1378 return false;
1379
1380 /* See the big explanation about command parser versions below */
1381 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1382 return true;
1383
1384 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1385 * statistics registers), and we already reset it to zero before using it.
1386 */
1387 return intel_detect_pipelined_register(screen,
1388 GEN7_SO_WRITE_OFFSET(0),
1389 0x1337d0d0,
1390 false);
1391 }
1392
1393 /**
1394 * Return array of MSAA modes supported by the hardware. The array is
1395 * zero-terminated and sorted in decreasing order.
1396 */
1397 const int*
1398 intel_supported_msaa_modes(const struct intel_screen *screen)
1399 {
1400 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1401 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1402 static const int gen7_modes[] = {8, 4, 0, -1};
1403 static const int gen6_modes[] = {4, 0, -1};
1404 static const int gen4_modes[] = {0, -1};
1405
1406 if (screen->devinfo.gen >= 9) {
1407 return gen9_modes;
1408 } else if (screen->devinfo.gen >= 8) {
1409 return gen8_modes;
1410 } else if (screen->devinfo.gen >= 7) {
1411 return gen7_modes;
1412 } else if (screen->devinfo.gen == 6) {
1413 return gen6_modes;
1414 } else {
1415 return gen4_modes;
1416 }
1417 }
1418
1419 static __DRIconfig**
1420 intel_screen_make_configs(__DRIscreen *dri_screen)
1421 {
1422 static const mesa_format formats[] = {
1423 MESA_FORMAT_B5G6R5_UNORM,
1424 MESA_FORMAT_B8G8R8A8_UNORM,
1425 MESA_FORMAT_B8G8R8X8_UNORM
1426 };
1427
1428 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1429 static const GLenum back_buffer_modes[] = {
1430 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1431 };
1432
1433 static const uint8_t singlesample_samples[1] = {0};
1434 static const uint8_t multisample_samples[2] = {4, 8};
1435
1436 struct intel_screen *screen = dri_screen->driverPrivate;
1437 const struct gen_device_info *devinfo = &screen->devinfo;
1438 uint8_t depth_bits[4], stencil_bits[4];
1439 __DRIconfig **configs = NULL;
1440
1441 /* Generate singlesample configs without accumulation buffer. */
1442 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1443 __DRIconfig **new_configs;
1444 int num_depth_stencil_bits = 2;
1445
1446 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1447 * buffer that has a different number of bits per pixel than the color
1448 * buffer, gen >= 6 supports this.
1449 */
1450 depth_bits[0] = 0;
1451 stencil_bits[0] = 0;
1452
1453 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1454 depth_bits[1] = 16;
1455 stencil_bits[1] = 0;
1456 if (devinfo->gen >= 6) {
1457 depth_bits[2] = 24;
1458 stencil_bits[2] = 8;
1459 num_depth_stencil_bits = 3;
1460 }
1461 } else {
1462 depth_bits[1] = 24;
1463 stencil_bits[1] = 8;
1464 }
1465
1466 new_configs = driCreateConfigs(formats[i],
1467 depth_bits,
1468 stencil_bits,
1469 num_depth_stencil_bits,
1470 back_buffer_modes, 2,
1471 singlesample_samples, 1,
1472 false, false);
1473 configs = driConcatConfigs(configs, new_configs);
1474 }
1475
1476 /* Generate the minimum possible set of configs that include an
1477 * accumulation buffer.
1478 */
1479 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1480 __DRIconfig **new_configs;
1481
1482 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1483 depth_bits[0] = 16;
1484 stencil_bits[0] = 0;
1485 } else {
1486 depth_bits[0] = 24;
1487 stencil_bits[0] = 8;
1488 }
1489
1490 new_configs = driCreateConfigs(formats[i],
1491 depth_bits, stencil_bits, 1,
1492 back_buffer_modes, 1,
1493 singlesample_samples, 1,
1494 true, false);
1495 configs = driConcatConfigs(configs, new_configs);
1496 }
1497
1498 /* Generate multisample configs.
1499 *
1500 * This loop breaks early, and hence is a no-op, on gen < 6.
1501 *
1502 * Multisample configs must follow the singlesample configs in order to
1503 * work around an X server bug present in 1.12. The X server chooses to
1504 * associate the first listed RGBA888-Z24S8 config, regardless of its
1505 * sample count, with the 32-bit depth visual used for compositing.
1506 *
1507 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1508 * supported. Singlebuffer configs are not supported because no one wants
1509 * them.
