first big check-in of new Mesa 3.3 code
[mesa.git] / src / mesa / main / eval.c
1 /* $Id: eval.c,v 1.7 1999/11/11 01:22:26 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.3
6 *
7 * Copyright (C) 1999 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /*
29 * eval.c was written by
30 * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and
31 * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de).
32 *
33 * My original implementation of evaluators was simplistic and didn't
34 * compute surface normal vectors properly. Bernd and Volker applied
35 * used more sophisticated methods to get better results.
36 *
37 * Thanks guys!
38 */
39
40
41 #ifdef PC_HEADER
42 #include "all.h"
43 #else
44 #include "glheader.h"
45 #include "context.h"
46 #include "eval.h"
47 #include "macros.h"
48 #include "mem.h"
49 #include "mmath.h"
50 #include "types.h"
51 #include "vbcull.h"
52 #include "vbfill.h"
53 #include "vbxform.h"
54 #endif
55
56
57 static GLfloat inv_tab[MAX_EVAL_ORDER];
58
59 /*
60 * Do one-time initialization for evaluators.
61 */
62 void gl_init_eval( void )
63 {
64 static int init_flag = 0;
65 GLuint i;
66
67 /* Compute a table of nCr (combination) values used by the
68 * Bernstein polynomial generator.
69 */
70
71 /* KW: precompute 1/x for useful x.
72 */
73 if (init_flag==0)
74 {
75 for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
76 inv_tab[i] = 1.0 / i;
77 }
78
79 init_flag = 1;
80 }
81
82
83
84 /*
85 * Horner scheme for Bezier curves
86 *
87 * Bezier curves can be computed via a Horner scheme.
88 * Horner is numerically less stable than the de Casteljau
89 * algorithm, but it is faster. For curves of degree n
90 * the complexity of Horner is O(n) and de Casteljau is O(n^2).
91 * Since stability is not important for displaying curve
92 * points I decided to use the Horner scheme.
93 *
94 * A cubic Bezier curve with control points b0, b1, b2, b3 can be
95 * written as
96 *
97 * (([3] [3] ) [3] ) [3]
98 * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3
99 *
100 * [n]
101 * where s=1-t and the binomial coefficients [i]. These can
102 * be computed iteratively using the identity:
103 *
104 * [n] [n ] [n]
105 * [i] = (n-i+1)/i * [i-1] and [0] = 1
106 */
107
108
109 static void
110 horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
111 GLuint dim, GLuint order)
112 {
113 GLfloat s, powert;
114 GLuint i, k, bincoeff;
115
116 if(order >= 2)
117 {
118 bincoeff = order-1;
119 s = 1.0-t;
120
121 for(k=0; k<dim; k++)
122 out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
123
124 for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
125 {
126 bincoeff *= order-i;
127 bincoeff *= inv_tab[i];
128
129 for(k=0; k<dim; k++)
130 out[k] = s*out[k] + bincoeff*powert*cp[k];
131 }
132 }
133 else /* order=1 -> constant curve */
134 {
135 for(k=0; k<dim; k++)
136 out[k] = cp[k];
137 }
138 }
139
140 /*
141 * Tensor product Bezier surfaces
142 *
143 * Again the Horner scheme is used to compute a point on a
144 * TP Bezier surface. First a control polygon for a curve
145 * on the surface in one parameter direction is computed,
146 * then the point on the curve for the other parameter
147 * direction is evaluated.
148 *
149 * To store the curve control polygon additional storage
150 * for max(uorder,vorder) points is needed in the
151 * control net cn.
152 */
153
154 static void
155 horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
156 GLuint dim, GLuint uorder, GLuint vorder)
157 {
158 GLfloat *cp = cn + uorder*vorder*dim;
159 GLuint i, uinc = vorder*dim;
160
161 if(vorder > uorder)
162 {
163 if(uorder >= 2)
164 {
165 GLfloat s, poweru;
166 GLuint j, k, bincoeff;
167
168 /* Compute the control polygon for the surface-curve in u-direction */
169 for(j=0; j<vorder; j++)
170 {
171 GLfloat *ucp = &cn[j*dim];
172
173 /* Each control point is the point for parameter u on a */
174 /* curve defined by the control polygons in u-direction */
175 bincoeff = uorder-1;
176 s = 1.0-u;
177
178 for(k=0; k<dim; k++)
179 cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
180
181 for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
182 i++, poweru*=u, ucp +=uinc)
183 {
184 bincoeff *= uorder-i;
185 bincoeff *= inv_tab[i];
186
187 for(k=0; k<dim; k++)
188 cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
189 }
190 }
191
192 /* Evaluate curve point in v */
193 horner_bezier_curve(cp, out, v, dim, vorder);
194 }
195 else /* uorder=1 -> cn defines a curve in v */
196 horner_bezier_curve(cn, out, v, dim, vorder);
197 }
198 else /* vorder <= uorder */
199 {
200 if(vorder > 1)
201 {
202 GLuint i;
203
204 /* Compute the control polygon for the surface-curve in u-direction */
205 for(i=0; i<uorder; i++, cn += uinc)
206 {
207 /* For constant i all cn[i][j] (j=0..vorder) are located */
208 /* on consecutive memory locations, so we can use */
209 /* horner_bezier_curve to compute the control points */
210
211 horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
212 }
213
214 /* Evaluate curve point in u */
215 horner_bezier_curve(cp, out, u, dim, uorder);
216 }
217 else /* vorder=1 -> cn defines a curve in u */
218 horner_bezier_curve(cn, out, u, dim, uorder);
219 }
220 }
221
222 /*
223 * The direct de Casteljau algorithm is used when a point on the
224 * surface and the tangent directions spanning the tangent plane
225 * should be computed (this is needed to compute normals to the
226 * surface). In this case the de Casteljau algorithm approach is
227 * nicer because a point and the partial derivatives can be computed
228 * at the same time. To get the correct tangent length du and dv
229 * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1.
230 * Since only the directions are needed, this scaling step is omitted.
231 *
232 * De Casteljau needs additional storage for uorder*vorder
233 * values in the control net cn.
