intel: Expose intel_miptree_create_internal as intel_miptree_create_layout.
[mesa.git] / src / mesa / drivers / dri / intel / intel_mipmap_tree.h
1 /**************************************************************************
2 *
3 * Copyright 2006 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #ifndef INTEL_MIPMAP_TREE_H
29 #define INTEL_MIPMAP_TREE_H
30
31 #include <assert.h>
32
33 #include "intel_regions.h"
34 #include "intel_resolve_map.h"
35
36 #ifdef __cplusplus
37 extern "C" {
38 #endif
39
40 /* A layer on top of the intel_regions code which adds:
41 *
42 * - Code to size and layout a region to hold a set of mipmaps.
43 * - Query to determine if a new image fits in an existing tree.
44 * - More refcounting
45 * - maybe able to remove refcounting from intel_region?
46 * - ?
47 *
48 * The fixed mipmap layout of intel hardware where one offset
49 * specifies the position of all images in a mipmap hierachy
50 * complicates the implementation of GL texture image commands,
51 * compared to hardware where each image is specified with an
52 * independent offset.
53 *
54 * In an ideal world, each texture object would be associated with a
55 * single bufmgr buffer or 2d intel_region, and all the images within
56 * the texture object would slot into the tree as they arrive. The
57 * reality can be a little messier, as images can arrive from the user
58 * with sizes that don't fit in the existing tree, or in an order
59 * where the tree layout cannot be guessed immediately.
60 *
61 * This structure encodes an idealized mipmap tree. The GL image
62 * commands build these where possible, otherwise store the images in
63 * temporary system buffers.
64 */
65
66 struct intel_resolve_map;
67 struct intel_texture_image;
68
69 struct intel_miptree_map {
70 /** Bitfield of GL_MAP_READ_BIT, GL_MAP_WRITE_BIT, GL_MAP_INVALIDATE_BIT */
71 GLbitfield mode;
72 /** Region of interest for the map. */
73 int x, y, w, h;
74 /** Possibly malloced temporary buffer for the mapping. */
75 void *buffer;
76 /** Possible pointer to a BO temporary for the mapping. */
77 drm_intel_bo *bo;
78 /** Pointer to the start of (map_x, map_y) returned by the mapping. */
79 void *ptr;
80 /** Stride of the mapping. */
81 int stride;
82
83 /**
84 * intel_mipmap_tree::singlesample_mt is temporary storage that persists
85 * only for the duration of the map.
86 */
87 bool singlesample_mt_is_tmp;
88 };
89
90 /**
91 * Describes the location of each texture image within a texture region.
92 */
93 struct intel_mipmap_level
94 {
95 /** Offset to this miptree level, used in computing x_offset. */
96 GLuint level_x;
97 /** Offset to this miptree level, used in computing y_offset. */
98 GLuint level_y;
99 GLuint width;
100 GLuint height;
101
102 /**
103 * \brief Number of 2D slices in this miplevel.
104 *
105 * The exact semantics of depth varies according to the texture target:
106 * - For GL_TEXTURE_CUBE_MAP, depth is 6.
107 * - For GL_TEXTURE_2D_ARRAY, depth is the number of array slices. It is
108 * identical for all miplevels in the texture.
109 * - For GL_TEXTURE_3D, it is the texture's depth at this miplevel. Its
110 * value, like width and height, varies with miplevel.
111 * - For other texture types, depth is 1.
112 */
113 GLuint depth;
114
115 /**
116 * \brief List of 2D images in this mipmap level.
117 *
118 * This may be a list of cube faces, array slices in 2D array texture, or
119 * layers in a 3D texture. The list's length is \c depth.
120 */
121 struct intel_mipmap_slice {
122 /**
123 * \name Offset to slice
124 * \{
125 *
126 * Hardware formats are so diverse that that there is no unified way to
127 * compute the slice offsets, so we store them in this table.
128 *
129 * The (x, y) offset to slice \c s at level \c l relative the miptrees
130 * base address is
131 * \code
132 * x = mt->level[l].slice[s].x_offset
133 * y = mt->level[l].slice[s].y_offset
134 */
135 GLuint x_offset;
136 GLuint y_offset;
137 /** \} */
138
139 /**
140 * Mapping information. Persistent for the duration of
141 * intel_miptree_map/unmap on this slice.
