r300/compiler: Implement the CONT opcode.
[mesa.git] / src / mesa / drivers / dri / r300 / compiler / r500_fragprog_emit.c
1 /*
2 * Copyright (C) 2005 Ben Skeggs.
3 *
4 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
5 * Adaptation and modification for ATI/AMD Radeon R500 GPU chipsets.
6 *
7 * All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining
10 * a copy of this software and associated documentation files (the
11 * "Software"), to deal in the Software without restriction, including
12 * without limitation the rights to use, copy, modify, merge, publish,
13 * distribute, sublicense, and/or sell copies of the Software, and to
14 * permit persons to whom the Software is furnished to do so, subject to
15 * the following conditions:
16 *
17 * The above copyright notice and this permission notice (including the
18 * next paragraph) shall be included in all copies or substantial
19 * portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
23 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
24 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
25 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
26 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
27 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
28 *
29 */
30
31 /**
32 * \file
33 *
34 * \author Ben Skeggs <darktama@iinet.net.au>
35 *
36 * \author Jerome Glisse <j.glisse@gmail.com>
37 *
38 * \author Corbin Simpson <MostAwesomeDude@gmail.com>
39 *
40 */
41
42 #include "r500_fragprog.h"
43
44 #include "../r300_reg.h"
45
46 #include "radeon_program_pair.h"
47
48 #define MAX_BRANCH_DEPTH_FULL 32
49 #define MAX_BRANCH_DEPTH_PARTIAL 4
50
51 #define PROG_CODE \
52 struct r500_fragment_program_code *code = &c->code->code.r500
53
54 #define error(fmt, args...) do { \
55 rc_error(&c->Base, "%s::%s(): " fmt "\n", \
56 __FILE__, __FUNCTION__, ##args); \
57 } while(0)
58
59
60 struct branch_info {
61 int If;
62 int Else;
63 int Endif;
64 };
65
66 struct loop_info {
67 int BgnLoop;
68
69 int BranchDepth;
70 int * Brks;
71 int BrkCount;
72 int BrkReserved;
73
74 int * Conts;
75 int ContCount;
76 int ContReserved;
77 };
78
79 struct emit_state {
80 struct radeon_compiler * C;
81 struct r500_fragment_program_code * Code;
82
83 struct branch_info * Branches;
84 unsigned int CurrentBranchDepth;
85 unsigned int BranchesReserved;
86
87 struct loop_info * Loops;
88 unsigned int CurrentLoopDepth;
89 unsigned int LoopsReserved;
90
91 unsigned int MaxBranchDepth;
92
93 };
94
95 static unsigned int translate_rgb_op(struct r300_fragment_program_compiler *c, rc_opcode opcode)
96 {
97 switch(opcode) {
98 case RC_OPCODE_CMP: return R500_ALU_RGBA_OP_CMP;
99 case RC_OPCODE_DDX: return R500_ALU_RGBA_OP_MDH;
100 case RC_OPCODE_DDY: return R500_ALU_RGBA_OP_MDV;
101 case RC_OPCODE_DP3: return R500_ALU_RGBA_OP_DP3;
102 case RC_OPCODE_DP4: return R500_ALU_RGBA_OP_DP4;
103 case RC_OPCODE_FRC: return R500_ALU_RGBA_OP_FRC;
104 default:
105 error("translate_rgb_op: unknown opcode %s\n", rc_get_opcode_info(opcode)->Name);
106 /* fall through */
107 case RC_OPCODE_NOP:
108 /* fall through */
109 case RC_OPCODE_MAD: return R500_ALU_RGBA_OP_MAD;
110 case RC_OPCODE_MAX: return R500_ALU_RGBA_OP_MAX;
111 case RC_OPCODE_MIN: return R500_ALU_RGBA_OP_MIN;
