Initial revision
[mesa.git] / src / mesa / main / eval.c
1 /* $Id: eval.c,v 1.1 1999/08/19 00:55:41 jtg Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.1
6 *
7 * Copyright (C) 1999 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28
29
30
31 /*
32 * eval.c was written by
33 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
34 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
35 *
36 * My original implementation of evaluators was simplistic and didn't
37 * compute surface normal vectors properly. Bernd and Volker applied
38 * used more sophisticated methods to get better results.
39 *
40 * Thanks guys!
41 */
42
43
44 #ifdef PC_HEADER
45 #include "all.h"
46 #else
47 #include <math.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include "context.h"
51 #include "eval.h"
52 #include "macros.h"
53 #include "mmath.h"
54 #include "types.h"
55 #include "vbcull.h"
56 #include "vbfill.h"
57 #include "vbxform.h"
58 #ifdef XFree86Server
59 #include "GL/xf86glx.h"
60 #endif
61 #endif
62
63
64 static GLfloat inv_tab[MAX_EVAL_ORDER];
65
66 /*
67 * Do one-time initialization for evaluators.
68 */
69 void gl_init_eval( void )
70 {
71 static int init_flag = 0;
72 GLuint i;
73
74 /* Compute a table of nCr (combination) values used by the
75 * Bernstein polynomial generator.
76 */
77
78 /* KW: precompute 1/x for useful x.
79 */
80 if (init_flag==0)
81 {
82 for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
83 inv_tab[i] = 1.0 / i;
84 }
85
86 init_flag = 1;
87 }
88
89
90
91 /*
92 * Horner scheme for Bezier curves
93 *
94 * Bezier curves can be computed via a Horner scheme.
95 * Horner is numerically less stable than the de Casteljau
96 * algorithm, but it is faster. For curves of degree n
97 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
98 * Since stability is not important for displaying curve
99 * points I decided to use the Horner scheme.
100 *
101 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
102 * written as
103 *
104 * (([3] [3] ) [3] ) [3]
105 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
106 *
107 * [n]
108 * where s=1-t and the binomial coefficients [i]. These can
109 * be computed iteratively using the identity:
110 *
111 * [n] [n ] [n]
112 * [i] = (n-i+1)/i * [i-1] and [0] = 1
113 */
114
115
116 static void
117 horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
118 GLuint dim, GLuint order)
119 {
120 GLfloat s, powert;
121 GLuint i, k, bincoeff;
122
123 if(order >= 2)
124 {
125 bincoeff = order-1;
126 s = 1.0-t;
127
128 for(k=0; k<dim; k++)
129 out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
130
131 for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
132 {
133 bincoeff *= order-i;
134 bincoeff *= inv_tab[i];
135
136 for(k=0; k<dim; k++)
137 out[k] = s*out[k] + bincoeff*powert*cp[k];
138 }
139 }
140 else /* order=1 -> constant curve */
141 {
142 for(k=0; k<dim; k++)
143 out[k] = cp[k];
144 }
145 }
146
147 /*
148 * Tensor product Bezier surfaces
149 *
150 * Again the Horner scheme is used to compute a point on a
151 * TP Bezier surface. First a control polygon for a curve
152 * on the surface in one parameter direction is computed,
153 * then the point on the curve for the other parameter
154 * direction is evaluated.
155 *
156 * To store the curve control polygon additional storage
157 * for max(uorder,vorder) points is needed in the
158 * control net cn.
159 */
160
161 static void
162 horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
163 GLuint dim, GLuint uorder, GLuint vorder)
164 {
165 GLfloat *cp = cn + uorder*vorder*dim;
166 GLuint i, uinc = vorder*dim;
167
168 if(vorder > uorder)
169 {
170 if(uorder >= 2)
171 {
172 GLfloat s, poweru;
173 GLuint j, k, bincoeff;
174
175 /* Compute the control polygon for the surface-curve in u-direction */
176 for(j=0; j<vorder; j++)
177 {
178 GLfloat *ucp = &cn[j*dim];
179
180 /* Each control point is the point for parameter u on a */
181 /* curve defined by the control polygons in u-direction */
182 bincoeff = uorder-1;
183 s = 1.0-u;
184
185 for(k=0; k<dim; k++)
186 cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
187
188 for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
189 i++, poweru*=u, ucp +=uinc)
190 {
191 bincoeff *= uorder-i;
192 bincoeff *= inv_tab[i];
193
194 for(k=0; k<dim; k++)
195 cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
196 }
197 }
198
199 /* Evaluate curve point in v */
200 horner_bezier_curve(cp, out, v, dim, vorder);
201 }
202 else /* uorder=1 -> cn defines a curve in v */
203 horner_bezier_curve(cn, out, v, dim, vorder);
204 }
205 else /* vorder <= uorder */
206 {
207 if(vorder > 1)
208 {
209 GLuint i;
210
211 /* Compute the control polygon for the surface-curve in u-direction */
212 for(i=0; i<uorder; i++, cn += uinc)
213 {
214 /* For constant i all cn[i][j] (j=0..vorder) are located */
215 /* on consecutive memory locations, so we can use */
216 /* horner_bezier_curve to compute the control points */
217
218 horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
219 }
220
221 /* Evaluate curve point in u */
222 horner_bezier_curve(cp, out, u, dim, uorder);
223 }
224 else /* vorder=1 -> cn defines a curve in u */
225 horner_bezier_curve(cn, out, u, dim, uorder);
226 }
227 }
228
229 /*
230 * The direct de Casteljau algorithm is used when a point on the
231 * surface and the tangent directions spanning the tangent plane
232 * should be computed (this is needed to compute normals to the
233 * surface). In this case the de Casteljau algorithm approach is
234 * nicer because a point and the partial derivatives can be computed
235 * at the same time. To get the correct tangent length du and dv
236 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
237 * Since only the directions are needed, this scaling step is omitted.
238 *
239 * De Casteljau needs additional storage for uorder*vorder
240 * values in the control net cn.
241 */
242
243 static void
244 de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
245 GLfloat u, GLfloat v, GLuint dim,
246 GLuint uorder, GLuint vorder)
247 {
248 GLfloat *dcn = cn + uorder*vorder*dim;
249 GLfloat us = 1.0-u, vs = 1.0-v;
250 GLuint h, i, j, k;
251 GLuint minorder = uorder < vorder ? uorder : vorder;
252 GLuint uinc = vorder*dim;
253 GLuint dcuinc = vorder;
254
255 /* Each component is evaluated separately to save buffer space */
256 /* This does not drasticaly decrease the performance of the */
257 /* algorithm. If additional storage for (uorder-1)*(vorder-1) */
258 /* points would be available, the components could be accessed */
259 /* in the innermost loop which could lead to less cache misses. */
260
261 #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
262 #define DCN(I, J) dcn[(I)*dcuinc+(J)]
263 if(minorder < 3)
264 {
265 if(uorder==vorder)
266 {
267 for(k=0; k<dim; k++)
268 {
269 /* Derivative direction in u */
270 du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
271 v*(CN(1,1,k) - CN(0,1,k));
272
273 /* Derivative direction in v */
274 dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
275 u*(CN(1,1,k) - CN(1,0,k));
276
277 /* bilinear de Casteljau step */
278 out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
279 u*(vs*CN(1,0,k) + v*CN(1,1,k));
280 }
281 }
282 else if(minorder == uorder)
283 {
284 for(k=0; k<dim; k++)
285 {
286 /* bilinear de Casteljau step */
287 DCN(1,0) = CN(1,0,k) - CN(0,0,k);
288 DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
289
290 for(j=0; j<vorder-1; j++)
291 {
292 /* for the derivative in u */
293 DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
294 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
295
296 /* for the `point' */
297 DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
298 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
299 }
300
301 /* remaining linear de Casteljau steps until the second last step */
302 for(h=minorder; h<vorder-1; h++)
303 for(j=0; j<vorder-h; j++)
304 {
305 /* for the derivative in u */
306 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
307
308 /* for the `point' */
309 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
310 }
311
312 /* derivative direction in v */
313 dv[k] = DCN(0,1) - DCN(0,0);
314
315 /* derivative direction in u */
316 du[k] = vs*DCN(1,0) + v*DCN(1,1);
317
318 /* last linear de Casteljau step */
319 out[k] = vs*DCN(0,0) + v*DCN(0,1);
320 }
321 }
322 else /* minorder == vorder */
323 {
324 for(k=0; k<dim; k++)
325 {
326 /* bilinear de Casteljau step */
327 DCN(0,1) = CN(0,1,k) - CN(0,0,k);
328 DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
329 for(i=0; i<uorder-1; i++)
330 {
331 /* for the derivative in v */
332 DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
333 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
334
335 /* for the `point' */
336 DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
337 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
338 }
339
340 /* remaining linear de Casteljau steps until the second last step */
341 for(h=minorder; h<uorder-1; h++)
342 for(i=0; i<uorder-h; i++)
343 {
344 /* for the derivative in v */
345 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
346
347 /* for the `point' */
348 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
349 }
350
351 /* derivative direction in u */
352 du[k] = DCN(1,0) - DCN(0,0);
353
354 /* derivative direction in v */
355 dv[k] = us*DCN(0,1) + u*DCN(1,1);
356
357 /* last linear de Casteljau step */
358 out[k] = us*DCN(0,0) + u*DCN(1,0);
359 }
360 }
361 }
362 else if(uorder == vorder)
363 {
364 for(k=0; k<dim; k++)
365 {
366 /* first bilinear de Casteljau step */
367 for(i=0; i<uorder-1; i++)
368 {
369 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
370 for(j=0; j<vorder-1; j++)
371 {
372 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
373 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
374 }
375 }
376
377 /* remaining bilinear de Casteljau steps until the second last step */
378 for(h=2; h<minorder-1; h++)
379 for(i=0; i<uorder-h; i++)
380 {
381 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
382 for(j=0; j<vorder-h; j++)
383 {
384 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
385 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
386 }
387 }
388
389 /* derivative direction in u */
390 du[k] = vs*(DCN(1,0) - DCN(0,0)) +
391 v*(DCN(1,1) - DCN(0,1));
392
393 /* derivative direction in v */
394 dv[k] = us*(DCN(0,1) - DCN(0,0)) +
395 u*(DCN(1,1) - DCN(1,0));
396
397 /* last bilinear de Casteljau step */
398 out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
399 u*(vs*DCN(1,0) + v*DCN(1,1));
400 }
401 }
402 else if(minorder == uorder)
403 {
404 for(k=0; k<dim; k++)
405 {
406 /* first bilinear de Casteljau step */
407 for(i=0; i<uorder-1; i++)
408 {
409 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
410 for(j=0; j<vorder-1; j++)
411 {
412 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
413 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
414 }
415 }
416
417 /* remaining bilinear de Casteljau steps until the second last step */
418 for(h=2; h<minorder-1; h++)
419 for(i=0; i<uorder-h; i++)
420 {
421 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
422 for(j=0; j<vorder-h; j++)
423 {
424 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
425 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
426 }
427 }
428
429 /* last bilinear de Casteljau step */
430 DCN(2,0) = DCN(1,0) - DCN(0,0);
431 DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
432 for(j=0; j<vorder-1; j++)
433 {
434 /* for the derivative in u */
435 DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
436 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
437
438 /* for the `point' */
439 DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
440 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
441 }
442
443 /* remaining linear de Casteljau steps until the second last step */
444 for(h=minorder; h<vorder-1; h++)
445 for(j=0; j<vorder-h; j++)
446 {
447 /* for the derivative in u */
448 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
449
450 /* for the `point' */
451 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
452 }
453
454 /* derivative direction in v */
455 dv[k] = DCN(0,1) - DCN(0,0);
456
457 /* derivative direction in u */
458 du[k] = vs*DCN(2,0) + v*DCN(2,1);
459
460 /* last linear de Casteljau step */
461 out[k] = vs*DCN(0,0) + v*DCN(0,1);
462 }
463 }
464 else /* minorder == vorder */
465 {
466 for(k=0; k<dim; k++)
467 {
468 /* first bilinear de Casteljau step */
469 for(i=0; i<uorder-1; i++)
470 {
471 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
472 for(j=0; j<vorder-1; j++)
473 {
474 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
475 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
476 }
477 }
478
479 /* remaining bilinear de Casteljau steps until the second last step */
480 for(h=2; h<minorder-1; h++)
481 for(i=0; i<uorder-h; i++)
482 {
483 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
484 for(j=0; j<vorder-h; j++)
485 {
486 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
487 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
488 }
489 }
490
491 /* last bilinear de Casteljau step */
492 DCN(0,2) = DCN(0,1) - DCN(0,0);
493 DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
494 for(i=0; i<uorder-1; i++)
495 {
496 /* for the derivative in v */
497 DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
498 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
499
500 /* for the `point' */
501 DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
502 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
503 }
504
505 /* remaining linear de Casteljau steps until the second last step */
506 for(h=minorder; h<uorder-1; h++)
507 for(i=0; i<uorder-h; i++)
508 {
509 /* for the derivative in v */
510 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
511
512 /* for the `point' */
513 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
514 }
515
516 /* derivative direction in u */
517 du[k] = DCN(1,0) - DCN(0,0);
518
519 /* derivative direction in v */
520 dv[k] = us*DCN(0,2) + u*DCN(1,2);
521
522 /* last linear de Casteljau step */
523 out[k] = us*DCN(0,0) + u*DCN(1,0);
524 }
525 }
526 #undef DCN
527 #undef CN
528 }
529
530 /*
531 * Return the number of components per control point for any type of
532 * evaluator. Return 0 if bad target.
