mesa: add EXT_dsa glCompressedMultiTex* functions
[mesa.git] / src / mesa / main / arrayobj.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 * (C) Copyright IBM Corporation 2006
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /**
29 * \file arrayobj.c
30 *
31 * Implementation of Vertex Array Objects (VAOs), from OpenGL 3.1+ /
32 * the GL_ARB_vertex_array_object extension.
33 *
34 * \todo
35 * The code in this file borrows a lot from bufferobj.c. There's a certain
36 * amount of cruft left over from that origin that may be unnecessary.
37 *
38 * \author Ian Romanick <idr@us.ibm.com>
39 * \author Brian Paul
40 */
41
42
43 #include "glheader.h"
44 #include "hash.h"
45 #include "image.h"
46 #include "imports.h"
47 #include "context.h"
48 #include "bufferobj.h"
49 #include "arrayobj.h"
50 #include "macros.h"
51 #include "mtypes.h"
52 #include "state.h"
53 #include "varray.h"
54 #include "util/bitscan.h"
55 #include "util/u_atomic.h"
56 #include "util/u_math.h"
57
58
59 const GLubyte
60 _mesa_vao_attribute_map[ATTRIBUTE_MAP_MODE_MAX][VERT_ATTRIB_MAX] =
61 {
62 /* ATTRIBUTE_MAP_MODE_IDENTITY
63 *
64 * Grab vertex processing attribute VERT_ATTRIB_POS from
65 * the VAO attribute VERT_ATTRIB_POS, and grab vertex processing
66 * attribute VERT_ATTRIB_GENERIC0 from the VAO attribute
67 * VERT_ATTRIB_GENERIC0.
68 */
69 {
70 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
71 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
72 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
73 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
74 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
75 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
76 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
77 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
78 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
79 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
80 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
81 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
82 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
83 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
84 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
85 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
86 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
87 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
88 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
89 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
90 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
91 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
92 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
93 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
94 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
95 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
96 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
97 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
98 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
99 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
100 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
101 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
102 },
103
104 /* ATTRIBUTE_MAP_MODE_POSITION
105 *
106 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
107 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
108 * VAO attribute VERT_ATTRIB_POS.
109 */
110 {
111 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
112 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
113 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
114 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
115 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
116 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
117 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
118 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
119 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
120 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
121 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
122 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
123 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
124 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
125 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
126 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
127 VERT_ATTRIB_POS, /* VERT_ATTRIB_GENERIC0 */
128 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
129 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
130 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
131 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
132 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
133 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
134 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
135 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
136 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
137 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
138 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
139 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
140 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
141 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
142 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
143 },
144
145 /* ATTRIBUTE_MAP_MODE_GENERIC0
146 *
147 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
148 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
149 * VAO attribute VERT_ATTRIB_GENERIC0.
150 */
151 {
152 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_POS */
153 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
154 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
155 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
156 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
157 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
158 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
159 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
160 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
161 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
162 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
163 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
164 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
165 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
166 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
167 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
168 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
169 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
170 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
171 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
172 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
173 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
174 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
175 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
176 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
177 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
178 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
179 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
180 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
181 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
182 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
183 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
184 }
185 };
186
187
188 /**
189 * Look up the array object for the given ID.
190 *
191 * \returns
192 * Either a pointer to the array object with the specified ID or \c NULL for
193 * a non-existent ID. The spec defines ID 0 as being technically
194 * non-existent.
195 */
196
197 struct gl_vertex_array_object *
198 _mesa_lookup_vao(struct gl_context *ctx, GLuint id)
199 {
200 /* The ARB_direct_state_access specification says:
201 *
202 * "<vaobj> is [compatibility profile:
203 * zero, indicating the default vertex array object, or]
204 * the name of the vertex array object."
205 */
206 if (id == 0) {
207 if (ctx->API == API_OPENGL_COMPAT)
208 return ctx->Array.DefaultVAO;
209
210 return NULL;
211 } else {
212 struct gl_vertex_array_object *vao;
213
214 if (ctx->Array.LastLookedUpVAO &&
215 ctx->Array.LastLookedUpVAO->Name == id) {
216 vao = ctx->Array.LastLookedUpVAO;
217 } else {
218 vao = (struct gl_vertex_array_object *)
219 _mesa_HashLookupLocked(ctx->Array.Objects, id);
220
221 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
222 }
223
224 return vao;
225 }
226 }
227
228
229 /**
230 * Looks up the array object for the given ID.
231 *
232 * Unlike _mesa_lookup_vao, this function generates a GL_INVALID_OPERATION
233 * error if the array object does not exist. It also returns the default
234 * array object when ctx is a compatibility profile context and id is zero.
235 */
236 struct gl_vertex_array_object *
237 _mesa_lookup_vao_err(struct gl_context *ctx, GLuint id, const char *caller)
238 {
239 /* The ARB_direct_state_access specification says:
240 *
241 * "<vaobj> is [compatibility profile:
242 * zero, indicating the default vertex array object, or]
243 * the name of the vertex array object."
244 */
245 if (id == 0) {
246 if (ctx->API == API_OPENGL_CORE) {
247 _mesa_error(ctx, GL_INVALID_OPERATION,
248 "%s(zero is not valid vaobj name in a core profile "
249 "context)", caller);
250 return NULL;
251 }
252
253 return ctx->Array.DefaultVAO;
254 } else {
255 struct gl_vertex_array_object *vao;
256
257 if (ctx->Array.LastLookedUpVAO &&
258 ctx->Array.LastLookedUpVAO->Name == id) {
259 vao = ctx->Array.LastLookedUpVAO;
260 } else {
261 vao = (struct gl_vertex_array_object *)
262 _mesa_HashLookupLocked(ctx->Array.Objects, id);
263
264 /* The ARB_direct_state_access specification says:
265 *
266 * "An INVALID_OPERATION error is generated if <vaobj> is not
267 * [compatibility profile: zero or] the name of an existing
268 * vertex array object."
