(Stephane Marchesin, me) add hyperz support to radeon and r200 drivers. Only fast...
[mesa.git] / src / mesa / drivers / dri / r300 / r300_reg.h
1 #ifndef _R300_REG_H
2 #define _R300_REG_H
3
4 /*
5 This file contains registers and constants for the R300. They have been
6 found mostly by examining command buffers captured using glxtest, as well
7 as by extrapolating some known registers and constants from the R200.
8
9 I am fairly certain that they are correct unless stated otherwise in comments.
10 */
11
12 #define R300_SE_VPORT_XSCALE 0x1D98
13 #define R300_SE_VPORT_XOFFSET 0x1D9C
14 #define R300_SE_VPORT_YSCALE 0x1DA0
15 #define R300_SE_VPORT_YOFFSET 0x1DA4
16 #define R300_SE_VPORT_ZSCALE 0x1DA8
17 #define R300_SE_VPORT_ZOFFSET 0x1DAC
18
19
20 // BEGIN: Wild guesses
21 #define R300_VAP_OUTPUT_VTX_FMT_0 0x2090
22 # define R300_VAP_OUTPUT_VTX_FMT_0__POS_PRESENT (1<<0)
23 # define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_PRESENT (1<<1)
24 # define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_1_PRESENT (1<<2) // GUESS
25 # define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_2_PRESENT (1<<3) // GUESS
26 # define R300_VAP_OUTPUT_VTX_FMT_0__COLOR_3_PRESENT (1<<4) // GUESS
27 # define R300_VAP_OUTPUT_VTX_FMT_0__PT_SIZE_PRESENT (1<<16) // GUESS
28
29 #define R300_VAP_OUTPUT_VTX_FMT_1 0x2094
30 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_0_COMP_CNT_SHIFT 0
31 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_1_COMP_CNT_SHIFT 3
32 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_2_COMP_CNT_SHIFT 6
33 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_3_COMP_CNT_SHIFT 9
34 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_4_COMP_CNT_SHIFT 12
35 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_5_COMP_CNT_SHIFT 15
36 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_6_COMP_CNT_SHIFT 18
37 # define R300_VAP_OUTPUT_VTX_FMT_1__TEX_7_COMP_CNT_SHIFT 21
38 // END
39
40 // BEGIN: Vertex data assembly - lots of uncertainties
41 /* gap */
42 // Where do we get our vertex data?
43 //
44 // Vertex data either comes either from immediate mode registers or from
45 // vertex arrays.
46 // There appears to be no mixed mode (though we can force the pitch of
47 // vertex arrays to 0, effectively reusing the same element over and over
48 // again).
49 //
50 // Immediate mode is controlled by the INPUT_CNTL registers. I am not sure
51 // if these registers influence vertex array processing.
52 //
53 // Vertex arrays are controlled via the 3D_LOAD_VBPNTR packet3.
54 //
55 // In both cases, vertex attributes are then passed through INPUT_ROUTE.
56
57 // Beginning with INPUT_ROUTE_0_0 is a list of WORDs that route vertex data
58 // into the vertex processor's input registers.
59 // The first word routes the first input, the second word the second, etc.
60 // The corresponding input is routed into the register with the given index.
61 // The list is ended by a word with INPUT_ROUTE_END set.
62 //
63 // Always set COMPONENTS_4 in immediate mode.
64 #define R300_VAP_INPUT_ROUTE_0_0 0x2150
65 # define R300_INPUT_ROUTE_COMPONENTS_1 (0 << 0)
66 # define R300_INPUT_ROUTE_COMPONENTS_2 (1 << 0)
67 # define R300_INPUT_ROUTE_COMPONENTS_3 (2 << 0)
68 # define R300_INPUT_ROUTE_COMPONENTS_4 (3 << 0)
69 # define R300_INPUT_ROUTE_COMPONENTS_RGBA (4 << 0) // GUESS
70 # define R300_VAP_INPUT_ROUTE_IDX_SHIFT 8
71 # define R300_VAP_INPUT_ROUTE_IDX_MASK (31 << 8) // GUESS
72 # define R300_VAP_INPUT_ROUTE_END (1 << 13)
73 # define R300_INPUT_ROUTE_IMMEDIATE_MODE (0 << 14) // GUESS
74 # define R300_INPUT_ROUTE_FLOAT (1 << 14) // GUESS
75 # define R300_INPUT_ROUTE_UNSIGNED_BYTE (2 << 14) // GUESS
76 # define R300_INPUT_ROUTE_FLOAT_COLOR (3 << 14) // GUESS
77 #define R300_VAP_INPUT_ROUTE_0_1 0x2154
78 #define R300_VAP_INPUT_ROUTE_0_2 0x2158
79 #define R300_VAP_INPUT_ROUTE_0_3 0x215C
80
81 /* gap */
82 // Notes:
83 // - always set up to produce at least two attributes:
84 // if vertex program uses only position, fglrx will set normal, too
85 // - INPUT_CNTL_0_COLOR and INPUT_CNTL_COLOR bits are always equal
86 #define R300_VAP_INPUT_CNTL_0 0x2180
87 # define R300_INPUT_CNTL_0_COLOR 0x00000001
88 #define R300_VAP_INPUT_CNTL_1 0x2184
89 # define R300_INPUT_CNTL_POS 0x00000001
90 # define R300_INPUT_CNTL_NORMAL 0x00000002
91 # define R300_INPUT_CNTL_COLOR 0x00000004
92 # define R300_INPUT_CNTL_TC0 0x00000400
93 # define R300_INPUT_CNTL_TC1 0x00000800
94 # define R300_INPUT_CNTL_TC2 0x00001000 // GUESS
95 # define R300_INPUT_CNTL_TC3 0x00002000 // GUESS
96 # define R300_INPUT_CNTL_TC4 0x00004000 // GUESS
97 # define R300_INPUT_CNTL_TC5 0x00008000 // GUESS
98 # define R300_INPUT_CNTL_TC6 0x00010000 // GUESS
99 # define R300_INPUT_CNTL_TC7 0x00020000 // GUESS
100
101 /* gap */
102 // Words parallel to INPUT_ROUTE_0; All words that are active in INPUT_ROUTE_0
103 // are set to a swizzling bit pattern, other words are 0.
104 //
105 // In immediate mode, the pattern is always set to xyzw. In vertex array
106 // mode, the swizzling pattern is e.g. used to set zw components in texture
107 // coordinates with only tweo components.
