371ca7b04e37aa0ede9fe5daf169d2a054dcddc8
[mesa.git] / src / mesa / main / arrayobj.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 * (C) Copyright IBM Corporation 2006
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /**
29 * \file arrayobj.c
30 *
31 * Implementation of Vertex Array Objects (VAOs), from OpenGL 3.1+ /
32 * the GL_ARB_vertex_array_object extension.
33 *
34 * \todo
35 * The code in this file borrows a lot from bufferobj.c. There's a certain
36 * amount of cruft left over from that origin that may be unnecessary.
37 *
38 * \author Ian Romanick <idr@us.ibm.com>
39 * \author Brian Paul
40 */
41
42
43 #include "glheader.h"
44 #include "hash.h"
45 #include "image.h"
46 #include "util/imports.h"
47 #include "context.h"
48 #include "bufferobj.h"
49 #include "arrayobj.h"
50 #include "macros.h"
51 #include "mtypes.h"
52 #include "state.h"
53 #include "varray.h"
54 #include "util/bitscan.h"
55 #include "util/u_atomic.h"
56 #include "util/u_math.h"
57
58
59 const GLubyte
60 _mesa_vao_attribute_map[ATTRIBUTE_MAP_MODE_MAX][VERT_ATTRIB_MAX] =
61 {
62 /* ATTRIBUTE_MAP_MODE_IDENTITY
63 *
64 * Grab vertex processing attribute VERT_ATTRIB_POS from
65 * the VAO attribute VERT_ATTRIB_POS, and grab vertex processing
66 * attribute VERT_ATTRIB_GENERIC0 from the VAO attribute
67 * VERT_ATTRIB_GENERIC0.
68 */
69 {
70 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
71 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
72 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
73 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
74 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
75 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
76 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
77 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
78 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
79 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
80 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
81 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
82 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
83 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
84 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
85 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
86 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
87 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
88 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
89 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
90 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
91 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
92 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
93 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
94 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
95 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
96 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
97 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
98 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
99 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
100 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
101 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
102 },
103
104 /* ATTRIBUTE_MAP_MODE_POSITION
105 *
106 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
107 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
108 * VAO attribute VERT_ATTRIB_POS.
109 */
110 {
111 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
112 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
113 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
114 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
115 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
116 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
117 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
118 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
119 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
120 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
121 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
122 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
123 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
124 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
125 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
126 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
127 VERT_ATTRIB_POS, /* VERT_ATTRIB_GENERIC0 */
128 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
129 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
130 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
131 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
132 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
133 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
134 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
135 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
136 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
137 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
138 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
139 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
140 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
141 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
142 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
143 },
144
145 /* ATTRIBUTE_MAP_MODE_GENERIC0
146 *
147 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
148 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
149 * VAO attribute VERT_ATTRIB_GENERIC0.
150 */
151 {
152 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_POS */
153 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
154 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
155 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
156 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
157 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
158 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
159 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
160 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
161 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
162 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
163 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
164 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
165 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
166 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
167 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
168 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
169 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
170 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
171 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
172 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
173 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
174 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
175 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
176 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
177 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
178 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
179 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
180 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
181 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
182 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
183 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
184 }
185 };
186
187
188 /**
189 * Look up the array object for the given ID.
190 *
191 * \returns
192 * Either a pointer to the array object with the specified ID or \c NULL for
193 * a non-existent ID. The spec defines ID 0 as being technically
194 * non-existent.
195 */
196
197 struct gl_vertex_array_object *
198 _mesa_lookup_vao(struct gl_context *ctx, GLuint id)
199 {
200 /* The ARB_direct_state_access specification says:
201 *
202 * "<vaobj> is [compatibility profile:
203 * zero, indicating the default vertex array object, or]
204 * the name of the vertex array object."
205 */
206 if (id == 0) {
207 if (ctx->API == API_OPENGL_COMPAT)
208 return ctx->Array.DefaultVAO;
209
210 return NULL;
211 } else {
212 struct gl_vertex_array_object *vao;
213
214 if (ctx->Array.LastLookedUpVAO &&
215 ctx->Array.LastLookedUpVAO->Name == id) {
216 vao = ctx->Array.LastLookedUpVAO;
217 } else {
218 vao = (struct gl_vertex_array_object *)
219 _mesa_HashLookupLocked(ctx->Array.Objects, id);
220
221 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
222 }
223
224 return vao;
225 }
226 }
227
228
229 /**
230 * Looks up the array object for the given ID.
231 *
232 * While _mesa_lookup_vao doesn't generate an error if the object does not
233 * exist, this function comes in two variants.
234 * If is_ext_dsa is false, this function generates a GL_INVALID_OPERATION
235 * error if the array object does not exist. It also returns the default
236 * array object when ctx is a compatibility profile context and id is zero.
237 * If is_ext_dsa is true, 0 is not a valid name. If the name exists but
238 * the object has never been bound, it is initialized.
239 */
240 struct gl_vertex_array_object *
241 _mesa_lookup_vao_err(struct gl_context *ctx, GLuint id,
242 bool is_ext_dsa, const char *caller)
243 {
244 /* The ARB_direct_state_access specification says:
245 *
246 * "<vaobj> is [compatibility profile:
247 * zero, indicating the default vertex array object, or]
248 * the name of the vertex array object."
249 */
250 if (id == 0) {
251 if (is_ext_dsa || ctx->API == API_OPENGL_CORE) {
252 _mesa_error(ctx, GL_INVALID_OPERATION,
253 "%s(zero is not valid vaobj name%s)",
254 caller,
255 is_ext_dsa ? "" : " in a core profile context");
256 return NULL;
257 }
258
259 return ctx->Array.DefaultVAO;
260 } else {
261 struct gl_vertex_array_object *vao;
262
263 if (ctx->Array.LastLookedUpVAO &&
264 ctx->Array.LastLookedUpVAO->Name == id) {
265 vao = ctx->Array.LastLookedUpVAO;
266 } else {
267 vao = (struct gl_vertex_array_object *)
268 _mesa_HashLookupLocked(ctx->Array.Objects, id);
269
270 /* The ARB_direct_state_access specification says:
271 *
272 * "An INVALID_OPERATION error is generated if <vaobj> is not
273 * [compatibility profile: zero or] the name of an existing
274 * vertex array object."