112 case RC_OPCODE_REPL_ALPHA: return R500_ALU_RGBA_OP_SOP;
113 }
114 }
115
116 static unsigned int translate_alpha_op(struct r300_fragment_program_compiler *c, rc_opcode opcode)
117 {
118 switch(opcode) {
119 case RC_OPCODE_CMP: return R500_ALPHA_OP_CMP;
120 case RC_OPCODE_COS: return R500_ALPHA_OP_COS;
121 case RC_OPCODE_DDX: return R500_ALPHA_OP_MDH;
122 case RC_OPCODE_DDY: return R500_ALPHA_OP_MDV;
123 case RC_OPCODE_DP3: return R500_ALPHA_OP_DP;
124 case RC_OPCODE_DP4: return R500_ALPHA_OP_DP;
125 case RC_OPCODE_EX2: return R500_ALPHA_OP_EX2;
126 case RC_OPCODE_FRC: return R500_ALPHA_OP_FRC;
127 case RC_OPCODE_LG2: return R500_ALPHA_OP_LN2;
128 default:
129 error("translate_alpha_op: unknown opcode %s\n", rc_get_opcode_info(opcode)->Name);
130 /* fall through */
131 case RC_OPCODE_NOP:
132 /* fall through */
133 case RC_OPCODE_MAD: return R500_ALPHA_OP_MAD;
134 case RC_OPCODE_MAX: return R500_ALPHA_OP_MAX;
135 case RC_OPCODE_MIN: return R500_ALPHA_OP_MIN;
136 case RC_OPCODE_RCP: return R500_ALPHA_OP_RCP;
137 case RC_OPCODE_RSQ: return R500_ALPHA_OP_RSQ;
138 case RC_OPCODE_SIN: return R500_ALPHA_OP_SIN;
139 }
140 }
141
142 static unsigned int fix_hw_swizzle(unsigned int swz)
143 {
144 switch (swz) {
145 case RC_SWIZZLE_ZERO:
146 case RC_SWIZZLE_UNUSED:
147 swz = 4;
148 break;
149 case RC_SWIZZLE_HALF:
150 swz = 5;
151 break;
152 case RC_SWIZZLE_ONE:
153 swz = 6;
154 break;
155 }
156
157 return swz;
158 }
159
160 static unsigned int translate_arg_rgb(struct rc_pair_instruction *inst, int arg)
161 {
162 unsigned int t = inst->RGB.Arg[arg].Source;
163 int comp;
164 t |= inst->RGB.Arg[arg].Negate << 11;
165 t |= inst->RGB.Arg[arg].Abs << 12;
166
167 for(comp = 0; comp < 3; ++comp)
168 t |= fix_hw_swizzle(GET_SWZ(inst->RGB.Arg[arg].Swizzle, comp)) << (3*comp + 2);
169
170 return t;
171 }
172
173 static unsigned int translate_arg_alpha(struct rc_pair_instruction *inst, int i)
174 {
175 unsigned int t = inst->Alpha.Arg[i].Source;
176 t |= fix_hw_swizzle(inst->Alpha.Arg[i].Swizzle) << 2;
177 t |= inst->Alpha.Arg[i].Negate << 5;
178 t |= inst->Alpha.Arg[i].Abs << 6;
179 return t;
180 }
181
182 static uint32_t translate_alu_result_op(struct r300_fragment_program_compiler * c, rc_compare_func func)
183 {
184 switch(func) {
185 case RC_COMPARE_FUNC_EQUAL: return R500_INST_ALU_RESULT_OP_EQ;
186 case RC_COMPARE_FUNC_LESS: return R500_INST_ALU_RESULT_OP_LT;
187 case RC_COMPARE_FUNC_GEQUAL: return R500_INST_ALU_RESULT_OP_GE;
188 case RC_COMPARE_FUNC_NOTEQUAL: return R500_INST_ALU_RESULT_OP_NE;
189 default:
190 rc_error(&c->Base, "%s: unsupported compare func %i\n", __FUNCTION__, func);
191 return 0;
192 }
193 }
194
195 static void use_temporary(struct r500_fragment_program_code* code, unsigned int index)
196 {
197 if (index > code->max_temp_idx)
198 code->max_temp_idx = index;
199 }
200
201 static unsigned int use_source(struct r500_fragment_program_code* code, struct radeon_pair_instruction_source src)
202 {
203 if (src.File == RC_FILE_CONSTANT) {
204 return src.Index | 0x100;
205 } else if (src.File == RC_FILE_TEMPORARY) {
206 use_temporary(code, src.Index);
207 return src.Index;
208 }
209
210 return 0;
211 }
212
213 /**
214 * NOP the specified instruction if it is not a texture lookup.