108 #define R300_VAP_INPUT_ROUTE_1_0 0x21E0
109 # define R300_INPUT_ROUTE_SELECT_X 0
110 # define R300_INPUT_ROUTE_SELECT_Y 1
111 # define R300_INPUT_ROUTE_SELECT_Z 2
112 # define R300_INPUT_ROUTE_SELECT_W 3
113 # define R300_INPUT_ROUTE_SELECT_ZERO 4
114 # define R300_INPUT_ROUTE_SELECT_ONE 5
115 # define R300_INPUT_ROUTE_SELECT_MASK 7
116 # define R300_INPUT_ROUTE_X_SHIFT 0
117 # define R300_INPUT_ROUTE_Y_SHIFT 3
118 # define R300_INPUT_ROUTE_Z_SHIFT 6
119 # define R300_INPUT_ROUTE_W_SHIFT 9
120 # define R300_INPUT_ROUTE_ENABLE (15 << 12)
121 #define R300_VAP_INPUT_ROUTE_1_1 0x21E4
122 #define R300_VAP_INPUT_ROUTE_1_2 0x21E8
123 #define R300_VAP_INPUT_ROUTE_1_3 0x21EC
124
125 // END
126
127 /* gap */
128 // BEGIN: Upload vertex program and data
129 // The programmable vertex shader unit has a memory bank of unknown size
130 // that can be written to in 16 byte units by writing the address into
131 // UPLOAD_ADDRESS, followed by data in UPLOAD_DATA (multiples of 4 DWORDs).
132 //
133 // Pointers into the memory bank are always in multiples of 16 bytes.
134 //
135 // The memory bank is divided into areas with fixed meaning.
136 //
137 // Starting at address UPLOAD_PROGRAM: Vertex program instructions.
138 // Native limits reported by drivers from ATI suggest size 256 (i.e. 4KB),
139 // whereas the difference between known addresses suggests size 512.
140 //
141 // Starting at address UPLOAD_PARAMETERS: Vertex program parameters.
142 // Native reported limits and the VPI layout suggest size 256, whereas
143 // difference between known addresses suggests size 512.
144 //
145 // At address UPLOAD_POINTSIZE is a vector (0, 0, ps, 0), where ps is the
146 // floating point pointsize. The exact purpose of this state is uncertain,
147 // as there is also the R300_RE_POINTSIZE register.
148 //
149 // Multiple vertex programs and parameter sets can be loaded at once,
150 // which could explain the size discrepancy.
151 #define R300_VAP_PVS_UPLOAD_ADDRESS 0x2200
152 # define R300_PVS_UPLOAD_PROGRAM 0x00000000
153 # define R300_PVS_UPLOAD_PARAMETERS 0x00000200
154 # define R300_PVS_UPLOAD_POINTSIZE 0x00000406
155 /* gap */
156 #define R300_VAP_PVS_UPLOAD_DATA 0x2208
157 // END
158
159 /* gap */
160 // I do not know the purpose of this register. However, I do know that
161 // it is set to 221C_CLEAR for clear operations and to 221C_NORMAL
162 // for normal rendering.
163 #define R300_VAP_UNKNOWN_221C 0x221C
164 # define R300_221C_NORMAL 0x00000000
165 # define R300_221C_CLEAR 0x0001C000
166
167 /* gap */
168 // Sometimes, END_OF_PKT and 0x2284=0 are the only commands sent between
169 // rendering commands and overwriting vertex program parameters.
170 // Therefore, I suspect writing zero to 0x2284 synchronizes the engine and
171 // avoids bugs caused by still running shaders reading bad data from memory.
172 #define R300_VAP_PVS_WAITIDLE 0x2284 // GUESS
173
174 // Absolutely no clue what this register is about.
175 #define R300_VAP_UNKNOWN_2288 0x2288
176 # define R300_2288_R300 0x00750000 // -- nh
177 # define R300_2288_RV350 0x0000FFFF // -- Vladimir
178
179 /* gap */
180 // Addresses are relative to the vertex program instruction area of the
181 // memory bank. PROGRAM_END points to the last instruction of the active
182 // program
183 //
184 // The meaning of the two UNKNOWN fields is obviously not known. However,
185 // experiments so far have shown that both *must* point to an instruction
186 // inside the vertex program, otherwise the GPU locks up.
187 // fglrx usually sets CNTL_3_UNKNOWN to the end of the program and
188 // CNTL_1_UNKNOWN somewhere in the middle, but the criteria are not clear.
189 #define R300_VAP_PVS_CNTL_1 0x22D0
190 # define R300_PVS_CNTL_1_PROGRAM_START_SHIFT 0
191 # define R300_PVS_CNTL_1_UNKNOWN_SHIFT 10
192 # define R300_PVS_CNTL_1_PROGRAM_END_SHIFT 20
193 // Addresses are relative the the vertex program parameters area.
194 #define R300_VAP_PVS_CNTL_2 0x22D4
195 # define R300_PVS_CNTL_2_PARAM_OFFSET_SHIFT 0
196 # define R300_PVS_CNTL_2_PARAM_COUNT_SHIFT 16
197 #define R300_VAP_PVS_CNTL_3 0x22D8
198 # define R300_PVS_CNTL_3_PROGRAM_UNKNOWN_SHIFT 10
199
200 // The entire range from 0x2300 to 0x2AC inclusive seems to be used for
201 // immediate vertices
202 #define R300_VAP_VTX_COLOR_R 0x2464
203 #define R300_VAP_VTX_COLOR_G 0x2468
204 #define R300_VAP_VTX_COLOR_B 0x246C
205 #define R300_VAP_VTX_POS_0_X_1 0x2490 // used for glVertex2*()
206 #define R300_VAP_VTX_POS_0_Y_1 0x2494
207 #define R300_VAP_VTX_COLOR_PKD 0x249C // RGBA
208 #define R300_VAP_VTX_POS_0_X_2 0x24A0 // used for glVertex3*()
209 #define R300_VAP_VTX_POS_0_Y_2 0x24A4
210 #define R300_VAP_VTX_POS_0_Z_2 0x24A8
211 #define R300_VAP_VTX_END_OF_PKT 0x24AC // write 0 to indicate end of packet?
212
213 /* gap */
214 // BEGIN: !unverified!
215 #define R300_GB_TILE_CONFIG 0x4018
216 #define R300_GB_TILE_ENABLE (1 << 0)
217 #define R300_GB_TILE_PIPE_COUNT_R300 (0 << 1)
218 #define R300_GB_TILE_PIPE_COUNT_RV300 (3 << 1)
219 #define R300_GB_TILE_SIZE_8 (0 << 4)
220 #define R300_GB_TILE_SIZE_16 (1 << 4)
221 #define R300_GB_TILE_SIZE_32 (2 << 4)
222 #define R300_GB_SUPER_SIZE_1 (0 << 6)
223 #define R300_GB_SUPER_SIZE_2 (1 << 6)
224 #define R300_GB_SUPER_SIZE_4 (2 << 6)
225 #define R300_GB_SUPER_SIZE_8 (3 << 6)
226 #define R300_GB_SUPER_SIZE_16 (4 << 6)
227 #define R300_GB_SUPER_SIZE_32 (5 << 6)
228 #define R300_GB_SUPER_SIZE_64 (6 << 6)
229 #define R300_GB_SUPER_SIZE_128 (7 << 6)
230 #define R300_GB_SUPER_X_SHIFT 9 // 3 bits wide
231 #define R300_GB_SUPER_Y_SHIFT 12 // 3 bits wide
232 #define R300_GB_SUPER_TILE_A (0 << 15)
233 #define R300_GB_SUPER_TILE_B (1 << 15)
234 #define R300_GB_SUBPIXEL_1_12 (0 << 16)
235 #define R300_GB_SUBPIXEL_1_16 (1 << 16)
236 // END
237
238 /* gap */
239 // The upper enable bits are guessed, based on fglrx reported limits.