275 */
276 if (!vao || (!is_ext_dsa && !vao->EverBound)) {
277 _mesa_error(ctx, GL_INVALID_OPERATION,
278 "%s(non-existent vaobj=%u)", caller, id);
279 return NULL;
280 }
281
282 /* The EXT_direct_state_access specification says:
283 *
284 * "If the vertex array object named by the vaobj parameter has not
285 * been previously bound but has been generated (without subsequent
286 * deletion) by GenVertexArrays, the GL first creates a new state
287 * vector in the same manner as when BindVertexArray creates a new
288 * vertex array object."
289 */
290 if (vao && is_ext_dsa && !vao->EverBound)
291 vao->EverBound = true;
292
293 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
294 }
295
296 return vao;
297 }
298 }
299
300
301 /**
302 * For all the vertex binding points in the array object, unbind any pointers
303 * to any buffer objects (VBOs).
304 * This is done just prior to array object destruction.
305 */
306 static void
307 unbind_array_object_vbos(struct gl_context *ctx, struct gl_vertex_array_object *obj)
308 {
309 GLuint i;
310
311 for (i = 0; i < ARRAY_SIZE(obj->BufferBinding); i++)
312 _mesa_reference_buffer_object(ctx, &obj->BufferBinding[i].BufferObj, NULL);
313 }
314
315
316 /**
317 * Allocate and initialize a new vertex array object.
318 */
319 struct gl_vertex_array_object *
320 _mesa_new_vao(struct gl_context *ctx, GLuint name)
321 {
322 struct gl_vertex_array_object *obj = CALLOC_STRUCT(gl_vertex_array_object);
323 if (obj)
324 _mesa_initialize_vao(ctx, obj, name);
325 return obj;
326 }
327
328
329 /**
330 * Delete an array object.
331 */
332 void
333 _mesa_delete_vao(struct gl_context *ctx, struct gl_vertex_array_object *obj)
334 {
335 unbind_array_object_vbos(ctx, obj);
336 _mesa_reference_buffer_object(ctx, &obj->IndexBufferObj, NULL);
337 free(obj->Label);
338 free(obj);
339 }
340
341
342 /**
343 * Set ptr to vao w/ reference counting.
344 * Note: this should only be called from the _mesa_reference_vao()
345 * inline function.
346 */
347 void
348 _mesa_reference_vao_(struct gl_context *ctx,
349 struct gl_vertex_array_object **ptr,
350 struct gl_vertex_array_object *vao)
351 {
352 assert(*ptr != vao);
353
354 if (*ptr) {
355 /* Unreference the old array object */
356 struct gl_vertex_array_object *oldObj = *ptr;
357
358 bool deleteFlag;
359 if (oldObj->SharedAndImmutable) {
360 deleteFlag = p_atomic_dec_zero(&oldObj->RefCount);
361 } else {
362 assert(oldObj->RefCount > 0);
363 oldObj->RefCount--;
364 deleteFlag = (oldObj->RefCount == 0);
365 }
366
367 if (deleteFlag)
368 _mesa_delete_vao(ctx, oldObj);
369
370 *ptr = NULL;
371 }
372 assert(!*ptr);
373
374 if (vao) {
375 /* reference new array object */
376 if (vao->SharedAndImmutable) {
377 p_atomic_inc(&vao->RefCount);
378 } else {
379 assert(vao->RefCount > 0);
380 vao->RefCount++;
381 }
382
383 *ptr = vao;
384 }
385 }
386
387
388 /**
389 * Initialize attributes of a vertex array within a vertex array object.
390 * \param vao the container vertex array object
391 * \param index which array in the VAO to initialize
392 * \param size number of components (1, 2, 3 or 4) per attribute
393 * \param type datatype of the attribute (GL_FLOAT, GL_INT, etc).
394 */
395 static void
396 init_array(struct gl_context *ctx,
397 struct gl_vertex_array_object *vao,
398 gl_vert_attrib index, GLint size, GLint type)
399 {
400 assert(index < ARRAY_SIZE(vao->VertexAttrib));
401 struct gl_array_attributes *array = &vao->VertexAttrib[index];
402 assert(index < ARRAY_SIZE(vao->BufferBinding));
403 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[index];
404
405 _mesa_set_vertex_format(&array->Format, size, type, GL_RGBA,
406 GL_FALSE, GL_FALSE, GL_FALSE);
407 array->Stride = 0;
408 array->Ptr = NULL;
409 array->RelativeOffset = 0;
410 ASSERT_BITFIELD_SIZE(struct gl_array_attributes, BufferBindingIndex,
411 VERT_ATTRIB_MAX - 1);
412 array->BufferBindingIndex = index;
413
414 binding->Offset = 0;
415 binding->Stride = array->Format._ElementSize;
416 binding->BufferObj = NULL;
417 binding->_BoundArrays = BITFIELD_BIT(index);
418
419 /* Vertex array buffers */
420 _mesa_reference_buffer_object(ctx, &binding->BufferObj,
421 ctx->Shared->NullBufferObj);
422 }
423
424
425 /**
426 * Initialize a gl_vertex_array_object's arrays.