533 */
534
535 static GLint components( GLenum target )
536 {
537 switch (target) {
538 case GL_MAP1_VERTEX_3: return 3;
539 case GL_MAP1_VERTEX_4: return 4;
540 case GL_MAP1_INDEX: return 1;
541 case GL_MAP1_COLOR_4: return 4;
542 case GL_MAP1_NORMAL: return 3;
543 case GL_MAP1_TEXTURE_COORD_1: return 1;
544 case GL_MAP1_TEXTURE_COORD_2: return 2;
545 case GL_MAP1_TEXTURE_COORD_3: return 3;
546 case GL_MAP1_TEXTURE_COORD_4: return 4;
547 case GL_MAP2_VERTEX_3: return 3;
548 case GL_MAP2_VERTEX_4: return 4;
549 case GL_MAP2_INDEX: return 1;
550 case GL_MAP2_COLOR_4: return 4;
551 case GL_MAP2_NORMAL: return 3;
552 case GL_MAP2_TEXTURE_COORD_1: return 1;
553 case GL_MAP2_TEXTURE_COORD_2: return 2;
554 case GL_MAP2_TEXTURE_COORD_3: return 3;
555 case GL_MAP2_TEXTURE_COORD_4: return 4;
556 default: return 0;
557 }
558 }
559
560
561 /**********************************************************************/
562 /*** Copy and deallocate control points ***/
563 /**********************************************************************/
564
565
566 /*
567 * Copy 1-parametric evaluator control points from user-specified
568 * memory space to a buffer of contiguous control points.
569 * Input: see glMap1f for details
570 * Return: pointer to buffer of contiguous control points or NULL if out
571 * of memory.
572 */
573 GLfloat *gl_copy_map_points1f( GLenum target,
574 GLint ustride, GLint uorder,
575 const GLfloat *points )
576 {
577 GLfloat *buffer, *p;
578 GLint i, k, size = components(target);
579
580 if (!points || size==0) {
581 return NULL;
582 }
583
584 buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
585
586 if(buffer)
587 for(i=0, p=buffer; i<uorder; i++, points+=ustride)
588 for(k=0; k<size; k++)
589 *p++ = points[k];
590
591 return buffer;
592 }
593
594
595
596 /*
597 * Same as above but convert doubles to floats.
598 */
599 GLfloat *gl_copy_map_points1d( GLenum target,
600 GLint ustride, GLint uorder,
601 const GLdouble *points )
602 {
603 GLfloat *buffer, *p;
604 GLint i, k, size = components(target);
605
606 if (!points || size==0) {
607 return NULL;
608 }
609
610 buffer = (GLfloat *) malloc(uorder * size * sizeof(GLfloat));
611
612 if(buffer)
613 for(i=0, p=buffer; i<uorder; i++, points+=ustride)
614 for(k=0; k<size; k++)
615 *p++ = (GLfloat) points[k];
616
617 return buffer;
618 }
619
620
621
622 /*
623 * Copy 2-parametric evaluator control points from user-specified
624 * memory space to a buffer of contiguous control points.
625 * Additional memory is allocated to be used by the horner and
626 * de Casteljau evaluation schemes.
627 *
628 * Input: see glMap2f for details
629 * Return: pointer to buffer of contiguous control points or NULL if out
630 * of memory.
631 */
632 GLfloat *gl_copy_map_points2f( GLenum target,
633 GLint ustride, GLint uorder,
634 GLint vstride, GLint vorder,
635 const GLfloat *points )
636 {
637 GLfloat *buffer, *p;
638 GLint i, j, k, size, dsize, hsize;
639 GLint uinc;
640
641 size = components(target);
642
643 if (!points || size==0) {
644 return NULL;
645 }
646
647 /* max(uorder, vorder) additional points are used in */
648 /* horner evaluation and uorder*vorder additional */
649 /* values are needed for de Casteljau */
650 dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
651 hsize = (uorder > vorder ? uorder : vorder)*size;
652
653 if(hsize>dsize)
654 buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
655 else
656 buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
657
658 /* compute the increment value for the u-loop */
659 uinc = ustride - vorder*vstride;
660
661 if (buffer)
662 for (i=0, p=buffer; i<uorder; i++, points += uinc)
663 for (j=0; j<vorder; j++, points += vstride)
664 for (k=0; k<size; k++)
665 *p++ = points[k];
666
667 return buffer;
668 }
669
670
671
672 /*
673 * Same as above but convert doubles to floats.
674 */
675 GLfloat *gl_copy_map_points2d(GLenum target,
676 GLint ustride, GLint uorder,
677 GLint vstride, GLint vorder,
678 const GLdouble *points )
679 {
680 GLfloat *buffer, *p;
681 GLint i, j, k, size, hsize, dsize;
682 GLint uinc;
683
684 size = components(target);
685
686 if (!points || size==0) {
687 return NULL;
688 }
689
690 /* max(uorder, vorder) additional points are used in */
691 /* horner evaluation and uorder*vorder additional */
692 /* values are needed for de Casteljau */
693 dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
694 hsize = (uorder > vorder ? uorder : vorder)*size;
695
696 if(hsize>dsize)
697 buffer = (GLfloat *) malloc((uorder*vorder*size+hsize)*sizeof(GLfloat));
698 else
699 buffer = (GLfloat *) malloc((uorder*vorder*size+dsize)*sizeof(GLfloat));
700
701 /* compute the increment value for the u-loop */
702 uinc = ustride - vorder*vstride;
703
704 if (buffer)
705 for (i=0, p=buffer; i<uorder; i++, points += uinc)
706 for (j=0; j<vorder; j++, points += vstride)
707 for (k=0; k<size; k++)
708 *p++ = (GLfloat) points[k];
709
710 return buffer;
711 }
712
713
714 /*
715 * This function is called by the display list deallocator function to
716 * specify that a given set of control points are no longer needed.
717 */
718 void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
719 {
720 struct gl_1d_map *map1 = NULL;
721 struct gl_2d_map *map2 = NULL;
722
723 switch (target) {
724 case GL_MAP1_VERTEX_3:
725 map1 = &ctx->EvalMap.Map1Vertex3;
726 break;
727 case GL_MAP1_VERTEX_4:
728 map1 = &ctx->EvalMap.Map1Vertex4;
729 break;
730 case GL_MAP1_INDEX:
731 map1 = &ctx->EvalMap.Map1Index;
732 break;
733 case GL_MAP1_COLOR_4:
734 map1 = &ctx->EvalMap.Map1Color4;
735 break;
736 case GL_MAP1_NORMAL:
737 map1 = &ctx->EvalMap.Map1Normal;
738 break;
739 case GL_MAP1_TEXTURE_COORD_1:
740 map1 = &ctx->EvalMap.Map1Texture1;
741 break;
742 case GL_MAP1_TEXTURE_COORD_2:
743 map1 = &ctx->EvalMap.Map1Texture2;
744 break;
745 case GL_MAP1_TEXTURE_COORD_3:
746 map1 = &ctx->EvalMap.Map1Texture3;
747 break;
748 case GL_MAP1_TEXTURE_COORD_4:
749 map1 = &ctx->EvalMap.Map1Texture4;
750 break;
751 case GL_MAP2_VERTEX_3:
752 map2 = &ctx->EvalMap.Map2Vertex3;
753 break;
754 case GL_MAP2_VERTEX_4:
755 map2 = &ctx->EvalMap.Map2Vertex4;
756 break;
757 case GL_MAP2_INDEX:
758 map2 = &ctx->EvalMap.Map2Index;
759 break;
760 case GL_MAP2_COLOR_4:
761 map2 = &ctx->EvalMap.Map2Color4;
762 break;
763 case GL_MAP2_NORMAL:
764 map2 = &ctx->EvalMap.Map2Normal;
765 break;
766 case GL_MAP2_TEXTURE_COORD_1:
767 map2 = &ctx->EvalMap.Map2Texture1;
768 break;
769 case GL_MAP2_TEXTURE_COORD_2:
770 map2 = &ctx->EvalMap.Map2Texture2;
771 break;
772 case GL_MAP2_TEXTURE_COORD_3:
773 map2 = &ctx->EvalMap.Map2Texture3;
774 break;
775 case GL_MAP2_TEXTURE_COORD_4:
776 map2 = &ctx->EvalMap.Map2Texture4;
777 break;
778 default:
779 gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
780 return;
781 }
782
783 if (map1) {
784 if (data==map1->Points) {
785 /* The control points in the display list are currently */
786 /* being used so we can mark them as discard-able. */
787 map1->Retain = GL_FALSE;
788 }
789 else {
790 /* The control points in the display list are not currently */
791 /* being used. */
792 free( data );
793 }
794 }
795 if (map2) {
796 if (data==map2->Points) {
797 /* The control points in the display list are currently */
798 /* being used so we can mark them as discard-able. */
799 map2->Retain = GL_FALSE;
800 }
801 else {
802 /* The control points in the display list are not currently */
803 /* being used. */
804 free( data );
805 }
806 }
807
808 }
809
810
811
812 /**********************************************************************/
813 /*** API entry points ***/
814 /**********************************************************************/
815
816
817 /*
818 * Note that the array of control points must be 'unpacked' at this time.
819 * Input: retain - if TRUE, this control point data is also in a display
820 * list and can't be freed until the list is freed.