240 #define R300_TX_ENABLE 0x4104
241 # define R300_TX_ENABLE_0 (1 << 0)
242 # define R300_TX_ENABLE_1 (1 << 1)
243 # define R300_TX_ENABLE_2 (1 << 2)
244 # define R300_TX_ENABLE_3 (1 << 3)
245 # define R300_TX_ENABLE_4 (1 << 4)
246 # define R300_TX_ENABLE_5 (1 << 5)
247 # define R300_TX_ENABLE_6 (1 << 6)
248 # define R300_TX_ENABLE_7 (1 << 7)
249 # define R300_TX_ENABLE_8 (1 << 8)
250 # define R300_TX_ENABLE_9 (1 << 9)
251 # define R300_TX_ENABLE_10 (1 << 10)
252 # define R300_TX_ENABLE_11 (1 << 11)
253 # define R300_TX_ENABLE_12 (1 << 12)
254 # define R300_TX_ENABLE_13 (1 << 13)
255 # define R300_TX_ENABLE_14 (1 << 14)
256 # define R300_TX_ENABLE_15 (1 << 15)
257
258 // The pointsize is given in multiples of 6. The pointsize can be
259 // enormous: Clear() renders a single point that fills the entire
260 // framebuffer.
261 #define R300_RE_POINTSIZE 0x421C
262 # define R300_POINTSIZE_Y_SHIFT 0
263 # define R300_POINTSIZE_Y_MASK (0xFFFF << 0) // GUESS
264 # define R300_POINTSIZE_X_SHIFT 16
265 # define R300_POINTSIZE_X_MASK (0xFFFF << 16) // GUESS
266
267 #define R300_RE_CULL_CNTL 0x42B8
268 # define R300_CULL_FRONT (1 << 0)
269 # define R300_CULL_BACK (1 << 1)
270 # define R300_FRONT_FACE_CCW (0 << 2)
271 # define R300_FRONT_FACE_CW (1 << 2)
272
273
274 // BEGIN: Rasterization / Interpolators - many guesses
275 // So far, 0_UNKOWN_7 has always been set.
276 // 0_UNKNOWN_18 has always been set except for clear operations.
277 // TC_CNT is the number of incoming texture coordinate sets (i.e. it depends
278 // on the vertex program, *not* the fragment program)
279 #define R300_RS_CNTL_0 0x4300
280 # define R300_RS_CNTL_TC_CNT_SHIFT 2
281 # define R300_RS_CNTL_TC_CNT_MASK (7 << 2)
282 # define R300_RS_CNTL_0_UNKNOWN_7 (1 << 7)
283 # define R300_RS_CNTL_0_UNKNOWN_18 (1 << 18)
284 // Guess: RS_CNTL_1 holds the index of the highest used RS_ROUTE_n register.
285 #define R300_RS_CNTL_1 0x4304
286
287 /* gap */
288 // Only used for texture coordinates (color seems to be always interpolated).
289 // Use the source field to route texture coordinate input from the vertex program
290 // to the desired interpolator. Note that the source field is relative to the
291 // outputs the vertex program *actually* writes. If a vertex program only writes
292 // texcoord[1], this will be source index 0.
293 // Set INTERP_USED on all interpolators that produce data used by the
294 // fragment program. INTERP_USED looks like a swizzling mask, but
295 // I haven't seen it used that way.
296 //
297 // Note: The _UNKNOWN constants are always set in their respective register.
298 // I don't know if this is necessary.
299 #define R300_RS_INTERP_0 0x4310
300 #define R300_RS_INTERP_1 0x4314
301 # define R300_RS_INTERP_1_UNKNOWN 0x40
302 #define R300_RS_INTERP_2 0x4318
303 # define R300_RS_INTERP_2_UNKNOWN 0x80
304 #define R300_RS_INTERP_3 0x431C
305 # define R300_RS_INTERP_3_UNKNOWN 0xC0
306 #define R300_RS_INTERP_4 0x4320
307 #define R300_RS_INTERP_5 0x4324
308 #define R300_RS_INTERP_6 0x4328
309 #define R300_RS_INTERP_7 0x432C
310 # define R300_RS_INTERP_SRC_SHIFT 2
311 # define R300_RS_INTERP_SRC_MASK (7 << 2)
312 # define R300_RS_INTERP_USED 0x00D10000
313
314 // These DWORDs control how vertex data is routed into fragment program
315 // registers, after interpolators.
316 #define R300_RS_ROUTE_0 0x4330
317 #define R300_RS_ROUTE_1 0x4334
318 #define R300_RS_ROUTE_2 0x4338
319 #define R300_RS_ROUTE_3 0x433C // GUESS
320 #define R300_RS_ROUTE_4 0x4340 // GUESS
321 #define R300_RS_ROUTE_5 0x4344 // GUESS
322 #define R300_RS_ROUTE_6 0x4348 // GUESS
323 #define R300_RS_ROUTE_7 0x434C // GUESS
324 # define R300_RS_ROUTE_SOURCE_INTERP_0 0
325 # define R300_RS_ROUTE_SOURCE_INTERP_1 1
326 # define R300_RS_ROUTE_SOURCE_INTERP_2 2
327 # define R300_RS_ROUTE_SOURCE_INTERP_3 3
328 # define R300_RS_ROUTE_SOURCE_INTERP_4 4
329 # define R300_RS_ROUTE_SOURCE_INTERP_5 5 // GUESS
330 # define R300_RS_ROUTE_SOURCE_INTERP_6 6 // GUESS
331 # define R300_RS_ROUTE_SOURCE_INTERP_7 7 // GUESS
332 # define R300_RS_ROUTE_ENABLE (1 << 3) // GUESS
333 # define R300_RS_ROUTE_DEST_SHIFT 6
334 # define R300_RS_ROUTE_DEST_MASK (31 << 6) // GUESS
335
336 // Special handling for color: When the fragment program uses color,
337 // the ROUTE_0_COLOR bit is set and ROUTE_0_COLOR_DEST contains the
338 // color register index.
339 # define R300_RS_ROUTE_0_COLOR (1 << 14)
340 # define R300_RS_ROUTE_0_COLOR_DEST_SHIFT (1 << 17)
341 # define R300_RS_ROUTE_0_COLOR_DEST_MASK (31 << 6) // GUESS
342 // END
343
344 // BEGIN: Scissors and cliprects
345 // There are four clipping rectangles. Their corner coordinates are inclusive.
346 // Every pixel is assigned a number from 0 and 15 by setting bits 0-3 depending
347 // on whether the pixel is inside cliprects 0-3, respectively. For example,
348 // if a pixel is inside cliprects 0 and 1, but outside 2 and 3, it is assigned
349 // the number 3 (binary 0011).
350 // Iff the bit corresponding to the pixel's number in RE_CLIPRECT_CNTL is set,
351 // the pixel is rasterized.
352 //
353 // In addition to this, there is a scissors rectangle. Only pixels inside the
354 // scissors rectangle are drawn. (coordinates are inclusive)
355 //
356 // For some reason, the top-left corner of the framebuffer is at (1440, 1440)
357 // for the purpose of clipping and scissors.
