Replace uses of _mesa_bitcount with util_bitcount
[mesa.git] / src / mesa / main / arrayobj.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 * (C) Copyright IBM Corporation 2006
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /**
29 * \file arrayobj.c
30 *
31 * Implementation of Vertex Array Objects (VAOs), from OpenGL 3.1+ /
32 * the GL_ARB_vertex_array_object extension.
33 *
34 * \todo
35 * The code in this file borrows a lot from bufferobj.c. There's a certain
36 * amount of cruft left over from that origin that may be unnecessary.
37 *
38 * \author Ian Romanick <idr@us.ibm.com>
39 * \author Brian Paul
40 */
41
42
43 #include "glheader.h"
44 #include "hash.h"
45 #include "image.h"
46 #include "imports.h"
47 #include "context.h"
48 #include "bufferobj.h"
49 #include "arrayobj.h"
50 #include "macros.h"
51 #include "mtypes.h"
52 #include "state.h"
53 #include "varray.h"
54 #include "util/bitscan.h"
55 #include "util/u_atomic.h"
56 #include "util/u_math.h"
57
58
59 const GLubyte
60 _mesa_vao_attribute_map[ATTRIBUTE_MAP_MODE_MAX][VERT_ATTRIB_MAX] =
61 {
62 /* ATTRIBUTE_MAP_MODE_IDENTITY
63 *
64 * Grab vertex processing attribute VERT_ATTRIB_POS from
65 * the VAO attribute VERT_ATTRIB_POS, and grab vertex processing
66 * attribute VERT_ATTRIB_GENERIC0 from the VAO attribute
67 * VERT_ATTRIB_GENERIC0.
68 */
69 {
70 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
71 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
72 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
73 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
74 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
75 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
76 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
77 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
78 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
79 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
80 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
81 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
82 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
83 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
84 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
85 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
86 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
87 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
88 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
89 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
90 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
91 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
92 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
93 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
94 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
95 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
96 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
97 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
98 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
99 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
100 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
101 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
102 },
103
104 /* ATTRIBUTE_MAP_MODE_POSITION
105 *
106 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
107 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
108 * VAO attribute VERT_ATTRIB_POS.
109 */
110 {
111 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
112 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
113 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
114 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
115 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
116 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
117 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
118 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
119 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
120 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
121 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
122 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
123 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
124 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
125 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
126 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
127 VERT_ATTRIB_POS, /* VERT_ATTRIB_GENERIC0 */
128 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
129 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
130 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
131 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
132 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
133 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
134 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
135 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
136 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
137 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
138 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
139 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
140 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
141 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
142 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
143 },
144
145 /* ATTRIBUTE_MAP_MODE_GENERIC0
146 *
147 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
148 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
149 * VAO attribute VERT_ATTRIB_GENERIC0.
150 */
151 {
152 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_POS */
153 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
154 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
155 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
156 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
157 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
158 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
159 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
160 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
161 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
162 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
163 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
164 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
165 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
166 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
167 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
168 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
169 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
170 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
171 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
172 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
173 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
174 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
175 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
176 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
177 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
178 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
179 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
180 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
181 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
182 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
183 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
184 }
185 };
186
187
188 /**
189 * Look up the array object for the given ID.
190 *
191 * \returns
192 * Either a pointer to the array object with the specified ID or \c NULL for
193 * a non-existent ID. The spec defines ID 0 as being technically
194 * non-existent.
195 */
196
197 struct gl_vertex_array_object *
198 _mesa_lookup_vao(struct gl_context *ctx, GLuint id)
199 {
200 /* The ARB_direct_state_access specification says:
201 *
202 * "<vaobj> is [compatibility profile:
203 * zero, indicating the default vertex array object, or]
204 * the name of the vertex array object."
205 */
206 if (id == 0) {
207 if (ctx->API == API_OPENGL_COMPAT)
208 return ctx->Array.DefaultVAO;
209
210 return NULL;
211 } else {
212 struct gl_vertex_array_object *vao;
213
214 if (ctx->Array.LastLookedUpVAO &&
215 ctx->Array.LastLookedUpVAO->Name == id) {
216 vao = ctx->Array.LastLookedUpVAO;
217 } else {
218 vao = (struct gl_vertex_array_object *)
219 _mesa_HashLookupLocked(ctx->Array.Objects, id);
220
221 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
222 }
223
224 return vao;
225 }
226 }
227
228
229 /**
230 * Looks up the array object for the given ID.
231 *
232 * Unlike _mesa_lookup_vao, this function generates a GL_INVALID_OPERATION
233 * error if the array object does not exist. It also returns the default
234 * array object when ctx is a compatibility profile context and id is zero.
235 */
236 struct gl_vertex_array_object *
237 _mesa_lookup_vao_err(struct gl_context *ctx, GLuint id, const char *caller)
238 {
239 /* The ARB_direct_state_access specification says:
240 *
241 * "<vaobj> is [compatibility profile:
242 * zero, indicating the default vertex array object, or]
243 * the name of the vertex array object."
244 */
245 if (id == 0) {
246 if (ctx->API == API_OPENGL_CORE) {
247 _mesa_error(ctx, GL_INVALID_OPERATION,
248 "%s(zero is not valid vaobj name in a core profile "
249 "context)", caller);
250 return NULL;
251 }
252
253 return ctx->Array.DefaultVAO;
254 } else {
255 struct gl_vertex_array_object *vao;
256
257 if (ctx->Array.LastLookedUpVAO &&
258 ctx->Array.LastLookedUpVAO->Name == id) {
259 vao = ctx->Array.LastLookedUpVAO;
260 } else {
261 vao = (struct gl_vertex_array_object *)
262 _mesa_HashLookupLocked(ctx->Array.Objects, id);
263
264 /* The ARB_direct_state_access specification says:
265 *
266 * "An INVALID_OPERATION error is generated if <vaobj> is not
267 * [compatibility profile: zero or] the name of an existing
268 * vertex array object."