269 */
270 if (!vao || !vao->EverBound) {
271 _mesa_error(ctx, GL_INVALID_OPERATION,
272 "%s(non-existent vaobj=%u)", caller, id);
273 return NULL;
274 }
275
276 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
277 }
278
279 return vao;
280 }
281 }
282
283
284 /**
285 * For all the vertex binding points in the array object, unbind any pointers
286 * to any buffer objects (VBOs).
287 * This is done just prior to array object destruction.
288 */
289 static void
290 unbind_array_object_vbos(struct gl_context *ctx, struct gl_vertex_array_object *obj)
291 {
292 GLuint i;
293
294 for (i = 0; i < ARRAY_SIZE(obj->BufferBinding); i++)
295 _mesa_reference_buffer_object(ctx, &obj->BufferBinding[i].BufferObj, NULL);
296 }
297
298
299 /**
300 * Allocate and initialize a new vertex array object.
301 */
302 struct gl_vertex_array_object *
303 _mesa_new_vao(struct gl_context *ctx, GLuint name)
304 {
305 struct gl_vertex_array_object *obj = CALLOC_STRUCT(gl_vertex_array_object);
306 if (obj)
307 _mesa_initialize_vao(ctx, obj, name);
308 return obj;
309 }
310
311
312 /**
313 * Delete an array object.
314 */
315 void
316 _mesa_delete_vao(struct gl_context *ctx, struct gl_vertex_array_object *obj)
317 {
318 unbind_array_object_vbos(ctx, obj);
319 _mesa_reference_buffer_object(ctx, &obj->IndexBufferObj, NULL);
320 free(obj->Label);
321 free(obj);
322 }
323
324
325 /**
326 * Set ptr to vao w/ reference counting.
327 * Note: this should only be called from the _mesa_reference_vao()
328 * inline function.
329 */
330 void
331 _mesa_reference_vao_(struct gl_context *ctx,
332 struct gl_vertex_array_object **ptr,
333 struct gl_vertex_array_object *vao)
334 {
335 assert(*ptr != vao);
336
337 if (*ptr) {
338 /* Unreference the old array object */
339 struct gl_vertex_array_object *oldObj = *ptr;
340
341 bool deleteFlag;
342 if (oldObj->SharedAndImmutable) {
343 deleteFlag = p_atomic_dec_zero(&oldObj->RefCount);
344 } else {
345 assert(oldObj->RefCount > 0);
346 oldObj->RefCount--;
347 deleteFlag = (oldObj->RefCount == 0);
348 }
349
350 if (deleteFlag)
351 _mesa_delete_vao(ctx, oldObj);
352
353 *ptr = NULL;
354 }
355 assert(!*ptr);
356
357 if (vao) {
358 /* reference new array object */
359 if (vao->SharedAndImmutable) {
360 p_atomic_inc(&vao->RefCount);
361 } else {
362 assert(vao->RefCount > 0);
363 vao->RefCount++;
364 }
365
366 *ptr = vao;
367 }
368 }
369
370
371 /**
372 * Initialize attributes of a vertex array within a vertex array object.
373 * \param vao the container vertex array object
374 * \param index which array in the VAO to initialize
375 * \param size number of components (1, 2, 3 or 4) per attribute
376 * \param type datatype of the attribute (GL_FLOAT, GL_INT, etc).
377 */
378 static void
379 init_array(struct gl_context *ctx,
380 struct gl_vertex_array_object *vao,
381 gl_vert_attrib index, GLint size, GLint type)
382 {
383 assert(index < ARRAY_SIZE(vao->VertexAttrib));
384 struct gl_array_attributes *array = &vao->VertexAttrib[index];
385 assert(index < ARRAY_SIZE(vao->BufferBinding));
386 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[index];
387
388 _mesa_set_vertex_format(&array->Format, size, type, GL_RGBA,
389 GL_FALSE, GL_FALSE, GL_FALSE);
390 array->Stride = 0;
391 array->Ptr = NULL;
392 array->RelativeOffset = 0;
393 ASSERT_BITFIELD_SIZE(struct gl_array_attributes, BufferBindingIndex,
394 VERT_ATTRIB_MAX - 1);
395 array->BufferBindingIndex = index;
396
397 binding->Offset = 0;
398 binding->Stride = array->Format._ElementSize;
399 binding->BufferObj = NULL;
400 binding->_BoundArrays = BITFIELD_BIT(index);
401
402 /* Vertex array buffers */
403 _mesa_reference_buffer_object(ctx, &binding->BufferObj,
404 ctx->Shared->NullBufferObj);
405 }
406
407
408 /**
409 * Initialize a gl_vertex_array_object's arrays.