358 #define R300_RE_CLIPRECT_TL_0 0x43B0
359 #define R300_RE_CLIPRECT_BR_0 0x43B4
360 #define R300_RE_CLIPRECT_TL_1 0x43B8
361 #define R300_RE_CLIPRECT_BR_1 0x43BC
362 #define R300_RE_CLIPRECT_TL_2 0x43C0
363 #define R300_RE_CLIPRECT_BR_2 0x43C4
364 #define R300_RE_CLIPRECT_TL_3 0x43C8
365 #define R300_RE_CLIPRECT_BR_3 0x43CC
366 # define R300_CLIPRECT_OFFSET 1440
367 # define R300_CLIPRECT_MASK 0x1FFF
368 # define R300_CLIPRECT_X_SHIFT 0
369 # define R300_CLIPRECT_X_MASK (0x1FFF << 0)
370 # define R300_CLIPRECT_Y_SHIFT 13
371 # define R300_CLIPRECT_Y_MASK (0x1FFF << 13)
372 #define R300_RE_CLIPRECT_CNTL 0x43D0
373 # define R300_CLIP_OUT (1 << 0)
374 # define R300_CLIP_0 (1 << 1)
375 # define R300_CLIP_1 (1 << 2)
376 # define R300_CLIP_10 (1 << 3)
377 # define R300_CLIP_2 (1 << 4)
378 # define R300_CLIP_20 (1 << 5)
379 # define R300_CLIP_21 (1 << 6)
380 # define R300_CLIP_210 (1 << 7)
381 # define R300_CLIP_3 (1 << 8)
382 # define R300_CLIP_30 (1 << 9)
383 # define R300_CLIP_31 (1 << 10)
384 # define R300_CLIP_310 (1 << 11)
385 # define R300_CLIP_32 (1 << 12)
386 # define R300_CLIP_320 (1 << 13)
387 # define R300_CLIP_321 (1 << 14)
388 # define R300_CLIP_3210 (1 << 15)
389
390 /* gap */
391 #define R300_RE_SCISSORS_TL 0x43E0
392 #define R300_RE_SCISSORS_BR 0x43E4
393 # define R300_SCISSORS_OFFSET 1440
394 # define R300_SCISSORS_X_SHIFT 0
395 # define R300_SCISSORS_X_MASK (0x1FFF << 0)
396 # define R300_SCISSORS_Y_SHIFT 13
397 # define R300_SCISSORS_Y_MASK (0x1FFF << 13)
398 // END
399
400 // BEGIN: Texture specification
401 // The texture specification dwords are grouped by meaning and not by texture unit.
402 // This means that e.g. the offset for texture image unit N is found in register
403 // TX_OFFSET_0 + (4*N)
404 #define R300_TX_FILTER_0 0x4400
405 # define R300_TX_REPEAT 0
406 # define R300_TX_CLAMP_TO_EDGE 1
407 # define R300_TX_CLAMP 2
408 # define R300_TX_CLAMP_TO_BORDER 3
409
410 # define R300_TX_WRAP_S_SHIFT 1
411 # define R300_TX_WRAP_S_MASK (3 << 1)
412 # define R300_TX_WRAP_T_SHIFT 4
413 # define R300_TX_WRAP_T_MASK (3 << 4)
414 # define R300_TX_MAG_FILTER_NEAREST (1 << 9)
415 # define R300_TX_MAG_FILTER_LINEAR (2 << 9)
416 # define R300_TX_MAG_FILTER_MASK (3 << 9)
417 # define R300_TX_MIN_FILTER_NEAREST (1 << 11)
418 # define R300_TX_MIN_FILTER_LINEAR (2 << 11)
419 #define R300_TX_UNK1_0 0x4440
420 #define R300_TX_SIZE_0 0x4480
421 # define R300_TX_WIDTHMASK_SHIFT 0
422 # define R300_TX_WIDTHMASK_MASK (2047 << 0)
423 # define R300_TX_HEIGHTMASK_SHIFT 11
424 # define R300_TX_HEIGHTMASK_MASK (2047 << 11)
425 # define R300_TX_SIZE_SHIFT 26 // largest of width, height
426 # define R300_TX_SIZE_MASK (15 << 26)
427 #define R300_TX_FORMAT_0 0x44C0
428 #define R300_TX_OFFSET_0 0x4540
429 // BEGIN: Guess from R200
430 # define R300_TXO_ENDIAN_NO_SWAP (0 << 0)
431 # define R300_TXO_ENDIAN_BYTE_SWAP (1 << 0)
432 # define R300_TXO_ENDIAN_WORD_SWAP (2 << 0)
433 # define R300_TXO_ENDIAN_HALFDW_SWAP (3 << 0)
434 # define R300_TXO_OFFSET_MASK 0xffffffe0
435 # define R300_TXO_OFFSET_SHIFT 5
436 // END
437 #define R300_TX_UNK4_0 0x4580
438 #define R300_TX_UNK5_0 0x45C0
439 // END
440
441 // BEGIN: Fragment program instruction set
442 // Fragment programs are written directly into register space.
443 // There are separate instruction streams for texture instructions and ALU
444 // instructions.
445 // In order to synchronize these streams, the program is divided into up
446 // to 4 nodes. Each node begins with a number of TEX operations, followed
447 // by a number of ALU operations.
448 // The first node can have zero TEX ops, all subsequent nodes must have at least
449 // one TEX ops.
450 // All nodes must have at least one ALU op.
451 //
452 // The index of the last node is stored in PFS_CNTL_0: A value of 0 means
453 // 1 node, a value of 3 means 4 nodes.
454 // The total amount of instructions is defined in PFS_CNTL_2. The offsets are
455 // offsets into the respective instruction streams, while *_END points to the
456 // last instruction relative to this offset.
457 #define R300_PFS_CNTL_0 0x4600
458 # define R300_PFS_CNTL_LAST_NODES_SHIFT 0
459 # define R300_PFS_CNTL_LAST_NODES_MASK (3 << 0)
460 # define R300_PFS_CNTL_FIRST_NODE_HAS_TEX (1 << 3)
461 #define R300_PFS_CNTL_1 0x4604
462 // There is an unshifted value here which has so far always been equal to the
463 // index of the highest used temporary register.
464 #define R300_PFS_CNTL_2 0x4608
465 # define R300_PFS_CNTL_ALU_OFFSET_SHIFT 0
466 # define R300_PFS_CNTL_ALU_OFFSET_MASK (63 << 0)
467 # define R300_PFS_CNTL_ALU_END_SHIFT 6
468 # define R300_PFS_CNTL_ALU_END_MASK (63 << 0)
469 # define R300_PFS_CNTL_TEX_OFFSET_SHIFT 12
470 # define R300_PFS_CNTL_TEX_OFFSET_MASK (31 << 12) // GUESS
471 # define R300_PFS_CNTL_TEX_END_SHIFT 18
472 # define R300_PFS_CNTL_TEX_END_MASK (31 << 18) // GUESS
473
474 /* gap */
475 // Nodes are stored backwards. The last active node is always stored in
476 // PFS_NODE_3.