1510 */
1511 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1512 if (devinfo->gen < 6)
1513 break;
1514
1515 __DRIconfig **new_configs;
1516 const int num_depth_stencil_bits = 2;
1517 int num_msaa_modes = 0;
1518
1519 depth_bits[0] = 0;
1520 stencil_bits[0] = 0;
1521
1522 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1523 depth_bits[1] = 16;
1524 stencil_bits[1] = 0;
1525 } else {
1526 depth_bits[1] = 24;
1527 stencil_bits[1] = 8;
1528 }
1529
1530 if (devinfo->gen >= 7)
1531 num_msaa_modes = 2;
1532 else if (devinfo->gen == 6)
1533 num_msaa_modes = 1;
1534
1535 new_configs = driCreateConfigs(formats[i],
1536 depth_bits,
1537 stencil_bits,
1538 num_depth_stencil_bits,
1539 back_buffer_modes, 1,
1540 multisample_samples,
1541 num_msaa_modes,
1542 false, false);
1543 configs = driConcatConfigs(configs, new_configs);
1544 }
1545
1546 if (configs == NULL) {
1547 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1548 __LINE__);
1549 return NULL;
1550 }
1551
1552 return configs;
1553 }
1554
1555 static void
1556 set_max_gl_versions(struct intel_screen *screen)
1557 {
1558 __DRIscreen *dri_screen = screen->driScrnPriv;
1559 const bool has_astc = screen->devinfo.gen >= 9;
1560
1561 switch (screen->devinfo.gen) {
1562 case 9:
1563 case 8:
1564 dri_screen->max_gl_core_version = 45;
1565 dri_screen->max_gl_compat_version = 30;
1566 dri_screen->max_gl_es1_version = 11;
1567 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1568 break;
1569 case 7:
1570 dri_screen->max_gl_core_version = 33;
1571 if (screen->devinfo.is_haswell &&
1572 can_do_pipelined_register_writes(screen)) {
1573 dri_screen->max_gl_core_version = 42;
1574 if (can_do_compute_dispatch(screen))
1575 dri_screen->max_gl_core_version = 43;
1576 if (can_do_mi_math_and_lrr(screen))
1577 dri_screen->max_gl_core_version = 45;
1578 }
1579 dri_screen->max_gl_compat_version = 30;
1580 dri_screen->max_gl_es1_version = 11;
1581 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1582 break;
1583 case 6:
1584 dri_screen->max_gl_core_version = 33;
1585 dri_screen->max_gl_compat_version = 30;
1586 dri_screen->max_gl_es1_version = 11;
1587 dri_screen->max_gl_es2_version = 30;
1588 break;
1589 case 5:
1590 case 4:
1591 dri_screen->max_gl_core_version = 0;
1592 dri_screen->max_gl_compat_version = 21;
1593 dri_screen->max_gl_es1_version = 11;
1594 dri_screen->max_gl_es2_version = 20;
1595 break;
1596 default:
1597 unreachable("unrecognized intel_screen::gen");
1598 }
1599 }
1600
1601 /**
1602 * Return the revision (generally the revid field of the PCI header) of the
1603 * graphics device.
1604 *
1605 * XXX: This function is useful to keep around even if it is not currently in
1606 * use. It is necessary for new platforms and revision specific workarounds or
1607 * features. Please don't remove it so that we know it at least continues to
1608 * build.
1609 */
1610 static __attribute__((__unused__)) int
1611 brw_get_revision(int fd)
1612 {
1613 struct drm_i915_getparam gp;
1614 int revision;
1615 int ret;
1616
1617 memset(&gp, 0, sizeof(gp));
1618 gp.param = I915_PARAM_REVISION;
1619 gp.value = &revision;
1620
1621 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1622 if (ret)
1623 revision = -1;
1624
1625 return revision;
1626 }
1627
1628 static void
1629 shader_debug_log_mesa(void *data, const char *fmt, ...)
1630 {
1631 struct brw_context *brw = (struct brw_context *)data;
1632 va_list args;
1633
1634 va_start(args, fmt);
1635 GLuint msg_id = 0;
1636 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1637 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1638 MESA_DEBUG_TYPE_OTHER,
1639 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1640 va_end(args);
1641 }
1642
1643 static void
1644 shader_perf_log_mesa(void *data, const char *fmt, ...)