215 */
216 static void alu_nop(struct r300_fragment_program_compiler *c, int ip)
217 {
218 PROG_CODE;
219
220 if ((code->inst[ip].inst0 & 0x3) != R500_INST_TYPE_TEX) {
221 code->inst[ip].inst0 |= R500_INST_NOP;
222 }
223 }
224
225 /**
226 * Emit a paired ALU instruction.
227 */
228 static void emit_paired(struct r300_fragment_program_compiler *c, struct rc_pair_instruction *inst)
229 {
230 PROG_CODE;
231
232 if (code->inst_end >= 511) {
233 error("emit_alu: Too many instructions");
234 return;
235 }
236
237 int ip = ++code->inst_end;
238
239 /* Quirk: MDH/MDV (DDX/DDY) need a NOP on previous non-TEX instructions. */
240 if (inst->RGB.Opcode == RC_OPCODE_DDX || inst->Alpha.Opcode == RC_OPCODE_DDX ||
241 inst->RGB.Opcode == RC_OPCODE_DDY || inst->Alpha.Opcode == RC_OPCODE_DDY) {
242 if (ip > 0) {
243 alu_nop(c, ip - 1);
244 }
245 }
246
247 code->inst[ip].inst5 = translate_rgb_op(c, inst->RGB.Opcode);
248 code->inst[ip].inst4 = translate_alpha_op(c, inst->Alpha.Opcode);
249
250 if (inst->RGB.OutputWriteMask || inst->Alpha.OutputWriteMask || inst->Alpha.DepthWriteMask) {
251 code->inst[ip].inst0 = R500_INST_TYPE_OUT;
252 if (inst->WriteALUResult) {
253 error("%s: cannot write output and ALU result at the same time");
254 return;
255 }
256 } else {
257 code->inst[ip].inst0 = R500_INST_TYPE_ALU;
258 }
259 code->inst[ip].inst0 |= R500_INST_TEX_SEM_WAIT;
260
261 code->inst[ip].inst0 |= (inst->RGB.WriteMask << 11) | (inst->Alpha.WriteMask << 14);
262 code->inst[ip].inst0 |= (inst->RGB.OutputWriteMask << 15) | (inst->Alpha.OutputWriteMask << 18);
263 if (inst->Alpha.DepthWriteMask) {
264 code->inst[ip].inst4 |= R500_ALPHA_W_OMASK;
265 c->code->writes_depth = 1;
266 }
267
268 code->inst[ip].inst4 |= R500_ALPHA_ADDRD(inst->Alpha.DestIndex);
269 code->inst[ip].inst5 |= R500_ALU_RGBA_ADDRD(inst->RGB.DestIndex);
270 use_temporary(code, inst->Alpha.DestIndex);
271 use_temporary(code, inst->RGB.DestIndex);
272
273 if (inst->RGB.Saturate)
274 code->inst[ip].inst0 |= R500_INST_RGB_CLAMP;
275 if (inst->Alpha.Saturate)
276 code->inst[ip].inst0 |= R500_INST_ALPHA_CLAMP;
277
278 code->inst[ip].inst1 |= R500_RGB_ADDR0(use_source(code, inst->RGB.Src[0]));
279 code->inst[ip].inst1 |= R500_RGB_ADDR1(use_source(code, inst->RGB.Src[1]));
280 code->inst[ip].inst1 |= R500_RGB_ADDR2(use_source(code, inst->RGB.Src[2]));
281
282 code->inst[ip].inst2 |= R500_ALPHA_ADDR0(use_source(code, inst->Alpha.Src[0]));
283 code->inst[ip].inst2 |= R500_ALPHA_ADDR1(use_source(code, inst->Alpha.Src[1]));
284 code->inst[ip].inst2 |= R500_ALPHA_ADDR2(use_source(code, inst->Alpha.Src[2]));
285