142 */
143 struct intel_miptree_map *map;
144 } *slice;
145 };
146
147 /**
148 * Enum for keeping track of the different MSAA layouts supported by Gen7.
149 */
150 enum intel_msaa_layout
151 {
152 /**
153 * Ordinary surface with no MSAA.
154 */
155 INTEL_MSAA_LAYOUT_NONE,
156
157 /**
158 * Interleaved Multisample Surface. The additional samples are
159 * accommodated by scaling up the width and the height of the surface so
160 * that all the samples corresponding to a pixel are located at nearby
161 * memory locations.
162 */
163 INTEL_MSAA_LAYOUT_IMS,
164
165 /**
166 * Uncompressed Multisample Surface. The surface is stored as a 2D array,
167 * with array slice n containing all pixel data for sample n.
168 */
169 INTEL_MSAA_LAYOUT_UMS,
170
171 /**
172 * Compressed Multisample Surface. The surface is stored as in
173 * INTEL_MSAA_LAYOUT_UMS, but there is an additional buffer called the MCS
174 * (Multisample Control Surface) buffer. Each pixel in the MCS buffer
175 * indicates the mapping from sample number to array slice. This allows
176 * the common case (where all samples constituting a pixel have the same
177 * color value) to be stored efficiently by just using a single array
178 * slice.
179 */
180 INTEL_MSAA_LAYOUT_CMS,
181 };
182
183 struct intel_mipmap_tree
184 {
185 /* Effectively the key:
186 */
187 GLenum target;
188
189 /**
190 * Generally, this is just the same as the gl_texture_image->TexFormat or
191 * gl_renderbuffer->Format.
192 *
193 * However, for textures and renderbuffers with packed depth/stencil formats
194 * on hardware where we want or need to use separate stencil, there will be
195 * two miptrees for storing the data. If the depthstencil texture or rb is
196 * MESA_FORMAT_Z32_FLOAT_X24S8, then mt->format will be
197 * MESA_FORMAT_Z32_FLOAT, otherwise for MESA_FORMAT_S8_Z24 objects it will be
198 * MESA_FORMAT_X8_Z24.
199 *
200 * For ETC1/ETC2 textures, this is one of the uncompressed mesa texture
201 * formats if the hardware lacks support for ETC1/ETC2. See @ref wraps_etc.
202 */
203 gl_format format;
204
205 /** This variable stores the value of ETC compressed texture format */
206 gl_format etc_format;
207
208 /**
209 * The X offset of each image in the miptree must be aligned to this. See
210 * the "Alignment Unit Size" section of the BSpec.
211 */
212 unsigned int align_w;
213 unsigned int align_h; /**< \see align_w */
214
215 GLuint first_level;
216 GLuint last_level;
217
218 /**
219 * Level zero image dimensions. These dimensions correspond to the
220 * physical layout of data in memory. Accordingly, they account for the
221 * extra width, height, and or depth that must be allocated in order to
222 * accommodate multisample formats, and they account for the extra factor
223 * of 6 in depth that must be allocated in order to accommodate cubemap
224 * textures.
225 */
226 GLuint physical_width0, physical_height0, physical_depth0;
227
228 GLuint cpp;
229 GLuint num_samples;
230 bool compressed;
231
232 /**
233 * Level zero image dimensions. These dimensions correspond to the
234 * logical width, height, and depth of the region as seen by client code.
235 * Accordingly, they do not account for the extra width, height, and/or
236 * depth that must be allocated in order to accommodate multisample
237 * formats, nor do they account for the extra factor of 6 in depth that
238 * must be allocated in order to accommodate cubemap textures.
239 */
240 uint32_t logical_width0, logical_height0, logical_depth0;
241
242 /**
243 * For 1D array, 2D array, cube, and 2D multisampled surfaces on Gen7: true
244 * if the surface only contains LOD 0, and hence no space is for LOD's
245 * other than 0 in between array slices.
246 *
247 * Corresponds to the surface_array_spacing bit in gen7_surface_state.
248 */
249 bool array_spacing_lod0;
250
251 /**
252 * MSAA layout used by this buffer.