821 */
822 void gl_Map1f( GLcontext* ctx, GLenum target,
823 GLfloat u1, GLfloat u2, GLint stride,
824 GLint order, const GLfloat *points, GLboolean retain )
825 {
826 GLint k;
827
828 if (!points) {
829 gl_error( ctx, GL_OUT_OF_MEMORY, "glMap1f" );
830 return;
831 }
832
833 /* may be a new stride after copying control points */
834 stride = components( target );
835
836 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1");
837
838 if (u1==u2) {
839 gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
840 return;
841 }
842
843 if (order<1 || order>MAX_EVAL_ORDER) {
844 gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
845 return;
846 }
847
848 k = components( target );
849 if (k==0) {
850 gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
851 }
852
853 if (stride < k) {
854 gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
855 return;
856 }
857
858 switch (target) {
859 case GL_MAP1_VERTEX_3:
860 ctx->EvalMap.Map1Vertex3.Order = order;
861 ctx->EvalMap.Map1Vertex3.u1 = u1;
862 ctx->EvalMap.Map1Vertex3.u2 = u2;
863 ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1);
864 if (ctx->EvalMap.Map1Vertex3.Points
865 && !ctx->EvalMap.Map1Vertex3.Retain) {
866 free( ctx->EvalMap.Map1Vertex3.Points );
867 }
868 ctx->EvalMap.Map1Vertex3.Points = (GLfloat *) points;
869 ctx->EvalMap.Map1Vertex3.Retain = retain;
870 break;
871 case GL_MAP1_VERTEX_4:
872 ctx->EvalMap.Map1Vertex4.Order = order;
873 ctx->EvalMap.Map1Vertex4.u1 = u1;
874 ctx->EvalMap.Map1Vertex4.u2 = u2;
875 ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1);
876 if (ctx->EvalMap.Map1Vertex4.Points
877 && !ctx->EvalMap.Map1Vertex4.Retain) {
878 free( ctx->EvalMap.Map1Vertex4.Points );
879 }
880 ctx->EvalMap.Map1Vertex4.Points = (GLfloat *) points;
881 ctx->EvalMap.Map1Vertex4.Retain = retain;
882 break;
883 case GL_MAP1_INDEX:
884 ctx->EvalMap.Map1Index.Order = order;
885 ctx->EvalMap.Map1Index.u1 = u1;
886 ctx->EvalMap.Map1Index.u2 = u2;
887 ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1);
888 if (ctx->EvalMap.Map1Index.Points
889 && !ctx->EvalMap.Map1Index.Retain) {
890 free( ctx->EvalMap.Map1Index.Points );
891 }
892 ctx->EvalMap.Map1Index.Points = (GLfloat *) points;
893 ctx->EvalMap.Map1Index.Retain = retain;
894 break;
895 case GL_MAP1_COLOR_4:
896 ctx->EvalMap.Map1Color4.Order = order;
897 ctx->EvalMap.Map1Color4.u1 = u1;
898 ctx->EvalMap.Map1Color4.u2 = u2;
899 ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1);
900 if (ctx->EvalMap.Map1Color4.Points
901 && !ctx->EvalMap.Map1Color4.Retain) {
902 free( ctx->EvalMap.Map1Color4.Points );
903 }
904 ctx->EvalMap.Map1Color4.Points = (GLfloat *) points;
905 ctx->EvalMap.Map1Color4.Retain = retain;
906 break;
907 case GL_MAP1_NORMAL:
908 ctx->EvalMap.Map1Normal.Order = order;
909 ctx->EvalMap.Map1Normal.u1 = u1;
910 ctx->EvalMap.Map1Normal.u2 = u2;
911 ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1);
912 if (ctx->EvalMap.Map1Normal.Points
913 && !ctx->EvalMap.Map1Normal.Retain) {
914 free( ctx->EvalMap.Map1Normal.Points );
915 }
916 ctx->EvalMap.Map1Normal.Points = (GLfloat *) points;
917 ctx->EvalMap.Map1Normal.Retain = retain;
918 break;
919 case GL_MAP1_TEXTURE_COORD_1:
920 ctx->EvalMap.Map1Texture1.Order = order;
921 ctx->EvalMap.Map1Texture1.u1 = u1;
922 ctx->EvalMap.Map1Texture1.u2 = u2;
923 ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1);
924 if (ctx->EvalMap.Map1Texture1.Points
925 && !ctx->EvalMap.Map1Texture1.Retain) {
926 free( ctx->EvalMap.Map1Texture1.Points );
927 }
928 ctx->EvalMap.Map1Texture1.Points = (GLfloat *) points;
929 ctx->EvalMap.Map1Texture1.Retain = retain;
930 break;
931 case GL_MAP1_TEXTURE_COORD_2:
932 ctx->EvalMap.Map1Texture2.Order = order;
933 ctx->EvalMap.Map1Texture2.u1 = u1;
934 ctx->EvalMap.Map1Texture2.u2 = u2;
935 ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1);
936 if (ctx->EvalMap.Map1Texture2.Points
937 && !ctx->EvalMap.Map1Texture2.Retain) {
938 free( ctx->EvalMap.Map1Texture2.Points );
939 }
940 ctx->EvalMap.Map1Texture2.Points = (GLfloat *) points;
941 ctx->EvalMap.Map1Texture2.Retain = retain;
942 break;
943 case GL_MAP1_TEXTURE_COORD_3:
944 ctx->EvalMap.Map1Texture3.Order = order;
945 ctx->EvalMap.Map1Texture3.u1 = u1;
946 ctx->EvalMap.Map1Texture3.u2 = u2;
947 ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1);
948 if (ctx->EvalMap.Map1Texture3.Points
949 && !ctx->EvalMap.Map1Texture3.Retain) {
950 free( ctx->EvalMap.Map1Texture3.Points );
951 }
952 ctx->EvalMap.Map1Texture3.Points = (GLfloat *) points;
953 ctx->EvalMap.Map1Texture3.Retain = retain;
954 break;
955 case GL_MAP1_TEXTURE_COORD_4:
956 ctx->EvalMap.Map1Texture4.Order = order;
957 ctx->EvalMap.Map1Texture4.u1 = u1;
958 ctx->EvalMap.Map1Texture4.u2 = u2;
959 ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1);
960 if (ctx->EvalMap.Map1Texture4.Points
961 && !ctx->EvalMap.Map1Texture4.Retain) {
962 free( ctx->EvalMap.Map1Texture4.Points );
963 }
964 ctx->EvalMap.Map1Texture4.Points = (GLfloat *) points;
965 ctx->EvalMap.Map1Texture4.Retain = retain;
966 break;
967 default:
968 gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
969 }
970 }
971
972
973
974
975 /*
976 * Note that the array of control points must be 'unpacked' at this time.
977 * Input: retain - if TRUE, this control point data is also in a display
978 * list and can't be freed until the list is freed.
979 */
980 void gl_Map2f( GLcontext* ctx, GLenum target,
981 GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
982 GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
983 const GLfloat *points, GLboolean retain )
984 {
985 GLint k;
986
987 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2");
988
989 if (u1==u2) {
990 gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
991 return;
992 }
993
994 if (v1==v2) {
995 gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
996 return;
997 }
998
999 if (uorder<1 || uorder>MAX_EVAL_ORDER) {
1000 gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
1001 return;
1002 }
1003
1004 if (vorder<1 || vorder>MAX_EVAL_ORDER) {
1005 gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
1006 return;
1007 }
1008
1009 k = components( target );
1010 if (k==0) {
1011 gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
1012 }
1013
1014 if (ustride < k) {
1015 gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
1016 return;
1017 }
1018 if (vstride < k) {
1019 gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
1020 return;
1021 }
1022
1023 switch (target) {
1024 case GL_MAP2_VERTEX_3:
1025 ctx->EvalMap.Map2Vertex3.Uorder = uorder;
1026 ctx->EvalMap.Map2Vertex3.u1 = u1;
1027 ctx->EvalMap.Map2Vertex3.u2 = u2;
1028 ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1);
1029 ctx->EvalMap.Map2Vertex3.Vorder = vorder;
1030 ctx->EvalMap.Map2Vertex3.v1 = v1;
1031 ctx->EvalMap.Map2Vertex3.v2 = v2;
1032 ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1);
1033 if (ctx->EvalMap.Map2Vertex3.Points
1034 && !ctx->EvalMap.Map2Vertex3.Retain) {
1035 free( ctx->EvalMap.Map2Vertex3.Points );
1036 }
1037 ctx->EvalMap.Map2Vertex3.Retain = retain;
1038 ctx->EvalMap.Map2Vertex3.Points = (GLfloat *) points;
1039 break;
1040 case GL_MAP2_VERTEX_4:
1041 ctx->EvalMap.Map2Vertex4.Uorder = uorder;
1042 ctx->EvalMap.Map2Vertex4.u1 = u1;
1043 ctx->EvalMap.Map2Vertex4.u2 = u2;
1044 ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1);
1045 ctx->EvalMap.Map2Vertex4.Vorder = vorder;
1046 ctx->EvalMap.Map2Vertex4.v1 = v1;
1047 ctx->EvalMap.Map2Vertex4.v2 = v2;
1048 ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1);
1049 if (ctx->EvalMap.Map2Vertex4.Points
1050 && !ctx->EvalMap.Map2Vertex4.Retain) {
1051 free( ctx->EvalMap.Map2Vertex4.Points );
1052 }
1053 ctx->EvalMap.Map2Vertex4.Points = (GLfloat *) points;
1054 ctx->EvalMap.Map2Vertex4.Retain = retain;
1055 break;
1056 case GL_MAP2_INDEX:
1057 ctx->EvalMap.Map2Index.Uorder = uorder;
1058 ctx->EvalMap.Map2Index.u1 = u1;
1059 ctx->EvalMap.Map2Index.u2 = u2;
1060 ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1);
1061 ctx->EvalMap.Map2Index.Vorder = vorder;
1062 ctx->EvalMap.Map2Index.v1 = v1;
1063 ctx->EvalMap.Map2Index.v2 = v2;
1064 ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1);
1065 if (ctx->EvalMap.Map2Index.Points
1066 && !ctx->EvalMap.Map2Index.Retain) {
1067 free( ctx->EvalMap.Map2Index.Points );
1068 }
1069 ctx->EvalMap.Map2Index.Retain = retain;
1070 ctx->EvalMap.Map2Index.Points = (GLfloat *) points;
1071 break;
1072 case GL_MAP2_COLOR_4:
1073 ctx->EvalMap.Map2Color4.Uorder = uorder;
1074 ctx->EvalMap.Map2Color4.u1 = u1;
1075 ctx->EvalMap.Map2Color4.u2 = u2;
1076 ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1);
1077 ctx->EvalMap.Map2Color4.Vorder = vorder;
1078 ctx->EvalMap.Map2Color4.v1 = v1;
1079 ctx->EvalMap.Map2Color4.v2 = v2;
1080 ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1);
1081 if (ctx->EvalMap.Map2Color4.Points
1082 && !ctx->EvalMap.Map2Color4.Retain) {
1083 free( ctx->EvalMap.Map2Color4.Points );
1084 }
1085 ctx->EvalMap.Map2Color4.Retain = retain;
1086 ctx->EvalMap.Map2Color4.Points = (GLfloat *) points;
1087 break;
1088 case GL_MAP2_NORMAL:
1089 ctx->EvalMap.Map2Normal.Uorder = uorder;
1090 ctx->EvalMap.Map2Normal.u1 = u1;
1091 ctx->EvalMap.Map2Normal.u2 = u2;
1092 ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1);
1093 ctx->EvalMap.Map2Normal.Vorder = vorder;
1094 ctx->EvalMap.Map2Normal.v1 = v1;
1095 ctx->EvalMap.Map2Normal.v2 = v2;
1096 ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1);
1097 if (ctx->EvalMap.Map2Normal.Points
1098 && !ctx->EvalMap.Map2Normal.Retain) {
1099 free( ctx->EvalMap.Map2Normal.Points );
1100 }
1101 ctx->EvalMap.Map2Normal.Retain = retain;
1102 ctx->EvalMap.Map2Normal.Points = (GLfloat *) points;
1103 break;
1104 case GL_MAP2_TEXTURE_COORD_1:
1105 ctx->EvalMap.Map2Texture1.Uorder = uorder;
1106 ctx->EvalMap.Map2Texture1.u1 = u1;
1107 ctx->EvalMap.Map2Texture1.u2 = u2;
1108 ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1);
1109 ctx->EvalMap.Map2Texture1.Vorder = vorder;
1110 ctx->EvalMap.Map2Texture1.v1 = v1;
1111 ctx->EvalMap.Map2Texture1.v2 = v2;
1112 ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1);
1113 if (ctx->EvalMap.Map2Texture1.Points
1114 && !ctx->EvalMap.Map2Texture1.Retain) {
1115 free( ctx->EvalMap.Map2Texture1.Points );