427 */
428 void
429 _mesa_initialize_vao(struct gl_context *ctx,
430 struct gl_vertex_array_object *vao,
431 GLuint name)
432 {
433 GLuint i;
434
435 vao->Name = name;
436
437 vao->RefCount = 1;
438 vao->SharedAndImmutable = false;
439
440 /* Init the individual arrays */
441 for (i = 0; i < ARRAY_SIZE(vao->VertexAttrib); i++) {
442 switch (i) {
443 case VERT_ATTRIB_NORMAL:
444 init_array(ctx, vao, VERT_ATTRIB_NORMAL, 3, GL_FLOAT);
445 break;
446 case VERT_ATTRIB_COLOR1:
447 init_array(ctx, vao, VERT_ATTRIB_COLOR1, 3, GL_FLOAT);
448 break;
449 case VERT_ATTRIB_FOG:
450 init_array(ctx, vao, VERT_ATTRIB_FOG, 1, GL_FLOAT);
451 break;
452 case VERT_ATTRIB_COLOR_INDEX:
453 init_array(ctx, vao, VERT_ATTRIB_COLOR_INDEX, 1, GL_FLOAT);
454 break;
455 case VERT_ATTRIB_EDGEFLAG:
456 init_array(ctx, vao, VERT_ATTRIB_EDGEFLAG, 1, GL_UNSIGNED_BYTE);
457 break;
458 case VERT_ATTRIB_POINT_SIZE:
459 init_array(ctx, vao, VERT_ATTRIB_POINT_SIZE, 1, GL_FLOAT);
460 break;
461 default:
462 init_array(ctx, vao, i, 4, GL_FLOAT);
463 break;
464 }
465 }
466
467 vao->_AttributeMapMode = ATTRIBUTE_MAP_MODE_IDENTITY;
468
469 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj,
470 ctx->Shared->NullBufferObj);
471 }
472
473
474 /**
475 * Compute the offset range for the provided binding.
476 *
477 * This is a helper function for the below.
478 */
479 static void
480 compute_vbo_offset_range(const struct gl_vertex_array_object *vao,
481 const struct gl_vertex_buffer_binding *binding,
482 GLsizeiptr* min, GLsizeiptr* max)
483 {
484 /* The function is meant to work on VBO bindings */
485 assert(_mesa_is_bufferobj(binding->BufferObj));
486
487 /* Start with an inverted range of relative offsets. */
488 GLuint min_offset = ~(GLuint)0;
489 GLuint max_offset = 0;
490
491 /* We work on the unmapped originaly VAO array entries. */
492 GLbitfield mask = vao->Enabled & binding->_BoundArrays;
493 /* The binding should be active somehow, not to return inverted ranges */
494 assert(mask);
495 while (mask) {
496 const int i = u_bit_scan(&mask);
497 const GLuint off = vao->VertexAttrib[i].RelativeOffset;
498 min_offset = MIN2(off, min_offset);
499 max_offset = MAX2(off, max_offset);
500 }
501
502 *min = binding->Offset + (GLsizeiptr)min_offset;
503 *max = binding->Offset + (GLsizeiptr)max_offset;
504 }
505
506
507 /**
508 * Update the unique binding and pos/generic0 map tracking in the vao.
509 *
510 * The idea is to build up information in the vao so that a consuming
511 * backend can execute the following to set up buffer and vertex element
512 * information:
513 *
514 * const GLbitfield inputs_read = VERT_BIT_ALL; // backend vp inputs
515 *
516 * // Attribute data is in a VBO.
517 * GLbitfield vbomask = inputs_read & _mesa_draw_vbo_array_bits(ctx);
518 * while (vbomask) {
519 * // The attribute index to start pulling a binding
520 * const gl_vert_attrib i = ffs(vbomask) - 1;
521 * const struct gl_vertex_buffer_binding *const binding
522 * = _mesa_draw_buffer_binding(vao, i);
523 *
524 * <insert code to handle the vertex buffer object at binding>
525 *
526 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
527 * GLbitfield attrmask = vbomask & boundmask;
528 * assert(attrmask);
529 * // Walk attributes belonging to the binding
530 * while (attrmask) {
531 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
532 * const struct gl_array_attributes *const attrib
533 * = _mesa_draw_array_attrib(vao, attr);
534 *
535 * <insert code to handle the vertex element refering to the binding>
536 * }
537 * vbomask &= ~boundmask;
538 * }
539 *
540 * // Process user space buffers
541 * GLbitfield usermask = inputs_read & _mesa_draw_user_array_bits(ctx);
542 * while (usermask) {
543 * // The attribute index to start pulling a binding
544 * const gl_vert_attrib i = ffs(usermask) - 1;
545 * const struct gl_vertex_buffer_binding *const binding
546 * = _mesa_draw_buffer_binding(vao, i);
547 *
548 * <insert code to handle a set of interleaved user space arrays at binding>
549 *
550 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
551 * GLbitfield attrmask = usermask & boundmask;
552 * assert(attrmask);
553 * // Walk interleaved attributes with a common stride and instance divisor
554 * while (attrmask) {
555 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
556 * const struct gl_array_attributes *const attrib
557 * = _mesa_draw_array_attrib(vao, attr);
558 *
559 * <insert code to handle non vbo vertex arrays>
560 * }
561 * usermask &= ~boundmask;
562 * }
563 *
564 * // Process values that should have better been uniforms in the application
565 * GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
566 * while (curmask) {
567 * const gl_vert_attrib attr = u_bit_scan(&curmask);
568 * const struct gl_array_attributes *const attrib
569 * = _mesa_draw_current_attrib(ctx, attr);
570 *
571 * <insert code to handle current values>
572 * }
573 *
574 *
575 * Note that the scan below must not incoporate any context state.
576 * The rationale is that once a VAO is finalized it should not
577 * be touched anymore. That means, do not incorporate the
578 * gl_context::Array._DrawVAOEnabledAttribs bitmask into this scan.
579 * A backend driver may further reduce the handled vertex processing
580 * inputs based on their vertex shader inputs. But scanning for
581 * collapsable binding points to reduce relocs is done based on the
582 * enabled arrays.
583 * Also VAOs may be shared between contexts due to their use in dlists
584 * thus no context state should bleed into the VAO.