253 */
254 enum intel_msaa_layout msaa_layout;
255
256 /* Derived from the above:
257 */
258 GLuint total_width;
259 GLuint total_height;
260
261 /* The 3DSTATE_CLEAR_PARAMS value associated with the last depth clear to
262 * this depth mipmap tree, if any.
263 */
264 uint32_t depth_clear_value;
265
266 /* Includes image offset tables:
267 */
268 struct intel_mipmap_level level[MAX_TEXTURE_LEVELS];
269
270 /* The data is held here:
271 */
272 struct intel_region *region;
273
274 /* Offset into region bo where miptree starts:
275 */
276 uint32_t offset;
277
278 /**
279 * \brief Singlesample miptree.
280 *
281 * This is used under two cases.
282 *
283 * --- Case 1: As persistent singlesample storage for multisample window
284 * system front and back buffers ---
285 *
286 * Suppose that the window system FBO was created with a multisample
287 * config. Let `back_irb` be the `intel_renderbuffer` for the FBO's back
288 * buffer. Then `back_irb` contains two miptrees: a parent multisample
289 * miptree (back_irb->mt) and a child singlesample miptree
290 * (back_irb->mt->singlesample_mt). The DRM buffer shared with DRI2
291 * belongs to `back_irb->mt->singlesample_mt` and contains singlesample
292 * data. The singlesample miptree is created at the same time as and
293 * persists for the lifetime of its parent multisample miptree.
294 *
295 * When access to the singlesample data is needed, such as at
296 * eglSwapBuffers and glReadPixels, an automatic downsample occurs from
297 * `back_rb->mt` to `back_rb->mt->singlesample_mt` when necessary.
298 *
299 * This description of the back buffer applies analogously to the front
300 * buffer.
301 *
302 *
303 * --- Case 2: As temporary singlesample storage for mapping multisample
304 * miptrees ---
305 *
306 * Suppose the intel_miptree_map is called on a multisample miptree, `mt`,
307 * for which case 1 does not apply (that is, `mt` does not belong to
308 * a front or back buffer). Then `mt->singlesample_mt` is null at the
309 * start of the call. intel_miptree_map will create a temporary
310 * singlesample miptree, store it at `mt->singlesample_mt`, downsample from
311 * `mt` to `mt->singlesample_mt` if necessary, then map
312 * `mt->singlesample_mt`. The temporary miptree is later deleted during
313 * intel_miptree_unmap.
314 */
315 struct intel_mipmap_tree *singlesample_mt;
316
317 /**
318 * \brief A downsample is needed from this miptree to singlesample_mt.
319 */
320 bool need_downsample;
321
322 /**
323 * \brief HiZ miptree
324 *
325 * This is non-null only if HiZ is enabled for this miptree.
326 *
327 * \see intel_miptree_alloc_hiz()
328 */
329 struct intel_mipmap_tree *hiz_mt;
330
331 /**
332 * \brief Map of miptree slices to needed resolves.
333 *
334 * This is used only when the miptree has a child HiZ miptree.
335 *
336 * Let \c mt be a depth miptree with HiZ enabled. Then the resolve map is
337 * \c mt->hiz_map. The resolve map of the child HiZ miptree, \c
338 * mt->hiz_mt->hiz_map, is unused.
339 */
340 struct intel_resolve_map hiz_map;
341
342 /**
343 * \brief Stencil miptree for depthstencil textures.
344 *
345 * This miptree is used for depthstencil textures and renderbuffers that
346 * require separate stencil. It always has the true copy of the stencil
347 * bits, regardless of mt->format.
348 *
349 * \see intel_miptree_map_depthstencil()
350 * \see intel_miptree_unmap_depthstencil()
351 */
352 struct intel_mipmap_tree *stencil_mt;
353
354 /**
355 * \brief MCS miptree for multisampled textures.
356 *
357 * This miptree contains the "multisample control surface", which stores
358 * the necessary information to implement compressed MSAA on Gen7+
359 * (INTEL_MSAA_FORMAT_CMS).
360 */
361 struct intel_mipmap_tree *mcs_mt;
362
363 /**
364 * \brief The miptree contains uncompressed data that was originally
365 * ETC1/ETC2 data.