1116 }
1117 ctx->EvalMap.Map2Texture1.Retain = retain;
1118 ctx->EvalMap.Map2Texture1.Points = (GLfloat *) points;
1119 break;
1120 case GL_MAP2_TEXTURE_COORD_2:
1121 ctx->EvalMap.Map2Texture2.Uorder = uorder;
1122 ctx->EvalMap.Map2Texture2.u1 = u1;
1123 ctx->EvalMap.Map2Texture2.u2 = u2;
1124 ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1);
1125 ctx->EvalMap.Map2Texture2.Vorder = vorder;
1126 ctx->EvalMap.Map2Texture2.v1 = v1;
1127 ctx->EvalMap.Map2Texture2.v2 = v2;
1128 ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1);
1129 if (ctx->EvalMap.Map2Texture2.Points
1130 && !ctx->EvalMap.Map2Texture2.Retain) {
1131 free( ctx->EvalMap.Map2Texture2.Points );
1132 }
1133 ctx->EvalMap.Map2Texture2.Retain = retain;
1134 ctx->EvalMap.Map2Texture2.Points = (GLfloat *) points;
1135 break;
1136 case GL_MAP2_TEXTURE_COORD_3:
1137 ctx->EvalMap.Map2Texture3.Uorder = uorder;
1138 ctx->EvalMap.Map2Texture3.u1 = u1;
1139 ctx->EvalMap.Map2Texture3.u2 = u2;
1140 ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1);
1141 ctx->EvalMap.Map2Texture3.Vorder = vorder;
1142 ctx->EvalMap.Map2Texture3.v1 = v1;
1143 ctx->EvalMap.Map2Texture3.v2 = v2;
1144 ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1);
1145 if (ctx->EvalMap.Map2Texture3.Points
1146 && !ctx->EvalMap.Map2Texture3.Retain) {
1147 free( ctx->EvalMap.Map2Texture3.Points );
1148 }
1149 ctx->EvalMap.Map2Texture3.Retain = retain;
1150 ctx->EvalMap.Map2Texture3.Points = (GLfloat *) points;
1151 break;
1152 case GL_MAP2_TEXTURE_COORD_4:
1153 ctx->EvalMap.Map2Texture4.Uorder = uorder;
1154 ctx->EvalMap.Map2Texture4.u1 = u1;
1155 ctx->EvalMap.Map2Texture4.u2 = u2;
1156 ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1);
1157 ctx->EvalMap.Map2Texture4.Vorder = vorder;
1158 ctx->EvalMap.Map2Texture4.v1 = v1;
1159 ctx->EvalMap.Map2Texture4.v2 = v2;
1160 ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1);
1161 if (ctx->EvalMap.Map2Texture4.Points
1162 && !ctx->EvalMap.Map2Texture4.Retain) {
1163 free( ctx->EvalMap.Map2Texture4.Points );
1164 }
1165 ctx->EvalMap.Map2Texture4.Retain = retain;
1166 ctx->EvalMap.Map2Texture4.Points = (GLfloat *) points;
1167 break;
1168 default:
1169 gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
1170 }
1171 }
1172
1173
1174
1175
1176
1177 void gl_GetMapdv( GLcontext* ctx, GLenum target, GLenum query, GLdouble *v )
1178 {
1179 GLint i, n;
1180 GLfloat *data;
1181
1182 switch (query) {
1183 case GL_COEFF:
1184 switch (target) {
1185 case GL_MAP1_COLOR_4:
1186 data = ctx->EvalMap.Map1Color4.Points;
1187 n = ctx->EvalMap.Map1Color4.Order * 4;
1188 break;
1189 case GL_MAP1_INDEX:
1190 data = ctx->EvalMap.Map1Index.Points;
1191 n = ctx->EvalMap.Map1Index.Order;
1192 break;
1193 case GL_MAP1_NORMAL:
1194 data = ctx->EvalMap.Map1Normal.Points;
1195 n = ctx->EvalMap.Map1Normal.Order * 3;
1196 break;
1197 case GL_MAP1_TEXTURE_COORD_1:
1198 data = ctx->EvalMap.Map1Texture1.Points;
1199 n = ctx->EvalMap.Map1Texture1.Order * 1;
1200 break;
1201 case GL_MAP1_TEXTURE_COORD_2:
1202 data = ctx->EvalMap.Map1Texture2.Points;
1203 n = ctx->EvalMap.Map1Texture2.Order * 2;
1204 break;
1205 case GL_MAP1_TEXTURE_COORD_3:
1206 data = ctx->EvalMap.Map1Texture3.Points;
1207 n = ctx->EvalMap.Map1Texture3.Order * 3;
1208 break;
1209 case GL_MAP1_TEXTURE_COORD_4:
1210 data = ctx->EvalMap.Map1Texture4.Points;
1211 n = ctx->EvalMap.Map1Texture4.Order * 4;
1212 break;
1213 case GL_MAP1_VERTEX_3:
1214 data = ctx->EvalMap.Map1Vertex3.Points;
1215 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1216 break;
1217 case GL_MAP1_VERTEX_4:
1218 data = ctx->EvalMap.Map1Vertex4.Points;
1219 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1220 break;
1221 case GL_MAP2_COLOR_4:
1222 data = ctx->EvalMap.Map2Color4.Points;
1223 n = ctx->EvalMap.Map2Color4.Uorder
1224 * ctx->EvalMap.Map2Color4.Vorder * 4;
1225 break;
1226 case GL_MAP2_INDEX:
1227 data = ctx->EvalMap.Map2Index.Points;
1228 n = ctx->EvalMap.Map2Index.Uorder
1229 * ctx->EvalMap.Map2Index.Vorder;
1230 break;
1231 case GL_MAP2_NORMAL:
1232 data = ctx->EvalMap.Map2Normal.Points;
1233 n = ctx->EvalMap.Map2Normal.Uorder
1234 * ctx->EvalMap.Map2Normal.Vorder * 3;
1235 break;
1236 case GL_MAP2_TEXTURE_COORD_1:
1237 data = ctx->EvalMap.Map2Texture1.Points;
1238 n = ctx->EvalMap.Map2Texture1.Uorder
1239 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1240 break;
1241 case GL_MAP2_TEXTURE_COORD_2:
1242 data = ctx->EvalMap.Map2Texture2.Points;
1243 n = ctx->EvalMap.Map2Texture2.Uorder
1244 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1245 break;
1246 case GL_MAP2_TEXTURE_COORD_3:
1247 data = ctx->EvalMap.Map2Texture3.Points;
1248 n = ctx->EvalMap.Map2Texture3.Uorder
1249 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1250 break;
1251 case GL_MAP2_TEXTURE_COORD_4:
1252 data = ctx->EvalMap.Map2Texture4.Points;
1253 n = ctx->EvalMap.Map2Texture4.Uorder
1254 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1255 break;
1256 case GL_MAP2_VERTEX_3:
1257 data = ctx->EvalMap.Map2Vertex3.Points;
1258 n = ctx->EvalMap.Map2Vertex3.Uorder
1259 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1260 break;
1261 case GL_MAP2_VERTEX_4:
1262 data = ctx->EvalMap.Map2Vertex4.Points;
1263 n = ctx->EvalMap.Map2Vertex4.Uorder
1264 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1265 break;
1266 default:
1267 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1268 return;
1269 }
1270 if (data) {
1271 for (i=0;i<n;i++) {
1272 v[i] = data[i];
1273 }
1274 }
1275 break;
1276 case GL_ORDER:
1277 switch (target) {
1278 case GL_MAP1_COLOR_4:
1279 *v = ctx->EvalMap.Map1Color4.Order;
1280 break;
1281 case GL_MAP1_INDEX:
1282 *v = ctx->EvalMap.Map1Index.Order;
1283 break;
1284 case GL_MAP1_NORMAL:
1285 *v = ctx->EvalMap.Map1Normal.Order;
1286 break;
1287 case GL_MAP1_TEXTURE_COORD_1:
1288 *v = ctx->EvalMap.Map1Texture1.Order;
1289 break;
1290 case GL_MAP1_TEXTURE_COORD_2:
1291 *v = ctx->EvalMap.Map1Texture2.Order;
1292 break;
1293 case GL_MAP1_TEXTURE_COORD_3:
1294 *v = ctx->EvalMap.Map1Texture3.Order;
1295 break;
1296 case GL_MAP1_TEXTURE_COORD_4:
1297 *v = ctx->EvalMap.Map1Texture4.Order;
1298 break;
1299 case GL_MAP1_VERTEX_3:
1300 *v = ctx->EvalMap.Map1Vertex3.Order;
1301 break;
1302 case GL_MAP1_VERTEX_4:
1303 *v = ctx->EvalMap.Map1Vertex4.Order;
1304 break;
1305 case GL_MAP2_COLOR_4:
1306 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1307 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1308 break;
1309 case GL_MAP2_INDEX:
1310 v[0] = ctx->EvalMap.Map2Index.Uorder;
1311 v[1] = ctx->EvalMap.Map2Index.Vorder;
1312 break;
1313 case GL_MAP2_NORMAL:
1314 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1315 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1316 break;
1317 case GL_MAP2_TEXTURE_COORD_1:
1318 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1319 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1320 break;
1321 case GL_MAP2_TEXTURE_COORD_2:
1322 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1323 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1324 break;
1325 case GL_MAP2_TEXTURE_COORD_3:
1326 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1327 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1328 break;
1329 case GL_MAP2_TEXTURE_COORD_4:
1330 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1331 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1332 break;
1333 case GL_MAP2_VERTEX_3:
1334 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1335 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1336 break;
1337 case GL_MAP2_VERTEX_4:
1338 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1339 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1340 break;
1341 default:
1342 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1343 return;
1344 }
1345 break;
1346 case GL_DOMAIN:
1347 switch (target) {
1348 case GL_MAP1_COLOR_4:
1349 v[0] = ctx->EvalMap.Map1Color4.u1;
1350 v[1] = ctx->EvalMap.Map1Color4.u2;
1351 break;
1352 case GL_MAP1_INDEX:
1353 v[0] = ctx->EvalMap.Map1Index.u1;
1354 v[1] = ctx->EvalMap.Map1Index.u2;
1355 break;
1356 case GL_MAP1_NORMAL:
1357 v[0] = ctx->EvalMap.Map1Normal.u1;
1358 v[1] = ctx->EvalMap.Map1Normal.u2;
1359 break;
1360 case GL_MAP1_TEXTURE_COORD_1:
1361 v[0] = ctx->EvalMap.Map1Texture1.u1;
1362 v[1] = ctx->EvalMap.Map1Texture1.u2;
1363 break;
1364 case GL_MAP1_TEXTURE_COORD_2:
1365 v[0] = ctx->EvalMap.Map1Texture2.u1;
1366 v[1] = ctx->EvalMap.Map1Texture2.u2;
1367 break;
1368 case GL_MAP1_TEXTURE_COORD_3:
1369 v[0] = ctx->EvalMap.Map1Texture3.u1;
1370 v[1] = ctx->EvalMap.Map1Texture3.u2;
1371 break;
1372 case GL_MAP1_TEXTURE_COORD_4:
1373 v[0] = ctx->EvalMap.Map1Texture4.u1;
1374 v[1] = ctx->EvalMap.Map1Texture4.u2;
1375 break;
1376 case GL_MAP1_VERTEX_3:
1377 v[0] = ctx->EvalMap.Map1Vertex3.u1;
1378 v[1] = ctx->EvalMap.Map1Vertex3.u2;
1379 break;
1380 case GL_MAP1_VERTEX_4:
1381 v[0] = ctx->EvalMap.Map1Vertex4.u1;
1382 v[1] = ctx->EvalMap.Map1Vertex4.u2;
1383 break;
1384 case GL_MAP2_COLOR_4:
1385 v[0] = ctx->EvalMap.Map2Color4.u1;
1386 v[1] = ctx->EvalMap.Map2Color4.u2;
1387 v[2] = ctx->EvalMap.Map2Color4.v1;
1388 v[3] = ctx->EvalMap.Map2Color4.v2;
1389 break;
1390 case GL_MAP2_INDEX:
1391 v[0] = ctx->EvalMap.Map2Index.u1;
1392 v[1] = ctx->EvalMap.Map2Index.u2;
1393 v[2] = ctx->EvalMap.Map2Index.v1;
1394 v[3] = ctx->EvalMap.Map2Index.v2;
1395 break;
1396 case GL_MAP2_NORMAL:
1397 v[0] = ctx->EvalMap.Map2Normal.u1;
1398 v[1] = ctx->EvalMap.Map2Normal.u2;
1399 v[2] = ctx->EvalMap.Map2Normal.v1;
1400 v[3] = ctx->EvalMap.Map2Normal.v2;
1401 break;
1402 case GL_MAP2_TEXTURE_COORD_1:
1403 v[0] = ctx->EvalMap.Map2Texture1.u1;
1404 v[1] = ctx->EvalMap.Map2Texture1.u2;
1405 v[2] = ctx->EvalMap.Map2Texture1.v1;
1406 v[3] = ctx->EvalMap.Map2Texture1.v2;
1407 break;
1408 case GL_MAP2_TEXTURE_COORD_2:
1409 v[0] = ctx->EvalMap.Map2Texture2.u1;
1410 v[1] = ctx->EvalMap.Map2Texture2.u2;
1411 v[2] = ctx->EvalMap.Map2Texture2.v1;
1412 v[3] = ctx->EvalMap.Map2Texture2.v2;
1413 break;
1414 case GL_MAP2_TEXTURE_COORD_3:
1415 v[0] = ctx->EvalMap.Map2Texture3.u1;
1416 v[1] = ctx->EvalMap.Map2Texture3.u2;
1417 v[2] = ctx->EvalMap.Map2Texture3.v1;
1418 v[3] = ctx->EvalMap.Map2Texture3.v2;
1419 break;
1420 case GL_MAP2_TEXTURE_COORD_4:
1421 v[0] = ctx->EvalMap.Map2Texture4.u1;
1422 v[1] = ctx->EvalMap.Map2Texture4.u2;
1423 v[2] = ctx->EvalMap.Map2Texture4.v1;
1424 v[3] = ctx->EvalMap.Map2Texture4.v2;
1425 break;
1426 case GL_MAP2_VERTEX_3:
1427 v[0] = ctx->EvalMap.Map2Vertex3.u1;
1428 v[1] = ctx->EvalMap.Map2Vertex3.u2;
1429 v[2] = ctx->EvalMap.Map2Vertex3.v1;
1430 v[3] = ctx->EvalMap.Map2Vertex3.v2;
1431 break;
1432 case GL_MAP2_VERTEX_4:
1433 v[0] = ctx->EvalMap.Map2Vertex4.u1;
1434 v[1] = ctx->EvalMap.Map2Vertex4.u2;
1435 v[2] = ctx->EvalMap.Map2Vertex4.v1;
1436 v[3] = ctx->EvalMap.Map2Vertex4.v2;
1437 break;
1438 default:
1439 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1440 }
1441 break;
1442 default:
1443 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
1444 }
1445 }
1446
1447
1448 void gl_GetMapfv( GLcontext* ctx, GLenum target, GLenum query, GLfloat *v )
1449 {
1450 GLint i, n;
1451 GLfloat *data;
1452
1453 switch (query) {
1454 case GL_COEFF:
1455 switch (target) {
1456 case GL_MAP1_COLOR_4:
1457 data = ctx->EvalMap.Map1Color4.Points;
1458 n = ctx->EvalMap.Map1Color4.Order * 4;
1459 break;
1460 case GL_MAP1_INDEX:
1461 data = ctx->EvalMap.Map1Index.Points;
1462 n = ctx->EvalMap.Map1Index.Order;
1463 break;
1464 case GL_MAP1_NORMAL:
1465 data = ctx->EvalMap.Map1Normal.Points;
1466 n = ctx->EvalMap.Map1Normal.Order * 3;
1467 break;
1468 case GL_MAP1_TEXTURE_COORD_1:
1469 data = ctx->EvalMap.Map1Texture1.Points;
1470 n = ctx->EvalMap.Map1Texture1.Order * 1;
1471 break;
1472 case GL_MAP1_TEXTURE_COORD_2:
1473 data = ctx->EvalMap.Map1Texture2.Points;
1474 n = ctx->EvalMap.Map1Texture2.Order * 2;
1475 break;
1476 case GL_MAP1_TEXTURE_COORD_3:
1477 data = ctx->EvalMap.Map1Texture3.Points;
1478 n = ctx->EvalMap.Map1Texture3.Order * 3;
1479 break;
1480 case GL_MAP1_TEXTURE_COORD_4:
1481 data = ctx->EvalMap.Map1Texture4.Points;
1482 n = ctx->EvalMap.Map1Texture4.Order * 4;
1483 break;
1484 case GL_MAP1_VERTEX_3:
1485 data = ctx->EvalMap.Map1Vertex3.Points;
1486 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1487 break;
1488 case GL_MAP1_VERTEX_4:
1489 data = ctx->EvalMap.Map1Vertex4.Points;
1490 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1491 break;
1492 case GL_MAP2_COLOR_4:
1493 data = ctx->EvalMap.Map2Color4.Points;
1494 n = ctx->EvalMap.Map2Color4.Uorder
1495 * ctx->EvalMap.Map2Color4.Vorder * 4;
1496 break;
1497 case GL_MAP2_INDEX:
1498 data = ctx->EvalMap.Map2Index.Points;
1499 n = ctx->EvalMap.Map2Index.Uorder
1500 * ctx->EvalMap.Map2Index.Vorder;
1501 break;
1502 case GL_MAP2_NORMAL:
1503 data = ctx->EvalMap.Map2Normal.Points;
1504 n = ctx->EvalMap.Map2Normal.Uorder
1505 * ctx->EvalMap.Map2Normal.Vorder * 3;
1506 break;
1507 case GL_MAP2_TEXTURE_COORD_1:
1508 data = ctx->EvalMap.Map2Texture1.Points;
1509 n = ctx->EvalMap.Map2Texture1.Uorder
1510 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1511 break;
1512 case GL_MAP2_TEXTURE_COORD_2:
1513 data = ctx->EvalMap.Map2Texture2.Points;
1514 n = ctx->EvalMap.Map2Texture2.Uorder
1515 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1516 break;
1517 case GL_MAP2_TEXTURE_COORD_3:
1518 data = ctx->EvalMap.Map2Texture3.Points;
1519 n = ctx->EvalMap.Map2Texture3.Uorder
1520 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1521 break;
1522 case GL_MAP2_TEXTURE_COORD_4:
1523 data = ctx->EvalMap.Map2Texture4.Points;
1524 n = ctx->EvalMap.Map2Texture4.Uorder
1525 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1526 break;
1527 case GL_MAP2_VERTEX_3:
1528 data = ctx->EvalMap.Map2Vertex3.Points;
1529 n = ctx->EvalMap.Map2Vertex3.Uorder
1530 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1531 break;
1532 case GL_MAP2_VERTEX_4:
1533 data = ctx->EvalMap.Map2Vertex4.Points;
1534 n = ctx->EvalMap.Map2Vertex4.Uorder
1535 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1536 break;
1537 default:
1538 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1539 return;
1540 }
1541 if (data) {
1542 for (i=0;i<n;i++) {
1543 v[i] = data[i];
1544 }
1545 }
1546 break;
1547 case GL_ORDER:
1548 switch (target) {
1549 case GL_MAP1_COLOR_4:
1550 *v = ctx->EvalMap.Map1Color4.Order;
1551 break;
1552 case GL_MAP1_INDEX:
1553 *v = ctx->EvalMap.Map1Index.Order;
1554 break;
1555 case GL_MAP1_NORMAL:
1556 *v = ctx->EvalMap.Map1Normal.Order;
1557 break;
1558 case GL_MAP1_TEXTURE_COORD_1:
1559 *v = ctx->EvalMap.Map1Texture1.Order;
1560 break;
1561 case GL_MAP1_TEXTURE_COORD_2:
1562 *v = ctx->EvalMap.Map1Texture2.Order;
1563 break;
1564 case GL_MAP1_TEXTURE_COORD_3:
1565 *v = ctx->EvalMap.Map1Texture3.Order;
1566 break;
1567 case GL_MAP1_TEXTURE_COORD_4:
1568 *v = ctx->EvalMap.Map1Texture4.Order;
1569 break;
1570 case GL_MAP1_VERTEX_3:
1571 *v = ctx->EvalMap.Map1Vertex3.Order;
1572 break;
1573 case GL_MAP1_VERTEX_4:
1574 *v = ctx->EvalMap.Map1Vertex4.Order;
1575 break;
1576 case GL_MAP2_COLOR_4:
1577 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1578 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1579 break;
1580 case GL_MAP2_INDEX:
1581 v[0] = ctx->EvalMap.Map2Index.Uorder;
1582 v[1] = ctx->EvalMap.Map2Index.Vorder;
1583 break;
1584 case GL_MAP2_NORMAL:
1585 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1586 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1587 break;
1588 case GL_MAP2_TEXTURE_COORD_1:
1589 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1590 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1591 break;
1592 case GL_MAP2_TEXTURE_COORD_2:
1593 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1594 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1595 break;
1596 case GL_MAP2_TEXTURE_COORD_3:
1597 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1598 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1599 break;
1600 case GL_MAP2_TEXTURE_COORD_4:
1601 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1602 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1603 break;
1604 case GL_MAP2_VERTEX_3:
1605 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1606 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1607 break;
1608 case GL_MAP2_VERTEX_4:
1609 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1610 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1611 break;
1612 default:
1613 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1614 return;
1615 }
1616 break;
1617 case GL_DOMAIN:
1618 switch (target) {
1619 case GL_MAP1_COLOR_4:
1620 v[0] = ctx->EvalMap.Map1Color4.u1;
1621 v[1] = ctx->EvalMap.Map1Color4.u2;
1622 break;
1623 case GL_MAP1_INDEX:
1624 v[0] = ctx->EvalMap.Map1Index.u1;
1625 v[1] = ctx->EvalMap.Map1Index.u2;
1626 break;
1627 case GL_MAP1_NORMAL:
1628 v[0] = ctx->EvalMap.Map1Normal.u1;
1629 v[1] = ctx->EvalMap.Map1Normal.u2;
1630 break;
1631 case GL_MAP1_TEXTURE_COORD_1:
1632 v[0] = ctx->EvalMap.Map1Texture1.u1;
1633 v[1] = ctx->EvalMap.Map1Texture1.u2;
1634 break;
1635 case GL_MAP1_TEXTURE_COORD_2:
1636 v[0] = ctx->EvalMap.Map1Texture2.u1;
1637 v[1] = ctx->EvalMap.Map1Texture2.u2;
1638 break;
1639 case GL_MAP1_TEXTURE_COORD_3:
1640 v[0] = ctx->EvalMap.Map1Texture3.u1;
1641 v[1] = ctx->EvalMap.Map1Texture3.u2;
1642 break;
1643 case GL_MAP1_TEXTURE_COORD_4:
1644 v[0] = ctx->EvalMap.Map1Texture4.u1;
1645 v[1] = ctx->EvalMap.Map1Texture4.u2;
1646 break;
1647 case GL_MAP1_VERTEX_3:
1648 v[0] = ctx->EvalMap.Map1Vertex3.u1;
1649 v[1] = ctx->EvalMap.Map1Vertex3.u2;
1650 break;
1651 case GL_MAP1_VERTEX_4:
1652 v[0] = ctx->EvalMap.Map1Vertex4.u1;
1653 v[1] = ctx->EvalMap.Map1Vertex4.u2;
1654 break;
1655 case GL_MAP2_COLOR_4:
1656 v[0] = ctx->EvalMap.Map2Color4.u1;
1657 v[1] = ctx->EvalMap.Map2Color4.u2;
1658 v[2] = ctx->EvalMap.Map2Color4.v1;
1659 v[3] = ctx->EvalMap.Map2Color4.v2;
1660 break;
1661 case GL_MAP2_INDEX:
1662 v[0] = ctx->EvalMap.Map2Index.u1;
1663 v[1] = ctx->EvalMap.Map2Index.u2;
1664 v[2] = ctx->EvalMap.Map2Index.v1;
1665 v[3] = ctx->EvalMap.Map2Index.v2;
1666 break;
1667 case GL_MAP2_NORMAL:
1668 v[0] = ctx->EvalMap.Map2Normal.u1;
1669 v[1] = ctx->EvalMap.Map2Normal.u2;
1670 v[2] = ctx->EvalMap.Map2Normal.v1;
1671 v[3] = ctx->EvalMap.Map2Normal.v2;
1672 break;
1673 case GL_MAP2_TEXTURE_COORD_1:
1674 v[0] = ctx->EvalMap.Map2Texture1.u1;
1675 v[1] = ctx->EvalMap.Map2Texture1.u2;
1676 v[2] = ctx->EvalMap.Map2Texture1.v1;
1677 v[3] = ctx->EvalMap.Map2Texture1.v2;
1678 break;
1679 case GL_MAP2_TEXTURE_COORD_2:
1680 v[0] = ctx->EvalMap.Map2Texture2.u1;
1681 v[1] = ctx->EvalMap.Map2Texture2.u2;
1682 v[2] = ctx->EvalMap.Map2Texture2.v1;
1683 v[3] = ctx->EvalMap.Map2Texture2.v2;
1684 break;
1685 case GL_MAP2_TEXTURE_COORD_3:
1686 v[0] = ctx->EvalMap.Map2Texture3.u1;
1687 v[1] = ctx->EvalMap.Map2Texture3.u2;
1688 v[2] = ctx->EvalMap.Map2Texture3.v1;
1689 v[3] = ctx->EvalMap.Map2Texture3.v2;
1690 break;
1691 case GL_MAP2_TEXTURE_COORD_4:
1692 v[0] = ctx->EvalMap.Map2Texture4.u1;
1693 v[1] = ctx->EvalMap.Map2Texture4.u2;
1694 v[2] = ctx->EvalMap.Map2Texture4.v1;
1695 v[3] = ctx->EvalMap.Map2Texture4.v2;
1696 break;
1697 case GL_MAP2_VERTEX_3:
1698 v[0] = ctx->EvalMap.Map2Vertex3.u1;
1699 v[1] = ctx->EvalMap.Map2Vertex3.u2;
1700 v[2] = ctx->EvalMap.Map2Vertex3.v1;
1701 v[3] = ctx->EvalMap.Map2Vertex3.v2;
1702 break;
1703 case GL_MAP2_VERTEX_4:
1704 v[0] = ctx->EvalMap.Map2Vertex4.u1;
1705 v[1] = ctx->EvalMap.Map2Vertex4.u2;
1706 v[2] = ctx->EvalMap.Map2Vertex4.v1;
1707 v[3] = ctx->EvalMap.Map2Vertex4.v2;
1708 break;
1709 default:
1710 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1711 }
1712 break;
1713 default:
1714 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
1715 }
1716 }
1717
1718
1719 void gl_GetMapiv( GLcontext* ctx, GLenum target, GLenum query, GLint *v )
1720 {
1721 GLuint i, n;
1722 GLfloat *data;
1723
1724 switch (query) {
1725 case GL_COEFF:
1726 switch (target) {
1727 case GL_MAP1_COLOR_4:
1728 data = ctx->EvalMap.Map1Color4.Points;
1729 n = ctx->EvalMap.Map1Color4.Order * 4;
1730 break;
1731 case GL_MAP1_INDEX:
1732 data = ctx->EvalMap.Map1Index.Points;
1733 n = ctx->EvalMap.Map1Index.Order;
1734 break;
1735 case GL_MAP1_NORMAL:
1736 data = ctx->EvalMap.Map1Normal.Points;
1737 n = ctx->EvalMap.Map1Normal.Order * 3;
1738 break;
1739 case GL_MAP1_TEXTURE_COORD_1:
1740 data = ctx->EvalMap.Map1Texture1.Points;
1741 n = ctx->EvalMap.Map1Texture1.Order * 1;
1742 break;
1743 case GL_MAP1_TEXTURE_COORD_2:
1744 data = ctx->EvalMap.Map1Texture2.Points;
1745 n = ctx->EvalMap.Map1Texture2.Order * 2;
1746 break;
1747 case GL_MAP1_TEXTURE_COORD_3:
1748 data = ctx->EvalMap.Map1Texture3.Points;
1749 n = ctx->EvalMap.Map1Texture3.Order * 3;
1750 break;
1751 case GL_MAP1_TEXTURE_COORD_4:
1752 data = ctx->EvalMap.Map1Texture4.Points;
1753 n = ctx->EvalMap.Map1Texture4.Order * 4;
1754 break;
1755 case GL_MAP1_VERTEX_3:
1756 data = ctx->EvalMap.Map1Vertex3.Points;
1757 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1758 break;
1759 case GL_MAP1_VERTEX_4:
1760 data = ctx->EvalMap.Map1Vertex4.Points;
1761 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1762 break;
1763 case GL_MAP2_COLOR_4:
1764 data = ctx->EvalMap.Map2Color4.Points;
1765 n = ctx->EvalMap.Map2Color4.Uorder
1766 * ctx->EvalMap.Map2Color4.Vorder * 4;
1767 break;
1768 case GL_MAP2_INDEX:
1769 data = ctx->EvalMap.Map2Index.Points;
1770 n = ctx->EvalMap.Map2Index.Uorder
1771 * ctx->EvalMap.Map2Index.Vorder;
1772 break;
1773 case GL_MAP2_NORMAL:
1774 data = ctx->EvalMap.Map2Normal.Points;
1775 n = ctx->EvalMap.Map2Normal.Uorder
1776 * ctx->EvalMap.Map2Normal.Vorder * 3;
1777 break;
1778 case GL_MAP2_TEXTURE_COORD_1:
1779 data = ctx->EvalMap.Map2Texture1.Points;
1780 n = ctx->EvalMap.Map2Texture1.Uorder
1781 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1782 break;
1783 case GL_MAP2_TEXTURE_COORD_2:
1784 data = ctx->EvalMap.Map2Texture2.Points;
1785 n = ctx->EvalMap.Map2Texture2.Uorder
1786 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1787 break;
1788 case GL_MAP2_TEXTURE_COORD_3:
1789 data = ctx->EvalMap.Map2Texture3.Points;
1790 n = ctx->EvalMap.Map2Texture3.Uorder
1791 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1792 break;
1793 case GL_MAP2_TEXTURE_COORD_4:
1794 data = ctx->EvalMap.Map2Texture4.Points;
1795 n = ctx->EvalMap.Map2Texture4.Uorder
1796 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1797 break;
1798 case GL_MAP2_VERTEX_3:
1799 data = ctx->EvalMap.Map2Vertex3.Points;
1800 n = ctx->EvalMap.Map2Vertex3.Uorder
1801 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1802 break;
1803 case GL_MAP2_VERTEX_4:
1804 data = ctx->EvalMap.Map2Vertex4.Points;
1805 n = ctx->EvalMap.Map2Vertex4.Uorder
1806 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1807 break;
1808 default:
1809 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1810 return;
1811 }
1812 if (data) {
1813 for (i=0;i<n;i++) {
1814 v[i] = ROUNDF(data[i]);
1815 }
1816 }
1817 break;
1818 case GL_ORDER:
1819 switch (target) {
1820 case GL_MAP1_COLOR_4:
1821 *v = ctx->EvalMap.Map1Color4.Order;
1822 break;
1823 case GL_MAP1_INDEX:
1824 *v = ctx->EvalMap.Map1Index.Order;
1825 break;
1826 case GL_MAP1_NORMAL:
1827 *v = ctx->EvalMap.Map1Normal.Order;
1828 break;
1829 case GL_MAP1_TEXTURE_COORD_1:
1830 *v = ctx->EvalMap.Map1Texture1.Order;
1831 break;
1832 case GL_MAP1_TEXTURE_COORD_2:
1833 *v = ctx->EvalMap.Map1Texture2.Order;
1834 break;
1835 case GL_MAP1_TEXTURE_COORD_3:
1836 *v = ctx->EvalMap.Map1Texture3.Order;
1837 break;
1838 case GL_MAP1_TEXTURE_COORD_4:
1839 *v = ctx->EvalMap.Map1Texture4.Order;
1840 break;
1841 case GL_MAP1_VERTEX_3:
1842 *v = ctx->EvalMap.Map1Vertex3.Order;
1843 break;
1844 case GL_MAP1_VERTEX_4:
1845 *v = ctx->EvalMap.Map1Vertex4.Order;
1846 break;
1847 case GL_MAP2_COLOR_4:
1848 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1849 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1850 break;
1851 case GL_MAP2_INDEX:
1852 v[0] = ctx->EvalMap.Map2Index.Uorder;
1853 v[1] = ctx->EvalMap.Map2Index.Vorder;
1854 break;
1855 case GL_MAP2_NORMAL:
1856 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1857 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1858 break;
1859 case GL_MAP2_TEXTURE_COORD_1:
1860 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1861 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1862 break;
1863 case GL_MAP2_TEXTURE_COORD_2:
1864 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1865 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1866 break;
1867 case GL_MAP2_TEXTURE_COORD_3:
1868 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1869 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1870 break;
1871 case GL_MAP2_TEXTURE_COORD_4:
1872 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1873 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1874 break;
1875 case GL_MAP2_VERTEX_3:
1876 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1877 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1878 break;
1879 case GL_MAP2_VERTEX_4:
1880 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1881 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1882 break;
1883 default:
1884 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1885 return;
1886 }
1887 break;
1888 case GL_DOMAIN:
1889 switch (target) {
1890 case GL_MAP1_COLOR_4:
1891 v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
1892 v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
1893 break;
1894 case GL_MAP1_INDEX:
1895 v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
1896 v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
1897 break;
1898 case GL_MAP1_NORMAL:
1899 v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
1900 v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
1901 break;
1902 case GL_MAP1_TEXTURE_COORD_1:
1903 v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
1904 v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
1905 break;
1906 case GL_MAP1_TEXTURE_COORD_2:
1907 v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
1908 v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
1909 break;
1910 case GL_MAP1_TEXTURE_COORD_3:
1911 v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
1912 v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
1913 break;
1914 case GL_MAP1_TEXTURE_COORD_4:
1915 v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
1916 v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
1917 break;
1918 case GL_MAP1_VERTEX_3:
1919 v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
1920 v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
1921 break;
1922 case GL_MAP1_VERTEX_4:
1923 v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
1924 v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
1925 break;
1926 case GL_MAP2_COLOR_4:
1927 v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1);
1928 v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2);
1929 v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1);
1930 v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2);
1931 break;
1932 case GL_MAP2_INDEX:
1933 v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1);
1934 v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2);
1935 v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1);
1936 v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2);
1937 break;
1938 case GL_MAP2_NORMAL:
1939 v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1);
1940 v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2);
1941 v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1);
1942 v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2);
1943 break;
1944 case GL_MAP2_TEXTURE_COORD_1:
1945 v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1);
1946 v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2);
1947 v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1);
1948 v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2);
1949 break;
1950 case GL_MAP2_TEXTURE_COORD_2:
1951 v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1);
1952 v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2);
1953 v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1);
1954 v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2);
1955 break;
1956 case GL_MAP2_TEXTURE_COORD_3:
1957 v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1);
1958 v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2);
1959 v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1);
1960 v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2);
1961 break;
1962 case GL_MAP2_TEXTURE_COORD_4:
1963 v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1);
1964 v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2);
1965 v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1);
1966 v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2);
1967 break;
1968 case GL_MAP2_VERTEX_3:
1969 v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1);
1970 v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2);
1971 v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1);
1972 v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2);
1973 break;
1974 case GL_MAP2_VERTEX_4:
1975 v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1);
1976 v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2);
1977 v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1);
1978 v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2);
1979 break;
1980 default:
1981 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1982 }
1983 break;
1984 default:
1985 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
1986 }
1987 }
1988
1989
1990
1991 void eval_points1( GLfloat outcoord[][4],
1992 GLfloat coord[][4],
1993 const GLuint *flags,
1994 GLfloat du, GLfloat u1 )
1995 {
1996 GLuint i;
1997 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
1998 if (flags[i] & VERT_EVAL_P1)
1999 outcoord[i][0] = coord[i][0] * du + u1;
2000 else if (flags[i] & VERT_EVAL_ANY) {
2001 outcoord[i][0] = coord[i][0];
2002 outcoord[i][1] = coord[i][1];
2003 }
2004 }
2005
2006 void eval_points2( GLfloat outcoord[][4],
2007 GLfloat coord[][4],
2008 const GLuint *flags,
2009 GLfloat du, GLfloat u1,
2010 GLfloat dv, GLfloat v1 )
2011 {
2012 GLuint i;
2013 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2014 if (flags[i] & VERT_EVAL_P2) {
2015 outcoord[i][0] = coord[i][0] * du + u1;
2016 outcoord[i][1] = coord[i][1] * dv + v1;
2017 } else if (flags[i] & VERT_EVAL_ANY) {
2018 outcoord[i][0] = coord[i][0];
2019 outcoord[i][1] = coord[i][1];
2020 }
2021 }
2022
2023
2024 static const GLubyte dirty_flags[5] = {
2025 0, /* not possible */
2026 VEC_DIRTY_0,
2027 VEC_DIRTY_1,
2028 VEC_DIRTY_2,
2029 VEC_DIRTY_3
2030 };
2031
2032
2033 GLvector4f *eval1_4f( GLvector4f *dest,
