intel: Add resolve functions for miptrees
[mesa.git] / src / mesa / drivers / dri / intel / intel_mipmap_tree.c
1 /**************************************************************************
2 *
3 * Copyright 2006 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "intel_batchbuffer.h"
29 #include "intel_context.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_regions.h"
32 #include "intel_resolve_map.h"
33 #include "intel_span.h"
34 #include "intel_tex_layout.h"
35 #include "intel_tex.h"
36 #include "intel_blit.h"
37
38 #include "main/enums.h"
39 #include "main/formats.h"
40 #include "main/image.h"
41 #include "main/teximage.h"
42
43 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
44
45 static GLenum
46 target_to_target(GLenum target)
47 {
48 switch (target) {
49 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
50 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
51 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
52 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
53 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
54 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
55 return GL_TEXTURE_CUBE_MAP_ARB;
56 default:
57 return target;
58 }
59 }
60
61 static struct intel_mipmap_tree *
62 intel_miptree_create_internal(struct intel_context *intel,
63 GLenum target,
64 gl_format format,
65 GLuint first_level,
66 GLuint last_level,
67 GLuint width0,
68 GLuint height0,
69 GLuint depth0)
70 {
71 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
72 int compress_byte = 0;
73
74 DBG("%s target %s format %s level %d..%d <-- %p\n", __FUNCTION__,
75 _mesa_lookup_enum_by_nr(target),
76 _mesa_get_format_name(format),
77 first_level, last_level, mt);
78
79 if (_mesa_is_format_compressed(format))
80 compress_byte = intel_compressed_num_bytes(format);
81
82 mt->target = target_to_target(target);
83 mt->format = format;
84 mt->first_level = first_level;
85 mt->last_level = last_level;
86 mt->width0 = width0;
87 mt->height0 = height0;
88 mt->cpp = compress_byte ? compress_byte : _mesa_get_format_bytes(mt->format);
89 mt->compressed = compress_byte ? 1 : 0;
90 mt->refcount = 1;
91
92 if (target == GL_TEXTURE_CUBE_MAP) {
93 assert(depth0 == 1);
94 mt->depth0 = 6;
95 } else {
96 mt->depth0 = depth0;
97 }
98
99 if (format == MESA_FORMAT_S8) {
100 /* The stencil buffer has quirky pitch requirements. From Vol 2a,
101 * 11.5.6.2.1 3DSTATE_STENCIL_BUFFER, field "Surface Pitch":
102 * The pitch must be set to 2x the value computed based on width, as
103 * the stencil buffer is stored with two rows interleaved.
104 */
105 assert(intel->has_separate_stencil);
106 mt->cpp = 2;
107 }
108
109 #ifdef I915
110 (void) intel;
111 if (intel->is_945)
112 i945_miptree_layout(mt);
113 else
114 i915_miptree_layout(mt);
115 #else
116 brw_miptree_layout(intel, mt);
117 #endif
118
119 if (intel->must_use_separate_stencil &&
120 _mesa_is_depthstencil_format(_mesa_get_format_base_format(format))) {
121 mt->stencil_mt = intel_miptree_create(intel,
122 mt->target,
123 MESA_FORMAT_S8,
124 mt->first_level,
125 mt->last_level,
126 mt->width0,
127 mt->height0,
128 mt->depth0,
129 true);
130 if (!mt->stencil_mt) {
131 intel_miptree_release(&mt);
132 return NULL;
133 }
134 }
135
136 return mt;
137 }
138
139
140 struct intel_mipmap_tree *
141 intel_miptree_create(struct intel_context *intel,
142 GLenum target,
143 gl_format format,
144 GLuint first_level,
145 GLuint last_level,
146 GLuint width0,
147 GLuint height0,
148 GLuint depth0,
149 bool expect_accelerated_upload)
150 {
151 struct intel_mipmap_tree *mt;
152 uint32_t tiling = I915_TILING_NONE;
153 GLenum base_format = _mesa_get_format_base_format(format);
154
155 if (intel->use_texture_tiling && !_mesa_is_format_compressed(format)) {
156 if (intel->gen >= 4 &&
157 (base_format == GL_DEPTH_COMPONENT ||