269 */
270 if (!vao || !vao->EverBound) {
271 _mesa_error(ctx, GL_INVALID_OPERATION,
272 "%s(non-existent vaobj=%u)", caller, id);
273 return NULL;
274 }
275
276 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
277 }
278
279 return vao;
280 }
281 }
282
283
284 /**
285 * For all the vertex binding points in the array object, unbind any pointers
286 * to any buffer objects (VBOs).
287 * This is done just prior to array object destruction.
288 */
289 static void
290 unbind_array_object_vbos(struct gl_context *ctx, struct gl_vertex_array_object *obj)
291 {
292 GLuint i;
293
294 for (i = 0; i < ARRAY_SIZE(obj->BufferBinding); i++)
295 _mesa_reference_buffer_object(ctx, &obj->BufferBinding[i].BufferObj, NULL);
296 }
297
298
299 /**
300 * Allocate and initialize a new vertex array object.
301 */
302 struct gl_vertex_array_object *
303 _mesa_new_vao(struct gl_context *ctx, GLuint name)
304 {
305 struct gl_vertex_array_object *obj = CALLOC_STRUCT(gl_vertex_array_object);
306 if (obj)
307 _mesa_initialize_vao(ctx, obj, name);
308 return obj;
309 }
310
311
312 /**
313 * Delete an array object.
314 */
315 void
316 _mesa_delete_vao(struct gl_context *ctx, struct gl_vertex_array_object *obj)
317 {
318 unbind_array_object_vbos(ctx, obj);
319 _mesa_reference_buffer_object(ctx, &obj->IndexBufferObj, NULL);
320 free(obj->Label);
321 free(obj);
322 }
323
324
325 /**
326 * Set ptr to vao w/ reference counting.
327 * Note: this should only be called from the _mesa_reference_vao()
328 * inline function.
329 */
330 void
331 _mesa_reference_vao_(struct gl_context *ctx,
332 struct gl_vertex_array_object **ptr,
333 struct gl_vertex_array_object *vao)
334 {
335 assert(*ptr != vao);
336
337 if (*ptr) {
338 /* Unreference the old array object */
339 struct gl_vertex_array_object *oldObj = *ptr;
340
341 bool deleteFlag;
342 if (oldObj->SharedAndImmutable) {
343 deleteFlag = p_atomic_dec_zero(&oldObj->RefCount);
344 } else {
345 assert(oldObj->RefCount > 0);
346 oldObj->RefCount--;
347 deleteFlag = (oldObj->RefCount == 0);
348 }
349
350 if (deleteFlag)
351 _mesa_delete_vao(ctx, oldObj);
352
353 *ptr = NULL;
354 }
355 assert(!*ptr);
356
357 if (vao) {
358 /* reference new array object */
359 if (vao->SharedAndImmutable) {
360 p_atomic_inc(&vao->RefCount);
361 } else {
362 assert(vao->RefCount > 0);
363 vao->RefCount++;
364 }
365
366 *ptr = vao;
367 }
368 }
369
370
371 /**
372 * Initialize attributes of a vertex array within a vertex array object.
373 * \param vao the container vertex array object
374 * \param index which array in the VAO to initialize
375 * \param size number of components (1, 2, 3 or 4) per attribute
376 * \param type datatype of the attribute (GL_FLOAT, GL_INT, etc).
377 */
378 static void
379 init_array(struct gl_context *ctx,
380 struct gl_vertex_array_object *vao,
381 gl_vert_attrib index, GLint size, GLint type)
382 {
383 assert(index < ARRAY_SIZE(vao->VertexAttrib));
384 struct gl_array_attributes *array = &vao->VertexAttrib[index];
385 assert(index < ARRAY_SIZE(vao->BufferBinding));
386 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[index];
387
388 array->Size = size;
389 array->Type = type;
390 array->Format = GL_RGBA; /* only significant for GL_EXT_vertex_array_bgra */
391 array->Stride = 0;
392 array->Ptr = NULL;
393 array->RelativeOffset = 0;
394 array->Enabled = GL_FALSE;
395 array->Normalized = GL_FALSE;
396 array->Integer = GL_FALSE;
397 array->Doubles = GL_FALSE;
398 array->_ElementSize = size * _mesa_sizeof_type(type);
399 ASSERT_BITFIELD_SIZE(struct gl_array_attributes, BufferBindingIndex,
400 VERT_ATTRIB_MAX - 1);
401 array->BufferBindingIndex = index;
402
403 binding->Offset = 0;
404 binding->Stride = array->_ElementSize;
405 binding->BufferObj = NULL;
406 binding->_BoundArrays = BITFIELD_BIT(index);
407
408 /* Vertex array buffers */
409 _mesa_reference_buffer_object(ctx, &binding->BufferObj,
410 ctx->Shared->NullBufferObj);
411 }
412
413
414 /**
415 * Initialize a gl_vertex_array_object's arrays.