2034 GLfloat coord[][4],
2035 const GLuint *flags,
2036 GLuint dimension,
2037 struct gl_1d_map *map )
2038 {
2039 const GLfloat u1 = map->u1;
2040 const GLfloat du = map->du;
2041 GLfloat (*to)[4] = dest->data;
2042 GLuint i;
2043
2044 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2045 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2046 GLfloat u = (coord[i][0] - u1) * du;
2047 ASSIGN_4V(to[i], 0,0,0,1);
2048 horner_bezier_curve(map->Points, to[i], u, dimension, map->Order);
2049 }
2050
2051 dest->count = i;
2052 dest->size = MAX2(dest->size, dimension);
2053 dest->flags |= dirty_flags[dimension];
2054 return dest;
2055 }
2056
2057
2058 GLvector1ui *eval1_1ui( GLvector1ui *dest,
2059 GLfloat coord[][4],
2060 const GLuint *flags,
2061 struct gl_1d_map *map )
2062 {
2063 const GLfloat u1 = map->u1;
2064 const GLfloat du = map->du;
2065 GLuint *to = dest->data;
2066 GLuint i;
2067
2068 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2069 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2070 GLfloat u = (coord[i][0] - u1) * du;
2071 GLfloat tmp;
2072 horner_bezier_curve(map->Points, &tmp, u, 1, map->Order);
2073 to[i] = (GLuint) (GLint) tmp;
2074 }
2075
2076 dest->count = i;
2077 return dest;
2078 }
2079
2080 GLvector3f *eval1_norm( GLvector3f *dest,
2081 GLfloat coord[][4],
2082 GLuint *flags, /* not const */
2083 struct gl_1d_map *map )
2084 {
2085 const GLfloat u1 = map->u1;
2086 const GLfloat du = map->du;
2087 GLfloat (*to)[3] = dest->data;
2088 GLuint i;
2089
2090 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2091 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2092 GLfloat u = (coord[i][0] - u1) * du;
2093 horner_bezier_curve(map->Points, to[i], u, 3, map->Order);
2094 flags[i+1] |= VERT_NORM; /* reset */
2095 }
2096
2097 dest->count = i;
2098 return dest;
2099 }
2100
2101 GLvector4ub *eval1_color( GLvector4ub *dest,
2102 GLfloat coord[][4],
2103 GLuint *flags, /* not const */
2104 struct gl_1d_map *map )
2105 {
2106 const GLfloat u1 = map->u1;
2107 const GLfloat du = map->du;
2108 GLubyte (*to)[4] = dest->data;
2109 GLuint i;
2110
2111 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2112 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2113 GLfloat u = (coord[i][0] - u1) * du;
2114 GLfloat fcolor[4];
2115 horner_bezier_curve(map->Points, fcolor, u, 4, map->Order);
2116 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2117 flags[i+1] |= VERT_RGBA; /* reset */
2118 }
2119
2120 dest->count = i;
2121 return dest;
2122 }
2123
2124
2125
2126
2127 GLvector4f *eval2_obj_norm( GLvector4f *obj_ptr,
2128 GLvector3f *norm_ptr,
2129 GLfloat coord[][4],
2130 GLuint *flags,
2131 GLuint dimension,
2132 struct gl_2d_map *map )
2133 {
2134 const GLfloat u1 = map->u1;
2135 const GLfloat du = map->du;
2136 const GLfloat v1 = map->v1;
2137 const GLfloat dv = map->dv;
2138 GLfloat (*obj)[4] = obj_ptr->data;
2139 GLfloat (*normal)[3] = norm_ptr->data;
2140 GLuint i;
2141
2142 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2143 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2144 GLfloat u = (coord[i][0] - u1) * du;
2145 GLfloat v = (coord[i][1] - v1) * dv;
2146 GLfloat du[4], dv[4];
2147
2148 ASSIGN_4V(obj[i], 0,0,0,1);
2149 de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension,
2150 map->Uorder, map->Vorder);
2151
2152 CROSS3(normal[i], du, dv);
2153 NORMALIZE_3FV(normal[i]);
2154 flags[i+1] |= VERT_NORM;
2155 }
2156
2157 obj_ptr->count = i;
2158 obj_ptr->size = MAX2(obj_ptr->size, dimension);
2159 obj_ptr->flags |= dirty_flags[dimension];
2160 return obj_ptr;
2161 }
2162
2163
2164 GLvector4f *eval2_4f( GLvector4f *dest,
2165 GLfloat coord[][4],
2166 const GLuint *flags,
2167 GLuint dimension,
2168 struct gl_2d_map *map )
2169 {
2170 const GLfloat u1 = map->u1;
2171 const GLfloat du = map->du;
2172 const GLfloat v1 = map->v1;
2173 const GLfloat dv = map->dv;
2174 GLfloat (*to)[4] = dest->data;
2175 GLuint i;
2176
2177 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2178 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2179 GLfloat u = (coord[i][0] - u1) * du;
2180 GLfloat v = (coord[i][1] - v1) * dv;
2181 horner_bezier_surf(map->Points, to[i], u, v, dimension,
2182 map->Uorder, map->Vorder);
2183 }
2184
2185 dest->count = i;
2186 dest->size = MAX2(dest->size, dimension);
2187 dest->flags |= dirty_flags[dimension];
2188 return dest;
2189 }
2190
2191
2192 GLvector3f *eval2_norm( GLvector3f *dest,
2193 GLfloat coord[][4],
2194 GLuint *flags,
2195 struct gl_2d_map *map )
2196 {
2197 const GLfloat u1 = map->u1;
2198 const GLfloat du = map->du;
2199 const GLfloat v1 = map->v1;
2200 const GLfloat dv = map->dv;
2201 GLfloat (*to)[3] = dest->data;
2202 GLuint i;
2203
2204 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2205 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2206 GLfloat u = (coord[i][0] - u1) * du;
2207 GLfloat v = (coord[i][1] - v1) * dv;
2208 horner_bezier_surf(map->Points, to[i], u, v, 3,
2209 map->Uorder, map->Vorder);
2210 flags[i+1] |= VERT_NORM; /* reset */
2211 }
2212
2213 dest->count = i;
2214 return dest;
2215 }
2216
2217
2218 GLvector1ui *eval2_1ui( GLvector1ui *dest,
2219 GLfloat coord[][4],
2220 const GLuint *flags,
2221 struct gl_2d_map *map )
2222 {
2223 const GLfloat u1 = map->u1;
2224 const GLfloat du = map->du;
2225 const GLfloat v1 = map->v1;
2226 const GLfloat dv = map->dv;
2227 GLuint *to = dest->data;
2228 GLuint i;
2229
2230 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2231 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2232 GLfloat u = (coord[i][0] - u1) * du;
2233 GLfloat v = (coord[i][1] - v1) * dv;
2234 GLfloat tmp;
2235 horner_bezier_surf(map->Points, &tmp, u, v, 1,
2236 map->Uorder, map->Vorder);
2237
2238 to[i] = (GLuint) (GLint) tmp;
2239 }
2240
2241 dest->count = i;
2242 return dest;
2243 }
2244
2245
2246
2247 GLvector4ub *eval2_color( GLvector4ub *dest,
2248 GLfloat coord[][4],
2249 GLuint *flags,
2250 struct gl_2d_map *map )
2251 {
2252 const GLfloat u1 = map->u1;
2253 const GLfloat du = map->du;
2254 const GLfloat v1 = map->v1;
2255 const GLfloat dv = map->dv;
2256 GLubyte (*to)[4] = dest->data;
2257 GLuint i;
2258
2259 for (i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2260 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2261 GLfloat u = (coord[i][0] - u1) * du;
2262 GLfloat v = (coord[i][1] - v1) * dv;
2263 GLfloat fcolor[4];
2264 horner_bezier_surf(map->Points, fcolor, u, v, 4,
2265 map->Uorder, map->Vorder);
2266 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2267 flags[i+1] |= VERT_RGBA; /* reset */
2268 }
2269
2270 dest->count = i;
2271 return dest;
2272 }
2273
2274
2275 GLvector4f *copy_4f( GLvector4f *out, CONST GLvector4f *in,
2276 const GLuint *flags)
2277 {
2278 GLfloat (*to)[4] = out->data;
2279 GLfloat (*from)[4] = in->data;
2280 GLuint i;
2281
2282 for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2283 if (!(flags[i] & VERT_EVAL_ANY))
2284 COPY_4FV( to[i], from[i] );
2285
2286 return out;
2287 }
2288
2289 GLvector3f *copy_3f( GLvector3f *out, CONST GLvector3f *in,
2290 const GLuint *flags)
2291 {
2292 GLfloat (*to)[3] = out->data;
2293 GLfloat (*from)[3] = in->data;
2294 GLuint i;
2295
2296 for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2297 if (!(flags[i] & VERT_EVAL_ANY))
2298 COPY_3V( to[i], from[i] );
2299
2300 return out;
2301 }
2302
2303 GLvector4ub *copy_4ub( GLvector4ub *out, CONST GLvector4ub *in,
2304 const GLuint *flags )
2305 {
2306 GLubyte (*to)[4] = out->data;
2307 GLubyte (*from)[4] = in->data;
2308 GLuint i;
2309
2310 for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2311 if (!(flags[i] & VERT_EVAL_ANY))
2312 COPY_4UBV( to[i], from[i] );
2313
2314 return out;
2315 }
2316
2317 GLvector1ui *copy_1ui( GLvector1ui *out, CONST GLvector1ui *in,
2318 const GLuint *flags )
2319 {
2320 GLuint *to = out->data;
2321 CONST GLuint *from = in->data;
2322 GLuint i;
2323
2324 for ( i = VB_START ; !(flags[i] & VERT_END_VB) ; i++)
2325 if (!(flags[i] & VERT_EVAL_ANY))
2326 to[i] = from[i];
2327
2328 return out;
2329 }
2330
2331
2332 /* KW: Rewrote this to perform eval on a whole buffer at once.
2333 * Only evaluates active data items, and avoids scribbling
2334 * the source buffer if we are running from a display list.
2335 *
2336 * If the user (in this case looser) sends eval coordinates
2337 * or runs a display list containing eval coords with no
2338 * vertex maps enabled, we have to either copy all non-eval
2339 * data to a new buffer, or find a way of working around
2340 * the eval data. I choose the second option.
2341 *
2342 * KW: This code not reached by cva - use IM to access storage.
2343 */
2344 void gl_eval_vb( struct vertex_buffer *VB )
2345 {
2346 struct immediate *IM = VB->IM;
2347 GLcontext *ctx = VB->ctx;
2348 GLuint req = ctx->CVA.elt.inputs;
2349 GLfloat (*coord)[4] = VB->ObjPtr->data;
2350 GLuint *flags = VB->Flag;
2351 GLuint new_flags = 0;
2352
2353
2354 GLuint any_eval1 = VB->OrFlag & (VERT_EVAL_C1|VERT_EVAL_P1);
2355 GLuint any_eval2 = VB->OrFlag & (VERT_EVAL_C2|VERT_EVAL_P2);
2356 GLuint all_eval = VB->AndFlag & VERT_EVAL_ANY;
2357
2358 /* Handle the degenerate cases.
2359 */
2360 if (any_eval1 && !ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) {
2361 VB->PurgeFlags |= (VERT_EVAL_C1|VERT_EVAL_P1);
2362 VB->EarlyCull = 0;
2363 any_eval1 = GL_FALSE;
2364 }
2365
2366 if (any_eval2 && !ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) {
2367 VB->PurgeFlags |= (VERT_EVAL_C2|VERT_EVAL_P2);
2368 VB->EarlyCull = 0;
2369 any_eval2 = GL_FALSE;
2370 }
2371
2372 /* KW: This really is a degenerate case - doing this disables
2373 * culling, and causes dummy values for the missing vertices to be
2374 * transformed and clip tested. It also forces the individual
2375 * cliptesting of each primitive in vb_render. I wish there was a
2376 * nice alternative, but I can't say I want to put effort into
2377 * optimizing such a bad usage of the library - I'd much rather
2378 * work on useful changes.
2379 */
2380 if (VB->PurgeFlags) {
2381 if (!any_eval1 && !any_eval2 && all_eval) VB->Count = VB_START;
2382 gl_purge_vertices( VB );
2383 if (!any_eval1 && !any_eval2) return;
2384 } else
2385 VB->IndirectCount = VB->Count;
2386
2387 /* Translate points into coords.