234 */
235
236 static void
237 de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
238 GLfloat u, GLfloat v, GLuint dim,
239 GLuint uorder, GLuint vorder)
240 {
241 GLfloat *dcn = cn + uorder*vorder*dim;
242 GLfloat us = 1.0-u, vs = 1.0-v;
243 GLuint h, i, j, k;
244 GLuint minorder = uorder < vorder ? uorder : vorder;
245 GLuint uinc = vorder*dim;
246 GLuint dcuinc = vorder;
247
248 /* Each component is evaluated separately to save buffer space */
249 /* This does not drasticaly decrease the performance of the */
250 /* algorithm. If additional storage for (uorder-1)*(vorder-1) */
251 /* points would be available, the components could be accessed */
252 /* in the innermost loop which could lead to less cache misses. */
253
254 #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
255 #define DCN(I, J) dcn[(I)*dcuinc+(J)]
256 if(minorder < 3)
257 {
258 if(uorder==vorder)
259 {
260 for(k=0; k<dim; k++)
261 {
262 /* Derivative direction in u */
263 du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
264 v*(CN(1,1,k) - CN(0,1,k));
265
266 /* Derivative direction in v */
267 dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
268 u*(CN(1,1,k) - CN(1,0,k));
269
270 /* bilinear de Casteljau step */
271 out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
272 u*(vs*CN(1,0,k) + v*CN(1,1,k));
273 }
274 }
275 else if(minorder == uorder)
276 {
277 for(k=0; k<dim; k++)
278 {
279 /* bilinear de Casteljau step */
280 DCN(1,0) = CN(1,0,k) - CN(0,0,k);
281 DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
282
283 for(j=0; j<vorder-1; j++)
284 {
285 /* for the derivative in u */
286 DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
287 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
288
289 /* for the `point' */
290 DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
291 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
292 }
293
294 /* remaining linear de Casteljau steps until the second last step */
295 for(h=minorder; h<vorder-1; h++)
296 for(j=0; j<vorder-h; j++)
297 {
298 /* for the derivative in u */
299 DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
300
301 /* for the `point' */
302 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
303 }
304
305 /* derivative direction in v */
306 dv[k] = DCN(0,1) - DCN(0,0);
307
308 /* derivative direction in u */
309 du[k] = vs*DCN(1,0) + v*DCN(1,1);
310
311 /* last linear de Casteljau step */
312 out[k] = vs*DCN(0,0) + v*DCN(0,1);
313 }
314 }
315 else /* minorder == vorder */
316 {
317 for(k=0; k<dim; k++)
318 {
319 /* bilinear de Casteljau step */
320 DCN(0,1) = CN(0,1,k) - CN(0,0,k);
321 DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
322 for(i=0; i<uorder-1; i++)
323 {
324 /* for the derivative in v */
325 DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
326 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
327
328 /* for the `point' */
329 DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
330 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
331 }
332
333 /* remaining linear de Casteljau steps until the second last step */
334 for(h=minorder; h<uorder-1; h++)
335 for(i=0; i<uorder-h; i++)
336 {
337 /* for the derivative in v */
338 DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
339
340 /* for the `point' */
341 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
342 }
343
344 /* derivative direction in u */
345 du[k] = DCN(1,0) - DCN(0,0);
346
347 /* derivative direction in v */
348 dv[k] = us*DCN(0,1) + u*DCN(1,1);
349
350 /* last linear de Casteljau step */
351 out[k] = us*DCN(0,0) + u*DCN(1,0);
352 }
353 }
354 }
355 else if(uorder == vorder)
356 {
357 for(k=0; k<dim; k++)
358 {
359 /* first bilinear de Casteljau step */
360 for(i=0; i<uorder-1; i++)
361 {
362 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
363 for(j=0; j<vorder-1; j++)
364 {
365 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
366 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
367 }
368 }
369
370 /* remaining bilinear de Casteljau steps until the second last step */
371 for(h=2; h<minorder-1; h++)
372 for(i=0; i<uorder-h; i++)
373 {
374 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
375 for(j=0; j<vorder-h; j++)
376 {
377 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
378 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
379 }
380 }
381
382 /* derivative direction in u */
383 du[k] = vs*(DCN(1,0) - DCN(0,0)) +
384 v*(DCN(1,1) - DCN(0,1));
385
386 /* derivative direction in v */
387 dv[k] = us*(DCN(0,1) - DCN(0,0)) +
388 u*(DCN(1,1) - DCN(1,0));
389
390 /* last bilinear de Casteljau step */
391 out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
392 u*(vs*DCN(1,0) + v*DCN(1,1));
393 }
394 }
395 else if(minorder == uorder)
396 {
397 for(k=0; k<dim; k++)
398 {
399 /* first bilinear de Casteljau step */
400 for(i=0; i<uorder-1; i++)
401 {
402 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
403 for(j=0; j<vorder-1; j++)
404 {
405 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
406 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
407 }
408 }
409
410 /* remaining bilinear de Casteljau steps until the second last step */
411 for(h=2; h<minorder-1; h++)
412 for(i=0; i<uorder-h; i++)
413 {
414 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
415 for(j=0; j<vorder-h; j++)
416 {
417 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
418 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
419 }
420 }
421
422 /* last bilinear de Casteljau step */
423 DCN(2,0) = DCN(1,0) - DCN(0,0);
424 DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
425 for(j=0; j<vorder-1; j++)
426 {
427 /* for the derivative in u */
428 DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
429 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
430
431 /* for the `point' */
432 DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
433 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
434 }
435
436 /* remaining linear de Casteljau steps until the second last step */
437 for(h=minorder; h<vorder-1; h++)
438 for(j=0; j<vorder-h; j++)
439 {
440 /* for the derivative in u */
441 DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
442
443 /* for the `point' */
444 DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
445 }
446
447 /* derivative direction in v */
448 dv[k] = DCN(0,1) - DCN(0,0);
449
450 /* derivative direction in u */
451 du[k] = vs*DCN(2,0) + v*DCN(2,1);
452
453 /* last linear de Casteljau step */
454 out[k] = vs*DCN(0,0) + v*DCN(0,1);
455 }
456 }
457 else /* minorder == vorder */
458 {
459 for(k=0; k<dim; k++)
460 {
461 /* first bilinear de Casteljau step */
462 for(i=0; i<uorder-1; i++)
463 {
464 DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
465 for(j=0; j<vorder-1; j++)
466 {
467 DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
468 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
469 }
470 }
471
472 /* remaining bilinear de Casteljau steps until the second last step */
473 for(h=2; h<minorder-1; h++)
474 for(i=0; i<uorder-h; i++)
475 {
476 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
477 for(j=0; j<vorder-h; j++)
478 {
479 DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
480 DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
481 }
482 }
483
484 /* last bilinear de Casteljau step */
485 DCN(0,2) = DCN(0,1) - DCN(0,0);
486 DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
487 for(i=0; i<uorder-1; i++)
488 {
489 /* for the derivative in v */
490 DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
491 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
492
493 /* for the `point' */
494 DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
495 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
496 }
497
498 /* remaining linear de Casteljau steps until the second last step */
499 for(h=minorder; h<uorder-1; h++)
500 for(i=0; i<uorder-h; i++)
501 {
502 /* for the derivative in v */
503 DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
504
505 /* for the `point' */
506 DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
507 }
508
509 /* derivative direction in u */
510 du[k] = DCN(1,0) - DCN(0,0);
511
512 /* derivative direction in v */
513 dv[k] = us*DCN(0,2) + u*DCN(1,2);
514
515 /* last linear de Casteljau step */
516 out[k] = us*DCN(0,0) + u*DCN(1,0);
517 }
518 }
519 #undef DCN
520 #undef CN
521 }
522
523 /*
524 * Return the number of components per control point for any type of
525 * evaluator. Return 0 if bad target.
526 * See table 5.1 in the OpenGL 1.2 spec.
527 */
528 GLuint _mesa_evaluator_components( GLenum target )
529 {
530 switch (target) {
531 case GL_MAP1_VERTEX_3: return 3;
532 case GL_MAP1_VERTEX_4: return 4;
533 case GL_MAP1_INDEX: return 1;
534 case GL_MAP1_COLOR_4: return 4;
535 case GL_MAP1_NORMAL: return 3;
536 case GL_MAP1_TEXTURE_COORD_1: return 1;
537 case GL_MAP1_TEXTURE_COORD_2: return 2;
538 case GL_MAP1_TEXTURE_COORD_3: return 3;
539 case GL_MAP1_TEXTURE_COORD_4: return 4;
540 case GL_MAP2_VERTEX_3: return 3;
541 case GL_MAP2_VERTEX_4: return 4;
542 case GL_MAP2_INDEX: return 1;
543 case GL_MAP2_COLOR_4: return 4;
544 case GL_MAP2_NORMAL: return 3;
545 case GL_MAP2_TEXTURE_COORD_1: return 1;
546 case GL_MAP2_TEXTURE_COORD_2: return 2;
547 case GL_MAP2_TEXTURE_COORD_3: return 3;
548 case GL_MAP2_TEXTURE_COORD_4: return 4;
549 default: return 0;
550 }
551 }
552
553
554 /**********************************************************************/
555 /*** Copy and deallocate control points ***/
556 /**********************************************************************/
557
558
559 /*
560 * Copy 1-parametric evaluator control points from user-specified
561 * memory space to a buffer of contiguous control points.
562 * Input: see glMap1f for details
563 * Return: pointer to buffer of contiguous control points or NULL if out
564 * of memory.
565 */
566 GLfloat *gl_copy_map_points1f( GLenum target, GLint ustride, GLint uorder,
567 const GLfloat *points )
568 {
569 GLfloat *buffer, *p;
570 GLint i, k, size = _mesa_evaluator_components(target);
571
572 if (!points || size==0) {
573 return NULL;
574 }
575
576 buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
577
578 if(buffer)
579 for(i=0, p=buffer; i<uorder; i++, points+=ustride)
580 for(k=0; k<size; k++)
581 *p++ = points[k];
582
583 return buffer;
584 }
585
586
587
588 /*
589 * Same as above but convert doubles to floats.