416 */
417 void
418 _mesa_initialize_vao(struct gl_context *ctx,
419 struct gl_vertex_array_object *vao,
420 GLuint name)
421 {
422 GLuint i;
423
424 vao->Name = name;
425
426 vao->RefCount = 1;
427 vao->SharedAndImmutable = false;
428
429 /* Init the individual arrays */
430 for (i = 0; i < ARRAY_SIZE(vao->VertexAttrib); i++) {
431 switch (i) {
432 case VERT_ATTRIB_NORMAL:
433 init_array(ctx, vao, VERT_ATTRIB_NORMAL, 3, GL_FLOAT);
434 break;
435 case VERT_ATTRIB_COLOR1:
436 init_array(ctx, vao, VERT_ATTRIB_COLOR1, 3, GL_FLOAT);
437 break;
438 case VERT_ATTRIB_FOG:
439 init_array(ctx, vao, VERT_ATTRIB_FOG, 1, GL_FLOAT);
440 break;
441 case VERT_ATTRIB_COLOR_INDEX:
442 init_array(ctx, vao, VERT_ATTRIB_COLOR_INDEX, 1, GL_FLOAT);
443 break;
444 case VERT_ATTRIB_EDGEFLAG:
445 init_array(ctx, vao, VERT_ATTRIB_EDGEFLAG, 1, GL_BOOL);
446 break;
447 case VERT_ATTRIB_POINT_SIZE:
448 init_array(ctx, vao, VERT_ATTRIB_POINT_SIZE, 1, GL_FLOAT);
449 break;
450 default:
451 init_array(ctx, vao, i, 4, GL_FLOAT);
452 break;
453 }
454 }
455
456 vao->_AttributeMapMode = ATTRIBUTE_MAP_MODE_IDENTITY;
457
458 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj,
459 ctx->Shared->NullBufferObj);
460 }
461
462
463 /**
464 * Compute the offset range for the provided binding.
465 *
466 * This is a helper function for the below.
467 */
468 static void
469 compute_vbo_offset_range(const struct gl_vertex_array_object *vao,
470 const struct gl_vertex_buffer_binding *binding,
471 GLsizeiptr* min, GLsizeiptr* max)
472 {
473 /* The function is meant to work on VBO bindings */
474 assert(_mesa_is_bufferobj(binding->BufferObj));
475
476 /* Start with an inverted range of relative offsets. */
477 GLuint min_offset = ~(GLuint)0;
478 GLuint max_offset = 0;
479
480 /* We work on the unmapped originaly VAO array entries. */
481 GLbitfield mask = vao->_Enabled & binding->_BoundArrays;
482 /* The binding should be active somehow, not to return inverted ranges */
483 assert(mask);
484 while (mask) {
485 const int i = u_bit_scan(&mask);
486 const GLuint off = vao->VertexAttrib[i].RelativeOffset;
487 min_offset = MIN2(off, min_offset);
488 max_offset = MAX2(off, max_offset);
489 }
490
491 *min = binding->Offset + (GLsizeiptr)min_offset;
492 *max = binding->Offset + (GLsizeiptr)max_offset;
493 }
494
495
496 /**
497 * Update the unique binding and pos/generic0 map tracking in the vao.
498 *
499 * The idea is to build up information in the vao so that a consuming
500 * backend can execute the following to set up buffer and vertex element
501 * information:
502 *
503 * const GLbitfield inputs_read = VERT_BIT_ALL; // backend vp inputs
504 *
505 * // Attribute data is in a VBO.
506 * GLbitfield vbomask = inputs_read & _mesa_draw_vbo_array_bits(ctx);
507 * while (vbomask) {
508 * // The attribute index to start pulling a binding
509 * const gl_vert_attrib i = ffs(vbomask) - 1;
510 * const struct gl_vertex_buffer_binding *const binding
511 * = _mesa_draw_buffer_binding(vao, i);
512 *
513 * <insert code to handle the vertex buffer object at binding>
514 *
515 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
516 * GLbitfield attrmask = vbomask & boundmask;
517 * assert(attrmask);
518 * // Walk attributes belonging to the binding
519 * while (attrmask) {
520 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
521 * const struct gl_array_attributes *const attrib
522 * = _mesa_draw_array_attrib(vao, attr);
523 *
524 * <insert code to handle the vertex element refering to the binding>
525 * }
526 * vbomask &= ~boundmask;
527 * }
528 *
529 * // Process user space buffers
530 * GLbitfield usermask = inputs_read & _mesa_draw_user_array_bits(ctx);
531 * while (usermask) {
532 * // The attribute index to start pulling a binding
533 * const gl_vert_attrib i = ffs(usermask) - 1;
534 * const struct gl_vertex_buffer_binding *const binding
535 * = _mesa_draw_buffer_binding(vao, i);
536 *
537 * <insert code to handle a set of interleaved user space arrays at binding>
538 *
539 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
540 * GLbitfield attrmask = usermask & boundmask;
541 * assert(attrmask);
542 * // Walk interleaved attributes with a common stride and instance divisor
543 * while (attrmask) {
544 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
545 * const struct gl_array_attributes *const attrib
546 * = _mesa_draw_array_attrib(vao, attr);
547 *
548 * <insert code to handle non vbo vertex arrays>
549 * }
550 * usermask &= ~boundmask;
551 * }
552 *
553 * // Process values that should have better been uniforms in the application
554 * GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
555 * while (curmask) {
556 * const gl_vert_attrib attr = u_bit_scan(&curmask);
557 * const struct gl_array_attributes *const attrib
558 * = _mesa_draw_current_attrib(ctx, attr);
559 *
560 * <insert code to handle current values>
561 * }
562 *
563 *
564 * Note that the scan below must not incoporate any context state.