286 code->inst[ip].inst3 |= translate_arg_rgb(inst, 0) << R500_ALU_RGB_SEL_A_SHIFT;
287 code->inst[ip].inst3 |= translate_arg_rgb(inst, 1) << R500_ALU_RGB_SEL_B_SHIFT;
288 code->inst[ip].inst5 |= translate_arg_rgb(inst, 2) << R500_ALU_RGBA_SEL_C_SHIFT;
289
290 code->inst[ip].inst4 |= translate_arg_alpha(inst, 0) << R500_ALPHA_SEL_A_SHIFT;
291 code->inst[ip].inst4 |= translate_arg_alpha(inst, 1) << R500_ALPHA_SEL_B_SHIFT;
292 code->inst[ip].inst5 |= translate_arg_alpha(inst, 2) << R500_ALU_RGBA_ALPHA_SEL_C_SHIFT;
293
294 code->inst[ip].inst3 |= R500_ALU_RGB_TARGET(inst->RGB.Target);
295 code->inst[ip].inst4 |= R500_ALPHA_TARGET(inst->Alpha.Target);
296
297 if (inst->WriteALUResult) {
298 code->inst[ip].inst3 |= R500_ALU_RGB_WMASK;
299
300 if (inst->WriteALUResult == RC_ALURESULT_X)
301 code->inst[ip].inst0 |= R500_INST_ALU_RESULT_SEL_RED;
302 else
303 code->inst[ip].inst0 |= R500_INST_ALU_RESULT_SEL_ALPHA;
304
305 code->inst[ip].inst0 |= translate_alu_result_op(c, inst->ALUResultCompare);
306 }
307 }
308
309 static unsigned int translate_strq_swizzle(unsigned int swizzle)
310 {
311 unsigned int swiz = 0;
312 int i;
313 for (i = 0; i < 4; i++)
314 swiz |= (GET_SWZ(swizzle, i) & 0x3) << i*2;
315 return swiz;
316 }
317
318 /**
319 * Emit a single TEX instruction
320 */
321 static int emit_tex(struct r300_fragment_program_compiler *c, struct rc_sub_instruction *inst)
322 {
323 PROG_CODE;
324
325 if (code->inst_end >= 511) {
326 error("emit_tex: Too many instructions");
327 return 0;
328 }
329
330 int ip = ++code->inst_end;
331
332 code->inst[ip].inst0 = R500_INST_TYPE_TEX
333 | (inst->DstReg.WriteMask << 11)
334 | R500_INST_TEX_SEM_WAIT;
335 code->inst[ip].inst1 = R500_TEX_ID(inst->TexSrcUnit)
336 | R500_TEX_SEM_ACQUIRE | R500_TEX_IGNORE_UNCOVERED;
337
338 if (inst->TexSrcTarget == RC_TEXTURE_RECT)
339 code->inst[ip].inst1 |= R500_TEX_UNSCALED;
340
341 switch (inst->Opcode) {
342 case RC_OPCODE_KIL:
343 code->inst[ip].inst1 |= R500_TEX_INST_TEXKILL;
344 break;
345 case RC_OPCODE_TEX:
346 code->inst[ip].inst1 |= R500_TEX_INST_LD;
347 break;
348 case RC_OPCODE_TXB:
349 code->inst[ip].inst1 |= R500_TEX_INST_LODBIAS;
350 break;
351 case RC_OPCODE_TXP:
352 code->inst[ip].inst1 |= R500_TEX_INST_PROJ;
353 break;
354 default:
355 error("emit_tex can't handle opcode %s\n", rc_get_opcode_info(inst->Opcode)->Name);
356 }
357
358 use_temporary(code, inst->SrcReg[0].Index);
359 if (inst->Opcode != RC_OPCODE_KIL)
360 use_temporary(code, inst->DstReg.Index);
361
362 code->inst[ip].inst2 = R500_TEX_SRC_ADDR(inst->SrcReg[0].Index)
363 | (translate_strq_swizzle(inst->SrcReg[0].Swizzle) << 8)
364 | R500_TEX_DST_ADDR(inst->DstReg.Index)