1645 {
1646 struct brw_context *brw = (struct brw_context *)data;
1647
1648 va_list args;
1649 va_start(args, fmt);
1650
1651 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1652 va_list args_copy;
1653 va_copy(args_copy, args);
1654 vfprintf(stderr, fmt, args_copy);
1655 va_end(args_copy);
1656 }
1657
1658 if (brw->perf_debug) {
1659 GLuint msg_id = 0;
1660 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1661 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1662 MESA_DEBUG_TYPE_PERFORMANCE,
1663 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1664 }
1665 va_end(args);
1666 }
1667
1668 /**
1669 * This is the driver specific part of the createNewScreen entry point.
1670 * Called when using DRI2.
1671 *
1672 * \return the struct gl_config supported by this driver
1673 */
1674 static const
1675 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1676 {
1677 struct intel_screen *screen;
1678
1679 if (dri_screen->image.loader) {
1680 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1681 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1682 fprintf(stderr,
1683 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1684 "support required\n");
1685 return NULL;
1686 }
1687
1688 /* Allocate the private area */
1689 screen = rzalloc(NULL, struct intel_screen);
1690 if (!screen) {
1691 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1692 return NULL;
1693 }
1694 /* parse information in __driConfigOptions */
1695 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1696
1697 screen->driScrnPriv = dri_screen;
1698 dri_screen->driverPrivate = (void *) screen;
1699
1700 if (!intel_init_bufmgr(screen))
1701 return NULL;
1702
1703 screen->deviceID = drm_intel_bufmgr_gem_get_devid(screen->bufmgr);
1704 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1705 return NULL;
1706
1707 const struct gen_device_info *devinfo = &screen->devinfo;
1708
1709 brw_process_intel_debug_variable();
1710
1711 if (INTEL_DEBUG & DEBUG_BUFMGR)
1712 dri_bufmgr_set_debug(screen->bufmgr, true);
1713
1714 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1715 fprintf(stderr,
1716 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1717 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1718 }
1719
1720 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1721 /* Theorectically unlimited! At least for individual objects...
1722 *
1723 * Currently the entire (global) address space for all GTT maps is
1724 * limited to 64bits. That is all objects on the system that are
1725 * setup for GTT mmapping must fit within 64bits. An attempt to use
1726 * one that exceeds the limit with fail in drm_intel_bo_map_gtt().
1727 *
1728 * Long before we hit that limit, we will be practically limited by
1729 * that any single object must fit in physical memory (RAM). The upper
1730 * limit on the CPU's address space is currently 48bits (Skylake), of
1731 * which only 39bits can be physical memory. (The GPU itself also has
1732 * a 48bit addressable virtual space.) We can fit over 32 million
1733 * objects of the current maximum allocable size before running out
1734 * of mmap space.
1735 */
1736 screen->max_gtt_map_object_size = UINT64_MAX;
1737 } else {
1738 /* Estimate the size of the mappable aperture into the GTT. There's an
1739 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1740 * It turns out it's basically always 256MB, though some ancient hardware
1741 * was smaller.
1742 */
1743 uint32_t gtt_size = 256 * 1024 * 1024;
1744
1745 /* We don't want to map two objects such that a memcpy between them would
1746 * just fault one mapping in and then the other over and over forever. So
1747 * we would need to divide the GTT size by 2. Additionally, some GTT is
1748 * taken up by things like the framebuffer and the ringbuffer and such, so
1749 * be more conservative.
1750 */
1751 screen->max_gtt_map_object_size = gtt_size / 4;
1752 }
1753
1754 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1755 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1756
1757 /* GENs prior to 8 do not support EU/Subslice info */
1758 if (devinfo->gen >= 8) {
1759 intel_detect_sseu(screen);
1760 } else if (devinfo->gen == 7) {
1761 screen->subslice_total = 1 << (devinfo->gt - 1);
1762 }
1763
1764 /* Gen7-7.5 kernel requirements / command parser saga:
1765 *
1766 * - pre-v3.16:
1767 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1768 *
1769 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1770 * all batches secure, allowing them to use any feature with no checking.
1771 * This is effectively equivalent to a command parser version of
1772 * \infinity - everything is possible.
1773 *
1774 * The command parser does not exist, and querying the version will
1775 * return -EINVAL.
1776 *
1777 * - v3.16:
1778 * The kernel enables the command parser by default, for systems with
1779 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1780 * hardware checker is still enabled, so Haswell and Baytrail cannot
1781 * do anything.