158 base_format == GL_DEPTH_STENCIL_EXT))
159 tiling = I915_TILING_Y;
160 else if (format == MESA_FORMAT_S8)
161 tiling = I915_TILING_NONE;
162 else if (width0 >= 64)
163 tiling = I915_TILING_X;
164 }
165
166 mt = intel_miptree_create_internal(intel, target, format,
167 first_level, last_level, width0,
168 height0, depth0);
169 /*
170 * pitch == 0 || height == 0 indicates the null texture
171 */
172 if (!mt || !mt->total_width || !mt->total_height) {
173 free(mt);
174 return NULL;
175 }
176
177 mt->region = intel_region_alloc(intel->intelScreen,
178 tiling,
179 mt->cpp,
180 mt->total_width,
181 mt->total_height,
182 expect_accelerated_upload);
183
184 if (!mt->region) {
185 free(mt);
186 return NULL;
187 }
188
189 return mt;
190 }
191
192
193 struct intel_mipmap_tree *
194 intel_miptree_create_for_region(struct intel_context *intel,
195 GLenum target,
196 gl_format format,
197 struct intel_region *region)
198 {
199 struct intel_mipmap_tree *mt;
200
201 mt = intel_miptree_create_internal(intel, target, format,
202 0, 0,
203 region->width, region->height, 1);
204 if (!mt)
205 return mt;
206
207 intel_region_reference(&mt->region, region);
208
209 return mt;
210 }
211
212 struct intel_mipmap_tree*
213 intel_miptree_create_for_renderbuffer(struct intel_context *intel,
214 gl_format format,
215 uint32_t tiling,
216 uint32_t cpp,
217 uint32_t width,
218 uint32_t height)
219 {
220 struct intel_region *region;
221 struct intel_mipmap_tree *mt;
222
223 region = intel_region_alloc(intel->intelScreen,
224 tiling, cpp, width, height, true);
225 if (!region)
226 return NULL;
227
228 mt = intel_miptree_create_for_region(intel, GL_TEXTURE_2D, format, region);
229 intel_region_release(&region);
230 return mt;
231 }
232
233 void
234 intel_miptree_reference(struct intel_mipmap_tree **dst,
235 struct intel_mipmap_tree *src)
236 {
237 if (*dst == src)
238 return;
239
240 intel_miptree_release(dst);
241
242 if (src) {
243 src->refcount++;
244 DBG("%s %p refcount now %d\n", __FUNCTION__, src, src->refcount);
245 }
246
247 *dst = src;
248 }
249
250
251 void
252 intel_miptree_release(struct intel_mipmap_tree **mt)
253 {
254 if (!*mt)
255 return;
256
257 DBG("%s %p refcount will be %d\n", __FUNCTION__, *mt, (*mt)->refcount - 1);
258 if (--(*mt)->refcount <= 0) {
259 GLuint i;
260
261 DBG("%s deleting %p\n", __FUNCTION__, *mt);
262
263 intel_region_release(&((*mt)->region));
264 intel_miptree_release(&(*mt)->stencil_mt);
265 intel_miptree_release(&(*mt)->hiz_mt);
266 intel_resolve_map_clear(&(*mt)->hiz_map);
267
268 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
269 free((*mt)->level[i].slice);
270 }
271
272 free(*mt);
273 }
274 *mt = NULL;
275 }
276
277 void
278 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
279 int *width, int *height, int *depth)
280 {
281 switch (image->TexObject->Target) {
282 case GL_TEXTURE_1D_ARRAY:
283 *width = image->Width;
284 *height = 1;
285 *depth = image->Height;
286 break;
287 default:
288 *width = image->Width;
289 *height = image->Height;
290 *depth = image->Depth;
291 break;
292 }
293 }
294
295 /**
296 * Can the image be pulled into a unified mipmap tree? This mirrors
297 * the completeness test in a lot of ways.
298 *
299 * Not sure whether I want to pass gl_texture_image here.
300 */
301 bool
302 intel_miptree_match_image(struct intel_mipmap_tree *mt,
303 struct gl_texture_image *image)
304 {
305 struct intel_texture_image *intelImage = intel_texture_image(image);
306 GLuint level = intelImage->base.Base.Level;
307 int width, height, depth;
308
309 if (image->TexFormat != mt->format)
310 return false;
311
312 intel_miptree_get_dimensions_for_image(image, &width, &height, &depth);
313
314 /* Test image dimensions against the base level image adjusted for
315 * minification. This will also catch images not present in the
316 * tree, changed targets, etc.