565 * The rationale is that once a VAO is finalized it should not
566 * be touched anymore. That means, do not incorporate the
567 * gl_context::Array._DrawVAOEnabledAttribs bitmask into this scan.
568 * A backend driver may further reduce the handled vertex processing
569 * inputs based on their vertex shader inputs. But scanning for
570 * collapsable binding points to reduce relocs is done based on the
571 * enabled arrays.
572 * Also VAOs may be shared between contexts due to their use in dlists
573 * thus no context state should bleed into the VAO.
574 */
575 void
576 _mesa_update_vao_derived_arrays(struct gl_context *ctx,
577 struct gl_vertex_array_object *vao)
578 {
579 /* Make sure we do not run into problems with shared objects */
580 assert(!vao->SharedAndImmutable || vao->NewArrays == 0);
581
582 /* Limit used for common binding scanning below. */
583 const GLsizeiptr MaxRelativeOffset =
584 ctx->Const.MaxVertexAttribRelativeOffset;
585
586 /* The gl_vertex_array_object::_AttributeMapMode denotes the way
587 * VERT_ATTRIB_{POS,GENERIC0} mapping is done.
588 *
589 * This mapping is used to map between the OpenGL api visible
590 * VERT_ATTRIB_* arrays to mesa driver arrayinputs or shader inputs.
591 * The mapping only depends on the enabled bits of the
592 * VERT_ATTRIB_{POS,GENERIC0} arrays and is tracked in the VAO.
593 *
594 * This map needs to be applied when finally translating to the bitmasks
595 * as consumed by the driver backends. The duplicate scanning is here
596 * can as well be done in the OpenGL API numbering without this map.
597 */
598 const gl_attribute_map_mode mode = vao->_AttributeMapMode;
599 /* Enabled array bits. */
600 const GLbitfield enabled = vao->_Enabled;
601 /* VBO array bits. */
602 const GLbitfield vbos = vao->VertexAttribBufferMask;
603
604 /* Compute and store effectively enabled and mapped vbo arrays */
605 vao->_EffEnabledVBO = _mesa_vao_enable_to_vp_inputs(mode, enabled & vbos);
606 /* Walk those enabled arrays that have a real vbo attached */
607 GLbitfield mask = enabled;
608 while (mask) {
609 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
610 const int i = ffs(mask) - 1;
611 /* The binding from the first to be processed attribute. */
612 const GLuint bindex = vao->VertexAttrib[i].BufferBindingIndex;
613 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
614
615 /* The scan goes different for user space arrays than vbos */
616 if (_mesa_is_bufferobj(binding->BufferObj)) {
617 /* The bound arrays. */
618 const GLbitfield bound = enabled & binding->_BoundArrays;
619
620 /* Start this current effective binding with the actual bound arrays */
621 GLbitfield eff_bound_arrays = bound;
622
623 /*
624 * If there is nothing left to scan just update the effective binding
625 * information. If the VAO is already only using a single binding point
626 * we end up here. So the overhead of this scan for an application
627 * carefully preparing the VAO for draw is low.
628 */
629
630 GLbitfield scanmask = mask & vbos & ~bound;
631 /* Is there something left to scan? */
632 if (scanmask == 0) {
633 /* Just update the back reference from the attrib to the binding and
634 * the effective offset.
635 */
636 GLbitfield attrmask = eff_bound_arrays;
637 while (attrmask) {
638 const int j = u_bit_scan(&attrmask);
639 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
640
641 /* Update the index into the common binding point and offset */
642 attrib2->_EffBufferBindingIndex = bindex;
643 attrib2->_EffRelativeOffset = attrib2->RelativeOffset;
644 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
645
646 /* Only enabled arrays shall appear in the unique bindings */
647 assert(attrib2->Enabled);
648 }
649 /* Finally this is the set of effectively bound arrays with the
650 * original binding offset.
651 */
652 binding->_EffOffset = binding->Offset;
653 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
654 binding->_EffBoundArrays =
655 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
656
657 } else {
658 /* In the VBO case, scan for attribute/binding
659 * combinations with relative bindings in the range of
660 * [0, ctx->Const.MaxVertexAttribRelativeOffset].
661 * Note that this does also go beyond just interleaved arrays
662 * as long as they use the same VBO, binding parameters and the
663 * offsets stay within bounds that the backend still can handle.
664 */
665
666 GLsizeiptr min_offset, max_offset;
667 compute_vbo_offset_range(vao, binding, &min_offset, &max_offset);
668 assert(max_offset <= min_offset + MaxRelativeOffset);
669
670 /* Now scan. */
671 while (scanmask) {
672 /* Do not use u_bit_scan as we can walk multiple
673 * attrib arrays at once
674 */
675 const int j = ffs(scanmask) - 1;
676 const struct gl_array_attributes *attrib2 =
677 &vao->VertexAttrib[j];
678 const struct gl_vertex_buffer_binding *binding2 =
679 &vao->BufferBinding[attrib2->BufferBindingIndex];
680
681 /* Remove those attrib bits from the mask that are bound to the
682 * same effective binding point.