477 // Example: In a 2-node program, NODE_0 and NODE_1 are set to 0. The
478 // first node is stored in NODE_2, the second node is stored in NODE_3.
479 //
480 // Offsets are relative to the master offset from PFS_CNTL_2.
481 // LAST_NODE is set for the last node, and only for the last node.
482 #define R300_PFS_NODE_0 0x4610
483 #define R300_PFS_NODE_1 0x4614
484 #define R300_PFS_NODE_2 0x4618
485 #define R300_PFS_NODE_3 0x461C
486 # define R300_PFS_NODE_ALU_OFFSET_SHIFT 0
487 # define R300_PFS_NODE_ALU_OFFSET_MASK (63 << 0)
488 # define R300_PFS_NODE_ALU_END_SHIFT 6
489 # define R300_PFS_NODE_ALU_END_MASK (63 << 6)
490 # define R300_PFS_NODE_TEX_OFFSET_SHIFT 12
491 # define R300_PFS_NODE_TEX_OFFSET_MASK (31 << 12)
492 # define R300_PFS_NODE_TEX_END_SHIFT 17
493 # define R300_PFS_NODE_TEX_END_MASK (31 << 17)
494 # define R300_PFS_NODE_LAST_NODE (1 << 22)
495
496 // TEX
497 // As far as I can tell, texture instructions cannot write into output
498 // registers directly. A subsequent ALU instruction is always necessary,
499 // even if it's just MAD o0, r0, 1, 0
500 #define R300_PFS_TEXI_0 0x4620
501 # define R300_FPITX_SRC_SHIFT 0
502 # define R300_FPITX_SRC_MASK (31 << 0)
503 # define R300_FPITX_SRC_CONST (1 << 5) // GUESS
504 # define R300_FPITX_DST_SHIFT 6
505 # define R300_FPITX_DST_MASK (31 << 6)
506 # define R300_FPITX_IMAGE_SHIFT 11
507 # define R300_FPITX_IMAGE_MASK (15 << 11) // GUESS based on layout and native limits
508
509 // ALU
510 // The ALU instructions register blocks are enumerated according to the order
511 // in which fglrx. I assume there is space for 64 instructions, since
512 // each block has space for a maximum of 64 DWORDs, and this matches reported
513 // native limits.
514 //
515 // The basic functional block seems to be one MAD for each color and alpha,
516 // and an adder that adds all components after the MUL.
517 // - ADD, MUL, MAD etc.: use MAD with appropriate neutral operands
518 // - DP4: Use OUTC_DP4, OUTA_DP4
519 // - DP3: Use OUTC_DP3, OUTA_DP4, appropriate alpha operands
520 // - DPH: Use OUTC_DP4, OUTA_DP4, appropriate alpha operands
521 // - CMP: If ARG2 < 0, return ARG1, else return ARG0
522 // - FLR: use FRC+MAD
523 // - XPD: use MAD+MAD
524 // - SGE, SLT: use MAD+CMP
525 // - RSQ: use ABS modifier for argument
526 // - Use OUTC_REPL_ALPHA to write results of an alpha-only operation (e.g. RCP)
527 // into color register
528 // - apparently, there's no quick DST operation
529 // - fglrx set FPI2_UNKNOWN_31 on a "MAD fragment.color, tmp0, tmp1, tmp2"
530 // - fglrx set FPI2_UNKNOWN_31 on a "MAX r2, r1, c0"
531 // - fglrx once set FPI0_UNKNOWN_31 on a "FRC r1, r1"
532 //
533 // Operand selection
534 // First stage selects three sources from the available registers and
535 // constant parameters. This is defined in INSTR1 (color) and INSTR3 (alpha).
536 // fglrx sorts the three source fields: Registers before constants,
537 // lower indices before higher indices; I do not know whether this is necessary.
538 // fglrx fills unused sources with "read constant 0"
539 // According to specs, you cannot select more than two different constants.
540 //
541 // Second stage selects the operands from the sources. This is defined in
542 // INSTR0 (color) and INSTR2 (alpha). You can also select the special constants
543 // zero and one.
544 // Swizzling and negation happens in this stage, as well.
545 //
546 // Important: Color and alpha seem to be mostly separate, i.e. their sources
547 // selection appears to be fully independent (the register storage is probably
548 // physically split into a color and an alpha section).
549 // However (because of the apparent physical split), there is some interaction
550 // WRT swizzling. If, for example, you want to load an R component into an
551 // Alpha operand, this R component is taken from a *color* source, not from
552 // an alpha source. The corresponding register doesn't even have to appear in
553 // the alpha sources list. (I hope this alll makes sense to you)
554 //
555 // Destination selection
556 // The destination register index is in FPI1 (color) and FPI3 (alpha) together
557 // with enable bits.
558 // There are separate enable bits for writing into temporary registers
559 // (DSTC_REG_*/DSTA_REG) and and program output registers (DSTC_OUTPUT_*/DSTA_OUTPUT).
560 // You can write to both at once, or not write at all (the same index
561 // must be used for both).
562 //
563 // Note: There is a special form for LRP
564 // - Argument order is the same as in ARB_fragment_program.