365 | R500_TEX_DST_R_SWIZ_R | R500_TEX_DST_G_SWIZ_G
366 | R500_TEX_DST_B_SWIZ_B | R500_TEX_DST_A_SWIZ_A;
367
368 return 1;
369 }
370
371 static void emit_flowcontrol(struct emit_state * s, struct rc_instruction * inst)
372 {
373 if (s->Code->inst_end >= 511) {
374 rc_error(s->C, "emit_tex: Too many instructions");
375 return;
376 }
377
378 unsigned int newip = ++s->Code->inst_end;
379
380 /* Currently all loops use the same integer constant to intialize
381 * the loop variables. */
382 if(!s->Code->int_constants[0]) {
383 s->Code->int_constants[0] = R500_FC_INT_CONST_KR(0xff);
384 s->Code->int_constant_count = 1;
385 }
386 s->Code->inst[newip].inst0 = R500_INST_TYPE_FC | R500_INST_ALU_WAIT;
387
388 switch(inst->U.I.Opcode){
389 struct branch_info * branch;
390 struct loop_info * loop;
391 case RC_OPCODE_BGNLOOP:
392 memory_pool_array_reserve(&s->C->Pool, struct loop_info,
393 s->Loops, s->CurrentLoopDepth, s->LoopsReserved, 1);
394
395 loop = &s->Loops[s->CurrentLoopDepth++];
396 memset(loop, 0, sizeof(struct loop_info));
397 loop->BranchDepth = s->CurrentBranchDepth;
398 loop->BgnLoop = newip;
399
400 s->Code->inst[newip].inst2 = R500_FC_OP_LOOP
401 | R500_FC_JUMP_FUNC(0x00)
402 | R500_FC_IGNORE_UNCOVERED
403 ;
404 break;
405 case RC_OPCODE_BRK:
406 loop = &s->Loops[s->CurrentLoopDepth - 1];
407 memory_pool_array_reserve(&s->C->Pool, int, loop->Brks,
408 loop->BrkCount, loop->BrkReserved, 1);
409
410 loop->Brks[loop->BrkCount++] = newip;
411 s->Code->inst[newip].inst2 = R500_FC_OP_BREAKLOOP
412 | R500_FC_JUMP_FUNC(0xff)
413 | R500_FC_B_OP1_DECR
414 | R500_FC_B_POP_CNT(
415 s->CurrentBranchDepth - loop->BranchDepth)
416 | R500_FC_IGNORE_UNCOVERED
417 ;
418 break;
419
420 case RC_OPCODE_CONT:
421 loop = &s->Loops[s->CurrentLoopDepth - 1];
422 memory_pool_array_reserve(&s->C->Pool, int, loop->Conts,
423 loop->ContCount, loop->ContReserved, 1);
424 loop->Conts[loop->ContCount++] = newip;
425 s->Code->inst[newip].inst2 = R500_FC_OP_CONTINUE
426 | R500_FC_JUMP_FUNC(0xff)
427 | R500_FC_B_OP1_DECR
428 | R500_FC_B_POP_CNT(
429 s->CurrentBranchDepth - loop->BranchDepth)
430 | R500_FC_IGNORE_UNCOVERED
431 ;
432 break;
433
434 case RC_OPCODE_ENDLOOP:
435 {
436 unsigned int i;
437 loop = &s->Loops[s->CurrentLoopDepth - 1];
438 /* Emit ENDLOOP */
439 s->Code->inst[newip].inst2 = R500_FC_OP_ENDLOOP
440 | R500_FC_JUMP_FUNC(0xff)
441 | R500_FC_JUMP_ANY
442 | R500_FC_IGNORE_UNCOVERED
443 ;
444 /* The constant integer at index 0 is used by all loops. */
445 s->Code->inst[newip].inst3 = R500_FC_INT_ADDR(0)
446 | R500_FC_JUMP_ADDR(loop->BgnLoop + 1)
447 ;
448