410 */
411 void
412 _mesa_initialize_vao(struct gl_context *ctx,
413 struct gl_vertex_array_object *vao,
414 GLuint name)
415 {
416 GLuint i;
417
418 vao->Name = name;
419
420 vao->RefCount = 1;
421 vao->SharedAndImmutable = false;
422
423 /* Init the individual arrays */
424 for (i = 0; i < ARRAY_SIZE(vao->VertexAttrib); i++) {
425 switch (i) {
426 case VERT_ATTRIB_NORMAL:
427 init_array(ctx, vao, VERT_ATTRIB_NORMAL, 3, GL_FLOAT);
428 break;
429 case VERT_ATTRIB_COLOR1:
430 init_array(ctx, vao, VERT_ATTRIB_COLOR1, 3, GL_FLOAT);
431 break;
432 case VERT_ATTRIB_FOG:
433 init_array(ctx, vao, VERT_ATTRIB_FOG, 1, GL_FLOAT);
434 break;
435 case VERT_ATTRIB_COLOR_INDEX:
436 init_array(ctx, vao, VERT_ATTRIB_COLOR_INDEX, 1, GL_FLOAT);
437 break;
438 case VERT_ATTRIB_EDGEFLAG:
439 init_array(ctx, vao, VERT_ATTRIB_EDGEFLAG, 1, GL_UNSIGNED_BYTE);
440 break;
441 case VERT_ATTRIB_POINT_SIZE:
442 init_array(ctx, vao, VERT_ATTRIB_POINT_SIZE, 1, GL_FLOAT);
443 break;
444 default:
445 init_array(ctx, vao, i, 4, GL_FLOAT);
446 break;
447 }
448 }
449
450 vao->_AttributeMapMode = ATTRIBUTE_MAP_MODE_IDENTITY;
451
452 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj,
453 ctx->Shared->NullBufferObj);
454 }
455
456
457 /**
458 * Compute the offset range for the provided binding.
459 *
460 * This is a helper function for the below.
461 */
462 static void
463 compute_vbo_offset_range(const struct gl_vertex_array_object *vao,
464 const struct gl_vertex_buffer_binding *binding,
465 GLsizeiptr* min, GLsizeiptr* max)
466 {
467 /* The function is meant to work on VBO bindings */
468 assert(_mesa_is_bufferobj(binding->BufferObj));
469
470 /* Start with an inverted range of relative offsets. */
471 GLuint min_offset = ~(GLuint)0;
472 GLuint max_offset = 0;
473
474 /* We work on the unmapped originaly VAO array entries. */
475 GLbitfield mask = vao->Enabled & binding->_BoundArrays;
476 /* The binding should be active somehow, not to return inverted ranges */
477 assert(mask);
478 while (mask) {
479 const int i = u_bit_scan(&mask);
480 const GLuint off = vao->VertexAttrib[i].RelativeOffset;
481 min_offset = MIN2(off, min_offset);
482 max_offset = MAX2(off, max_offset);
483 }
484
485 *min = binding->Offset + (GLsizeiptr)min_offset;
486 *max = binding->Offset + (GLsizeiptr)max_offset;
487 }
488
489
490 /**
491 * Update the unique binding and pos/generic0 map tracking in the vao.
492 *
493 * The idea is to build up information in the vao so that a consuming
494 * backend can execute the following to set up buffer and vertex element
495 * information:
496 *
497 * const GLbitfield inputs_read = VERT_BIT_ALL; // backend vp inputs
498 *
499 * // Attribute data is in a VBO.
500 * GLbitfield vbomask = inputs_read & _mesa_draw_vbo_array_bits(ctx);
501 * while (vbomask) {
502 * // The attribute index to start pulling a binding
503 * const gl_vert_attrib i = ffs(vbomask) - 1;
504 * const struct gl_vertex_buffer_binding *const binding
505 * = _mesa_draw_buffer_binding(vao, i);
506 *
507 * <insert code to handle the vertex buffer object at binding>
508 *
509 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
510 * GLbitfield attrmask = vbomask & boundmask;
511 * assert(attrmask);
512 * // Walk attributes belonging to the binding
513 * while (attrmask) {
514 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
515 * const struct gl_array_attributes *const attrib
516 * = _mesa_draw_array_attrib(vao, attr);
517 *
518 * <insert code to handle the vertex element refering to the binding>
519 * }
520 * vbomask &= ~boundmask;
521 * }
522 *
523 * // Process user space buffers
524 * GLbitfield usermask = inputs_read & _mesa_draw_user_array_bits(ctx);
525 * while (usermask) {
526 * // The attribute index to start pulling a binding
527 * const gl_vert_attrib i = ffs(usermask) - 1;
528 * const struct gl_vertex_buffer_binding *const binding
529 * = _mesa_draw_buffer_binding(vao, i);
530 *
531 * <insert code to handle a set of interleaved user space arrays at binding>
532 *
533 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
534 * GLbitfield attrmask = usermask & boundmask;
535 * assert(attrmask);
536 * // Walk interleaved attributes with a common stride and instance divisor
537 * while (attrmask) {
538 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
539 * const struct gl_array_attributes *const attrib
540 * = _mesa_draw_array_attrib(vao, attr);
541 *
542 * <insert code to handle non vbo vertex arrays>
543 * }
544 * usermask &= ~boundmask;
545 * }
546 *
547 * // Process values that should have better been uniforms in the application
548 * GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
549 * while (curmask) {
550 * const gl_vert_attrib attr = u_bit_scan(&curmask);
551 * const struct gl_array_attributes *const attrib
552 * = _mesa_draw_current_attrib(ctx, attr);
553 *
554 * <insert code to handle current values>
555 * }
556 *
557 *
558 * Note that the scan below must not incoporate any context state.
559 * The rationale is that once a VAO is finalized it should not
560 * be touched anymore. That means, do not incorporate the
561 * gl_context::Array._DrawVAOEnabledAttribs bitmask into this scan.
562 * A backend driver may further reduce the handled vertex processing
563 * inputs based on their vertex shader inputs. But scanning for
564 * collapsable binding points to reduce relocs is done based on the
565 * enabled arrays.
566 * Also VAOs may be shared between contexts due to their use in dlists
567 * thus no context state should bleed into the VAO.
568 */
569 void
570 _mesa_update_vao_derived_arrays(struct gl_context *ctx,
571 struct gl_vertex_array_object *vao)
572 {
573 /* Make sure we do not run into problems with shared objects */
574 assert(!vao->SharedAndImmutable || vao->NewArrays == 0);
575
576 /* Limit used for common binding scanning below. */
577 const GLsizeiptr MaxRelativeOffset =
578 ctx->Const.MaxVertexAttribRelativeOffset;
579
580 /* The gl_vertex_array_object::_AttributeMapMode denotes the way
581 * VERT_ATTRIB_{POS,GENERIC0} mapping is done.