590 */
591 GLfloat *gl_copy_map_points1d( GLenum target, GLint ustride, GLint uorder,
592 const GLdouble *points )
593 {
594 GLfloat *buffer, *p;
595 GLint i, k, size = _mesa_evaluator_components(target);
596
597 if (!points || size==0) {
598 return NULL;
599 }
600
601 buffer = (GLfloat *) MALLOC(uorder * size * sizeof(GLfloat));
602
603 if(buffer)
604 for(i=0, p=buffer; i<uorder; i++, points+=ustride)
605 for(k=0; k<size; k++)
606 *p++ = (GLfloat) points[k];
607
608 return buffer;
609 }
610
611
612
613 /*
614 * Copy 2-parametric evaluator control points from user-specified
615 * memory space to a buffer of contiguous control points.
616 * Additional memory is allocated to be used by the horner and
617 * de Casteljau evaluation schemes.
618 *
619 * Input: see glMap2f for details
620 * Return: pointer to buffer of contiguous control points or NULL if out
621 * of memory.
622 */
623 GLfloat *gl_copy_map_points2f( GLenum target,
624 GLint ustride, GLint uorder,
625 GLint vstride, GLint vorder,
626 const GLfloat *points )
627 {
628 GLfloat *buffer, *p;
629 GLint i, j, k, size, dsize, hsize;
630 GLint uinc;
631
632 size = _mesa_evaluator_components(target);
633
634 if (!points || size==0) {
635 return NULL;
636 }
637
638 /* max(uorder, vorder) additional points are used in */
639 /* horner evaluation and uorder*vorder additional */
640 /* values are needed for de Casteljau */
641 dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
642 hsize = (uorder > vorder ? uorder : vorder)*size;
643
644 if(hsize>dsize)
645 buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
646 else
647 buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
648
649 /* compute the increment value for the u-loop */
650 uinc = ustride - vorder*vstride;
651
652 if (buffer)
653 for (i=0, p=buffer; i<uorder; i++, points += uinc)
654 for (j=0; j<vorder; j++, points += vstride)
655 for (k=0; k<size; k++)
656 *p++ = points[k];
657
658 return buffer;
659 }
660
661
662
663 /*
664 * Same as above but convert doubles to floats.
665 */
666 GLfloat *gl_copy_map_points2d(GLenum target,
667 GLint ustride, GLint uorder,
668 GLint vstride, GLint vorder,
669 const GLdouble *points )
670 {
671 GLfloat *buffer, *p;
672 GLint i, j, k, size, hsize, dsize;
673 GLint uinc;
674
675 size = _mesa_evaluator_components(target);
676
677 if (!points || size==0) {
678 return NULL;
679 }
680
681 /* max(uorder, vorder) additional points are used in */
682 /* horner evaluation and uorder*vorder additional */
683 /* values are needed for de Casteljau */
684 dsize = (uorder == 2 && vorder == 2)? 0 : uorder*vorder;
685 hsize = (uorder > vorder ? uorder : vorder)*size;
686
687 if(hsize>dsize)
688 buffer = (GLfloat *) MALLOC((uorder*vorder*size+hsize)*sizeof(GLfloat));
689 else
690 buffer = (GLfloat *) MALLOC((uorder*vorder*size+dsize)*sizeof(GLfloat));
691
692 /* compute the increment value for the u-loop */
693 uinc = ustride - vorder*vstride;
694
695 if (buffer)
696 for (i=0, p=buffer; i<uorder; i++, points += uinc)
697 for (j=0; j<vorder; j++, points += vstride)
698 for (k=0; k<size; k++)
699 *p++ = (GLfloat) points[k];
700
701 return buffer;
702 }
703
704
705 #if 00
706 /*
707 * This function is called by the display list deallocator function to
708 * specify that a given set of control points are no longer needed.
709 */
710 void gl_free_control_points( GLcontext* ctx, GLenum target, GLfloat *data )
711 {
712 struct gl_1d_map *map1 = NULL;
713 struct gl_2d_map *map2 = NULL;
714
715 switch (target) {
716 case GL_MAP1_VERTEX_3:
717 map1 = &ctx->EvalMap.Map1Vertex3;
718 break;
719 case GL_MAP1_VERTEX_4:
720 map1 = &ctx->EvalMap.Map1Vertex4;
721 break;
722 case GL_MAP1_INDEX:
723 map1 = &ctx->EvalMap.Map1Index;
724 break;
725 case GL_MAP1_COLOR_4:
726 map1 = &ctx->EvalMap.Map1Color4;
727 break;
728 case GL_MAP1_NORMAL:
729 map1 = &ctx->EvalMap.Map1Normal;
730 break;
731 case GL_MAP1_TEXTURE_COORD_1:
732 map1 = &ctx->EvalMap.Map1Texture1;
733 break;
734 case GL_MAP1_TEXTURE_COORD_2:
735 map1 = &ctx->EvalMap.Map1Texture2;
736 break;
737 case GL_MAP1_TEXTURE_COORD_3:
738 map1 = &ctx->EvalMap.Map1Texture3;
739 break;
740 case GL_MAP1_TEXTURE_COORD_4:
741 map1 = &ctx->EvalMap.Map1Texture4;
742 break;
743 case GL_MAP2_VERTEX_3:
744 map2 = &ctx->EvalMap.Map2Vertex3;
745 break;
746 case GL_MAP2_VERTEX_4:
747 map2 = &ctx->EvalMap.Map2Vertex4;
748 break;
749 case GL_MAP2_INDEX:
750 map2 = &ctx->EvalMap.Map2Index;
751 break;
752 case GL_MAP2_COLOR_4:
753 map2 = &ctx->EvalMap.Map2Color4;
754 break;
755 case GL_MAP2_NORMAL:
756 map2 = &ctx->EvalMap.Map2Normal;
757 break;
758 case GL_MAP2_TEXTURE_COORD_1:
759 map2 = &ctx->EvalMap.Map2Texture1;
760 break;
761 case GL_MAP2_TEXTURE_COORD_2:
762 map2 = &ctx->EvalMap.Map2Texture2;
763 break;
764 case GL_MAP2_TEXTURE_COORD_3:
765 map2 = &ctx->EvalMap.Map2Texture3;
766 break;
767 case GL_MAP2_TEXTURE_COORD_4:
768 map2 = &ctx->EvalMap.Map2Texture4;
769 break;
770 default:
771 gl_error( ctx, GL_INVALID_ENUM, "gl_free_control_points" );
772 return;
773 }
774
775 if (map1) {
776 if (data==map1->Points) {
777 /* The control points in the display list are currently */
778 /* being used so we can mark them as discard-able. */
779 map1->Retain = GL_FALSE;
780 }
781 else {
782 /* The control points in the display list are not currently */
783 /* being used. */
784 FREE( data );
785 }
786 }
787 if (map2) {
788 if (data==map2->Points) {
789 /* The control points in the display list are currently */
790 /* being used so we can mark them as discard-able. */
791 map2->Retain = GL_FALSE;
792 }
793 else {
794 /* The control points in the display list are not currently */
795 /* being used. */
796 FREE( data );
797 }
798 }
799
800 }
801 #endif
802
803
804
805 /**********************************************************************/
806 /*** API entry points ***/
807 /**********************************************************************/
808
809
810 /*
811 * This does the work of glMap1[fd].