366 *
367 * On hardware that lacks support for ETC1/ETC2 textures, we do the following
368 * on calls to glCompressedTexImage2D() with an ETC1/ETC2 texture format:
369 * 1. Create a miptree whose format is a suitable uncompressed mesa format
370 * with the wraps_etc flag set.
371 * 2. Translate the ETC1/ETC2 data into uncompressed mesa format.
372 * 3. Store the uncompressed data into the miptree and discard the ETC1/ETC2
373 * data.
374 */
375 bool wraps_etc;
376
377 /* These are also refcounted:
378 */
379 GLuint refcount;
380 };
381
382
383
384 struct intel_mipmap_tree *intel_miptree_create(struct intel_context *intel,
385 GLenum target,
386 gl_format format,
387 GLuint first_level,
388 GLuint last_level,
389 GLuint width0,
390 GLuint height0,
391 GLuint depth0,
392 bool expect_accelerated_upload,
393 GLuint num_samples,
394 bool force_y_tiling);
395
396 struct intel_mipmap_tree *
397 intel_miptree_create_layout(struct intel_context *intel,
398 GLenum target,
399 gl_format format,
400 GLuint first_level,
401 GLuint last_level,
402 GLuint width0,
403 GLuint height0,
404 GLuint depth0,
405 bool for_region,
406 GLuint num_samples);
407
408 struct intel_mipmap_tree *
409 intel_miptree_create_for_region(struct intel_context *intel,
410 GLenum target,
411 gl_format format,
412 struct intel_region *region);
413
414 struct intel_mipmap_tree*
415 intel_miptree_create_for_dri2_buffer(struct intel_context *intel,
416 unsigned dri_attachment,
417 gl_format format,
418 uint32_t num_samples,
419 struct intel_region *region);
420
421 /**
422 * Create a miptree appropriate as the storage for a non-texture renderbuffer.
423 * The miptree has the following properties:
424 * - The target is GL_TEXTURE_2D.
425 * - There are no levels other than the base level 0.
426 * - Depth is 1.
427 */
428 struct intel_mipmap_tree*
429 intel_miptree_create_for_renderbuffer(struct intel_context *intel,
430 gl_format format,
431 uint32_t width,
432 uint32_t height,
433 uint32_t num_samples);
434
435 /** \brief Assert that the level and layer are valid for the miptree. */
436 static inline void
437 intel_miptree_check_level_layer(struct intel_mipmap_tree *mt,
438 uint32_t level,
439 uint32_t layer)
440 {
441 assert(level >= mt->first_level);
442 assert(level <= mt->last_level);
443 assert(layer < mt->level[level].depth);
444 }
445
446 int intel_miptree_pitch_align (struct intel_context *intel,
447 struct intel_mipmap_tree *mt,
448 uint32_t tiling,
449 int pitch);
450
451 void intel_miptree_reference(struct intel_mipmap_tree **dst,
452 struct intel_mipmap_tree *src);
453
454 void intel_miptree_release(struct intel_mipmap_tree **mt);
455
456 /* Check if an image fits an existing mipmap tree layout
457 */
458 bool intel_miptree_match_image(struct intel_mipmap_tree *mt,
459 struct gl_texture_image *image);
460
461 void
462 intel_miptree_get_image_offset(struct intel_mipmap_tree *mt,
463 GLuint level, GLuint slice,
464 GLuint *x, GLuint *y);
465
466 void
467 intel_miptree_get_dimensions_for_image(struct gl_texture_image *image,
468 int *width, int *height, int *depth);
469
470 void intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
471 GLuint level,
472 GLuint x, GLuint y,
473 GLuint w, GLuint h, GLuint d);
474
475 void intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
476 GLuint level,
477 GLuint img, GLuint x, GLuint y);
478
479 void
480 intel_miptree_copy_teximage(struct intel_context *intel,
481 struct intel_texture_image *intelImage,
482 struct intel_mipmap_tree *dst_mt);
483
484 /**
485 * Copy the stencil data from \c mt->stencil_mt->region to \c mt->region for
486 * the given miptree slice.