582 *
583 * This mapping is used to map between the OpenGL api visible
584 * VERT_ATTRIB_* arrays to mesa driver arrayinputs or shader inputs.
585 * The mapping only depends on the enabled bits of the
586 * VERT_ATTRIB_{POS,GENERIC0} arrays and is tracked in the VAO.
587 *
588 * This map needs to be applied when finally translating to the bitmasks
589 * as consumed by the driver backends. The duplicate scanning is here
590 * can as well be done in the OpenGL API numbering without this map.
591 */
592 const gl_attribute_map_mode mode = vao->_AttributeMapMode;
593 /* Enabled array bits. */
594 const GLbitfield enabled = vao->Enabled;
595 /* VBO array bits. */
596 const GLbitfield vbos = vao->VertexAttribBufferMask;
597
598 /* Compute and store effectively enabled and mapped vbo arrays */
599 vao->_EffEnabledVBO = _mesa_vao_enable_to_vp_inputs(mode, enabled & vbos);
600 /* Walk those enabled arrays that have a real vbo attached */
601 GLbitfield mask = enabled;
602 while (mask) {
603 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
604 const int i = ffs(mask) - 1;
605 /* The binding from the first to be processed attribute. */
606 const GLuint bindex = vao->VertexAttrib[i].BufferBindingIndex;
607 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
608
609 /* The scan goes different for user space arrays than vbos */
610 if (_mesa_is_bufferobj(binding->BufferObj)) {
611 /* The bound arrays. */
612 const GLbitfield bound = enabled & binding->_BoundArrays;
613
614 /* Start this current effective binding with the actual bound arrays */
615 GLbitfield eff_bound_arrays = bound;
616
617 /*
618 * If there is nothing left to scan just update the effective binding
619 * information. If the VAO is already only using a single binding point
620 * we end up here. So the overhead of this scan for an application
621 * carefully preparing the VAO for draw is low.
622 */
623
624 GLbitfield scanmask = mask & vbos & ~bound;
625 /* Is there something left to scan? */
626 if (scanmask == 0) {
627 /* Just update the back reference from the attrib to the binding and
628 * the effective offset.
629 */
630 GLbitfield attrmask = eff_bound_arrays;
631 while (attrmask) {
632 const int j = u_bit_scan(&attrmask);
633 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
634
635 /* Update the index into the common binding point and offset */
636 attrib2->_EffBufferBindingIndex = bindex;
637 attrib2->_EffRelativeOffset = attrib2->RelativeOffset;
638 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
639 }
640 /* Finally this is the set of effectively bound arrays with the
641 * original binding offset.
642 */
643 binding->_EffOffset = binding->Offset;
644 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
645 binding->_EffBoundArrays =
646 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
647
648 } else {
649 /* In the VBO case, scan for attribute/binding
650 * combinations with relative bindings in the range of
651 * [0, ctx->Const.MaxVertexAttribRelativeOffset].
652 * Note that this does also go beyond just interleaved arrays
653 * as long as they use the same VBO, binding parameters and the
654 * offsets stay within bounds that the backend still can handle.
655 */
656
657 GLsizeiptr min_offset, max_offset;
658 compute_vbo_offset_range(vao, binding, &min_offset, &max_offset);
659 assert(max_offset <= min_offset + MaxRelativeOffset);
660
661 /* Now scan. */
662 while (scanmask) {
663 /* Do not use u_bit_scan as we can walk multiple
664 * attrib arrays at once
665 */
666 const int j = ffs(scanmask) - 1;
667 const struct gl_array_attributes *attrib2 =
668 &vao->VertexAttrib[j];
669 const struct gl_vertex_buffer_binding *binding2 =
670 &vao->BufferBinding[attrib2->BufferBindingIndex];
671
672 /* Remove those attrib bits from the mask that are bound to the
673 * same effective binding point.
674 */
675 const GLbitfield bound2 = enabled & binding2->_BoundArrays;
676 scanmask &= ~bound2;
677
678 /* Check if we have an identical binding */
679 if (binding->Stride != binding2->Stride)
680 continue;
681 if (binding->InstanceDivisor != binding2->InstanceDivisor)
682 continue;
683 if (binding->BufferObj != binding2->BufferObj)
684 continue;
685 /* Check if we can fold both bindings into a common binding */
686 GLsizeiptr min_offset2, max_offset2;
687 compute_vbo_offset_range(vao, binding2,
688 &min_offset2, &max_offset2);
689 /* If the relative offset is within the limits ... */
690 if (min_offset + MaxRelativeOffset < max_offset2)
691 continue;
692 if (min_offset2 + MaxRelativeOffset < max_offset)
693 continue;
694 /* ... add this array to the effective binding */
695 eff_bound_arrays |= bound2;
696 min_offset = MIN2(min_offset, min_offset2);
697 max_offset = MAX2(max_offset, max_offset2);
698 assert(max_offset <= min_offset + MaxRelativeOffset);
699 }
700
701 /* Update the back reference from the attrib to the binding */
702 GLbitfield attrmask = eff_bound_arrays;
703 while (attrmask) {
704 const int j = u_bit_scan(&attrmask);
705 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
706 const struct gl_vertex_buffer_binding *binding2 =
707 &vao->BufferBinding[attrib2->BufferBindingIndex];
708
709 /* Update the index into the common binding point and offset */
710 attrib2->_EffBufferBindingIndex = bindex;
711 attrib2->_EffRelativeOffset =
712 binding2->Offset + attrib2->RelativeOffset - min_offset;
713 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
714 }
715 /* Finally this is the set of effectively bound arrays */
716 binding->_EffOffset = min_offset;
717 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
718 binding->_EffBoundArrays =
719 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
720 }
721
722 /* Mark all the effective bound arrays as processed. */
723 mask &= ~eff_bound_arrays;
724
725 } else {
726 /* Scanning of common bindings for user space arrays.