317 */
318 if (width != mt->level[level].width ||
319 height != mt->level[level].height ||
320 depth != mt->level[level].depth)
321 return false;
322
323 return true;
324 }
325
326
327 void
328 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
329 GLuint level,
330 GLuint x, GLuint y,
331 GLuint w, GLuint h, GLuint d)
332 {
333 mt->level[level].width = w;
334 mt->level[level].height = h;
335 mt->level[level].depth = d;
336 mt->level[level].level_x = x;
337 mt->level[level].level_y = y;
338
339 DBG("%s level %d size: %d,%d,%d offset %d,%d\n", __FUNCTION__,
340 level, w, h, d, x, y);
341
342 assert(mt->level[level].slice == NULL);
343
344 mt->level[level].slice = malloc(d * sizeof(*mt->level[0].slice));
345 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
346 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
347 }
348
349
350 void
351 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
352 GLuint level, GLuint img,
353 GLuint x, GLuint y)
354 {
355 if (img == 0 && level == 0)
356 assert(x == 0 && y == 0);
357
358 assert(img < mt->level[level].depth);
359
360 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
361 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
362
363 DBG("%s level %d img %d pos %d,%d\n",
364 __FUNCTION__, level, img,
365 mt->level[level].slice[img].x_offset,
366 mt->level[level].slice[img].y_offset);
367 }
368
369
370 /**
371 * For cube map textures, either the \c face parameter can be used, of course,
372 * or the cube face can be interpreted as a depth layer and the \c layer
373 * parameter used.
374 */
375 void
376 intel_miptree_get_image_offset(struct intel_mipmap_tree *mt,
377 GLuint level, GLuint face, GLuint layer,
378 GLuint *x, GLuint *y)
379 {
380 int slice;
381
382 if (face > 0) {
383 assert(mt->target == GL_TEXTURE_CUBE_MAP);
384 assert(face < 6);
385 assert(layer == 0);
386 slice = face;
387 } else {
388 /* This branch may be taken even if the texture target is a cube map. In
389 * that case, the caller chose to interpret each cube face as a layer.
390 */
391 assert(face == 0);
392 slice = layer;
393 }
394
395 *x = mt->level[level].slice[slice].x_offset;
396 *y = mt->level[level].slice[slice].y_offset;
397 }
398
399 static void
400 intel_miptree_copy_slice(struct intel_context *intel,
401 struct intel_mipmap_tree *dst_mt,
402 struct intel_mipmap_tree *src_mt,
403 int level,
404 int face,
405 int depth)
406
407 {
408 gl_format format = src_mt->format;
409 uint32_t width = src_mt->level[level].width;
410 uint32_t height = src_mt->level[level].height;
411
412 assert(depth < src_mt->level[level].depth);
413
414 if (dst_mt->compressed) {
415 uint32_t align_w, align_h;
416 intel_get_texture_alignment_unit(format,
417 &align_w, &align_h);
418 height = ALIGN(height, align_h) / align_h;
419 width = ALIGN(width, align_w);
420 }
421
422 uint32_t dst_x, dst_y, src_x, src_y;
423 intel_miptree_get_image_offset(dst_mt, level, face, depth,
424 &dst_x, &dst_y);
425 intel_miptree_get_image_offset(src_mt, level, face, depth,
426 &src_x, &src_y);
427
428 DBG("validate blit mt %p %d,%d/%d -> mt %p %d,%d/%d (%dx%d)\n",
429 src_mt, src_x, src_y, src_mt->region->pitch * src_mt->region->cpp,
430 dst_mt, dst_x, dst_y, dst_mt->region->pitch * dst_mt->region->cpp,
431 width, height);
432
433 if (!intelEmitCopyBlit(intel,
434 dst_mt->region->cpp,
435 src_mt->region->pitch, src_mt->region->bo,
436 0, src_mt->region->tiling,
437 dst_mt->region->pitch, dst_mt->region->bo,
438 0, dst_mt->region->tiling,
439 src_x, src_y,
440 dst_x, dst_y,
441 width, height,
442 GL_COPY)) {
443
444 fallback_debug("miptree validate blit for %s failed\n",
445 _mesa_get_format_name(format));
446 void *dst = intel_region_map(intel, dst_mt->region, GL_MAP_WRITE_BIT);
447 void *src = intel_region_map(intel, src_mt->region, GL_MAP_READ_BIT);
448
449 _mesa_copy_rect(dst,
450 dst_mt->cpp,
451 dst_mt->region->pitch,
452 dst_x, dst_y,
453 width, height,
454 src, src_mt->region->pitch,
455 src_x, src_y);
456
457 intel_region_unmap(intel, dst_mt->region);
458 intel_region_unmap(intel, src_mt->region);
459 }
460
461 if (src_mt->stencil_mt) {
462 intel_miptree_copy_slice(intel,
463 dst_mt->stencil_mt, src_mt->stencil_mt,
464 level, face, depth);
465 }
466 }
467
468 /**
469 * Copies the image's current data to the given miptree, and associates that
470 * miptree with the image.