812 */
813 static void
814 map1(GLenum target, GLfloat u1, GLfloat u2, GLint ustride,
815 GLint uorder, const GLvoid *points, GLenum type )
816 {
817 GET_CURRENT_CONTEXT(ctx);
818 GLint k;
819 GLfloat *pnts;
820
821 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap1");
822
823 assert(type == GL_FLOAT || type == GL_DOUBLE);
824
825 if (u1 == u2) {
826 gl_error( ctx, GL_INVALID_VALUE, "glMap1(u1,u2)" );
827 return;
828 }
829 if (uorder < 1 || uorder > MAX_EVAL_ORDER) {
830 gl_error( ctx, GL_INVALID_VALUE, "glMap1(order)" );
831 return;
832 }
833 if (!points) {
834 gl_error( ctx, GL_INVALID_VALUE, "glMap1(points)" );
835 return;
836 }
837
838 k = _mesa_evaluator_components( target );
839 if (k == 0) {
840 gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
841 }
842
843 if (ustride < k) {
844 gl_error( ctx, GL_INVALID_VALUE, "glMap1(stride)" );
845 return;
846 }
847
848 /* make copy of the control points */
849 if (type == GL_FLOAT)
850 pnts = gl_copy_map_points1f(target, ustride, uorder, (GLfloat*) points);
851 else
852 pnts = gl_copy_map_points1d(target, ustride, uorder, (GLdouble*) points);
853
854 switch (target) {
855 case GL_MAP1_VERTEX_3:
856 ctx->EvalMap.Map1Vertex3.Order = uorder;
857 ctx->EvalMap.Map1Vertex3.u1 = u1;
858 ctx->EvalMap.Map1Vertex3.u2 = u2;
859 ctx->EvalMap.Map1Vertex3.du = 1.0 / (u2 - u1);
860 if (ctx->EvalMap.Map1Vertex3.Points)
861 FREE( ctx->EvalMap.Map1Vertex3.Points );
862 ctx->EvalMap.Map1Vertex3.Points = pnts;
863 break;
864 case GL_MAP1_VERTEX_4:
865 ctx->EvalMap.Map1Vertex4.Order = uorder;
866 ctx->EvalMap.Map1Vertex4.u1 = u1;
867 ctx->EvalMap.Map1Vertex4.u2 = u2;
868 ctx->EvalMap.Map1Vertex4.du = 1.0 / (u2 - u1);
869 if (ctx->EvalMap.Map1Vertex4.Points)
870 FREE( ctx->EvalMap.Map1Vertex4.Points );
871 ctx->EvalMap.Map1Vertex4.Points = pnts;
872 break;
873 case GL_MAP1_INDEX:
874 ctx->EvalMap.Map1Index.Order = uorder;
875 ctx->EvalMap.Map1Index.u1 = u1;
876 ctx->EvalMap.Map1Index.u2 = u2;
877 ctx->EvalMap.Map1Index.du = 1.0 / (u2 - u1);
878 if (ctx->EvalMap.Map1Index.Points)
879 FREE( ctx->EvalMap.Map1Index.Points );
880 ctx->EvalMap.Map1Index.Points = pnts;
881 break;
882 case GL_MAP1_COLOR_4:
883 ctx->EvalMap.Map1Color4.Order = uorder;
884 ctx->EvalMap.Map1Color4.u1 = u1;
885 ctx->EvalMap.Map1Color4.u2 = u2;
886 ctx->EvalMap.Map1Color4.du = 1.0 / (u2 - u1);
887 if (ctx->EvalMap.Map1Color4.Points)
888 FREE( ctx->EvalMap.Map1Color4.Points );
889 ctx->EvalMap.Map1Color4.Points = pnts;
890 break;
891 case GL_MAP1_NORMAL:
892 ctx->EvalMap.Map1Normal.Order = uorder;
893 ctx->EvalMap.Map1Normal.u1 = u1;
894 ctx->EvalMap.Map1Normal.u2 = u2;
895 ctx->EvalMap.Map1Normal.du = 1.0 / (u2 - u1);
896 if (ctx->EvalMap.Map1Normal.Points)
897 FREE( ctx->EvalMap.Map1Normal.Points );
898 ctx->EvalMap.Map1Normal.Points = pnts;
899 break;
900 case GL_MAP1_TEXTURE_COORD_1:
901 ctx->EvalMap.Map1Texture1.Order = uorder;
902 ctx->EvalMap.Map1Texture1.u1 = u1;
903 ctx->EvalMap.Map1Texture1.u2 = u2;
904 ctx->EvalMap.Map1Texture1.du = 1.0 / (u2 - u1);
905 if (ctx->EvalMap.Map1Texture1.Points)
906 FREE( ctx->EvalMap.Map1Texture1.Points );
907 ctx->EvalMap.Map1Texture1.Points = pnts;
908 break;
909 case GL_MAP1_TEXTURE_COORD_2:
910 ctx->EvalMap.Map1Texture2.Order = uorder;
911 ctx->EvalMap.Map1Texture2.u1 = u1;
912 ctx->EvalMap.Map1Texture2.u2 = u2;
913 ctx->EvalMap.Map1Texture2.du = 1.0 / (u2 - u1);
914 if (ctx->EvalMap.Map1Texture2.Points)
915 FREE( ctx->EvalMap.Map1Texture2.Points );
916 ctx->EvalMap.Map1Texture2.Points = pnts;
917 break;
918 case GL_MAP1_TEXTURE_COORD_3:
919 ctx->EvalMap.Map1Texture3.Order = uorder;
920 ctx->EvalMap.Map1Texture3.u1 = u1;
921 ctx->EvalMap.Map1Texture3.u2 = u2;
922 ctx->EvalMap.Map1Texture3.du = 1.0 / (u2 - u1);
923 if (ctx->EvalMap.Map1Texture3.Points)
924 FREE( ctx->EvalMap.Map1Texture3.Points );
925 ctx->EvalMap.Map1Texture3.Points = pnts;
926 break;
927 case GL_MAP1_TEXTURE_COORD_4:
928 ctx->EvalMap.Map1Texture4.Order = uorder;
929 ctx->EvalMap.Map1Texture4.u1 = u1;
930 ctx->EvalMap.Map1Texture4.u2 = u2;
931 ctx->EvalMap.Map1Texture4.du = 1.0 / (u2 - u1);
932 if (ctx->EvalMap.Map1Texture4.Points)
933 FREE( ctx->EvalMap.Map1Texture4.Points );
934 ctx->EvalMap.Map1Texture4.Points = pnts;
935 break;
936 default:
937 gl_error( ctx, GL_INVALID_ENUM, "glMap1(target)" );
938 }
939 }
940
941
942
943 void
944 _mesa_Map1f( GLenum target, GLfloat u1, GLfloat u2, GLint stride,
945 GLint order, const GLfloat *points )
946 {
947 map1(target, u1, u2, stride, order, points, GL_FLOAT);
948 }
949
950
951 void
952 _mesa_Map1d( GLenum target, GLdouble u1, GLdouble u2, GLint stride,
953 GLint order, const GLdouble *points )
954 {
955 map1(target, u1, u2, stride, order, points, GL_DOUBLE);
956 }
957
958
959 static void
960 map2( GLenum target, GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
961 GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
962 const GLvoid *points, GLenum type )
963 {
964 GET_CURRENT_CONTEXT(ctx);
965 GLint k;
966 GLfloat *pnts;
967
968 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMap2");
969
970 if (u1==u2) {
971 gl_error( ctx, GL_INVALID_VALUE, "glMap2(u1,u2)" );
972 return;
973 }
974
975 if (v1==v2) {
976 gl_error( ctx, GL_INVALID_VALUE, "glMap2(v1,v2)" );
977 return;
978 }
979
980 if (uorder<1 || uorder>MAX_EVAL_ORDER) {
981 gl_error( ctx, GL_INVALID_VALUE, "glMap2(uorder)" );
982 return;
983 }
984
985 if (vorder<1 || vorder>MAX_EVAL_ORDER) {
986 gl_error( ctx, GL_INVALID_VALUE, "glMap2(vorder)" );
987 return;
988 }
989
990 k = _mesa_evaluator_components( target );