727 */
728
729 const struct gl_array_attributes *attrib = &vao->VertexAttrib[i];
730 const GLbitfield bound = VERT_BIT(i);
731
732 /* Note that user space array pointers can only happen using a one
733 * to one binding point to array mapping.
734 * The OpenGL 4.x/ARB_vertex_attrib_binding api does not support
735 * user space arrays collected at multiple binding points.
736 * The only provider of user space interleaved arrays with a single
737 * binding point is the mesa internal vbo module. But that one
738 * provides a perfect interleaved set of arrays.
739 *
740 * If this would not be true we would potentially get attribute arrays
741 * with user space pointers that may not lie within the
742 * MaxRelativeOffset range but still attached to a single binding.
743 * Then we would need to store the effective attribute and binding
744 * grouping information in a seperate array beside
745 * gl_array_attributes/gl_vertex_buffer_binding.
746 */
747 assert(util_bitcount(binding->_BoundArrays & vao->Enabled) == 1
748 || (vao->Enabled & ~binding->_BoundArrays) == 0);
749
750 /* Start this current effective binding with the array */
751 GLbitfield eff_bound_arrays = bound;
752
753 const GLubyte *ptr = attrib->Ptr;
754 unsigned vertex_end = attrib->Format._ElementSize;
755
756 /* Walk other user space arrays and see which are interleaved
757 * using the same binding parameters.
758 */
759 GLbitfield scanmask = mask & ~vbos & ~bound;
760 while (scanmask) {
761 const int j = u_bit_scan(&scanmask);
762 const struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
763 const struct gl_vertex_buffer_binding *binding2 =
764 &vao->BufferBinding[attrib2->BufferBindingIndex];
765
766 /* See the comment at the same assert above. */
767 assert(util_bitcount(binding2->_BoundArrays & vao->Enabled) == 1
768 || (vao->Enabled & ~binding->_BoundArrays) == 0);
769
770 /* Check if we have an identical binding */
771 if (binding->Stride != binding2->Stride)
772 continue;
773 if (binding->InstanceDivisor != binding2->InstanceDivisor)
774 continue;
775 if (ptr <= attrib2->Ptr) {
776 if (ptr + binding->Stride < attrib2->Ptr +
777 attrib2->Format._ElementSize)
778 continue;
779 unsigned end = attrib2->Ptr + attrib2->Format._ElementSize - ptr;
780 vertex_end = MAX2(vertex_end, end);
781 } else {
782 if (attrib2->Ptr + binding->Stride < ptr + vertex_end)
783 continue;
784 vertex_end += (GLsizei)(ptr - attrib2->Ptr);
785 ptr = attrib2->Ptr;
786 }
787
788 /* User space buffer object */
789 assert(!_mesa_is_bufferobj(binding2->BufferObj));
790
791 eff_bound_arrays |= VERT_BIT(j);
792 }
793
794 /* Update the back reference from the attrib to the binding */
795 GLbitfield attrmask = eff_bound_arrays;
796 while (attrmask) {
797 const int j = u_bit_scan(&attrmask);
798 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
799
800 /* Update the index into the common binding point and the offset */
801 attrib2->_EffBufferBindingIndex = bindex;
802 attrib2->_EffRelativeOffset = attrib2->Ptr - ptr;
803 assert(attrib2->_EffRelativeOffset <= binding->Stride);
804 }
805 /* Finally this is the set of effectively bound arrays */
806 binding->_EffOffset = (GLintptr)ptr;
807 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
808 binding->_EffBoundArrays =
809 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
810
811 /* Mark all the effective bound arrays as processed. */
812 mask &= ~eff_bound_arrays;
813 }
814 }
815
816 #ifndef NDEBUG
817 /* Make sure the above code works as expected. */
818 for (gl_vert_attrib attr = 0; attr < VERT_ATTRIB_MAX; ++attr) {
819 /* Query the original api defined attrib/binding information ... */
820 const unsigned char *const map =_mesa_vao_attribute_map[mode];
821 if (vao->Enabled & VERT_BIT(map[attr])) {
822 const struct gl_array_attributes *attrib =
823 &vao->VertexAttrib[map[attr]];
824 const struct gl_vertex_buffer_binding *binding =
825 &vao->BufferBinding[attrib->BufferBindingIndex];
826 /* ... and compare that with the computed attrib/binding */
827 const struct gl_vertex_buffer_binding *binding2 =
828 &vao->BufferBinding[attrib->_EffBufferBindingIndex];
829 assert(binding->Stride == binding2->Stride);
830 assert(binding->InstanceDivisor == binding2->InstanceDivisor);
831 assert(binding->BufferObj == binding2->BufferObj);
832 if (_mesa_is_bufferobj(binding->BufferObj)) {
833 assert(attrib->_EffRelativeOffset <= MaxRelativeOffset);
834 assert(binding->Offset + attrib->RelativeOffset ==
835 binding2->_EffOffset + attrib->_EffRelativeOffset);
836 } else {
837 assert(attrib->_EffRelativeOffset < binding->Stride);
838 assert((GLintptr)attrib->Ptr ==
839 binding2->_EffOffset + attrib->_EffRelativeOffset);
840 }
841 }
842 }
843 #endif
844 }
845
846
847 void
848 _mesa_set_vao_immutable(struct gl_context *ctx,
849 struct gl_vertex_array_object *vao)
850 {
851 _mesa_update_vao_derived_arrays(ctx, vao);
852 vao->NewArrays = 0;
853 vao->SharedAndImmutable = true;
854 }
855
856
857 bool
858 _mesa_all_varyings_in_vbos(const struct gl_vertex_array_object *vao)
859 {
860 /* Walk those enabled arrays that have the default vbo attached */
861 GLbitfield mask = vao->Enabled & ~vao->VertexAttribBufferMask;
862
863 while (mask) {
864 /* Do not use u_bit_scan64 as we can walk multiple
865 * attrib arrays at once
866 */
867 const int i = ffs(mask) - 1;
868 const struct gl_array_attributes *attrib_array =
869 &vao->VertexAttrib[i];
870 const struct gl_vertex_buffer_binding *buffer_binding =
871 &vao->BufferBinding[attrib_array->BufferBindingIndex];
872
873 /* We have already masked out vao->VertexAttribBufferMask */
874 assert(!_mesa_is_bufferobj(buffer_binding->BufferObj));
875
876 /* Bail out once we find the first non vbo with a non zero stride */
877 if (buffer_binding->Stride != 0)
878 return false;
879
880 /* Note that we cannot use the xor variant since the _BoundArray mask
881 * may contain array attributes that are bound but not enabled.