449 /* Set jump address and int constant for BGNLOOP */
450 s->Code->inst[loop->BgnLoop].inst3 = R500_FC_INT_ADDR(0)
451 | R500_FC_JUMP_ADDR(newip)
452 ;
453
454 /* Set jump address for the BRK instructions. */
455 while(loop->BrkCount--) {
456 s->Code->inst[loop->Brks[loop->BrkCount]].inst3 =
457 R500_FC_JUMP_ADDR(newip + 1);
458 }
459
460 /* Set jump address for CONT instructions. */
461 while(loop->ContCount--) {
462 s->Code->inst[loop->Conts[loop->ContCount]].inst3 =
463 R500_FC_JUMP_ADDR(newip);
464 }
465 s->CurrentLoopDepth--;
466 break;
467 }
468 case RC_OPCODE_IF:
469 if ( s->CurrentBranchDepth >= MAX_BRANCH_DEPTH_FULL) {
470 rc_error(s->C, "Branch depth exceeds hardware limit");
471 return;
472 }
473 memory_pool_array_reserve(&s->C->Pool, struct branch_info,
474 s->Branches, s->CurrentBranchDepth, s->BranchesReserved, 1);
475
476 branch = &s->Branches[s->CurrentBranchDepth++];
477 branch->If = newip;
478 branch->Else = -1;
479 branch->Endif = -1;
480
481 if (s->CurrentBranchDepth > s->MaxBranchDepth)
482 s->MaxBranchDepth = s->CurrentBranchDepth;
483
484 /* actual instruction is filled in at ENDIF time */
485 break;
486
487 case RC_OPCODE_ELSE:
488 if (!s->CurrentBranchDepth) {
489 rc_error(s->C, "%s: got ELSE outside a branch", __FUNCTION__);
490 return;
491 }
492
493 branch = &s->Branches[s->CurrentBranchDepth - 1];
494 branch->Else = newip;
495
496 /* actual instruction is filled in at ENDIF time */
497 break;
498
499 case RC_OPCODE_ENDIF:
500 if (!s->CurrentBranchDepth) {
501 rc_error(s->C, "%s: got ELSE outside a branch", __FUNCTION__);
502 return;
503 }
504
505 branch = &s->Branches[s->CurrentBranchDepth - 1];
506 branch->Endif = newip;
507
508 s->Code->inst[branch->Endif].inst2 = R500_FC_OP_JUMP
509 | R500_FC_A_OP_NONE /* no address stack */
510 | R500_FC_JUMP_ANY /* docs says set this, but I don't understand why */
511 | R500_FC_B_OP0_DECR /* decrement branch counter if stay */
512 | R500_FC_B_OP1_NONE /* no branch counter if stay */
513 | R500_FC_B_POP_CNT(1)
514 ;
515 s->Code->inst[branch->Endif].inst3 = R500_FC_JUMP_ADDR(branch->Endif + 1);
516 s->Code->inst[branch->If].inst2 = R500_FC_OP_JUMP
517 | R500_FC_A_OP_NONE /* no address stack */
518 | R500_FC_JUMP_FUNC(0x0f) /* jump if ALU result is false */
519 | R500_FC_B_OP0_INCR /* increment branch counter if stay */
520 | R500_FC_IGNORE_UNCOVERED
521 ;
522
523 if (branch->Else >= 0) {
524 /* increment branch counter also if jump */
525 s->Code->inst[branch->If].inst2 |= R500_FC_B_OP1_INCR;
526 s->Code->inst[branch->If].inst3 = R500_FC_JUMP_ADDR(branch->Else + 1);
527
528 s->Code->inst[branch->Else].inst2 = R500_FC_OP_JUMP