991 if (k==0) {
992 gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
993 }
994
995 if (ustride < k) {
996 gl_error( ctx, GL_INVALID_VALUE, "glMap2(ustride)" );
997 return;
998 }
999 if (vstride < k) {
1000 gl_error( ctx, GL_INVALID_VALUE, "glMap2(vstride)" );
1001 return;
1002 }
1003
1004 /* make copy of the control points */
1005 if (type == GL_FLOAT)
1006 pnts = gl_copy_map_points2f(target, ustride, uorder,
1007 vstride, vorder, (GLfloat*) points);
1008 else
1009 pnts = gl_copy_map_points2d(target, ustride, uorder,
1010 vstride, vorder, (GLdouble*) points);
1011
1012 switch (target) {
1013 case GL_MAP2_VERTEX_3:
1014 ctx->EvalMap.Map2Vertex3.Uorder = uorder;
1015 ctx->EvalMap.Map2Vertex3.u1 = u1;
1016 ctx->EvalMap.Map2Vertex3.u2 = u2;
1017 ctx->EvalMap.Map2Vertex3.du = 1.0 / (u2 - u1);
1018 ctx->EvalMap.Map2Vertex3.Vorder = vorder;
1019 ctx->EvalMap.Map2Vertex3.v1 = v1;
1020 ctx->EvalMap.Map2Vertex3.v2 = v2;
1021 ctx->EvalMap.Map2Vertex3.dv = 1.0 / (v2 - v1);
1022 if (ctx->EvalMap.Map2Vertex3.Points)
1023 FREE( ctx->EvalMap.Map2Vertex3.Points );
1024 ctx->EvalMap.Map2Vertex3.Points = pnts;
1025 break;
1026 case GL_MAP2_VERTEX_4:
1027 ctx->EvalMap.Map2Vertex4.Uorder = uorder;
1028 ctx->EvalMap.Map2Vertex4.u1 = u1;
1029 ctx->EvalMap.Map2Vertex4.u2 = u2;
1030 ctx->EvalMap.Map2Vertex4.du = 1.0 / (u2 - u1);
1031 ctx->EvalMap.Map2Vertex4.Vorder = vorder;
1032 ctx->EvalMap.Map2Vertex4.v1 = v1;
1033 ctx->EvalMap.Map2Vertex4.v2 = v2;
1034 ctx->EvalMap.Map2Vertex4.dv = 1.0 / (v2 - v1);
1035 if (ctx->EvalMap.Map2Vertex4.Points)
1036 FREE( ctx->EvalMap.Map2Vertex4.Points );
1037 ctx->EvalMap.Map2Vertex4.Points = pnts;
1038 break;
1039 case GL_MAP2_INDEX:
1040 ctx->EvalMap.Map2Index.Uorder = uorder;
1041 ctx->EvalMap.Map2Index.u1 = u1;
1042 ctx->EvalMap.Map2Index.u2 = u2;
1043 ctx->EvalMap.Map2Index.du = 1.0 / (u2 - u1);
1044 ctx->EvalMap.Map2Index.Vorder = vorder;
1045 ctx->EvalMap.Map2Index.v1 = v1;
1046 ctx->EvalMap.Map2Index.v2 = v2;
1047 ctx->EvalMap.Map2Index.dv = 1.0 / (v2 - v1);
1048 if (ctx->EvalMap.Map2Index.Points)
1049 FREE( ctx->EvalMap.Map2Index.Points );
1050 ctx->EvalMap.Map2Index.Points = pnts;
1051 break;
1052 case GL_MAP2_COLOR_4:
1053 ctx->EvalMap.Map2Color4.Uorder = uorder;
1054 ctx->EvalMap.Map2Color4.u1 = u1;
1055 ctx->EvalMap.Map2Color4.u2 = u2;
1056 ctx->EvalMap.Map2Color4.du = 1.0 / (u2 - u1);
1057 ctx->EvalMap.Map2Color4.Vorder = vorder;
1058 ctx->EvalMap.Map2Color4.v1 = v1;
1059 ctx->EvalMap.Map2Color4.v2 = v2;
1060 ctx->EvalMap.Map2Color4.dv = 1.0 / (v2 - v1);
1061 if (ctx->EvalMap.Map2Color4.Points)
1062 FREE( ctx->EvalMap.Map2Color4.Points );
1063 ctx->EvalMap.Map2Color4.Points = pnts;
1064 break;
1065 case GL_MAP2_NORMAL:
1066 ctx->EvalMap.Map2Normal.Uorder = uorder;
1067 ctx->EvalMap.Map2Normal.u1 = u1;
1068 ctx->EvalMap.Map2Normal.u2 = u2;
1069 ctx->EvalMap.Map2Normal.du = 1.0 / (u2 - u1);
1070 ctx->EvalMap.Map2Normal.Vorder = vorder;
1071 ctx->EvalMap.Map2Normal.v1 = v1;
1072 ctx->EvalMap.Map2Normal.v2 = v2;
1073 ctx->EvalMap.Map2Normal.dv = 1.0 / (v2 - v1);
1074 if (ctx->EvalMap.Map2Normal.Points)
1075 FREE( ctx->EvalMap.Map2Normal.Points );
1076 ctx->EvalMap.Map2Normal.Points = pnts;
1077 break;
1078 case GL_MAP2_TEXTURE_COORD_1:
1079 ctx->EvalMap.Map2Texture1.Uorder = uorder;
1080 ctx->EvalMap.Map2Texture1.u1 = u1;
1081 ctx->EvalMap.Map2Texture1.u2 = u2;
1082 ctx->EvalMap.Map2Texture1.du = 1.0 / (u2 - u1);
1083 ctx->EvalMap.Map2Texture1.Vorder = vorder;
1084 ctx->EvalMap.Map2Texture1.v1 = v1;
1085 ctx->EvalMap.Map2Texture1.v2 = v2;
1086 ctx->EvalMap.Map2Texture1.dv = 1.0 / (v2 - v1);
1087 if (ctx->EvalMap.Map2Texture1.Points)
1088 FREE( ctx->EvalMap.Map2Texture1.Points );
1089 ctx->EvalMap.Map2Texture1.Points = pnts;
1090 break;
1091 case GL_MAP2_TEXTURE_COORD_2:
1092 ctx->EvalMap.Map2Texture2.Uorder = uorder;
1093 ctx->EvalMap.Map2Texture2.u1 = u1;
1094 ctx->EvalMap.Map2Texture2.u2 = u2;
1095 ctx->EvalMap.Map2Texture2.du = 1.0 / (u2 - u1);
1096 ctx->EvalMap.Map2Texture2.Vorder = vorder;
1097 ctx->EvalMap.Map2Texture2.v1 = v1;
1098 ctx->EvalMap.Map2Texture2.v2 = v2;
1099 ctx->EvalMap.Map2Texture2.dv = 1.0 / (v2 - v1);
1100 if (ctx->EvalMap.Map2Texture2.Points)
1101 FREE( ctx->EvalMap.Map2Texture2.Points );
1102 ctx->EvalMap.Map2Texture2.Points = pnts;
1103 break;
1104 case GL_MAP2_TEXTURE_COORD_3:
1105 ctx->EvalMap.Map2Texture3.Uorder = uorder;
1106 ctx->EvalMap.Map2Texture3.u1 = u1;
1107 ctx->EvalMap.Map2Texture3.u2 = u2;
1108 ctx->EvalMap.Map2Texture3.du = 1.0 / (u2 - u1);
1109 ctx->EvalMap.Map2Texture3.Vorder = vorder;
1110 ctx->EvalMap.Map2Texture3.v1 = v1;
1111 ctx->EvalMap.Map2Texture3.v2 = v2;
1112 ctx->EvalMap.Map2Texture3.dv = 1.0 / (v2 - v1);
1113 if (ctx->EvalMap.Map2Texture3.Points)
1114 FREE( ctx->EvalMap.Map2Texture3.Points );
1115 ctx->EvalMap.Map2Texture3.Points = pnts;
1116 break;
1117 case GL_MAP2_TEXTURE_COORD_4:
1118 ctx->EvalMap.Map2Texture4.Uorder = uorder;
1119 ctx->EvalMap.Map2Texture4.u1 = u1;
1120 ctx->EvalMap.Map2Texture4.u2 = u2;
1121 ctx->EvalMap.Map2Texture4.du = 1.0 / (u2 - u1);
1122 ctx->EvalMap.Map2Texture4.Vorder = vorder;
1123 ctx->EvalMap.Map2Texture4.v1 = v1;
1124 ctx->EvalMap.Map2Texture4.v2 = v2;
1125 ctx->EvalMap.Map2Texture4.dv = 1.0 / (v2 - v1);
1126 if (ctx->EvalMap.Map2Texture4.Points)
1127 FREE( ctx->EvalMap.Map2Texture4.Points );
1128 ctx->EvalMap.Map2Texture4.Points = pnts;
1129 break;
1130 default:
1131 gl_error( ctx, GL_INVALID_ENUM, "glMap2(target)" );
1132 }
1133 }
1134
1135
1136 void
1137 _mesa_Map2f( GLenum target,
1138 GLfloat u1, GLfloat u2, GLint ustride, GLint uorder,