2388 */
2389 if (any_eval1 && (VB->OrFlag & VERT_EVAL_P1))
2390 {
2391 eval_points1( IM->Obj, coord, flags,
2392 ctx->Eval.MapGrid1du,
2393 ctx->Eval.MapGrid1u1);
2394
2395 coord = IM->Obj;
2396 }
2397
2398 if (any_eval2 && (VB->OrFlag & VERT_EVAL_P2))
2399 {
2400 eval_points2( IM->Obj, coord, flags,
2401 ctx->Eval.MapGrid2du,
2402 ctx->Eval.MapGrid2u1,
2403 ctx->Eval.MapGrid2dv,
2404 ctx->Eval.MapGrid2v1 );
2405
2406 coord = IM->Obj;
2407 }
2408
2409 /* Perform the evaluations on active data elements.
2410 */
2411 if (req & VERT_INDEX)
2412 {
2413 GLvector1ui *in_index = VB->IndexPtr;
2414 GLvector1ui *out_index = &IM->v.Index;
2415
2416 if (ctx->Eval.Map1Index && any_eval1)
2417 VB->IndexPtr = eval1_1ui( out_index, coord, flags,
2418 &ctx->EvalMap.Map1Index );
2419
2420 if (ctx->Eval.Map2Index && any_eval2)
2421 VB->IndexPtr = eval2_1ui( out_index, coord, flags,
2422 &ctx->EvalMap.Map2Index );
2423
2424 if (VB->IndexPtr != in_index) {
2425 new_flags |= VERT_INDEX;
2426 if (!all_eval)
2427 VB->IndexPtr = copy_1ui( out_index, in_index, flags );
2428 }
2429 }
2430
2431 if (req & VERT_RGBA)
2432 {
2433 GLvector4ub *in_color = VB->ColorPtr;
2434 GLvector4ub *out_color = &IM->v.Color;
2435
2436 if (ctx->Eval.Map1Color4 && any_eval1)
2437 VB->ColorPtr = eval1_color( out_color, coord, flags,
2438 &ctx->EvalMap.Map1Color4 );
2439
2440 if (ctx->Eval.Map2Color4 && any_eval2)
2441 VB->ColorPtr = eval2_color( out_color, coord, flags,
2442 &ctx->EvalMap.Map2Color4 );
2443
2444 if (VB->ColorPtr != in_color) {
2445 new_flags |= VERT_RGBA;
2446 if (!all_eval)
2447 VB->ColorPtr = copy_4ub( out_color, in_color, flags );
2448 }
2449
2450 VB->Color[0] = VB->Color[1] = VB->ColorPtr;
2451 }
2452
2453
2454 if (req & VERT_NORM)
2455 {
2456 GLvector3f *in_normal = VB->NormalPtr;
2457 GLvector3f *out_normal = &IM->v.Normal;
2458
2459 if (ctx->Eval.Map1Normal && any_eval1)
2460 VB->NormalPtr = eval1_norm( out_normal, coord, flags,
2461 &ctx->EvalMap.Map1Normal );
2462
2463 if (ctx->Eval.Map2Normal && any_eval2)
2464 VB->NormalPtr = eval2_norm( out_normal, coord, flags,
2465 &ctx->EvalMap.Map2Normal );
2466
2467 if (VB->NormalPtr != in_normal) {
2468 new_flags |= VERT_NORM;
2469 if (!all_eval)
2470 VB->NormalPtr = copy_3f( out_normal, in_normal, flags );
2471 }
2472 }
2473
2474
2475 if (req & VERT_TEX_ANY(0))
2476 {
2477 GLvector4f *tc = VB->TexCoordPtr[0];
2478 GLvector4f *in = tc;
2479 GLvector4f *out = &IM->v.TexCoord[0];
2480
2481 if (any_eval1) {
2482 if (ctx->Eval.Map1TextureCoord4)
2483 tc = eval1_4f( out, coord, flags, 4, &ctx->EvalMap.Map1Texture4);
2484 else if (ctx->Eval.Map1TextureCoord3)
2485 tc = eval1_4f( out, coord, flags, 3, &ctx->EvalMap.Map1Texture3);
2486 else if (ctx->Eval.Map1TextureCoord2)
2487 tc = eval1_4f( out, coord, flags, 2, &ctx->EvalMap.Map1Texture2);
2488 else if (ctx->Eval.Map1TextureCoord1)
2489 tc = eval1_4f( out, coord, flags, 1, &ctx->EvalMap.Map1Texture1);
2490 }
2491
2492 if (any_eval2) {
2493 if (ctx->Eval.Map2TextureCoord4)
2494 tc = eval2_4f( out, coord, flags, 4, &ctx->EvalMap.Map2Texture4);
2495 else if (ctx->Eval.Map2TextureCoord3)
2496 tc = eval2_4f( out, coord, flags, 3, &ctx->EvalMap.Map2Texture3);
2497 else if (ctx->Eval.Map2TextureCoord2)
2498 tc = eval2_4f( out, coord, flags, 2, &ctx->EvalMap.Map2Texture2);
2499 else if (ctx->Eval.Map2TextureCoord1)
2500 tc = eval2_4f( out, coord, flags, 1, &ctx->EvalMap.Map2Texture1);
2501 }
2502
2503 if (tc != in) {
2504 new_flags |= VERT_TEX_ANY(0); /* fix for sizes.. */
2505 if (!all_eval)
2506 tc = copy_4f( out, in, flags );
2507 }
2508
2509 VB->TexCoordPtr[0] = tc;
2510 }
2511
2512
2513 {
2514 GLvector4f *in = VB->ObjPtr;
2515 GLvector4f *out = &IM->v.Obj;
2516 GLvector4f *obj = in;
2517
2518 if (any_eval1) {
2519 if (ctx->Eval.Map1Vertex4)
2520 obj = eval1_4f( out, coord, flags, 4, &ctx->EvalMap.Map1Vertex4);
2521 else
2522 obj = eval1_4f( out, coord, flags, 3, &ctx->EvalMap.Map1Vertex3);
2523 }
2524
2525 if (any_eval2) {
2526 if (ctx->Eval.Map2Vertex4)
2527 {
2528 if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2529 obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, 4,
2530 &ctx->EvalMap.Map2Vertex4 );
2531 else
2532 obj = eval2_4f( out, coord, flags, 4,
2533 &ctx->EvalMap.Map2Vertex4);
2534 }
2535 else if (ctx->Eval.Map2Vertex3)
2536 {
2537 if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2538 obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, 3,
2539 &ctx->EvalMap.Map2Vertex3 );
2540 else
2541 obj = eval2_4f( out, coord, flags, 3,
2542 &ctx->EvalMap.Map2Vertex3 );
2543 }
2544 }
2545
2546 if (obj != in && !all_eval)
2547 obj = copy_4f( out, in, flags );
2548
2549 VB->ObjPtr = obj;
2550 }
2551
2552 if (new_flags) {
2553 GLuint *oldflags = VB->Flag;
2554 GLuint *flags = VB->Flag = VB->EvaluatedFlags;
2555 GLuint i;
2556 GLuint count = VB->Count;
2557
2558 if (!flags) {
2559 VB->EvaluatedFlags = (GLuint *)malloc(VB->Size * sizeof(GLuint));
2560 flags = VB->Flag = VB->EvaluatedFlags;
2561 }
2562
2563 if (all_eval) {
2564 for (i = 0 ; i < count ; i++)
2565 flags[i] = oldflags[i] | new_flags;
2566 VB->AndFlag |= new_flags;
2567 } else {
2568 GLuint andflag = ~0;
2569 for (i = 0 ; i < count ; i++) {
2570 if (oldflags[i] & VERT_EVAL_ANY)
2571 flags[i] = oldflags[i] | new_flags;
2572 andflag &= flags[i];
2573 }
2574 VB->AndFlag = andflag;
2575 }
2576 }
2577 }
2578
2579
2580 void gl_MapGrid1f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2 )
2581 {
2582 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid1f");
2583
2584 if (un<1) {
2585 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
2586 return;
2587 }
2588 ctx->Eval.MapGrid1un = un;
2589 ctx->Eval.MapGrid1u1 = u1;
2590 ctx->Eval.MapGrid1u2 = u2;
2591 ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un;
2592 }
2593
2594
2595 void gl_MapGrid2f( GLcontext* ctx, GLint un, GLfloat u1, GLfloat u2,
2596 GLint vn, GLfloat v1, GLfloat v2 )
2597 {
2598 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid2f");
2599 if (un<1) {
2600 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
2601 return;
2602 }
2603 if (vn<1) {
2604 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
2605 return;
2606 }
2607 ctx->Eval.MapGrid2un = un;
2608 ctx->Eval.MapGrid2u1 = u1;
2609 ctx->Eval.MapGrid2u2 = u2;
2610 ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un;
2611 ctx->Eval.MapGrid2vn = vn;
2612 ctx->Eval.MapGrid2v1 = v1;
2613 ctx->Eval.MapGrid2v2 = v2;
2614 ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn;
2615 }
2616
2617
2618
2619 void gl_EvalMesh1( GLcontext* ctx, GLenum mode, GLint i1, GLint i2 )
2620 {
2621 GLint i;
2622 GLfloat u, du;
2623 GLenum prim;
2624
2625 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh1");
2626
2627 switch (mode) {
2628 case GL_POINT:
2629 prim = GL_POINTS;
2630 break;
2631 case GL_LINE:
2632 prim = GL_LINE_STRIP;
2633 break;
2634 default:
2635 gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" );
2636 return;
2637 }
2638
2639 /* No effect if vertex maps disabled.
2640 */
2641 if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3)
2642 return;
2643
2644 du = ctx->Eval.MapGrid1du;
2645 u = ctx->Eval.MapGrid1u1 + i1 * du;
2646
2647 /* KW: Could short-circuit this to avoid the immediate mechanism.
2648 */
2649 RESET_IMMEDIATE(ctx);
2650
2651 gl_Begin( ctx, prim );
2652 for (i=i1;i<=i2;i++,u+=du) {
2653 gl_EvalCoord1f( ctx, u );
2654 }
2655 gl_End(ctx);
2656 }
2657
2658
2659
2660 void gl_EvalMesh2( GLcontext* ctx,
2661 GLenum mode,
2662 GLint i1, GLint i2,
2663 GLint j1, GLint j2 )
2664 {
2665 GLint i, j;
2666 GLfloat u, du, v, dv, v1, u1;
2667
2668 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh2");
2669
2670 /* No effect if vertex maps disabled.
2671 */
2672 if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3)
2673 return;
2674
2675 du = ctx->Eval.MapGrid2du;
2676 dv = ctx->Eval.MapGrid2dv;
2677 v1 = ctx->Eval.MapGrid2v1 + j1 * dv;
2678 u1 = ctx->Eval.MapGrid2u1 + i1 * du;
2679
2680 RESET_IMMEDIATE(ctx);
2681
2682 switch (mode) {
2683 case GL_POINT:
2684 gl_Begin( ctx, GL_POINTS );
2685 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2686 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2687 gl_EvalCoord2f( ctx, u, v );
2688 }
2689 }
2690 gl_End(ctx);
2691 break;
2692 case GL_LINE:
2693 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2694 gl_Begin( ctx, GL_LINE_STRIP );
2695 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2696 gl_EvalCoord2f( ctx, u, v );
2697 }
2698 gl_End(ctx);
2699 }
2700 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2701 gl_Begin( ctx, GL_LINE_STRIP );
2702 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2703 gl_EvalCoord2f( ctx, u, v );
2704 }
2705 gl_End(ctx);
2706 }
2707 break;
2708 case GL_FILL:
2709 for (v=v1,j=j1;j<j2;j++,v+=dv) {
2710 /* NOTE: a quad strip can't be used because the four */
2711 /* can't be guaranteed to be coplanar! */
2712 gl_Begin( ctx, GL_TRIANGLE_STRIP );
2713 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2714 gl_EvalCoord2f( ctx, u, v );
2715 gl_EvalCoord2f( ctx, u, v+dv );
2716 }
2717 gl_End(ctx);
2718 }
2719 break;
2720 default:
2721 gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh2(mode)" );
2722 return;
2723 }
2724 }
2725