565 // - Operation is MAD
566 // - ARG1 is set to ARGC_SRC1C_LRP/ARGC_SRC1A_LRP
567 // - Set FPI0/FPI2_SPECIAL_LRP
568 // Arbitrary LRP (including support for swizzling) requires vanilla MAD+MAD
569 #define R300_PFS_INSTR1_0 0x46C0
570 # define R300_FPI1_SRC0C_SHIFT 0
571 # define R300_FPI1_SRC0C_MASK (31 << 0)
572 # define R300_FPI1_SRC0C_CONST (1 << 5)
573 # define R300_FPI1_SRC1C_SHIFT 6
574 # define R300_FPI1_SRC1C_MASK (31 << 6)
575 # define R300_FPI1_SRC1C_CONST (1 << 11)
576 # define R300_FPI1_SRC2C_SHIFT 12
577 # define R300_FPI1_SRC2C_MASK (31 << 12)
578 # define R300_FPI1_SRC2C_CONST (1 << 17)
579 # define R300_FPI1_DSTC_SHIFT 18
580 # define R300_FPI1_DSTC_MASK (31 << 18)
581 # define R300_FPI1_DSTC_REG_X (1 << 23)
582 # define R300_FPI1_DSTC_REG_Y (1 << 24)
583 # define R300_FPI1_DSTC_REG_Z (1 << 25)
584 # define R300_FPI1_DSTC_OUTPUT_X (1 << 26)
585 # define R300_FPI1_DSTC_OUTPUT_Y (1 << 27)
586 # define R300_FPI1_DSTC_OUTPUT_Z (1 << 28)
587
588 #define R300_PFS_INSTR3_0 0x47C0
589 # define R300_FPI3_SRC0A_SHIFT 0
590 # define R300_FPI3_SRC0A_MASK (31 << 0)
591 # define R300_FPI3_SRC0A_CONST (1 << 5)
592 # define R300_FPI3_SRC1A_SHIFT 6
593 # define R300_FPI3_SRC1A_MASK (31 << 6)
594 # define R300_FPI3_SRC1A_CONST (1 << 11)
595 # define R300_FPI3_SRC2A_SHIFT 12
596 # define R300_FPI3_SRC2A_MASK (31 << 12)
597 # define R300_FPI3_SRC2A_CONST (1 << 17)
598 # define R300_FPI3_DSTA_SHIFT 18
599 # define R300_FPI3_DSTA_MASK (31 << 18)
600 # define R300_FPI3_DSTA_REG (1 << 23)
601 # define R300_FPI3_DSTA_OUTPUT (1 << 24)
602
603 #define R300_PFS_INSTR0_0 0x48C0
604 # define R300_FPI0_ARGC_SRC0C_XYZ 0
605 # define R300_FPI0_ARGC_SRC0C_XXX 1
606 # define R300_FPI0_ARGC_SRC0C_YYY 2
607 # define R300_FPI0_ARGC_SRC0C_ZZZ 3
608 # define R300_FPI0_ARGC_SRC1C_XYZ 4
609 # define R300_FPI0_ARGC_SRC1C_XXX 5
610 # define R300_FPI0_ARGC_SRC1C_YYY 6
611 # define R300_FPI0_ARGC_SRC1C_ZZZ 7
612 # define R300_FPI0_ARGC_SRC2C_XYZ 8
613 # define R300_FPI0_ARGC_SRC2C_XXX 9
614 # define R300_FPI0_ARGC_SRC2C_YYY 10
615 # define R300_FPI0_ARGC_SRC2C_ZZZ 11
616 # define R300_FPI0_ARGC_SRC0A 12
617 # define R300_FPI0_ARGC_SRC1A 13
618 # define R300_FPI0_ARGC_SRC2A 14
619 # define R300_FPI0_ARGC_SRC1C_LRP 15
620 # define R300_FPI0_ARGC_ZERO 20
621 # define R300_FPI0_ARGC_ONE 21
622 # define R300_FPI0_ARGC_HALF 22 // GUESS
623 # define R300_FPI0_ARGC_SRC0C_YZX 23
624 # define R300_FPI0_ARGC_SRC1C_YZX 24
625 # define R300_FPI0_ARGC_SRC2C_YZX 25
626 # define R300_FPI0_ARGC_SRC0C_ZXY 26
627 # define R300_FPI0_ARGC_SRC1C_ZXY 27
628 # define R300_FPI0_ARGC_SRC2C_ZXY 28
629 # define R300_FPI0_ARGC_SRC0CA_WZY 29
630 # define R300_FPI0_ARGC_SRC1CA_WZY 30
631 # define R300_FPI0_ARGC_SRC2CA_WZY 31
632
633 # define R300_FPI0_ARG0C_SHIFT 0
634 # define R300_FPI0_ARG0C_MASK (31 << 0)
635 # define R300_FPI0_ARG0C_NEG (1 << 5)
636 # define R300_FPI0_ARG0C_ABS (1 << 6)
637 # define R300_FPI0_ARG1C_SHIFT 7
638 # define R300_FPI0_ARG1C_MASK (31 << 7)
639 # define R300_FPI0_ARG1C_NEG (1 << 12)
640 # define R300_FPI0_ARG1C_ABS (1 << 13)
641 # define R300_FPI0_ARG2C_SHIFT 14
642 # define R300_FPI0_ARG2C_MASK (31 << 14)
643 # define R300_FPI0_ARG2C_NEG (1 << 19)
644 # define R300_FPI0_ARG2C_ABS (1 << 20)
645 # define R300_FPI0_SPECIAL_LRP (1 << 21)
646 # define R300_FPI0_OUTC_MAD (0 << 23)
647 # define R300_FPI0_OUTC_DP3 (1 << 23)
648 # define R300_FPI0_OUTC_DP4 (2 << 23)
649 # define R300_FPI0_OUTC_MIN (4 << 23)
650 # define R300_FPI0_OUTC_MAX (5 << 23)
651 # define R300_FPI0_OUTC_CMP (8 << 23)
652 # define R300_FPI0_OUTC_FRC (9 << 23)
653 # define R300_FPI0_OUTC_REPL_ALPHA (10 << 23)
654 # define R300_FPI0_OUTC_SAT (1 << 30)
655 # define R300_FPI0_UNKNOWN_31 (1 << 31)
656
657 #define R300_PFS_INSTR2_0 0x49C0
658 # define R300_FPI2_ARGA_SRC0C_X 0
659 # define R300_FPI2_ARGA_SRC0C_Y 1
660 # define R300_FPI2_ARGA_SRC0C_Z 2
661 # define R300_FPI2_ARGA_SRC1C_X 3
662 # define R300_FPI2_ARGA_SRC1C_Y 4
663 # define R300_FPI2_ARGA_SRC1C_Z 5
664 # define R300_FPI2_ARGA_SRC2C_X 6
665 # define R300_FPI2_ARGA_SRC2C_Y 7
666 # define R300_FPI2_ARGA_SRC2C_Z 8
667 # define R300_FPI2_ARGA_SRC0A 9
668 # define R300_FPI2_ARGA_SRC1A 10
669 # define R300_FPI2_ARGA_SRC2A 11
670 # define R300_FPI2_ARGA_SRC1A_LRP 15
671 # define R300_FPI2_ARGA_ZERO 16
672 # define R300_FPI2_ARGA_ONE 17
673 # define R300_FPI2_ARGA_HALF 18 // GUESS
674
675 # define R300_FPI2_ARG0A_SHIFT 0
676 # define R300_FPI2_ARG0A_MASK (31 << 0)
677 # define R300_FPI2_ARG0A_NEG (1 << 5)
678 # define R300_FPI2_ARG1A_SHIFT 7
679 # define R300_FPI2_ARG1A_MASK (31 << 7)
680 # define R300_FPI2_ARG1A_NEG (1 << 12)
681 # define R300_FPI2_ARG2A_SHIFT 14
682 # define R300_FPI2_AEG2A_MASK (31 << 14)
683 # define R300_FPI2_ARG2A_NEG (1 << 19)
684 # define R300_FPI2_SPECIAL_LRP (1 << 21)
685 # define R300_FPI2_OUTA_MAD (0 << 23)
686 # define R300_FPI2_OUTA_DP4 (1 << 23)
687 # define R300_RPI2_OUTA_MIN (2 << 23)
688 # define R300_RPI2_OUTA_MAX (3 << 23)
689 # define R300_FPI2_OUTA_CMP (6 << 23)