683 */
684 const GLbitfield bound2 = enabled & binding2->_BoundArrays;
685 scanmask &= ~bound2;
686
687 /* Check if we have an identical binding */
688 if (binding->Stride != binding2->Stride)
689 continue;
690 if (binding->InstanceDivisor != binding2->InstanceDivisor)
691 continue;
692 if (binding->BufferObj != binding2->BufferObj)
693 continue;
694 /* Check if we can fold both bindings into a common binding */
695 GLsizeiptr min_offset2, max_offset2;
696 compute_vbo_offset_range(vao, binding2,
697 &min_offset2, &max_offset2);
698 /* If the relative offset is within the limits ... */
699 if (min_offset + MaxRelativeOffset < max_offset2)
700 continue;
701 if (min_offset2 + MaxRelativeOffset < max_offset)
702 continue;
703 /* ... add this array to the effective binding */
704 eff_bound_arrays |= bound2;
705 min_offset = MIN2(min_offset, min_offset2);
706 max_offset = MAX2(max_offset, max_offset2);
707 assert(max_offset <= min_offset + MaxRelativeOffset);
708 }
709
710 /* Update the back reference from the attrib to the binding */
711 GLbitfield attrmask = eff_bound_arrays;
712 while (attrmask) {
713 const int j = u_bit_scan(&attrmask);
714 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
715 const struct gl_vertex_buffer_binding *binding2 =
716 &vao->BufferBinding[attrib2->BufferBindingIndex];
717
718 /* Update the index into the common binding point and offset */
719 attrib2->_EffBufferBindingIndex = bindex;
720 attrib2->_EffRelativeOffset =
721 binding2->Offset + attrib2->RelativeOffset - min_offset;
722 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
723
724 /* Only enabled arrays shall appear in the unique bindings */
725 assert(attrib2->Enabled);
726 }
727 /* Finally this is the set of effectively bound arrays */
728 binding->_EffOffset = min_offset;
729 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
730 binding->_EffBoundArrays =
731 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
732 }
733
734 /* Mark all the effective bound arrays as processed. */
735 mask &= ~eff_bound_arrays;
736
737 } else {
738 /* Scanning of common bindings for user space arrays.
739 */
740
741 const struct gl_array_attributes *attrib = &vao->VertexAttrib[i];
742 const GLbitfield bound = VERT_BIT(i);
743
744 /* Note that user space array pointers can only happen using a one
745 * to one binding point to array mapping.
746 * The OpenGL 4.x/ARB_vertex_attrib_binding api does not support
747 * user space arrays collected at multiple binding points.
748 * The only provider of user space interleaved arrays with a single
749 * binding point is the mesa internal vbo module. But that one
750 * provides a perfect interleaved set of arrays.
751 *
752 * If this would not be true we would potentially get attribute arrays
753 * with user space pointers that may not lie within the
754 * MaxRelativeOffset range but still attached to a single binding.
755 * Then we would need to store the effective attribute and binding
756 * grouping information in a seperate array beside
757 * gl_array_attributes/gl_vertex_buffer_binding.
758 */
759 assert(util_bitcount(binding->_BoundArrays & vao->_Enabled) == 1
760 || (vao->_Enabled & ~binding->_BoundArrays) == 0);
761
762 /* Start this current effective binding with the array */
763 GLbitfield eff_bound_arrays = bound;
764
765 const GLubyte *ptr = attrib->Ptr;
766 unsigned vertex_end = attrib->_ElementSize;
767
768 /* Walk other user space arrays and see which are interleaved
769 * using the same binding parameters.
770 */
771 GLbitfield scanmask = mask & ~vbos & ~bound;
772 while (scanmask) {
773 const int j = u_bit_scan(&scanmask);
774 const struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
775 const struct gl_vertex_buffer_binding *binding2 =
776 &vao->BufferBinding[attrib2->BufferBindingIndex];
777
778 /* See the comment at the same assert above. */
779 assert(util_bitcount(binding2->_BoundArrays & vao->_Enabled) == 1
780 || (vao->_Enabled & ~binding->_BoundArrays) == 0);
781
782 /* Check if we have an identical binding */
783 if (binding->Stride != binding2->Stride)
784 continue;
785 if (binding->InstanceDivisor != binding2->InstanceDivisor)
786 continue;
787 if (ptr <= attrib2->Ptr) {
788 if (ptr + binding->Stride < attrib2->Ptr + attrib2->_ElementSize)
789 continue;
790 unsigned end = attrib2->Ptr + attrib2->_ElementSize - ptr;
791 vertex_end = MAX2(vertex_end, end);
792 } else {
793 if (attrib2->Ptr + binding->Stride < ptr + vertex_end)
794 continue;
795 vertex_end += (GLsizei)(ptr - attrib2->Ptr);
796 ptr = attrib2->Ptr;
797 }
798
799 /* User space buffer object */
800 assert(!_mesa_is_bufferobj(binding2->BufferObj));
801
802 eff_bound_arrays |= VERT_BIT(j);
803 }
804
805 /* Update the back reference from the attrib to the binding */
806 GLbitfield attrmask = eff_bound_arrays;
807 while (attrmask) {
808 const int j = u_bit_scan(&attrmask);
809 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
810
811 /* Update the index into the common binding point and the offset */
812 attrib2->_EffBufferBindingIndex = bindex;
813 attrib2->_EffRelativeOffset = attrib2->Ptr - ptr;
814 assert(attrib2->_EffRelativeOffset <= binding->Stride);
815
816 /* Only enabled arrays shall appear in the unique bindings */
817 assert(attrib2->Enabled);
818 }
819 /* Finally this is the set of effectively bound arrays */