585 */
586 void
587 _mesa_update_vao_derived_arrays(struct gl_context *ctx,
588 struct gl_vertex_array_object *vao)
589 {
590 /* Make sure we do not run into problems with shared objects */
591 assert(!vao->SharedAndImmutable || vao->NewArrays == 0);
592
593 /* Limit used for common binding scanning below. */
594 const GLsizeiptr MaxRelativeOffset =
595 ctx->Const.MaxVertexAttribRelativeOffset;
596
597 /* The gl_vertex_array_object::_AttributeMapMode denotes the way
598 * VERT_ATTRIB_{POS,GENERIC0} mapping is done.
599 *
600 * This mapping is used to map between the OpenGL api visible
601 * VERT_ATTRIB_* arrays to mesa driver arrayinputs or shader inputs.
602 * The mapping only depends on the enabled bits of the
603 * VERT_ATTRIB_{POS,GENERIC0} arrays and is tracked in the VAO.
604 *
605 * This map needs to be applied when finally translating to the bitmasks
606 * as consumed by the driver backends. The duplicate scanning is here
607 * can as well be done in the OpenGL API numbering without this map.
608 */
609 const gl_attribute_map_mode mode = vao->_AttributeMapMode;
610 /* Enabled array bits. */
611 const GLbitfield enabled = vao->Enabled;
612 /* VBO array bits. */
613 const GLbitfield vbos = vao->VertexAttribBufferMask;
614 const GLbitfield divisor_is_nonzero = vao->NonZeroDivisorMask;
615
616 /* Compute and store effectively enabled and mapped vbo arrays */
617 vao->_EffEnabledVBO = _mesa_vao_enable_to_vp_inputs(mode, enabled & vbos);
618 vao->_EffEnabledNonZeroDivisor =
619 _mesa_vao_enable_to_vp_inputs(mode, enabled & divisor_is_nonzero);
620 /* Walk those enabled arrays that have a real vbo attached */
621 GLbitfield mask = enabled;
622 while (mask) {
623 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
624 const int i = ffs(mask) - 1;
625 /* The binding from the first to be processed attribute. */
626 const GLuint bindex = vao->VertexAttrib[i].BufferBindingIndex;
627 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
628
629 /* The scan goes different for user space arrays than vbos */
630 if (_mesa_is_bufferobj(binding->BufferObj)) {
631 /* The bound arrays. */
632 const GLbitfield bound = enabled & binding->_BoundArrays;
633
634 /* Start this current effective binding with the actual bound arrays */
635 GLbitfield eff_bound_arrays = bound;
636
637 /*
638 * If there is nothing left to scan just update the effective binding
639 * information. If the VAO is already only using a single binding point
640 * we end up here. So the overhead of this scan for an application
641 * carefully preparing the VAO for draw is low.
642 */
643
644 GLbitfield scanmask = mask & vbos & ~bound;
645 /* Is there something left to scan? */
646 if (scanmask == 0) {
647 /* Just update the back reference from the attrib to the binding and
648 * the effective offset.
649 */
650 GLbitfield attrmask = eff_bound_arrays;
651 while (attrmask) {
652 const int j = u_bit_scan(&attrmask);
653 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
654
655 /* Update the index into the common binding point and offset */
656 attrib2->_EffBufferBindingIndex = bindex;
657 attrib2->_EffRelativeOffset = attrib2->RelativeOffset;
658 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
659 }
660 /* Finally this is the set of effectively bound arrays with the
661 * original binding offset.
662 */
663 binding->_EffOffset = binding->Offset;
664 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
665 binding->_EffBoundArrays =
666 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
667
668 } else {
669 /* In the VBO case, scan for attribute/binding
670 * combinations with relative bindings in the range of
671 * [0, ctx->Const.MaxVertexAttribRelativeOffset].
672 * Note that this does also go beyond just interleaved arrays
673 * as long as they use the same VBO, binding parameters and the
674 * offsets stay within bounds that the backend still can handle.
675 */
676
677 GLsizeiptr min_offset, max_offset;
678 compute_vbo_offset_range(vao, binding, &min_offset, &max_offset);
679 assert(max_offset <= min_offset + MaxRelativeOffset);
680
681 /* Now scan. */
682 while (scanmask) {
683 /* Do not use u_bit_scan as we can walk multiple
684 * attrib arrays at once
685 */
686 const int j = ffs(scanmask) - 1;
687 const struct gl_array_attributes *attrib2 =
688 &vao->VertexAttrib[j];
689 const struct gl_vertex_buffer_binding *binding2 =
690 &vao->BufferBinding[attrib2->BufferBindingIndex];
691
692 /* Remove those attrib bits from the mask that are bound to the
693 * same effective binding point.
694 */
695 const GLbitfield bound2 = enabled & binding2->_BoundArrays;
696 scanmask &= ~bound2;
697
698 /* Check if we have an identical binding */
699 if (binding->Stride != binding2->Stride)
700 continue;
701 if (binding->InstanceDivisor != binding2->InstanceDivisor)
702 continue;
703 if (binding->BufferObj != binding2->BufferObj)
704 continue;
705 /* Check if we can fold both bindings into a common binding */
706 GLsizeiptr min_offset2, max_offset2;
707 compute_vbo_offset_range(vao, binding2,
708 &min_offset2, &max_offset2);
709 /* If the relative offset is within the limits ... */
710 if (min_offset + MaxRelativeOffset < max_offset2)
711 continue;
712 if (min_offset2 + MaxRelativeOffset < max_offset)
713 continue;
714 /* ... add this array to the effective binding */
715 eff_bound_arrays |= bound2;
716 min_offset = MIN2(min_offset, min_offset2);
717 max_offset = MAX2(max_offset, max_offset2);
718 assert(max_offset <= min_offset + MaxRelativeOffset);
719 }
720
721 /* Update the back reference from the attrib to the binding */
722 GLbitfield attrmask = eff_bound_arrays;
723 while (attrmask) {
724 const int j = u_bit_scan(&attrmask);
725 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
726 const struct gl_vertex_buffer_binding *binding2 =
727 &vao->BufferBinding[attrib2->BufferBindingIndex];
728
729 /* Update the index into the common binding point and offset */
730 attrib2->_EffBufferBindingIndex = bindex;
731 attrib2->_EffRelativeOffset =
732 binding2->Offset + attrib2->RelativeOffset - min_offset;
733 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
734 }
735 /* Finally this is the set of effectively bound arrays */
736 binding->_EffOffset = min_offset;
737 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
738 binding->_EffBoundArrays =
739 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
740 }
741
742 /* Mark all the effective bound arrays as processed. */
743 mask &= ~eff_bound_arrays;
744
745 } else {
746 /* Scanning of common bindings for user space arrays.