529 | R500_FC_A_OP_NONE /* no address stack */
530 | R500_FC_B_ELSE /* all active pixels want to jump */
531 | R500_FC_B_OP0_NONE /* no counter op if stay */
532 | R500_FC_B_OP1_DECR /* decrement branch counter if jump */
533 | R500_FC_B_POP_CNT(1)
534 ;
535 s->Code->inst[branch->Else].inst3 = R500_FC_JUMP_ADDR(branch->Endif + 1);
536 } else {
537 /* don't touch branch counter on jump */
538 s->Code->inst[branch->If].inst2 |= R500_FC_B_OP1_NONE;
539 s->Code->inst[branch->If].inst3 = R500_FC_JUMP_ADDR(branch->Endif + 1);
540 }
541
542
543 s->CurrentBranchDepth--;
544 break;
545 default:
546 rc_error(s->C, "%s: unknown opcode %s\n", __FUNCTION__, rc_get_opcode_info(inst->U.I.Opcode)->Name);
547 }
548 }
549
550 void r500BuildFragmentProgramHwCode(struct r300_fragment_program_compiler *compiler)
551 {
552 struct emit_state s;
553 struct r500_fragment_program_code *code = &compiler->code->code.r500;
554
555 memset(&s, 0, sizeof(s));
556 s.C = &compiler->Base;
557 s.Code = code;
558
559 memset(code, 0, sizeof(*code));
560 code->max_temp_idx = 1;
561 code->inst_end = -1;
562
563 for(struct rc_instruction * inst = compiler->Base.Program.Instructions.Next;
564 inst != &compiler->Base.Program.Instructions && !compiler->Base.Error;
565 inst = inst->Next) {
566 if (inst->Type == RC_INSTRUCTION_NORMAL) {
567 const struct rc_opcode_info * opcode = rc_get_opcode_info(inst->U.I.Opcode);
568
569 if (opcode->IsFlowControl) {
570 emit_flowcontrol(&s, inst);
571 } else if (inst->U.I.Opcode == RC_OPCODE_BEGIN_TEX) {
572 continue;
573 } else {
574 emit_tex(compiler, &inst->U.I);
575 }
576 } else {
577 emit_paired(compiler, &inst->U.P);
578 }
579 }
580
581 if (code->max_temp_idx >= 128)
582 rc_error(&compiler->Base, "Too many hardware temporaries used");
583
584 if (compiler->Base.Error)
585 return;
586
587 if (code->inst_end == -1 ||
588 (code->inst[code->inst_end].inst0 & R500_INST_TYPE_MASK) != R500_INST_TYPE_OUT) {
589 /* This may happen when dead-code elimination is disabled or
590 * when most of the fragment program logic is leading to a KIL */
591 if (code->inst_end >= 511) {
592 rc_error(&compiler->Base, "Introducing fake OUT: Too many instructions");
593 return;
594 }
595
596 int ip = ++code->inst_end;
597 code->inst[ip].inst0 = R500_INST_TYPE_OUT | R500_INST_TEX_SEM_WAIT;
598 }
599
600 /* Enable full flow control mode if we are using loops or have if
601 * statements nested at least four deep. */
602 if (s.MaxBranchDepth >= 4 || s.LoopsReserved > 0) {
603 if (code->max_temp_idx < 1)
604 code->max_temp_idx = 1;
605
606 code->us_fc_ctrl |= R500_FC_FULL_FC_EN;
607 }
608 }