471 */
472 void
473 intel_miptree_copy_teximage(struct intel_context *intel,
474 struct intel_texture_image *intelImage,
475 struct intel_mipmap_tree *dst_mt)
476 {
477 struct intel_mipmap_tree *src_mt = intelImage->mt;
478 int level = intelImage->base.Base.Level;
479 int face = intelImage->base.Base.Face;
480 GLuint depth = intelImage->base.Base.Depth;
481
482 for (int slice = 0; slice < depth; slice++) {
483 intel_miptree_copy_slice(intel, dst_mt, src_mt, level, face, slice);
484 }
485
486 intel_miptree_reference(&intelImage->mt, dst_mt);
487 }
488
489 /**
490 * \param scatter Scatter if true. Gather if false.
491 *
492 * \see intel_miptree_s8z24_scatter()
493 * \see intel_miptree_s8z24_gather()
494 */
495 static void
496 intel_miptree_s8z24_scattergather(struct intel_context *intel,
497 struct intel_mipmap_tree *mt,
498 uint32_t level,
499 uint32_t layer,
500 bool scatter)
501 {
502 /* Check function inputs. */
503 assert(level >= mt->first_level);
504 assert(level <= mt->last_level);
505 assert(layer < mt->level[level].depth);
506
507 /* Label everything and its bit layout, just to make the code easier to
508 * read.
509 */
510 struct intel_mipmap_tree *s8_mt = mt->stencil_mt;
511 struct intel_mipmap_level *s8_level = &s8_mt->level[level];
512 struct intel_mipmap_slice *s8_slice = &s8_mt->level[level].slice[layer];
513
514 struct intel_mipmap_tree *s8z24_mt = mt;
515 struct intel_mipmap_level *s8z24_level = &s8z24_mt->level[level];
516 struct intel_mipmap_slice *s8z24_slice = &s8z24_mt->level[level].slice[layer];
517
518 /* Check that both miptree levels have the same dimensions. */
519 assert(s8_level->width == s8z24_level->width);
520 assert(s8_level->height == s8z24_level->height);
521 assert(s8_level->depth == s8z24_level->depth);
522
523 /* Map the buffers. */
524 if (drm_intel_bo_references(intel->batch.bo, s8_mt->region->bo) ||
525 drm_intel_bo_references(intel->batch.bo, s8z24_mt->region->bo)) {
526 intel_batchbuffer_flush(intel);
527 }
528 drm_intel_gem_bo_map_gtt(s8_mt->region->bo);
529 drm_intel_gem_bo_map_gtt(s8z24_mt->region->bo);
530
531 /* Define the invariant values outside the for loop, because I don't trust
532 * GCC to do it for us.
533 */
534 uint8_t *s8_map = s8_mt->region->bo->virtual
535 + s8_slice->x_offset
536 + s8_slice->y_offset;
537
538 uint8_t *s8z24_map = s8z24_mt->region->bo->virtual
539 + s8z24_slice->x_offset
540 + s8z24_slice->y_offset;
541
542 ptrdiff_t s8z24_stride = s8z24_mt->region->pitch * s8z24_mt->region->cpp;
543
544 uint32_t w = s8_level->width;
545 uint32_t h = s8_level->height;
546
547 for (uint32_t y = 0; y < h; ++y) {
548 for (uint32_t x = 0; x < w; ++x) {
549 ptrdiff_t s8_offset = intel_offset_S8(s8_mt->region->pitch, x, y);
550 ptrdiff_t s8z24_offset = y * s8z24_stride
551 + x * 4
552 + 3;
553 if (scatter) {
554 s8_map[s8_offset] = s8z24_map[s8z24_offset];
555 } else {
556 s8z24_map[s8z24_offset] = s8_map[s8_offset];
557 }
558 }
559 }
560
561 drm_intel_gem_bo_unmap_gtt(s8_mt->region->bo);
562 drm_intel_gem_bo_unmap_gtt(s8z24_mt->region->bo);
563 }
564
565 void
566 intel_miptree_s8z24_scatter(struct intel_context *intel,
567 struct intel_mipmap_tree *mt,
568 uint32_t level,
569 uint32_t layer)
570 {
571 intel_miptree_s8z24_scattergather(intel, mt, level, layer, true);
572 }
573
574 void
575 intel_miptree_s8z24_gather(struct intel_context *intel,