747 */
748
749 const struct gl_array_attributes *attrib = &vao->VertexAttrib[i];
750 const GLbitfield bound = VERT_BIT(i);
751
752 /* Note that user space array pointers can only happen using a one
753 * to one binding point to array mapping.
754 * The OpenGL 4.x/ARB_vertex_attrib_binding api does not support
755 * user space arrays collected at multiple binding points.
756 * The only provider of user space interleaved arrays with a single
757 * binding point is the mesa internal vbo module. But that one
758 * provides a perfect interleaved set of arrays.
759 *
760 * If this would not be true we would potentially get attribute arrays
761 * with user space pointers that may not lie within the
762 * MaxRelativeOffset range but still attached to a single binding.
763 * Then we would need to store the effective attribute and binding
764 * grouping information in a seperate array beside
765 * gl_array_attributes/gl_vertex_buffer_binding.
766 */
767 assert(util_bitcount(binding->_BoundArrays & vao->Enabled) == 1
768 || (vao->Enabled & ~binding->_BoundArrays) == 0);
769
770 /* Start this current effective binding with the array */
771 GLbitfield eff_bound_arrays = bound;
772
773 const GLubyte *ptr = attrib->Ptr;
774 unsigned vertex_end = attrib->Format._ElementSize;
775
776 /* Walk other user space arrays and see which are interleaved
777 * using the same binding parameters.
778 */
779 GLbitfield scanmask = mask & ~vbos & ~bound;
780 while (scanmask) {
781 const int j = u_bit_scan(&scanmask);
782 const struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
783 const struct gl_vertex_buffer_binding *binding2 =
784 &vao->BufferBinding[attrib2->BufferBindingIndex];
785
786 /* See the comment at the same assert above. */
787 assert(util_bitcount(binding2->_BoundArrays & vao->Enabled) == 1
788 || (vao->Enabled & ~binding->_BoundArrays) == 0);
789
790 /* Check if we have an identical binding */
791 if (binding->Stride != binding2->Stride)
792 continue;
793 if (binding->InstanceDivisor != binding2->InstanceDivisor)
794 continue;
795 if (ptr <= attrib2->Ptr) {
796 if (ptr + binding->Stride < attrib2->Ptr +
797 attrib2->Format._ElementSize)
798 continue;
799 unsigned end = attrib2->Ptr + attrib2->Format._ElementSize - ptr;
800 vertex_end = MAX2(vertex_end, end);
801 } else {
802 if (attrib2->Ptr + binding->Stride < ptr + vertex_end)
803 continue;
804 vertex_end += (GLsizei)(ptr - attrib2->Ptr);
805 ptr = attrib2->Ptr;
806 }
807
808 /* User space buffer object */
809 assert(!_mesa_is_bufferobj(binding2->BufferObj));
810
811 eff_bound_arrays |= VERT_BIT(j);
812 }
813
814 /* Update the back reference from the attrib to the binding */
815 GLbitfield attrmask = eff_bound_arrays;
816 while (attrmask) {
817 const int j = u_bit_scan(&attrmask);
818 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
819
820 /* Update the index into the common binding point and the offset */
821 attrib2->_EffBufferBindingIndex = bindex;
822 attrib2->_EffRelativeOffset = attrib2->Ptr - ptr;
823 assert(attrib2->_EffRelativeOffset <= binding->Stride);
824 }
825 /* Finally this is the set of effectively bound arrays */
826 binding->_EffOffset = (GLintptr)ptr;
827 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
828 binding->_EffBoundArrays =
829 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
830
831 /* Mark all the effective bound arrays as processed. */
832 mask &= ~eff_bound_arrays;
833 }
834 }
835
836 #ifndef NDEBUG
837 /* Make sure the above code works as expected. */
838 for (gl_vert_attrib attr = 0; attr < VERT_ATTRIB_MAX; ++attr) {
839 /* Query the original api defined attrib/binding information ... */
840 const unsigned char *const map =_mesa_vao_attribute_map[mode];
841 if (vao->Enabled & VERT_BIT(map[attr])) {
842 const struct gl_array_attributes *attrib =
843 &vao->VertexAttrib[map[attr]];
844 const struct gl_vertex_buffer_binding *binding =
845 &vao->BufferBinding[attrib->BufferBindingIndex];
846 /* ... and compare that with the computed attrib/binding */
847 const struct gl_vertex_buffer_binding *binding2 =
848 &vao->BufferBinding[attrib->_EffBufferBindingIndex];
849 assert(binding->Stride == binding2->Stride);
850 assert(binding->InstanceDivisor == binding2->InstanceDivisor);
851 assert(binding->BufferObj == binding2->BufferObj);
852 if (_mesa_is_bufferobj(binding->BufferObj)) {
853 assert(attrib->_EffRelativeOffset <= MaxRelativeOffset);
854 assert(binding->Offset + attrib->RelativeOffset ==
855 binding2->_EffOffset + attrib->_EffRelativeOffset);
856 } else {
857 assert(attrib->_EffRelativeOffset < binding->Stride);
858 assert((GLintptr)attrib->Ptr ==
859 binding2->_EffOffset + attrib->_EffRelativeOffset);
860 }
861 }
862 }
863 #endif
864 }
865
866
867 void
868 _mesa_set_vao_immutable(struct gl_context *ctx,
869 struct gl_vertex_array_object *vao)
870 {
871 _mesa_update_vao_derived_arrays(ctx, vao);
872 vao->NewArrays = 0;
873 vao->SharedAndImmutable = true;
874 }
875
876
877 bool
878 _mesa_all_varyings_in_vbos(const struct gl_vertex_array_object *vao)
879 {
880 /* Walk those enabled arrays that have the default vbo attached */
881 GLbitfield mask = vao->Enabled & ~vao->VertexAttribBufferMask;
882
883 while (mask) {
884 /* Do not use u_bit_scan64 as we can walk multiple
885 * attrib arrays at once
886 */
887 const int i = ffs(mask) - 1;
888 const struct gl_array_attributes *attrib_array =
889 &vao->VertexAttrib[i];
890 const struct gl_vertex_buffer_binding *buffer_binding =
891 &vao->BufferBinding[attrib_array->BufferBindingIndex];
892
893 /* We have already masked out vao->VertexAttribBufferMask */
894 assert(!_mesa_is_bufferobj(buffer_binding->BufferObj));
895
896 /* Bail out once we find the first non vbo with a non zero stride */
897 if (buffer_binding->Stride != 0)
898 return false;
899
900 /* Note that we cannot use the xor variant since the _BoundArray mask
901 * may contain array attributes that are bound but not enabled.