820 binding->_EffOffset = (GLintptr)ptr;
821 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
822 binding->_EffBoundArrays =
823 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
824
825 /* Mark all the effective bound arrays as processed. */
826 mask &= ~eff_bound_arrays;
827 }
828 }
829
830 #ifndef NDEBUG
831 /* Make sure the above code works as expected. */
832 for (gl_vert_attrib attr = 0; attr < VERT_ATTRIB_MAX; ++attr) {
833 /* Query the original api defined attrib/binding information ... */
834 const unsigned char *const map =_mesa_vao_attribute_map[mode];
835 const struct gl_array_attributes *attrib = &vao->VertexAttrib[map[attr]];
836 if (attrib->Enabled) {
837 const struct gl_vertex_buffer_binding *binding =
838 &vao->BufferBinding[attrib->BufferBindingIndex];
839 /* ... and compare that with the computed attrib/binding */
840 const struct gl_vertex_buffer_binding *binding2 =
841 &vao->BufferBinding[attrib->_EffBufferBindingIndex];
842 assert(binding->Stride == binding2->Stride);
843 assert(binding->InstanceDivisor == binding2->InstanceDivisor);
844 assert(binding->BufferObj == binding2->BufferObj);
845 if (_mesa_is_bufferobj(binding->BufferObj)) {
846 assert(attrib->_EffRelativeOffset <= MaxRelativeOffset);
847 assert(binding->Offset + attrib->RelativeOffset ==
848 binding2->_EffOffset + attrib->_EffRelativeOffset);
849 } else {
850 assert(attrib->_EffRelativeOffset < binding->Stride);
851 assert((GLintptr)attrib->Ptr ==
852 binding2->_EffOffset + attrib->_EffRelativeOffset);
853 }
854 }
855 }
856 #endif
857 }
858
859
860 void
861 _mesa_set_vao_immutable(struct gl_context *ctx,
862 struct gl_vertex_array_object *vao)
863 {
864 _mesa_update_vao_derived_arrays(ctx, vao);
865 vao->NewArrays = 0;
866 vao->SharedAndImmutable = true;
867 }
868
869
870 bool
871 _mesa_all_varyings_in_vbos(const struct gl_vertex_array_object *vao)
872 {
873 /* Walk those enabled arrays that have the default vbo attached */
874 GLbitfield mask = vao->_Enabled & ~vao->VertexAttribBufferMask;
875
876 while (mask) {
877 /* Do not use u_bit_scan64 as we can walk multiple
878 * attrib arrays at once
879 */
880 const int i = ffs(mask) - 1;
881 const struct gl_array_attributes *attrib_array =
882 &vao->VertexAttrib[i];
883 const struct gl_vertex_buffer_binding *buffer_binding =
884 &vao->BufferBinding[attrib_array->BufferBindingIndex];
885
886 /* Only enabled arrays shall appear in the _Enabled bitmask */
887 assert(attrib_array->Enabled);
888 /* We have already masked out vao->VertexAttribBufferMask */
889 assert(!_mesa_is_bufferobj(buffer_binding->BufferObj));
890
891 /* Bail out once we find the first non vbo with a non zero stride */
892 if (buffer_binding->Stride != 0)
893 return false;
894
895 /* Note that we cannot use the xor variant since the _BoundArray mask
896 * may contain array attributes that are bound but not enabled.
897 */
898 mask &= ~buffer_binding->_BoundArrays;
899 }
900
901 return true;
902 }
903
904 bool
905 _mesa_all_buffers_are_unmapped(const struct gl_vertex_array_object *vao)
906 {
907 /* Walk the enabled arrays that have a vbo attached */
908 GLbitfield mask = vao->_Enabled & vao->VertexAttribBufferMask;
909
910 while (mask) {
911 const int i = ffs(mask) - 1;
912 const struct gl_array_attributes *attrib_array =
913 &vao->VertexAttrib[i];
914 const struct gl_vertex_buffer_binding *buffer_binding =
915 &vao->BufferBinding[attrib_array->BufferBindingIndex];
916
917 /* Only enabled arrays shall appear in the _Enabled bitmask */
918 assert(attrib_array->Enabled);
919 /* We have already masked with vao->VertexAttribBufferMask */
920 assert(_mesa_is_bufferobj(buffer_binding->BufferObj));
921
922 /* Bail out once we find the first disallowed mapping */
923 if (_mesa_check_disallowed_mapping(buffer_binding->BufferObj))
924 return false;
925
926 /* We have handled everything that is bound to this buffer_binding. */
927 mask &= ~buffer_binding->_BoundArrays;
928 }
929
930 return true;
931 }
932
933 /**********************************************************************/
934 /* API Functions */
935 /**********************************************************************/
936
937
938 /**
939 * ARB version of glBindVertexArray()
940 */
941 static ALWAYS_INLINE void
942 bind_vertex_array(struct gl_context *ctx, GLuint id, bool no_error)
943 {
944 struct gl_vertex_array_object *const oldObj = ctx->Array.VAO;
945 struct gl_vertex_array_object *newObj = NULL;
946
947 assert(oldObj != NULL);
948
949 if (oldObj->Name == id)
950 return; /* rebinding the same array object- no change */
951
952 /*
953 * Get pointer to new array object (newObj)
954 */
955 if (id == 0) {
956 /* The spec says there is no array object named 0, but we use
957 * one internally because it simplifies things.
958 */
959 newObj = ctx->Array.DefaultVAO;
960 }
961 else {
962 /* non-default array object */
963 newObj = _mesa_lookup_vao(ctx, id);
964 if (!no_error && !newObj) {
965 _mesa_error(ctx, GL_INVALID_OPERATION,
966 "glBindVertexArray(non-gen name)");
967 return;
968 }
969
970 newObj->EverBound = GL_TRUE;
971 }
972
973 /* The _DrawArrays pointer is pointing at the VAO being unbound and
974 * that VAO may be in the process of being deleted. If it's not going
975 * to be deleted, this will have no effect, because the pointer needs
976 * to be updated by the VBO module anyway.