882 */
883 mask &= ~buffer_binding->_BoundArrays;
884 }
885
886 return true;
887 }
888
889 bool
890 _mesa_all_buffers_are_unmapped(const struct gl_vertex_array_object *vao)
891 {
892 /* Walk the enabled arrays that have a vbo attached */
893 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
894
895 while (mask) {
896 const int i = ffs(mask) - 1;
897 const struct gl_array_attributes *attrib_array =
898 &vao->VertexAttrib[i];
899 const struct gl_vertex_buffer_binding *buffer_binding =
900 &vao->BufferBinding[attrib_array->BufferBindingIndex];
901
902 /* We have already masked with vao->VertexAttribBufferMask */
903 assert(_mesa_is_bufferobj(buffer_binding->BufferObj));
904
905 /* Bail out once we find the first disallowed mapping */
906 if (_mesa_check_disallowed_mapping(buffer_binding->BufferObj))
907 return false;
908
909 /* We have handled everything that is bound to this buffer_binding. */
910 mask &= ~buffer_binding->_BoundArrays;
911 }
912
913 return true;
914 }
915
916
917 /**
918 * Map buffer objects used in attribute arrays.
919 */
920 void
921 _mesa_vao_map_arrays(struct gl_context *ctx, struct gl_vertex_array_object *vao,
922 GLbitfield access)
923 {
924 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
925 while (mask) {
926 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
927 const gl_vert_attrib attr = ffs(mask) - 1;
928 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
929 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
930 mask &= ~binding->_BoundArrays;
931
932 struct gl_buffer_object *bo = binding->BufferObj;
933 assert(_mesa_is_bufferobj(bo));
934 if (_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
935 continue;
936
937 ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
938 }
939 }
940
941
942 /**
943 * Map buffer objects used in the vao, attribute arrays and index buffer.
944 */
945 void
946 _mesa_vao_map(struct gl_context *ctx, struct gl_vertex_array_object *vao,
947 GLbitfield access)
948 {
949 struct gl_buffer_object *bo = vao->IndexBufferObj;
950
951 /* map the index buffer, if there is one, and not already mapped */
952 if (_mesa_is_bufferobj(bo) && !_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
953 ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
954
955 _mesa_vao_map_arrays(ctx, vao, access);
956 }
957
958
959 /**
960 * Unmap buffer objects used in attribute arrays.
961 */
962 void
963 _mesa_vao_unmap_arrays(struct gl_context *ctx,
964 struct gl_vertex_array_object *vao)
965 {
966 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
967 while (mask) {
968 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
969 const gl_vert_attrib attr = ffs(mask) - 1;
970 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
971 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
972 mask &= ~binding->_BoundArrays;
973
974 struct gl_buffer_object *bo = binding->BufferObj;
975 assert(_mesa_is_bufferobj(bo));
976 if (!_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
977 continue;
978
979 ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
980 }
981 }
982
983
984 /**
985 * Unmap buffer objects used in the vao, attribute arrays and index buffer.
986 */
987 void
988 _mesa_vao_unmap(struct gl_context *ctx, struct gl_vertex_array_object *vao)
989 {
990 struct gl_buffer_object *bo = vao->IndexBufferObj;
991
992 /* unmap the index buffer, if there is one, and still mapped */
993 if (_mesa_is_bufferobj(bo) && _mesa_bufferobj_mapped(bo, MAP_INTERNAL))
994 ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
995
996 _mesa_vao_unmap_arrays(ctx, vao);
997 }
998
999
1000 /**********************************************************************/
1001 /* API Functions */
1002 /**********************************************************************/
1003
1004
1005 /**
1006 * ARB version of glBindVertexArray()
1007 */
1008 static ALWAYS_INLINE void
1009 bind_vertex_array(struct gl_context *ctx, GLuint id, bool no_error)
1010 {
1011 struct gl_vertex_array_object *const oldObj = ctx->Array.VAO;
1012 struct gl_vertex_array_object *newObj = NULL;
1013
1014 assert(oldObj != NULL);
1015
1016 if (oldObj->Name == id)
1017 return; /* rebinding the same array object- no change */
1018
1019 /*
1020 * Get pointer to new array object (newObj)
1021 */
1022 if (id == 0) {
1023 /* The spec says there is no array object named 0, but we use
1024 * one internally because it simplifies things.