902 */
903 mask &= ~buffer_binding->_BoundArrays;
904 }
905
906 return true;
907 }
908
909 bool
910 _mesa_all_buffers_are_unmapped(const struct gl_vertex_array_object *vao)
911 {
912 /* Walk the enabled arrays that have a vbo attached */
913 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
914
915 while (mask) {
916 const int i = ffs(mask) - 1;
917 const struct gl_array_attributes *attrib_array =
918 &vao->VertexAttrib[i];
919 const struct gl_vertex_buffer_binding *buffer_binding =
920 &vao->BufferBinding[attrib_array->BufferBindingIndex];
921
922 /* We have already masked with vao->VertexAttribBufferMask */
923 assert(_mesa_is_bufferobj(buffer_binding->BufferObj));
924
925 /* Bail out once we find the first disallowed mapping */
926 if (_mesa_check_disallowed_mapping(buffer_binding->BufferObj))
927 return false;
928
929 /* We have handled everything that is bound to this buffer_binding. */
930 mask &= ~buffer_binding->_BoundArrays;
931 }
932
933 return true;
934 }
935
936
937 /**
938 * Map buffer objects used in attribute arrays.
939 */
940 void
941 _mesa_vao_map_arrays(struct gl_context *ctx, struct gl_vertex_array_object *vao,
942 GLbitfield access)
943 {
944 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
945 while (mask) {
946 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
947 const gl_vert_attrib attr = ffs(mask) - 1;
948 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
949 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
950 mask &= ~binding->_BoundArrays;
951
952 struct gl_buffer_object *bo = binding->BufferObj;
953 assert(_mesa_is_bufferobj(bo));
954 if (_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
955 continue;
956
957 ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
958 }
959 }
960
961
962 /**
963 * Map buffer objects used in the vao, attribute arrays and index buffer.
964 */
965 void
966 _mesa_vao_map(struct gl_context *ctx, struct gl_vertex_array_object *vao,
967 GLbitfield access)
968 {
969 struct gl_buffer_object *bo = vao->IndexBufferObj;
970
971 /* map the index buffer, if there is one, and not already mapped */
972 if (_mesa_is_bufferobj(bo) && !_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
973 ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
974
975 _mesa_vao_map_arrays(ctx, vao, access);
976 }
977
978
979 /**
980 * Unmap buffer objects used in attribute arrays.
981 */
982 void
983 _mesa_vao_unmap_arrays(struct gl_context *ctx,
984 struct gl_vertex_array_object *vao)
985 {
986 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
987 while (mask) {
988 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
989 const gl_vert_attrib attr = ffs(mask) - 1;
990 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
991 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
992 mask &= ~binding->_BoundArrays;
993
994 struct gl_buffer_object *bo = binding->BufferObj;
995 assert(_mesa_is_bufferobj(bo));
996 if (!_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
997 continue;
998
999 ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
1000 }
1001 }
1002
1003
1004 /**
1005 * Unmap buffer objects used in the vao, attribute arrays and index buffer.
1006 */
1007 void
1008 _mesa_vao_unmap(struct gl_context *ctx, struct gl_vertex_array_object *vao)
1009 {
1010 struct gl_buffer_object *bo = vao->IndexBufferObj;
1011
1012 /* unmap the index buffer, if there is one, and still mapped */
1013 if (_mesa_is_bufferobj(bo) && _mesa_bufferobj_mapped(bo, MAP_INTERNAL))
1014 ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
1015
1016 _mesa_vao_unmap_arrays(ctx, vao);
1017 }
1018
1019
1020 /**********************************************************************/
1021 /* API Functions */
1022 /**********************************************************************/
1023
1024
1025 /**
1026 * ARB version of glBindVertexArray()
1027 */
1028 static ALWAYS_INLINE void
1029 bind_vertex_array(struct gl_context *ctx, GLuint id, bool no_error)
1030 {
1031 struct gl_vertex_array_object *const oldObj = ctx->Array.VAO;
1032 struct gl_vertex_array_object *newObj = NULL;
1033
1034 assert(oldObj != NULL);
1035
1036 if (oldObj->Name == id)
1037 return; /* rebinding the same array object- no change */
1038
1039 /*
1040 * Get pointer to new array object (newObj)
1041 */
1042 if (id == 0) {
1043 /* The spec says there is no array object named 0, but we use
1044 * one internally because it simplifies things.