690 # define R300_FPI2_OUTA_FRC (7 << 23)
691 # define R300_FPI2_OUTA_EX2 (8 << 23)
692 # define R300_FPI2_OUTA_LG2 (9 << 23)
693 # define R300_FPI2_OUTA_RCP (10 << 23)
694 # define R300_FPI2_OUTA_RSQ (11 << 23)
695 # define R300_FPI2_OUTA_SAT (1 << 30)
696 # define R300_FPI2_UNKNOWN_31 (1 << 31)
697 // END
698
699 /* gap */
700 #define R300_PP_ALPHA_TEST 0x4BD4
701 # define R300_REF_ALPHA_MASK 0x000000ff
702 # define R300_ALPHA_TEST_FAIL (0 << 8)
703 # define R300_ALPHA_TEST_LESS (1 << 8)
704 # define R300_ALPHA_TEST_LEQUAL (2 << 8)
705 # define R300_ALPHA_TEST_EQUAL (3 << 8)
706 # define R300_ALPHA_TEST_GEQUAL (4 << 8)
707 # define R300_ALPHA_TEST_GREATER (5 << 8)
708 # define R300_ALPHA_TEST_NEQUAL (6 << 8)
709 # define R300_ALPHA_TEST_PASS (7 << 8)
710 # define R300_ALPHA_TEST_OP_MASK (7 << 8)
711 # define R300_ALPHA_TEST_ENABLE (1 << 11)
712
713 /* gap */
714 // Fragment program parameters in 7.16 floating point
715 #define R300_PFS_PARAM_0_X 0x4C00
716 #define R300_PFS_PARAM_0_Y 0x4C04
717 #define R300_PFS_PARAM_0_Z 0x4C08
718 #define R300_PFS_PARAM_0_W 0x4C0C
719 // GUESS: PARAM_31 is last, based on native limits reported by fglrx
720 #define R300_PFS_PARAM_31_X 0x4DF0
721 #define R300_PFS_PARAM_31_Y 0x4DF4
722 #define R300_PFS_PARAM_31_Z 0x4DF8
723 #define R300_PFS_PARAM_31_W 0x4DFC
724
725 // Notes:
726 // - AFAIK fglrx always sets BLEND_UNKNOWN when blending is used in the application
727 // - AFAIK fglrx always sets BLEND_NO_SEPARATE when CBLEND and ABLEND are set to the same
728 // function (both registers are always set up completely in any case)
729 // - Most blend flags are simply copied from R200 and not tested yet
730 #define R300_RB3D_CBLEND 0x4E04
731 #define R300_RB3D_ABLEND 0x4E08
732 /* the following only appear in CBLEND */
733 # define R300_BLEND_ENABLE (1 << 0)
734 # define R300_BLEND_UNKNOWN (3 << 1)
735 # define R300_BLEND_NO_SEPARATE (1 << 3)
736 /* the following are shared between CBLEND and ABLEND */
737 # define R300_FCN_MASK (3 << 12)
738 # define R300_COMB_FCN_ADD_CLAMP (0 << 12)
739 # define R300_COMB_FCN_ADD_NOCLAMP (1 << 12)
740 # define R300_COMB_FCN_SUB_CLAMP (2 << 12)
741 # define R300_COMB_FCN_SUB_NOCLAMP (3 << 12)
742 # define R300_SRC_BLEND_GL_ZERO (32 << 16)
743 # define R300_SRC_BLEND_GL_ONE (33 << 16)
744 # define R300_SRC_BLEND_GL_SRC_COLOR (34 << 16)
745 # define R300_SRC_BLEND_GL_ONE_MINUS_SRC_COLOR (35 << 16)
746 # define R300_SRC_BLEND_GL_DST_COLOR (36 << 16)
747 # define R300_SRC_BLEND_GL_ONE_MINUS_DST_COLOR (37 << 16)
748 # define R300_SRC_BLEND_GL_SRC_ALPHA (38 << 16)
749 # define R300_SRC_BLEND_GL_ONE_MINUS_SRC_ALPHA (39 << 16)
750 # define R300_SRC_BLEND_GL_DST_ALPHA (40 << 16)
751 # define R300_SRC_BLEND_GL_ONE_MINUS_DST_ALPHA (41 << 16)
752 # define R300_SRC_BLEND_GL_SRC_ALPHA_SATURATE (42 << 16)
753 # define R300_SRC_BLEND_MASK (63 << 16)
754 # define R300_DST_BLEND_GL_ZERO (32 << 24)
755 # define R300_DST_BLEND_GL_ONE (33 << 24)
756 # define R300_DST_BLEND_GL_SRC_COLOR (34 << 24)
757 # define R300_DST_BLEND_GL_ONE_MINUS_SRC_COLOR (35 << 24)
758 # define R300_DST_BLEND_GL_DST_COLOR (36 << 24)
759 # define R300_DST_BLEND_GL_ONE_MINUS_DST_COLOR (37 << 24)
760 # define R300_DST_BLEND_GL_SRC_ALPHA (38 << 24)
761 # define R300_DST_BLEND_GL_ONE_MINUS_SRC_ALPHA (39 << 24)
762 # define R300_DST_BLEND_GL_DST_ALPHA (40 << 24)
763 # define R300_DST_BLEND_GL_ONE_MINUS_DST_ALPHA (41 << 24)
764 # define R300_DST_BLEND_MASK (63 << 24)
765 #define R300_RB3D_COLORMASK 0x4E0C
766 # define R300_COLORMASK0_B (1<<0)
767 # define R300_COLORMASK0_G (1<<1)
768 # define R300_COLORMASK0_R (1<<2)
769 # define R300_COLORMASK0_A (1<<3)
770
771 /* gap */
772 #define R300_RB3D_COLOROFFSET0 0x4E28
773 # define R300_COLOROFFSET_MASK 0xFFFFFFF0 // GUESS
774 #define R300_RB3D_COLOROFFSET1 0x4E2C // GUESS
775 #define R300_RB3D_COLOROFFSET2 0x4E30 // GUESS
776 #define R300_RB3D_COLOROFFSET3 0x4E34 // GUESS
777 /* gap */
778 // Bit 16: Larger tiles
779 // Bit 17: 4x2 tiles
780 // Bit 18: Extremely weird tile like, but some pixels duplicated?
781 #define R300_RB3D_COLORPITCH0 0x4E38
782 # define R300_COLORPITCH_MASK 0x00001FF8 // GUESS
783 # define R300_COLOR_TILE_ENABLE (1 << 16) // GUESS
784 # define R300_COLOR_MICROTILE_ENABLE (1 << 17) // GUESS
785 # define R300_COLOR_ENDIAN_NO_SWAP (0 << 18) // GUESS
786 # define R300_COLOR_ENDIAN_WORD_SWAP (1 << 18) // GUESS
787 # define R300_COLOR_ENDIAN_DWORD_SWAP (2 << 18) // GUESS
788 # define R300_COLOR_UNKNOWN_22_23 (3 << 22) // GUESS: Format?
789 #define R300_RB3D_COLORPITCH1 0x4E3C // GUESS
790 #define R300_RB3D_COLORPITCH2 0x4E40 // GUESS
791 #define R300_RB3D_COLORPITCH3 0x4E44 // GUESS
792
793 /* gap */
794 // Guess by Vladimir.
795 // Set to 0A before 3D operations, set to 02 afterwards.
796 #define R300_RB3D_DSTCACHE_CTLSTAT 0x4E4C
797 # define R300_RB3D_DSTCACHE_02 0x00000002
798 # define R300_RB3D_DSTCACHE_0A 0x0000000A
799
800 /* gap */
801 // There seems to be no "write only" setting, so use Z-test = ALWAYS for this.