1782 *
1783 * Ivybridge goes from "everything is possible" to "only what the
1784 * command parser allows" (if the user boots with i915.cmd_parser=0,
1785 * then everything is possible again). We can only safely use features
1786 * allowed by the supported command parser version.
1787 *
1788 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1789 * implemented by the kernel, even if it's turned off. So, checking
1790 * for version > 0 does not mean that you can write registers. We have
1791 * to try it and see. The version does, however, indicate the age of
1792 * the kernel.
1793 *
1794 * Instead of matching the hardware checker's behavior of converting
1795 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1796 * -EINVAL, making it dangerous to try and use privileged features.
1797 *
1798 * Effective command parser versions:
1799 * - Haswell: 0 (reporting 1, writes don't work)
1800 * - Baytrail: 0 (reporting 1, writes don't work)
1801 * - Ivybridge: 1 (enabled) or infinite (disabled)
1802 *
1803 * - v3.17:
1804 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1805 * effectively version 1 (enabled) or infinite (disabled).
1806 *
1807 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1808 * Command parser v2 supports predicate writes.
1809 *
1810 * - Haswell: 0 (reporting 1, writes don't work)
1811 * - Baytrail: 2 (enabled) or infinite (disabled)
1812 * - Ivybridge: 2 (enabled) or infinite (disabled)
1813 *
1814 * So version >= 2 is enough to know that Ivybridge and Baytrail
1815 * will work. Haswell still can't do anything.
1816 *
1817 * - v4.0: Version 3 happened. Largely not relevant.
1818 *
1819 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1820 * L3 config registers are properly saved and restored as part
1821 * of the hardware context. We can approximately detect this point
1822 * in time by checking if I915_PARAM_REVISION is recognized - it
1823 * landed in a later commit, but in the same release cycle.
1824 *
1825 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1826 * Command parser finally gains secure batch promotion. On Haswell,
1827 * the hardware checker gets disabled, which finally allows it to do
1828 * privileged commands.
1829 *
1830 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1831 * - Haswell: 3 (enabled) or 0 (disabled)
1832 * - Baytrail: 3 (enabled) or infinite (disabled)
1833 * - Ivybridge: 3 (enabled) or infinite (disabled)
1834 *
1835 * Unfortunately, detecting this point in time is tricky, because
1836 * no version bump happened when this important change occurred.
1837 * On Haswell, if we can write any register, then the kernel is at
1838 * least this new, and we can start trusting the version number.
1839 *
1840 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
1841 * Command parser reaches version 4, allowing access to Haswell
1842 * atomic scratch and chicken3 registers. If version >= 4, we know
1843 * the kernel is new enough to support privileged features on all
1844 * hardware. However, the user might have disabled it...and the
1845 * kernel will still report version 4. So we still have to guess
1846 * and check.
1847 *
1848 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
1849 * Command parser v5 whitelists indirect compute shader dispatch
1850 * registers, needed for OpenGL 4.3 and later.
1851 *
1852 * - v4.8:
1853 * Command parser v7 lets us use MI_MATH on Haswell.
1854 *
1855 * Additionally, the kernel begins reporting version 0 when
1856 * the command parser is disabled, allowing us to skip the
1857 * guess-and-check step on Haswell. Unfortunately, this also
1858 * means that we can no longer use it as an indicator of the
1859 * age of the kernel.
1860 */
1861 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
1862 &screen->cmd_parser_version) < 0) {
1863 /* Command parser does not exist - getparam is unrecognized */
1864 screen->cmd_parser_version = 0;
1865 }
1866
1867 if (!intel_detect_pipelined_so(screen)) {
1868 /* We can't do anything, so the effective version is 0. */
1869 screen->cmd_parser_version = 0;
1870 } else {
1871 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
1872 }
1873
1874 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
1875 if (force_msaa) {
1876 screen->winsys_msaa_samples_override =
1877 intel_quantize_num_samples(screen, atoi(force_msaa));
1878 printf("Forcing winsys sample count to %d\n",
1879 screen->winsys_msaa_samples_override);
1880 } else {
1881 screen->winsys_msaa_samples_override = -1;
1882 }
1883
1884 set_max_gl_versions(screen);
1885
1886 /* Notification of GPU resets requires hardware contexts and a kernel new
1887 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
1888 * supported, calling it with a context of 0 will either generate EPERM or
1889 * no error. If the ioctl is not supported, it always generate EINVAL.