1045 */
1046 newObj = ctx->Array.DefaultVAO;
1047 }
1048 else {
1049 /* non-default array object */
1050 newObj = _mesa_lookup_vao(ctx, id);
1051 if (!no_error && !newObj) {
1052 _mesa_error(ctx, GL_INVALID_OPERATION,
1053 "glBindVertexArray(non-gen name)");
1054 return;
1055 }
1056
1057 newObj->EverBound = GL_TRUE;
1058 }
1059
1060 /* The _DrawArrays pointer is pointing at the VAO being unbound and
1061 * that VAO may be in the process of being deleted. If it's not going
1062 * to be deleted, this will have no effect, because the pointer needs
1063 * to be updated by the VBO module anyway.
1064 *
1065 * Before the VBO module can update the pointer, we have to set it
1066 * to NULL for drivers not to set up arrays which are not bound,
1067 * or to prevent a crash if the VAO being unbound is going to be
1068 * deleted.
1069 */
1070 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1071
1072 _mesa_reference_vao(ctx, &ctx->Array.VAO, newObj);
1073 }
1074
1075
1076 void GLAPIENTRY
1077 _mesa_BindVertexArray_no_error(GLuint id)
1078 {
1079 GET_CURRENT_CONTEXT(ctx);
1080 bind_vertex_array(ctx, id, true);
1081 }
1082
1083
1084 void GLAPIENTRY
1085 _mesa_BindVertexArray(GLuint id)
1086 {
1087 GET_CURRENT_CONTEXT(ctx);
1088 bind_vertex_array(ctx, id, false);
1089 }
1090
1091
1092 /**
1093 * Delete a set of array objects.
1094 *
1095 * \param n Number of array objects to delete.
1096 * \param ids Array of \c n array object IDs.
1097 */
1098 static void
1099 delete_vertex_arrays(struct gl_context *ctx, GLsizei n, const GLuint *ids)
1100 {
1101 GLsizei i;
1102
1103 for (i = 0; i < n; i++) {
1104 /* IDs equal to 0 should be silently ignored. */
1105 if (!ids[i])
1106 continue;
1107
1108 struct gl_vertex_array_object *obj = _mesa_lookup_vao(ctx, ids[i]);
1109
1110 if (obj) {
1111 assert(obj->Name == ids[i]);
1112
1113 /* If the array object is currently bound, the spec says "the binding
1114 * for that object reverts to zero and the default vertex array
1115 * becomes current."
1116 */
1117 if (obj == ctx->Array.VAO)
1118 _mesa_BindVertexArray_no_error(0);
1119
1120 /* The ID is immediately freed for re-use */
1121 _mesa_HashRemoveLocked(ctx->Array.Objects, obj->Name);
1122
1123 if (ctx->Array.LastLookedUpVAO == obj)
1124 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, NULL);
1125 if (ctx->Array._DrawVAO == obj)
1126 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1127
1128 /* Unreference the array object.
1129 * If refcount hits zero, the object will be deleted.
1130 */
1131 _mesa_reference_vao(ctx, &obj, NULL);
1132 }
1133 }
1134 }
1135
1136
1137 void GLAPIENTRY
1138 _mesa_DeleteVertexArrays_no_error(GLsizei n, const GLuint *ids)
1139 {
1140 GET_CURRENT_CONTEXT(ctx);
1141 delete_vertex_arrays(ctx, n, ids);
1142 }
1143
1144
1145 void GLAPIENTRY
1146 _mesa_DeleteVertexArrays(GLsizei n, const GLuint *ids)
1147 {
1148 GET_CURRENT_CONTEXT(ctx);
1149
1150 if (n < 0) {
1151 _mesa_error(ctx, GL_INVALID_VALUE, "glDeleteVertexArray(n)");
1152 return;
1153 }
1154
1155 delete_vertex_arrays(ctx, n, ids);
1156 }
1157
1158
1159 /**
1160 * Generate a set of unique array object IDs and store them in \c arrays.
1161 * Helper for _mesa_GenVertexArrays() and _mesa_CreateVertexArrays()
1162 * below.
1163 *
1164 * \param n Number of IDs to generate.
1165 * \param arrays Array of \c n locations to store the IDs.
1166 * \param create Indicates that the objects should also be created.
1167 * \param func The name of the GL entry point.
1168 */
1169 static void
1170 gen_vertex_arrays(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1171 bool create, const char *func)
1172 {
1173 GLuint first;
1174 GLint i;
1175
1176 if (!arrays)
1177 return;
1178
1179 first = _mesa_HashFindFreeKeyBlock(ctx->Array.Objects, n);
1180
1181 /* For the sake of simplicity we create the array objects in both
1182 * the Gen* and Create* cases. The only difference is the value of
1183 * EverBound, which is set to true in the Create* case.
1184 */
1185 for (i = 0; i < n; i++) {
1186 struct gl_vertex_array_object *obj;
1187 GLuint name = first + i;
1188
1189 obj = _mesa_new_vao(ctx, name);
1190 if (!obj) {
1191 _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
1192 return;
1193 }
1194 obj->EverBound = create;
1195 _mesa_HashInsertLocked(ctx->Array.Objects, obj->Name, obj);
1196 arrays[i] = first + i;
1197 }
1198 }
1199
1200
1201 static void
1202 gen_vertex_arrays_err(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1203 bool create, const char *func)
1204 {
1205 if (n < 0) {
1206 _mesa_error(ctx, GL_INVALID_VALUE, "%s(n < 0)", func);
1207 return;
1208 }
1209
1210 gen_vertex_arrays(ctx, n, arrays, create, func);
1211 }
1212
1213
1214 /**
1215 * ARB version of glGenVertexArrays()
1216 * All arrays will be required to live in VBOs.