487 *
488 * \see intel_mipmap_tree::stencil_mt
489 */
490 void
491 intel_miptree_s8z24_scatter(struct intel_context *intel,
492 struct intel_mipmap_tree *mt,
493 uint32_t level,
494 uint32_t slice);
495
496 /**
497 * Copy the stencil data in \c mt->stencil_mt->region to \c mt->region for the
498 * given miptree slice.
499 *
500 * \see intel_mipmap_tree::stencil_mt
501 */
502 void
503 intel_miptree_s8z24_gather(struct intel_context *intel,
504 struct intel_mipmap_tree *mt,
505 uint32_t level,
506 uint32_t layer);
507
508 bool
509 intel_miptree_alloc_mcs(struct intel_context *intel,
510 struct intel_mipmap_tree *mt,
511 GLuint num_samples);
512
513 /**
514 * \name Miptree HiZ functions
515 * \{
516 *
517 * It is safe to call the "slice_set_need_resolve" and "slice_resolve"
518 * functions on a miptree without HiZ. In that case, each function is a no-op.
519 */
520
521 /**
522 * \brief Allocate the miptree's embedded HiZ miptree.
523 * \see intel_mipmap_tree:hiz_mt
524 * \return false if allocation failed
525 */
526
527 bool
528 intel_miptree_alloc_hiz(struct intel_context *intel,
529 struct intel_mipmap_tree *mt,
530 GLuint num_samples);
531
532 void
533 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
534 uint32_t level,
535 uint32_t depth);
536 void
537 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
538 uint32_t level,
539 uint32_t depth);
540
541 /**
542 * \return false if no resolve was needed
543 */
544 bool
545 intel_miptree_slice_resolve_hiz(struct intel_context *intel,
546 struct intel_mipmap_tree *mt,
547 unsigned int level,
548 unsigned int depth);
549
550 /**
551 * \return false if no resolve was needed
552 */
553 bool
554 intel_miptree_slice_resolve_depth(struct intel_context *intel,
555 struct intel_mipmap_tree *mt,
556 unsigned int level,
557 unsigned int depth);
558
559 /**
560 * \return false if no resolve was needed
561 */
562 bool
563 intel_miptree_all_slices_resolve_hiz(struct intel_context *intel,
564 struct intel_mipmap_tree *mt);
565
566 /**
567 * \return false if no resolve was needed
568 */
569 bool
570 intel_miptree_all_slices_resolve_depth(struct intel_context *intel,
571 struct intel_mipmap_tree *mt);
572
573 /**\}*/
574
575 void
576 intel_miptree_downsample(struct intel_context *intel,
577 struct intel_mipmap_tree *mt);
578
579 void
580 intel_miptree_upsample(struct intel_context *intel,
581 struct intel_mipmap_tree *mt);
582
583 /* i915_mipmap_tree.c:
584 */
585 void i915_miptree_layout(struct intel_mipmap_tree *mt);
586 void i945_miptree_layout(struct intel_mipmap_tree *mt);
587 void brw_miptree_layout(struct intel_context *intel,
588 struct intel_mipmap_tree *mt);
589
590 void
591 intel_miptree_map(struct intel_context *intel,
592 struct intel_mipmap_tree *mt,
593 unsigned int level,
594 unsigned int slice,
595 unsigned int x,
596 unsigned int y,
597 unsigned int w,
598 unsigned int h,
599 GLbitfield mode,
600 void **out_ptr,
601 int *out_stride);
602
603 void
604 intel_miptree_unmap(struct intel_context *intel,
605 struct intel_mipmap_tree *mt,
606 unsigned int level,
607 unsigned int slice);
608
609 #ifdef I915
610 static inline void
611 intel_hiz_exec(struct intel_context *intel, struct intel_mipmap_tree *mt,
612 unsigned int level, unsigned int layer, enum gen6_hiz_op op)
613 {
614 /* Stub on i915. It would be nice if we didn't execute resolve code at all
615 * there.
616 */
617 }
618 #else
619 void
620 intel_hiz_exec(struct intel_context *intel, struct intel_mipmap_tree *mt,
621 unsigned int level, unsigned int layer, enum gen6_hiz_op op);
622 #endif
623
624 #ifdef __cplusplus
625 }
626 #endif
627
628 #endif