977 *
978 * Before the VBO module can update the pointer, we have to set it
979 * to NULL for drivers not to set up arrays which are not bound,
980 * or to prevent a crash if the VAO being unbound is going to be
981 * deleted.
982 */
983 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
984
985 ctx->NewState |= _NEW_ARRAY;
986 _mesa_reference_vao(ctx, &ctx->Array.VAO, newObj);
987 }
988
989
990 void GLAPIENTRY
991 _mesa_BindVertexArray_no_error(GLuint id)
992 {
993 GET_CURRENT_CONTEXT(ctx);
994 bind_vertex_array(ctx, id, true);
995 }
996
997
998 void GLAPIENTRY
999 _mesa_BindVertexArray(GLuint id)
1000 {
1001 GET_CURRENT_CONTEXT(ctx);
1002 bind_vertex_array(ctx, id, false);
1003 }
1004
1005
1006 /**
1007 * Delete a set of array objects.
1008 *
1009 * \param n Number of array objects to delete.
1010 * \param ids Array of \c n array object IDs.
1011 */
1012 static void
1013 delete_vertex_arrays(struct gl_context *ctx, GLsizei n, const GLuint *ids)
1014 {
1015 GLsizei i;
1016
1017 for (i = 0; i < n; i++) {
1018 /* IDs equal to 0 should be silently ignored. */
1019 if (!ids[i])
1020 continue;
1021
1022 struct gl_vertex_array_object *obj = _mesa_lookup_vao(ctx, ids[i]);
1023
1024 if (obj) {
1025 assert(obj->Name == ids[i]);
1026
1027 /* If the array object is currently bound, the spec says "the binding
1028 * for that object reverts to zero and the default vertex array
1029 * becomes current."
1030 */
1031 if (obj == ctx->Array.VAO)
1032 _mesa_BindVertexArray_no_error(0);
1033
1034 /* The ID is immediately freed for re-use */
1035 _mesa_HashRemoveLocked(ctx->Array.Objects, obj->Name);
1036
1037 if (ctx->Array.LastLookedUpVAO == obj)
1038 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, NULL);
1039 if (ctx->Array._DrawVAO == obj)
1040 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1041
1042 /* Unreference the array object.
1043 * If refcount hits zero, the object will be deleted.
1044 */
1045 _mesa_reference_vao(ctx, &obj, NULL);
1046 }
1047 }
1048 }
1049
1050
1051 void GLAPIENTRY
1052 _mesa_DeleteVertexArrays_no_error(GLsizei n, const GLuint *ids)
1053 {
1054 GET_CURRENT_CONTEXT(ctx);
1055 delete_vertex_arrays(ctx, n, ids);
1056 }
1057
1058
1059 void GLAPIENTRY
1060 _mesa_DeleteVertexArrays(GLsizei n, const GLuint *ids)
1061 {
1062 GET_CURRENT_CONTEXT(ctx);
1063
1064 if (n < 0) {
1065 _mesa_error(ctx, GL_INVALID_VALUE, "glDeleteVertexArray(n)");
1066 return;
1067 }
1068
1069 delete_vertex_arrays(ctx, n, ids);
1070 }
1071
1072
1073 /**
1074 * Generate a set of unique array object IDs and store them in \c arrays.
1075 * Helper for _mesa_GenVertexArrays() and _mesa_CreateVertexArrays()
1076 * below.
1077 *
1078 * \param n Number of IDs to generate.
1079 * \param arrays Array of \c n locations to store the IDs.
1080 * \param create Indicates that the objects should also be created.
1081 * \param func The name of the GL entry point.
1082 */
1083 static void
1084 gen_vertex_arrays(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1085 bool create, const char *func)
1086 {
1087 GLuint first;
1088 GLint i;
1089
1090 if (!arrays)
1091 return;
1092
1093 first = _mesa_HashFindFreeKeyBlock(ctx->Array.Objects, n);
1094
1095 /* For the sake of simplicity we create the array objects in both
1096 * the Gen* and Create* cases. The only difference is the value of
1097 * EverBound, which is set to true in the Create* case.
1098 */
1099 for (i = 0; i < n; i++) {
1100 struct gl_vertex_array_object *obj;
1101 GLuint name = first + i;
1102
1103 obj = _mesa_new_vao(ctx, name);
1104 if (!obj) {
1105 _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
1106 return;
1107 }
1108 obj->EverBound = create;
1109 _mesa_HashInsertLocked(ctx->Array.Objects, obj->Name, obj);
1110 arrays[i] = first + i;
1111 }
1112 }
1113
1114
1115 static void
1116 gen_vertex_arrays_err(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1117 bool create, const char *func)
1118 {
1119 if (n < 0) {
1120 _mesa_error(ctx, GL_INVALID_VALUE, "%s(n < 0)", func);
1121 return;
1122 }
1123
1124 gen_vertex_arrays(ctx, n, arrays, create, func);
1125 }
1126
1127
1128 /**
1129 * ARB version of glGenVertexArrays()
1130 * All arrays will be required to live in VBOs.