1217 */
1218 void GLAPIENTRY
1219 _mesa_GenVertexArrays_no_error(GLsizei n, GLuint *arrays)
1220 {
1221 GET_CURRENT_CONTEXT(ctx);
1222 gen_vertex_arrays(ctx, n, arrays, false, "glGenVertexArrays");
1223 }
1224
1225
1226 void GLAPIENTRY
1227 _mesa_GenVertexArrays(GLsizei n, GLuint *arrays)
1228 {
1229 GET_CURRENT_CONTEXT(ctx);
1230 gen_vertex_arrays_err(ctx, n, arrays, false, "glGenVertexArrays");
1231 }
1232
1233
1234 /**
1235 * ARB_direct_state_access
1236 * Generates ID's and creates the array objects.
1237 */
1238 void GLAPIENTRY
1239 _mesa_CreateVertexArrays_no_error(GLsizei n, GLuint *arrays)
1240 {
1241 GET_CURRENT_CONTEXT(ctx);
1242 gen_vertex_arrays(ctx, n, arrays, true, "glCreateVertexArrays");
1243 }
1244
1245
1246 void GLAPIENTRY
1247 _mesa_CreateVertexArrays(GLsizei n, GLuint *arrays)
1248 {
1249 GET_CURRENT_CONTEXT(ctx);
1250 gen_vertex_arrays_err(ctx, n, arrays, true, "glCreateVertexArrays");
1251 }
1252
1253
1254 /**
1255 * Determine if ID is the name of an array object.
1256 *
1257 * \param id ID of the potential array object.
1258 * \return \c GL_TRUE if \c id is the name of a array object,
1259 * \c GL_FALSE otherwise.
1260 */
1261 GLboolean GLAPIENTRY
1262 _mesa_IsVertexArray( GLuint id )
1263 {
1264 struct gl_vertex_array_object * obj;
1265 GET_CURRENT_CONTEXT(ctx);
1266 ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
1267
1268 obj = _mesa_lookup_vao(ctx, id);
1269
1270 return obj != NULL && obj->EverBound;
1271 }
1272
1273
1274 /**
1275 * Sets the element array buffer binding of a vertex array object.
1276 *
1277 * This is the ARB_direct_state_access equivalent of
1278 * glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer).
1279 */
1280 static ALWAYS_INLINE void
1281 vertex_array_element_buffer(struct gl_context *ctx, GLuint vaobj, GLuint buffer,
1282 bool no_error)
1283 {
1284 struct gl_vertex_array_object *vao;
1285 struct gl_buffer_object *bufObj;
1286
1287 ASSERT_OUTSIDE_BEGIN_END(ctx);
1288
1289 if (!no_error) {
1290 /* The GL_ARB_direct_state_access specification says:
1291 *
1292 * "An INVALID_OPERATION error is generated by
1293 * VertexArrayElementBuffer if <vaobj> is not [compatibility profile:
1294 * zero or] the name of an existing vertex array object."
1295 */
1296 vao =_mesa_lookup_vao_err(ctx, vaobj, false, "glVertexArrayElementBuffer");
1297 if (!vao)
1298 return;
1299 } else {
1300 vao = _mesa_lookup_vao(ctx, vaobj);
1301 }
1302
1303 if (buffer != 0) {
1304 if (!no_error) {
1305 /* The GL_ARB_direct_state_access specification says:
1306 *
1307 * "An INVALID_OPERATION error is generated if <buffer> is not zero
1308 * or the name of an existing buffer object."
1309 */
1310 bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
1311 "glVertexArrayElementBuffer");
1312 } else {
1313 bufObj = _mesa_lookup_bufferobj(ctx, buffer);
1314 }
1315 } else {
1316 bufObj = ctx->Shared->NullBufferObj;
1317 }
1318
1319 if (bufObj) {
1320 bufObj->UsageHistory |= USAGE_ELEMENT_ARRAY_BUFFER;
1321 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj, bufObj);
1322 }
1323 }
1324
1325
1326 void GLAPIENTRY
1327 _mesa_VertexArrayElementBuffer_no_error(GLuint vaobj, GLuint buffer)
1328 {
1329 GET_CURRENT_CONTEXT(ctx);
1330 vertex_array_element_buffer(ctx, vaobj, buffer, true);
1331 }
1332
1333
1334 void GLAPIENTRY
1335 _mesa_VertexArrayElementBuffer(GLuint vaobj, GLuint buffer)
1336 {
1337 GET_CURRENT_CONTEXT(ctx);
1338 vertex_array_element_buffer(ctx, vaobj, buffer, false);
1339 }
1340
1341
1342 void GLAPIENTRY
1343 _mesa_GetVertexArrayiv(GLuint vaobj, GLenum pname, GLint *param)
1344 {
1345 GET_CURRENT_CONTEXT(ctx);
1346 struct gl_vertex_array_object *vao;
1347
1348 ASSERT_OUTSIDE_BEGIN_END(ctx);
1349
1350 /* The GL_ARB_direct_state_access specification says:
1351 *
1352 * "An INVALID_OPERATION error is generated if <vaobj> is not
1353 * [compatibility profile: zero or] the name of an existing
1354 * vertex array object."
1355 */
1356 vao = _mesa_lookup_vao_err(ctx, vaobj, false, "glGetVertexArrayiv");
1357 if (!vao)
1358 return;
1359
1360 /* The GL_ARB_direct_state_access specification says:
1361 *
1362 * "An INVALID_ENUM error is generated if <pname> is not
1363 * ELEMENT_ARRAY_BUFFER_BINDING."
1364 */
1365 if (pname != GL_ELEMENT_ARRAY_BUFFER_BINDING) {
1366 _mesa_error(ctx, GL_INVALID_ENUM,
1367 "glGetVertexArrayiv(pname != "
1368 "GL_ELEMENT_ARRAY_BUFFER_BINDING)");
1369 return;
1370 }
1371
1372 param[0] = vao->IndexBufferObj->Name;
1373 }