576 struct intel_mipmap_tree *mt,
577 uint32_t level,
578 uint32_t layer)
579 {
580 intel_miptree_s8z24_scattergather(intel, mt, level, layer, false);
581 }
582
583 bool
584 intel_miptree_alloc_hiz(struct intel_context *intel,
585 struct intel_mipmap_tree *mt)
586 {
587 assert(mt->hiz_mt == NULL);
588 mt->hiz_mt = intel_miptree_create(intel,
589 mt->target,
590 MESA_FORMAT_X8_Z24,
591 mt->first_level,
592 mt->last_level,
593 mt->width0,
594 mt->height0,
595 mt->depth0,
596 true);
597 return mt->hiz_mt != NULL;
598 }
599
600 void
601 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
602 uint32_t level,
603 uint32_t layer)
604 {
605 intel_miptree_check_level_layer(mt, level, layer);
606
607 if (!mt->hiz_mt)
608 return;
609
610 intel_resolve_map_set(&mt->hiz_map,
611 level, layer, INTEL_NEED_HIZ_RESOLVE);
612 }
613
614
615 void
616 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
617 uint32_t level,
618 uint32_t layer)
619 {
620 intel_miptree_check_level_layer(mt, level, layer);
621
622 if (!mt->hiz_mt)
623 return;
624
625 intel_resolve_map_set(&mt->hiz_map,
626 level, layer, INTEL_NEED_DEPTH_RESOLVE);
627 }
628
629 typedef void (*resolve_func_t)(struct intel_context *intel,
630 struct intel_mipmap_tree *mt,
631 uint32_t level,
632 uint32_t layer);
633
634 static bool
635 intel_miptree_slice_resolve(struct intel_context *intel,
636 struct intel_mipmap_tree *mt,
637 uint32_t level,
638 uint32_t layer,
639 enum intel_need_resolve need,
640 resolve_func_t func)
641 {
642 intel_miptree_check_level_layer(mt, level, layer);
643
644 struct intel_resolve_map *item =
645 intel_resolve_map_get(&mt->hiz_map, level, layer);
646
647 if (!item || item->need != need)
648 return false;
649
650 func(intel, mt, level, layer);
651 intel_resolve_map_remove(item);
652 return true;
653 }
654
655 bool
656 intel_miptree_slice_resolve_hiz(struct intel_context *intel,
657 struct intel_mipmap_tree *mt,
658 uint32_t level,
659 uint32_t layer)
660 {
661 return intel_miptree_slice_resolve(intel, mt, level, layer,
662 INTEL_NEED_HIZ_RESOLVE,
663 intel->vtbl.resolve_hiz_slice);
664 }
665
666 bool
667 intel_miptree_slice_resolve_depth(struct intel_context *intel,
668 struct intel_mipmap_tree *mt,
669 uint32_t level,
670 uint32_t layer)
671 {
672 return intel_miptree_slice_resolve(intel, mt, level, layer,
673 INTEL_NEED_DEPTH_RESOLVE,
674 intel->vtbl.resolve_depth_slice);
675 }
676
677 static bool
678 intel_miptree_all_slices_resolve(struct intel_context *intel,
679 struct intel_mipmap_tree *mt,
680 enum intel_need_resolve need,
681 resolve_func_t func)
682 {
683 bool did_resolve = false;
684 struct intel_resolve_map *i;
685
686 for (i = mt->hiz_map.next; i; i = i->next) {
687 if (i->need != need)
688 continue;
689 func(intel, mt, i->level, i->layer);
690 intel_resolve_map_remove(i);
691 did_resolve = true;
692 }
693
694 return did_resolve;
695 }
696
697 bool
698 intel_miptree_all_slices_resolve_hiz(struct intel_context *intel,
699 struct intel_mipmap_tree *mt)
700 {
701 return intel_miptree_all_slices_resolve(intel, mt,
702 INTEL_NEED_HIZ_RESOLVE,
703 intel->vtbl.resolve_hiz_slice);
704 }
705
706 bool
707 intel_miptree_all_slices_resolve_depth(struct intel_context *intel,
708 struct intel_mipmap_tree *mt)
709 {
710 return intel_miptree_all_slices_resolve(intel, mt,
711 INTEL_NEED_DEPTH_RESOLVE,
712 intel->vtbl.resolve_depth_slice);
713 }