1131 */
1132 void GLAPIENTRY
1133 _mesa_GenVertexArrays_no_error(GLsizei n, GLuint *arrays)
1134 {
1135 GET_CURRENT_CONTEXT(ctx);
1136 gen_vertex_arrays(ctx, n, arrays, false, "glGenVertexArrays");
1137 }
1138
1139
1140 void GLAPIENTRY
1141 _mesa_GenVertexArrays(GLsizei n, GLuint *arrays)
1142 {
1143 GET_CURRENT_CONTEXT(ctx);
1144 gen_vertex_arrays_err(ctx, n, arrays, false, "glGenVertexArrays");
1145 }
1146
1147
1148 /**
1149 * ARB_direct_state_access
1150 * Generates ID's and creates the array objects.
1151 */
1152 void GLAPIENTRY
1153 _mesa_CreateVertexArrays_no_error(GLsizei n, GLuint *arrays)
1154 {
1155 GET_CURRENT_CONTEXT(ctx);
1156 gen_vertex_arrays(ctx, n, arrays, true, "glCreateVertexArrays");
1157 }
1158
1159
1160 void GLAPIENTRY
1161 _mesa_CreateVertexArrays(GLsizei n, GLuint *arrays)
1162 {
1163 GET_CURRENT_CONTEXT(ctx);
1164 gen_vertex_arrays_err(ctx, n, arrays, true, "glCreateVertexArrays");
1165 }
1166
1167
1168 /**
1169 * Determine if ID is the name of an array object.
1170 *
1171 * \param id ID of the potential array object.
1172 * \return \c GL_TRUE if \c id is the name of a array object,
1173 * \c GL_FALSE otherwise.
1174 */
1175 GLboolean GLAPIENTRY
1176 _mesa_IsVertexArray( GLuint id )
1177 {
1178 struct gl_vertex_array_object * obj;
1179 GET_CURRENT_CONTEXT(ctx);
1180 ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
1181
1182 obj = _mesa_lookup_vao(ctx, id);
1183
1184 return obj != NULL && obj->EverBound;
1185 }
1186
1187
1188 /**
1189 * Sets the element array buffer binding of a vertex array object.
1190 *
1191 * This is the ARB_direct_state_access equivalent of
1192 * glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer).
1193 */
1194 static ALWAYS_INLINE void
1195 vertex_array_element_buffer(struct gl_context *ctx, GLuint vaobj, GLuint buffer,
1196 bool no_error)
1197 {
1198 struct gl_vertex_array_object *vao;
1199 struct gl_buffer_object *bufObj;
1200
1201 ASSERT_OUTSIDE_BEGIN_END(ctx);
1202
1203 if (!no_error) {
1204 /* The GL_ARB_direct_state_access specification says:
1205 *
1206 * "An INVALID_OPERATION error is generated by
1207 * VertexArrayElementBuffer if <vaobj> is not [compatibility profile:
1208 * zero or] the name of an existing vertex array object."
1209 */
1210 vao =_mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayElementBuffer");
1211 if (!vao)
1212 return;
1213 } else {
1214 vao = _mesa_lookup_vao(ctx, vaobj);
1215 }
1216
1217 if (buffer != 0) {
1218 if (!no_error) {
1219 /* The GL_ARB_direct_state_access specification says:
1220 *
1221 * "An INVALID_OPERATION error is generated if <buffer> is not zero
1222 * or the name of an existing buffer object."
1223 */
1224 bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
1225 "glVertexArrayElementBuffer");
1226 } else {
1227 bufObj = _mesa_lookup_bufferobj(ctx, buffer);
1228 }
1229 } else {
1230 bufObj = ctx->Shared->NullBufferObj;
1231 }
1232
1233 if (bufObj)
1234 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj, bufObj);
1235 }
1236
1237
1238 void GLAPIENTRY
1239 _mesa_VertexArrayElementBuffer_no_error(GLuint vaobj, GLuint buffer)
1240 {
1241 GET_CURRENT_CONTEXT(ctx);
1242 vertex_array_element_buffer(ctx, vaobj, buffer, true);
1243 }
1244
1245
1246 void GLAPIENTRY
1247 _mesa_VertexArrayElementBuffer(GLuint vaobj, GLuint buffer)
1248 {
1249 GET_CURRENT_CONTEXT(ctx);
1250 vertex_array_element_buffer(ctx, vaobj, buffer, false);
1251 }
1252
1253
1254 void GLAPIENTRY
1255 _mesa_GetVertexArrayiv(GLuint vaobj, GLenum pname, GLint *param)
1256 {
1257 GET_CURRENT_CONTEXT(ctx);
1258 struct gl_vertex_array_object *vao;
1259
1260 ASSERT_OUTSIDE_BEGIN_END(ctx);
1261
1262 /* The GL_ARB_direct_state_access specification says:
1263 *
1264 * "An INVALID_OPERATION error is generated if <vaobj> is not
1265 * [compatibility profile: zero or] the name of an existing
1266 * vertex array object."
1267 */
1268 vao =_mesa_lookup_vao_err(ctx, vaobj, "glGetVertexArrayiv");
1269 if (!vao)
1270 return;
1271
1272 /* The GL_ARB_direct_state_access specification says:
1273 *
1274 * "An INVALID_ENUM error is generated if <pname> is not
1275 * ELEMENT_ARRAY_BUFFER_BINDING."
1276 */
1277 if (pname != GL_ELEMENT_ARRAY_BUFFER_BINDING) {
1278 _mesa_error(ctx, GL_INVALID_ENUM,
1279 "glGetVertexArrayiv(pname != "
1280 "GL_ELEMENT_ARRAY_BUFFER_BINDING)");
1281 return;
1282 }
1283
1284 param[0] = vao->IndexBufferObj->Name;
1285 }