1025 */
1026 newObj = ctx->Array.DefaultVAO;
1027 }
1028 else {
1029 /* non-default array object */
1030 newObj = _mesa_lookup_vao(ctx, id);
1031 if (!no_error && !newObj) {
1032 _mesa_error(ctx, GL_INVALID_OPERATION,
1033 "glBindVertexArray(non-gen name)");
1034 return;
1035 }
1036
1037 newObj->EverBound = GL_TRUE;
1038 }
1039
1040 /* The _DrawArrays pointer is pointing at the VAO being unbound and
1041 * that VAO may be in the process of being deleted. If it's not going
1042 * to be deleted, this will have no effect, because the pointer needs
1043 * to be updated by the VBO module anyway.
1044 *
1045 * Before the VBO module can update the pointer, we have to set it
1046 * to NULL for drivers not to set up arrays which are not bound,
1047 * or to prevent a crash if the VAO being unbound is going to be
1048 * deleted.
1049 */
1050 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1051
1052 _mesa_reference_vao(ctx, &ctx->Array.VAO, newObj);
1053 }
1054
1055
1056 void GLAPIENTRY
1057 _mesa_BindVertexArray_no_error(GLuint id)
1058 {
1059 GET_CURRENT_CONTEXT(ctx);
1060 bind_vertex_array(ctx, id, true);
1061 }
1062
1063
1064 void GLAPIENTRY
1065 _mesa_BindVertexArray(GLuint id)
1066 {
1067 GET_CURRENT_CONTEXT(ctx);
1068 bind_vertex_array(ctx, id, false);
1069 }
1070
1071
1072 /**
1073 * Delete a set of array objects.
1074 *
1075 * \param n Number of array objects to delete.
1076 * \param ids Array of \c n array object IDs.
1077 */
1078 static void
1079 delete_vertex_arrays(struct gl_context *ctx, GLsizei n, const GLuint *ids)
1080 {
1081 GLsizei i;
1082
1083 for (i = 0; i < n; i++) {
1084 /* IDs equal to 0 should be silently ignored. */
1085 if (!ids[i])
1086 continue;
1087
1088 struct gl_vertex_array_object *obj = _mesa_lookup_vao(ctx, ids[i]);
1089
1090 if (obj) {
1091 assert(obj->Name == ids[i]);
1092
1093 /* If the array object is currently bound, the spec says "the binding
1094 * for that object reverts to zero and the default vertex array
1095 * becomes current."
1096 */
1097 if (obj == ctx->Array.VAO)
1098 _mesa_BindVertexArray_no_error(0);
1099
1100 /* The ID is immediately freed for re-use */
1101 _mesa_HashRemoveLocked(ctx->Array.Objects, obj->Name);
1102
1103 if (ctx->Array.LastLookedUpVAO == obj)
1104 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, NULL);
1105 if (ctx->Array._DrawVAO == obj)
1106 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1107
1108 /* Unreference the array object.
1109 * If refcount hits zero, the object will be deleted.
1110 */
1111 _mesa_reference_vao(ctx, &obj, NULL);
1112 }
1113 }
1114 }
1115
1116
1117 void GLAPIENTRY
1118 _mesa_DeleteVertexArrays_no_error(GLsizei n, const GLuint *ids)
1119 {
1120 GET_CURRENT_CONTEXT(ctx);
1121 delete_vertex_arrays(ctx, n, ids);
1122 }
1123
1124
1125 void GLAPIENTRY
1126 _mesa_DeleteVertexArrays(GLsizei n, const GLuint *ids)
1127 {
1128 GET_CURRENT_CONTEXT(ctx);
1129
1130 if (n < 0) {
1131 _mesa_error(ctx, GL_INVALID_VALUE, "glDeleteVertexArray(n)");
1132 return;
1133 }
1134
1135 delete_vertex_arrays(ctx, n, ids);
1136 }
1137
1138
1139 /**
1140 * Generate a set of unique array object IDs and store them in \c arrays.
1141 * Helper for _mesa_GenVertexArrays() and _mesa_CreateVertexArrays()
1142 * below.
1143 *
1144 * \param n Number of IDs to generate.
1145 * \param arrays Array of \c n locations to store the IDs.
1146 * \param create Indicates that the objects should also be created.
1147 * \param func The name of the GL entry point.
1148 */
1149 static void
1150 gen_vertex_arrays(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1151 bool create, const char *func)
1152 {
1153 GLuint first;
1154 GLint i;
1155
1156 if (!arrays)
1157 return;
1158
1159 first = _mesa_HashFindFreeKeyBlock(ctx->Array.Objects, n);
1160
1161 /* For the sake of simplicity we create the array objects in both
1162 * the Gen* and Create* cases. The only difference is the value of
1163 * EverBound, which is set to true in the Create* case.
1164 */
1165 for (i = 0; i < n; i++) {
1166 struct gl_vertex_array_object *obj;
1167 GLuint name = first + i;
1168
1169 obj = _mesa_new_vao(ctx, name);
1170 if (!obj) {
1171 _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
1172 return;
1173 }
1174 obj->EverBound = create;
1175 _mesa_HashInsertLocked(ctx->Array.Objects, obj->Name, obj);
1176 arrays[i] = first + i;
1177 }
1178 }
1179
1180
1181 static void
1182 gen_vertex_arrays_err(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1183 bool create, const char *func)
1184 {
1185 if (n < 0) {
1186 _mesa_error(ctx, GL_INVALID_VALUE, "%s(n < 0)", func);
1187 return;
1188 }
1189
1190 gen_vertex_arrays(ctx, n, arrays, create, func);
1191 }
1192
1193
1194 /**
1195 * ARB version of glGenVertexArrays()
1196 * All arrays will be required to live in VBOs.