1890 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
1891 * extension to the loader.
1892 *
1893 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
1894 */
1895 if (devinfo->gen >= 6) {
1896 struct drm_i915_reset_stats stats;
1897 memset(&stats, 0, sizeof(stats));
1898
1899 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
1900
1901 screen->has_context_reset_notification =
1902 (ret != -1 || errno != EINVAL);
1903 }
1904
1905 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
1906 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
1907
1908 /* Haswell requires command parser version 4 in order to have L3
1909 * atomic scratch1 and chicken3 bits
1910 */
1911 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
1912 screen->kernel_features |=
1913 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
1914 }
1915
1916 /* Haswell requires command parser version 6 in order to write to the
1917 * MI_MATH GPR registers, and version 7 in order to use
1918 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
1919 */
1920 if (devinfo->gen >= 8 ||
1921 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
1922 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
1923 }
1924
1925 /* Gen7 needs at least command parser version 5 to support compute */
1926 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
1927 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
1928
1929 dri_screen->extensions = !screen->has_context_reset_notification
1930 ? screenExtensions : intelRobustScreenExtensions;
1931
1932 screen->compiler = brw_compiler_create(screen, devinfo);
1933 screen->compiler->shader_debug_log = shader_debug_log_mesa;
1934 screen->compiler->shader_perf_log = shader_perf_log_mesa;
1935 screen->program_id = 1;
1936
1937 screen->has_exec_fence =
1938 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
1939
1940 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
1941 }
1942
1943 struct intel_buffer {
1944 __DRIbuffer base;
1945 drm_intel_bo *bo;
1946 };
1947
1948 static __DRIbuffer *
1949 intelAllocateBuffer(__DRIscreen *dri_screen,
1950 unsigned attachment, unsigned format,
1951 int width, int height)
1952 {
1953 struct intel_buffer *intelBuffer;
1954 struct intel_screen *screen = dri_screen->driverPrivate;
1955
1956 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
1957 attachment == __DRI_BUFFER_BACK_LEFT);
1958
1959 intelBuffer = calloc(1, sizeof *intelBuffer);
1960 if (intelBuffer == NULL)
1961 return NULL;
1962
1963 /* The front and back buffers are color buffers, which are X tiled. */
1964 uint32_t tiling = I915_TILING_X;
1965 unsigned long pitch;
1966 int cpp = format / 8;
1967 intelBuffer->bo = drm_intel_bo_alloc_tiled(screen->bufmgr,
1968 "intelAllocateBuffer",
1969 width,
1970 height,
1971 cpp,
1972 &tiling, &pitch,
1973 BO_ALLOC_FOR_RENDER);
1974
1975 if (intelBuffer->bo == NULL) {
1976 free(intelBuffer);
1977 return NULL;
1978 }
1979
1980 drm_intel_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
1981
1982 intelBuffer->base.attachment = attachment;
1983 intelBuffer->base.cpp = cpp;
1984 intelBuffer->base.pitch = pitch;
1985
1986 return &intelBuffer->base;
1987 }
1988
1989 static void
1990 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
1991 {
1992 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
1993
1994 drm_intel_bo_unreference(intelBuffer->bo);
1995 free(intelBuffer);
1996 }
1997
1998 static const struct __DriverAPIRec brw_driver_api = {
1999 .InitScreen = intelInitScreen2,
2000 .DestroyScreen = intelDestroyScreen,
2001 .CreateContext = brwCreateContext,
2002 .DestroyContext = intelDestroyContext,
2003 .CreateBuffer = intelCreateBuffer,
2004 .DestroyBuffer = intelDestroyBuffer,
2005 .MakeCurrent = intelMakeCurrent,
2006 .UnbindContext = intelUnbindContext,
2007 .AllocateBuffer = intelAllocateBuffer,
2008 .ReleaseBuffer = intelReleaseBuffer
2009 };
2010
2011 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2012 .base = { __DRI_DRIVER_VTABLE, 1 },
2013 .vtable = &brw_driver_api,
2014 };
2015
2016 static const __DRIextension *brw_driver_extensions[] = {
2017 &driCoreExtension.base,
2018 &driImageDriverExtension.base,
2019 &driDRI2Extension.base,
2020 &brw_vtable.base,
2021 &brw_config_options.base,
2022 NULL
2023 };
2024
2025 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2026 {
2027 globalDriverAPI = &brw_driver_api;
2028
2029 return brw_driver_extensions;
2030 }