802 #define R300_RB3D_ZCNTL_0 0x4F00
803 # define R300_RB3D_Z_DISABLED_1 0x00000010 // GUESS
804 # define R300_RB3D_Z_DISABLED_2 0x00000014 // GUESS
805 # define R300_RB3D_Z_TEST 0x00000012
806 # define R300_RB3D_Z_TEST_AND_WRITE 0x00000016
807 #define R300_RB3D_ZCNTL_1 0x4F04
808 # define R300_Z_TEST_NEVER (0 << 0) // GUESS (based on R200)
809 # define R300_Z_TEST_LESS (1 << 0)
810 # define R300_Z_TEST_LEQUAL (2 << 0)
811 # define R300_Z_TEST_EQUAL (3 << 0) // GUESS
812 # define R300_Z_TEST_GEQUAL (4 << 0) // GUESS
813 # define R300_Z_TEST_GREATER (5 << 0) // GUESS
814 # define R300_Z_TEST_NEQUAL (6 << 0)
815 # define R300_Z_TEST_ALWAYS (7 << 0)
816 # define R300_Z_TEST_MASK (7 << 0)
817 /* gap */
818 #define R300_RB3D_DEPTHOFFSET 0x4F20
819 #define R300_RB3D_DEPTHPITCH 0x4F24
820 # define R300_DEPTHPITCH_MASK 0x00001FF8 // GUESS
821 # define R300_DEPTH_TILE_ENABLE (1 << 16) // GUESS
822 # define R300_DEPTH_MICROTILE_ENABLE (1 << 17) // GUESS
823 # define R300_DEPTH_ENDIAN_NO_SWAP (0 << 18) // GUESS
824 # define R300_DEPTH_ENDIAN_WORD_SWAP (1 << 18) // GUESS
825 # define R300_DEPTH_ENDIAN_DWORD_SWAP (2 << 18) // GUESS
826
827 // BEGIN: Vertex program instruction set
828 // Every instruction is four dwords long:
829 // DWORD 0: output and opcode
830 // DWORD 1: first argument
831 // DWORD 2: second argument
832 // DWORD 3: third argument
833 //
834 // Notes:
835 // - ABS r, a is implemented as MAX r, a, -a
836 // - MOV is implemented as ADD to zero
837 // - XPD is implemented as MUL + MAD
838 // - FLR is implemented as FRC + ADD
839 // - apparently, fglrx tries to schedule instructions so that there is at least
840 // one instruction between the write to a temporary and the first read
841 // from said temporary; however, violations of this scheduling are allowed
842 // - register indices seem to be unrelated with OpenGL aliasing to conventional state
843 // - only one attribute and one parameter can be loaded at a time; however, the
844 // same attribute/parameter can be used for more than one argument
845 // - the second software argument for POW is the third hardware argument (no idea why)
846 // - MAD with only temporaries as input seems to use VPI_OUT_SELECT_MAD_2
847 //
848 // There is some magic surrounding LIT:
849 // The single argument is replicated across all three inputs, but swizzled:
850 // First argument: xyzy
851 // Second argument: xyzx
852 // Third argument: xyzw
853 // Whenever the result is used later in the fragment program, fglrx forces x and w
854 // to be 1.0 in the input selection; I don't know whether this is strictly necessary
855 #define R300_VPI_OUT_OP_DOT (1 << 0)
856 #define R300_VPI_OUT_OP_MUL (2 << 0)
857 #define R300_VPI_OUT_OP_ADD (3 << 0)
858 #define R300_VPI_OUT_OP_MAD (4 << 0)
859 #define R300_VPI_OUT_OP_FRC (6 << 0)
860 #define R300_VPI_OUT_OP_MAX (7 << 0)
861 #define R300_VPI_OUT_OP_MIN (8 << 0)
862 #define R300_VPI_OUT_OP_SGE (9 << 0)
863 #define R300_VPI_OUT_OP_SLT (10 << 0)
864 #define R300_VPI_OUT_OP_EXP (65 << 0)
865 #define R300_VPI_OUT_OP_LOG (66 << 0)
866 #define R300_VPI_OUT_OP_LIT (68 << 0)
867 #define R300_VPI_OUT_OP_POW (69 << 0)
868 #define R300_VPI_OUT_OP_RCP (70 << 0)
869 #define R300_VPI_OUT_OP_RSQ (72 << 0)
870 #define R300_VPI_OUT_OP_EX2 (75 << 0)
871 #define R300_VPI_OUT_OP_LG2 (76 << 0)
872 #define R300_VPI_OUT_OP_MAD_2 (128 << 0)
873
874 #define R300_VPI_OUT_REG_CLASS_TEMPORARY (0 << 8)
875 #define R300_VPI_OUT_REG_CLASS_RESULT (2 << 8)
876 #define R300_VPI_OUT_REG_CLASS_MASK (31 << 8)
877
878 #define R300_VPI_OUT_REG_INDEX_SHIFT 13
879 #define R300_VPI_OUT_REG_INDEX_MASK (31 << 13) // GUESS based on fglrx native limits
880
881 #define R300_VPI_OUT_WRITE_X (1 << 20)
882 #define R300_VPI_OUT_WRITE_Y (1 << 21)
883 #define R300_VPI_OUT_WRITE_Z (1 << 22)
884 #define R300_VPI_OUT_WRITE_W (1 << 23)
885
886 #define R300_VPI_IN_REG_CLASS_TEMPORARY (0 << 0)
887 #define R300_VPI_IN_REG_CLASS_ATTRIBUTE (1 << 0)
888 #define R300_VPI_IN_REG_CLASS_PARAMETER (2 << 0)
889 #define R300_VPI_IN_REG_CLASS_NONE (9 << 0)
890 #define R300_VPI_IN_REG_CLASS_MASK (31 << 0) // GUESS
891
892 #define R300_VPI_IN_REG_INDEX_SHIFT 5
893 #define R300_VPI_IN_REG_INDEX_MASK (255 << 5) // GUESS based on fglrx native limits
894
895 // The R300 can select components from the input register arbitrarily.
896 // Use the following constants, shifted by the component shift you
897 // want to select
898 #define R300_VPI_IN_SELECT_X 0
899 #define R300_VPI_IN_SELECT_Y 1
900 #define R300_VPI_IN_SELECT_Z 2
901 #define R300_VPI_IN_SELECT_W 3
902 #define R300_VPI_IN_SELECT_ZERO 4
903 #define R300_VPI_IN_SELECT_ONE 5
904 #define R300_VPI_IN_SELECT_MASK 7
905
906 #define R300_VPI_IN_X_SHIFT 13
907 #define R300_VPI_IN_Y_SHIFT 16
908 #define R300_VPI_IN_Z_SHIFT 19
909 #define R300_VPI_IN_W_SHIFT 22
910
911 #define R300_VPI_IN_NEG_X (1 << 25)
912 #define R300_VPI_IN_NEG_Y (1 << 26)
913 #define R300_VPI_IN_NEG_Z (1 << 27)
914 #define R300_VPI_IN_NEG_W (1 << 28)
915 // END
916
917 #endif // _R300_REG_H