1197 */
1198 void GLAPIENTRY
1199 _mesa_GenVertexArrays_no_error(GLsizei n, GLuint *arrays)
1200 {
1201 GET_CURRENT_CONTEXT(ctx);
1202 gen_vertex_arrays(ctx, n, arrays, false, "glGenVertexArrays");
1203 }
1204
1205
1206 void GLAPIENTRY
1207 _mesa_GenVertexArrays(GLsizei n, GLuint *arrays)
1208 {
1209 GET_CURRENT_CONTEXT(ctx);
1210 gen_vertex_arrays_err(ctx, n, arrays, false, "glGenVertexArrays");
1211 }
1212
1213
1214 /**
1215 * ARB_direct_state_access
1216 * Generates ID's and creates the array objects.
1217 */
1218 void GLAPIENTRY
1219 _mesa_CreateVertexArrays_no_error(GLsizei n, GLuint *arrays)
1220 {
1221 GET_CURRENT_CONTEXT(ctx);
1222 gen_vertex_arrays(ctx, n, arrays, true, "glCreateVertexArrays");
1223 }
1224
1225
1226 void GLAPIENTRY
1227 _mesa_CreateVertexArrays(GLsizei n, GLuint *arrays)
1228 {
1229 GET_CURRENT_CONTEXT(ctx);
1230 gen_vertex_arrays_err(ctx, n, arrays, true, "glCreateVertexArrays");
1231 }
1232
1233
1234 /**
1235 * Determine if ID is the name of an array object.
1236 *
1237 * \param id ID of the potential array object.
1238 * \return \c GL_TRUE if \c id is the name of a array object,
1239 * \c GL_FALSE otherwise.
1240 */
1241 GLboolean GLAPIENTRY
1242 _mesa_IsVertexArray( GLuint id )
1243 {
1244 struct gl_vertex_array_object * obj;
1245 GET_CURRENT_CONTEXT(ctx);
1246 ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
1247
1248 obj = _mesa_lookup_vao(ctx, id);
1249
1250 return obj != NULL && obj->EverBound;
1251 }
1252
1253
1254 /**
1255 * Sets the element array buffer binding of a vertex array object.
1256 *
1257 * This is the ARB_direct_state_access equivalent of
1258 * glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer).
1259 */
1260 static ALWAYS_INLINE void
1261 vertex_array_element_buffer(struct gl_context *ctx, GLuint vaobj, GLuint buffer,
1262 bool no_error)
1263 {
1264 struct gl_vertex_array_object *vao;
1265 struct gl_buffer_object *bufObj;
1266
1267 ASSERT_OUTSIDE_BEGIN_END(ctx);
1268
1269 if (!no_error) {
1270 /* The GL_ARB_direct_state_access specification says:
1271 *
1272 * "An INVALID_OPERATION error is generated by
1273 * VertexArrayElementBuffer if <vaobj> is not [compatibility profile:
1274 * zero or] the name of an existing vertex array object."
1275 */
1276 vao =_mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayElementBuffer");
1277 if (!vao)
1278 return;
1279 } else {
1280 vao = _mesa_lookup_vao(ctx, vaobj);
1281 }
1282
1283 if (buffer != 0) {
1284 if (!no_error) {
1285 /* The GL_ARB_direct_state_access specification says:
1286 *
1287 * "An INVALID_OPERATION error is generated if <buffer> is not zero
1288 * or the name of an existing buffer object."
1289 */
1290 bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
1291 "glVertexArrayElementBuffer");
1292 } else {
1293 bufObj = _mesa_lookup_bufferobj(ctx, buffer);
1294 }
1295 } else {
1296 bufObj = ctx->Shared->NullBufferObj;
1297 }
1298
1299 if (bufObj) {
1300 bufObj->UsageHistory |= USAGE_ELEMENT_ARRAY_BUFFER;
1301 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj, bufObj);
1302 }
1303 }
1304
1305
1306 void GLAPIENTRY
1307 _mesa_VertexArrayElementBuffer_no_error(GLuint vaobj, GLuint buffer)
1308 {
1309 GET_CURRENT_CONTEXT(ctx);
1310 vertex_array_element_buffer(ctx, vaobj, buffer, true);
1311 }
1312
1313
1314 void GLAPIENTRY
1315 _mesa_VertexArrayElementBuffer(GLuint vaobj, GLuint buffer)
1316 {
1317 GET_CURRENT_CONTEXT(ctx);
1318 vertex_array_element_buffer(ctx, vaobj, buffer, false);
1319 }
1320
1321
1322 void GLAPIENTRY
1323 _mesa_GetVertexArrayiv(GLuint vaobj, GLenum pname, GLint *param)
1324 {
1325 GET_CURRENT_CONTEXT(ctx);
1326 struct gl_vertex_array_object *vao;
1327
1328 ASSERT_OUTSIDE_BEGIN_END(ctx);
1329
1330 /* The GL_ARB_direct_state_access specification says:
1331 *
1332 * "An INVALID_OPERATION error is generated if <vaobj> is not
1333 * [compatibility profile: zero or] the name of an existing
1334 * vertex array object."
1335 */
1336 vao =_mesa_lookup_vao_err(ctx, vaobj, "glGetVertexArrayiv");
1337 if (!vao)
1338 return;
1339
1340 /* The GL_ARB_direct_state_access specification says:
1341 *
1342 * "An INVALID_ENUM error is generated if <pname> is not
1343 * ELEMENT_ARRAY_BUFFER_BINDING."
1344 */
1345 if (pname != GL_ELEMENT_ARRAY_BUFFER_BINDING) {
1346 _mesa_error(ctx, GL_INVALID_ENUM,
1347 "glGetVertexArrayiv(pname != "
1348 "GL_ELEMENT_ARRAY_BUFFER_BINDING)");
1349 return;
1350 }
1351
1352 param[0] = vao->IndexBufferObj->Name;
1353 }