1139 GLfloat v1, GLfloat v2, GLint vstride, GLint vorder,
1140 const GLfloat *points)
1141 {
1142 map2(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder,
1143 points, GL_FLOAT);
1144 }
1145
1146
1147 void
1148 _mesa_Map2d( GLenum target,
1149 GLdouble u1, GLdouble u2, GLint ustride, GLint uorder,
1150 GLdouble v1, GLdouble v2, GLint vstride, GLint vorder,
1151 const GLdouble *points )
1152 {
1153 map2(target, u1, u2, ustride, uorder, v1, v2, vstride, vorder,
1154 points, GL_DOUBLE);
1155 }
1156
1157
1158
1159 void
1160 _mesa_GetMapdv( GLenum target, GLenum query, GLdouble *v )
1161 {
1162 GET_CURRENT_CONTEXT(ctx);
1163 GLint i, n;
1164 GLfloat *data;
1165
1166 switch (query) {
1167 case GL_COEFF:
1168 switch (target) {
1169 case GL_MAP1_COLOR_4:
1170 data = ctx->EvalMap.Map1Color4.Points;
1171 n = ctx->EvalMap.Map1Color4.Order * 4;
1172 break;
1173 case GL_MAP1_INDEX:
1174 data = ctx->EvalMap.Map1Index.Points;
1175 n = ctx->EvalMap.Map1Index.Order;
1176 break;
1177 case GL_MAP1_NORMAL:
1178 data = ctx->EvalMap.Map1Normal.Points;
1179 n = ctx->EvalMap.Map1Normal.Order * 3;
1180 break;
1181 case GL_MAP1_TEXTURE_COORD_1:
1182 data = ctx->EvalMap.Map1Texture1.Points;
1183 n = ctx->EvalMap.Map1Texture1.Order * 1;
1184 break;
1185 case GL_MAP1_TEXTURE_COORD_2:
1186 data = ctx->EvalMap.Map1Texture2.Points;
1187 n = ctx->EvalMap.Map1Texture2.Order * 2;
1188 break;
1189 case GL_MAP1_TEXTURE_COORD_3:
1190 data = ctx->EvalMap.Map1Texture3.Points;
1191 n = ctx->EvalMap.Map1Texture3.Order * 3;
1192 break;
1193 case GL_MAP1_TEXTURE_COORD_4:
1194 data = ctx->EvalMap.Map1Texture4.Points;
1195 n = ctx->EvalMap.Map1Texture4.Order * 4;
1196 break;
1197 case GL_MAP1_VERTEX_3:
1198 data = ctx->EvalMap.Map1Vertex3.Points;
1199 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1200 break;
1201 case GL_MAP1_VERTEX_4:
1202 data = ctx->EvalMap.Map1Vertex4.Points;
1203 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1204 break;
1205 case GL_MAP2_COLOR_4:
1206 data = ctx->EvalMap.Map2Color4.Points;
1207 n = ctx->EvalMap.Map2Color4.Uorder
1208 * ctx->EvalMap.Map2Color4.Vorder * 4;
1209 break;
1210 case GL_MAP2_INDEX:
1211 data = ctx->EvalMap.Map2Index.Points;
1212 n = ctx->EvalMap.Map2Index.Uorder
1213 * ctx->EvalMap.Map2Index.Vorder;
1214 break;
1215 case GL_MAP2_NORMAL:
1216 data = ctx->EvalMap.Map2Normal.Points;
1217 n = ctx->EvalMap.Map2Normal.Uorder
1218 * ctx->EvalMap.Map2Normal.Vorder * 3;
1219 break;
1220 case GL_MAP2_TEXTURE_COORD_1:
1221 data = ctx->EvalMap.Map2Texture1.Points;
1222 n = ctx->EvalMap.Map2Texture1.Uorder
1223 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1224 break;
1225 case GL_MAP2_TEXTURE_COORD_2:
1226 data = ctx->EvalMap.Map2Texture2.Points;
1227 n = ctx->EvalMap.Map2Texture2.Uorder
1228 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1229 break;
1230 case GL_MAP2_TEXTURE_COORD_3:
1231 data = ctx->EvalMap.Map2Texture3.Points;
1232 n = ctx->EvalMap.Map2Texture3.Uorder
1233 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1234 break;
1235 case GL_MAP2_TEXTURE_COORD_4:
1236 data = ctx->EvalMap.Map2Texture4.Points;
1237 n = ctx->EvalMap.Map2Texture4.Uorder
1238 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1239 break;
1240 case GL_MAP2_VERTEX_3:
1241 data = ctx->EvalMap.Map2Vertex3.Points;
1242 n = ctx->EvalMap.Map2Vertex3.Uorder
1243 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1244 break;
1245 case GL_MAP2_VERTEX_4:
1246 data = ctx->EvalMap.Map2Vertex4.Points;
1247 n = ctx->EvalMap.Map2Vertex4.Uorder
1248 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1249 break;
1250 default:
1251 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1252 return;
1253 }
1254 if (data) {
1255 for (i=0;i<n;i++) {
1256 v[i] = data[i];
1257 }
1258 }
1259 break;
1260 case GL_ORDER:
1261 switch (target) {
1262 case GL_MAP1_COLOR_4:
1263 *v = ctx->EvalMap.Map1Color4.Order;
1264 break;
1265 case GL_MAP1_INDEX:
1266 *v = ctx->EvalMap.Map1Index.Order;
1267 break;
1268 case GL_MAP1_NORMAL:
1269 *v = ctx->EvalMap.Map1Normal.Order;
1270 break;
1271 case GL_MAP1_TEXTURE_COORD_1:
1272 *v = ctx->EvalMap.Map1Texture1.Order;
1273 break;
1274 case GL_MAP1_TEXTURE_COORD_2:
1275 *v = ctx->EvalMap.Map1Texture2.Order;
1276 break;
1277 case GL_MAP1_TEXTURE_COORD_3:
1278 *v = ctx->EvalMap.Map1Texture3.Order;
1279 break;
1280 case GL_MAP1_TEXTURE_COORD_4:
1281 *v = ctx->EvalMap.Map1Texture4.Order;
1282 break;
1283 case GL_MAP1_VERTEX_3:
1284 *v = ctx->EvalMap.Map1Vertex3.Order;
1285 break;
1286 case GL_MAP1_VERTEX_4:
1287 *v = ctx->EvalMap.Map1Vertex4.Order;
1288 break;
1289 case GL_MAP2_COLOR_4:
1290 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1291 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1292 break;
1293 case GL_MAP2_INDEX:
1294 v[0] = ctx->EvalMap.Map2Index.Uorder;
1295 v[1] = ctx->EvalMap.Map2Index.Vorder;
1296 break;
1297 case GL_MAP2_NORMAL:
1298 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1299 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1300 break;
1301 case GL_MAP2_TEXTURE_COORD_1:
1302 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1303 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1304 break;
1305 case GL_MAP2_TEXTURE_COORD_2:
1306 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1307 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1308 break;
1309 case GL_MAP2_TEXTURE_COORD_3:
1310 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1311 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1312 break;
1313 case GL_MAP2_TEXTURE_COORD_4:
1314 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1315 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1316 break;
1317 case GL_MAP2_VERTEX_3:
1318 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1319 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1320 break;
1321 case GL_MAP2_VERTEX_4:
1322 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1323 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1324 break;
1325 default:
1326 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1327 return;
1328 }
1329 break;
1330 case GL_DOMAIN:
1331 switch (target) {
1332 case GL_MAP1_COLOR_4:
1333 v[0] = ctx->EvalMap.Map1Color4.u1;
1334 v[1] = ctx->EvalMap.Map1Color4.u2;
1335 break;
1336 case GL_MAP1_INDEX:
1337 v[0] = ctx->EvalMap.Map1Index.u1;
1338 v[1] = ctx->EvalMap.Map1Index.u2;
1339 break;
1340 case GL_MAP1_NORMAL:
1341 v[0] = ctx->EvalMap.Map1Normal.u1;
1342 v[1] = ctx->EvalMap.Map1Normal.u2;
1343 break;
1344 case GL_MAP1_TEXTURE_COORD_1:
1345 v[0] = ctx->EvalMap.Map1Texture1.u1;
1346 v[1] = ctx->EvalMap.Map1Texture1.u2;
1347 break;
1348 case GL_MAP1_TEXTURE_COORD_2:
1349 v[0] = ctx->EvalMap.Map1Texture2.u1;
1350 v[1] = ctx->EvalMap.Map1Texture2.u2;
1351 break;
1352 case GL_MAP1_TEXTURE_COORD_3:
1353 v[0] = ctx->EvalMap.Map1Texture3.u1;
1354 v[1] = ctx->EvalMap.Map1Texture3.u2;
1355 break;
1356 case GL_MAP1_TEXTURE_COORD_4:
1357 v[0] = ctx->EvalMap.Map1Texture4.u1;
1358 v[1] = ctx->EvalMap.Map1Texture4.u2;
1359 break;
1360 case GL_MAP1_VERTEX_3:
1361 v[0] = ctx->EvalMap.Map1Vertex3.u1;
1362 v[1] = ctx->EvalMap.Map1Vertex3.u2;
1363 break;
1364 case GL_MAP1_VERTEX_4:
1365 v[0] = ctx->EvalMap.Map1Vertex4.u1;
1366 v[1] = ctx->EvalMap.Map1Vertex4.u2;
1367 break;
1368 case GL_MAP2_COLOR_4:
1369 v[0] = ctx->EvalMap.Map2Color4.u1;
1370 v[1] = ctx->EvalMap.Map2Color4.u2;
1371 v[2] = ctx->EvalMap.Map2Color4.v1;
1372 v[3] = ctx->EvalMap.Map2Color4.v2;
1373 break;
1374 case GL_MAP2_INDEX:
1375 v[0] = ctx->EvalMap.Map2Index.u1;
1376 v[1] = ctx->EvalMap.Map2Index.u2;
1377 v[2] = ctx->EvalMap.Map2Index.v1;
1378 v[3] = ctx->EvalMap.Map2Index.v2;
1379 break;
1380 case GL_MAP2_NORMAL:
1381 v[0] = ctx->EvalMap.Map2Normal.u1;
1382 v[1] = ctx->EvalMap.Map2Normal.u2;
1383 v[2] = ctx->EvalMap.Map2Normal.v1;
1384 v[3] = ctx->EvalMap.Map2Normal.v2;
1385 break;
1386 case GL_MAP2_TEXTURE_COORD_1:
1387 v[0] = ctx->EvalMap.Map2Texture1.u1;
1388 v[1] = ctx->EvalMap.Map2Texture1.u2;
1389 v[2] = ctx->EvalMap.Map2Texture1.v1;
1390 v[3] = ctx->EvalMap.Map2Texture1.v2;
1391 break;
1392 case GL_MAP2_TEXTURE_COORD_2:
1393 v[0] = ctx->EvalMap.Map2Texture2.u1;
1394 v[1] = ctx->EvalMap.Map2Texture2.u2;
1395 v[2] = ctx->EvalMap.Map2Texture2.v1;
1396 v[3] = ctx->EvalMap.Map2Texture2.v2;
1397 break;
1398 case GL_MAP2_TEXTURE_COORD_3:
1399 v[0] = ctx->EvalMap.Map2Texture3.u1;
1400 v[1] = ctx->EvalMap.Map2Texture3.u2;
1401 v[2] = ctx->EvalMap.Map2Texture3.v1;
1402 v[3] = ctx->EvalMap.Map2Texture3.v2;
1403 break;
1404 case GL_MAP2_TEXTURE_COORD_4:
1405 v[0] = ctx->EvalMap.Map2Texture4.u1;
1406 v[1] = ctx->EvalMap.Map2Texture4.u2;
1407 v[2] = ctx->EvalMap.Map2Texture4.v1;
1408 v[3] = ctx->EvalMap.Map2Texture4.v2;
1409 break;
1410 case GL_MAP2_VERTEX_3:
1411 v[0] = ctx->EvalMap.Map2Vertex3.u1;
1412 v[1] = ctx->EvalMap.Map2Vertex3.u2;
1413 v[2] = ctx->EvalMap.Map2Vertex3.v1;
1414 v[3] = ctx->EvalMap.Map2Vertex3.v2;
1415 break;
1416 case GL_MAP2_VERTEX_4:
1417 v[0] = ctx->EvalMap.Map2Vertex4.u1;
1418 v[1] = ctx->EvalMap.Map2Vertex4.u2;
1419 v[2] = ctx->EvalMap.Map2Vertex4.v1;
1420 v[3] = ctx->EvalMap.Map2Vertex4.v2;
1421 break;
1422 default:
1423 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(target)" );
1424 }
1425 break;
1426 default:
1427 gl_error( ctx, GL_INVALID_ENUM, "glGetMapdv(query)" );
1428 }
1429 }
1430
1431
1432 void
1433 _mesa_GetMapfv( GLenum target, GLenum query, GLfloat *v )
1434 {
1435 GET_CURRENT_CONTEXT(ctx);
1436 GLint i, n;
1437 GLfloat *data;
1438
1439 switch (query) {
1440 case GL_COEFF:
1441 switch (target) {
1442 case GL_MAP1_COLOR_4:
1443 data = ctx->EvalMap.Map1Color4.Points;
1444 n = ctx->EvalMap.Map1Color4.Order * 4;
1445 break;
1446 case GL_MAP1_INDEX:
1447 data = ctx->EvalMap.Map1Index.Points;
1448 n = ctx->EvalMap.Map1Index.Order;
1449 break;
1450 case GL_MAP1_NORMAL:
1451 data = ctx->EvalMap.Map1Normal.Points;
1452 n = ctx->EvalMap.Map1Normal.Order * 3;
1453 break;
1454 case GL_MAP1_TEXTURE_COORD_1:
1455 data = ctx->EvalMap.Map1Texture1.Points;
1456 n = ctx->EvalMap.Map1Texture1.Order * 1;
1457 break;
1458 case GL_MAP1_TEXTURE_COORD_2:
1459 data = ctx->EvalMap.Map1Texture2.Points;
1460 n = ctx->EvalMap.Map1Texture2.Order * 2;
1461 break;
1462 case GL_MAP1_TEXTURE_COORD_3:
1463 data = ctx->EvalMap.Map1Texture3.Points;
1464 n = ctx->EvalMap.Map1Texture3.Order * 3;
1465 break;
1466 case GL_MAP1_TEXTURE_COORD_4:
1467 data = ctx->EvalMap.Map1Texture4.Points;
1468 n = ctx->EvalMap.Map1Texture4.Order * 4;
1469 break;
1470 case GL_MAP1_VERTEX_3:
1471 data = ctx->EvalMap.Map1Vertex3.Points;
1472 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1473 break;
1474 case GL_MAP1_VERTEX_4:
1475 data = ctx->EvalMap.Map1Vertex4.Points;
1476 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1477 break;
1478 case GL_MAP2_COLOR_4:
1479 data = ctx->EvalMap.Map2Color4.Points;
1480 n = ctx->EvalMap.Map2Color4.Uorder
1481 * ctx->EvalMap.Map2Color4.Vorder * 4;
1482 break;
1483 case GL_MAP2_INDEX:
1484 data = ctx->EvalMap.Map2Index.Points;
1485 n = ctx->EvalMap.Map2Index.Uorder
1486 * ctx->EvalMap.Map2Index.Vorder;
1487 break;
1488 case GL_MAP2_NORMAL:
1489 data = ctx->EvalMap.Map2Normal.Points;
1490 n = ctx->EvalMap.Map2Normal.Uorder
1491 * ctx->EvalMap.Map2Normal.Vorder * 3;
1492 break;
1493 case GL_MAP2_TEXTURE_COORD_1:
1494 data = ctx->EvalMap.Map2Texture1.Points;
1495 n = ctx->EvalMap.Map2Texture1.Uorder
1496 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1497 break;
1498 case GL_MAP2_TEXTURE_COORD_2:
1499 data = ctx->EvalMap.Map2Texture2.Points;
1500 n = ctx->EvalMap.Map2Texture2.Uorder
1501 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1502 break;
1503 case GL_MAP2_TEXTURE_COORD_3:
1504 data = ctx->EvalMap.Map2Texture3.Points;
1505 n = ctx->EvalMap.Map2Texture3.Uorder
1506 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1507 break;
1508 case GL_MAP2_TEXTURE_COORD_4:
1509 data = ctx->EvalMap.Map2Texture4.Points;
1510 n = ctx->EvalMap.Map2Texture4.Uorder
1511 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1512 break;
1513 case GL_MAP2_VERTEX_3:
1514 data = ctx->EvalMap.Map2Vertex3.Points;
1515 n = ctx->EvalMap.Map2Vertex3.Uorder
1516 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1517 break;
1518 case GL_MAP2_VERTEX_4:
1519 data = ctx->EvalMap.Map2Vertex4.Points;
1520 n = ctx->EvalMap.Map2Vertex4.Uorder
1521 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1522 break;
1523 default:
1524 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1525 return;
1526 }
1527 if (data) {
1528 for (i=0;i<n;i++) {
1529 v[i] = data[i];
1530 }
1531 }
1532 break;
1533 case GL_ORDER:
1534 switch (target) {
1535 case GL_MAP1_COLOR_4:
1536 *v = ctx->EvalMap.Map1Color4.Order;
1537 break;
1538 case GL_MAP1_INDEX:
1539 *v = ctx->EvalMap.Map1Index.Order;
1540 break;
1541 case GL_MAP1_NORMAL:
1542 *v = ctx->EvalMap.Map1Normal.Order;
1543 break;
1544 case GL_MAP1_TEXTURE_COORD_1:
1545 *v = ctx->EvalMap.Map1Texture1.Order;
1546 break;
1547 case GL_MAP1_TEXTURE_COORD_2:
1548 *v = ctx->EvalMap.Map1Texture2.Order;
1549 break;
1550 case GL_MAP1_TEXTURE_COORD_3:
1551 *v = ctx->EvalMap.Map1Texture3.Order;
1552 break;
1553 case GL_MAP1_TEXTURE_COORD_4:
1554 *v = ctx->EvalMap.Map1Texture4.Order;
1555 break;
1556 case GL_MAP1_VERTEX_3:
1557 *v = ctx->EvalMap.Map1Vertex3.Order;
1558 break;
1559 case GL_MAP1_VERTEX_4:
1560 *v = ctx->EvalMap.Map1Vertex4.Order;
1561 break;
1562 case GL_MAP2_COLOR_4:
1563 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1564 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1565 break;
1566 case GL_MAP2_INDEX:
1567 v[0] = ctx->EvalMap.Map2Index.Uorder;
1568 v[1] = ctx->EvalMap.Map2Index.Vorder;
1569 break;
1570 case GL_MAP2_NORMAL:
1571 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1572 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1573 break;
1574 case GL_MAP2_TEXTURE_COORD_1:
1575 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1576 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1577 break;
1578 case GL_MAP2_TEXTURE_COORD_2:
1579 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1580 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1581 break;
1582 case GL_MAP2_TEXTURE_COORD_3:
1583 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1584 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1585 break;
1586 case GL_MAP2_TEXTURE_COORD_4:
1587 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1588 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1589 break;
1590 case GL_MAP2_VERTEX_3:
1591 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1592 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1593 break;
1594 case GL_MAP2_VERTEX_4:
1595 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1596 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1597 break;
1598 default:
1599 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1600 return;
1601 }
1602 break;
1603 case GL_DOMAIN:
1604 switch (target) {
1605 case GL_MAP1_COLOR_4:
1606 v[0] = ctx->EvalMap.Map1Color4.u1;
1607 v[1] = ctx->EvalMap.Map1Color4.u2;
1608 break;
1609 case GL_MAP1_INDEX:
1610 v[0] = ctx->EvalMap.Map1Index.u1;
1611 v[1] = ctx->EvalMap.Map1Index.u2;
1612 break;
1613 case GL_MAP1_NORMAL:
1614 v[0] = ctx->EvalMap.Map1Normal.u1;
1615 v[1] = ctx->EvalMap.Map1Normal.u2;
1616 break;
1617 case GL_MAP1_TEXTURE_COORD_1:
1618 v[0] = ctx->EvalMap.Map1Texture1.u1;
1619 v[1] = ctx->EvalMap.Map1Texture1.u2;
1620 break;
1621 case GL_MAP1_TEXTURE_COORD_2:
1622 v[0] = ctx->EvalMap.Map1Texture2.u1;
1623 v[1] = ctx->EvalMap.Map1Texture2.u2;
1624 break;
1625 case GL_MAP1_TEXTURE_COORD_3:
1626 v[0] = ctx->EvalMap.Map1Texture3.u1;
1627 v[1] = ctx->EvalMap.Map1Texture3.u2;
1628 break;
1629 case GL_MAP1_TEXTURE_COORD_4:
1630 v[0] = ctx->EvalMap.Map1Texture4.u1;
1631 v[1] = ctx->EvalMap.Map1Texture4.u2;
1632 break;
1633 case GL_MAP1_VERTEX_3:
1634 v[0] = ctx->EvalMap.Map1Vertex3.u1;
1635 v[1] = ctx->EvalMap.Map1Vertex3.u2;
1636 break;
1637 case GL_MAP1_VERTEX_4:
1638 v[0] = ctx->EvalMap.Map1Vertex4.u1;
1639 v[1] = ctx->EvalMap.Map1Vertex4.u2;
1640 break;
1641 case GL_MAP2_COLOR_4:
1642 v[0] = ctx->EvalMap.Map2Color4.u1;
1643 v[1] = ctx->EvalMap.Map2Color4.u2;
1644 v[2] = ctx->EvalMap.Map2Color4.v1;
1645 v[3] = ctx->EvalMap.Map2Color4.v2;
1646 break;
1647 case GL_MAP2_INDEX:
1648 v[0] = ctx->EvalMap.Map2Index.u1;
1649 v[1] = ctx->EvalMap.Map2Index.u2;
1650 v[2] = ctx->EvalMap.Map2Index.v1;
1651 v[3] = ctx->EvalMap.Map2Index.v2;
1652 break;
1653 case GL_MAP2_NORMAL:
1654 v[0] = ctx->EvalMap.Map2Normal.u1;
1655 v[1] = ctx->EvalMap.Map2Normal.u2;
1656 v[2] = ctx->EvalMap.Map2Normal.v1;
1657 v[3] = ctx->EvalMap.Map2Normal.v2;
1658 break;
1659 case GL_MAP2_TEXTURE_COORD_1:
1660 v[0] = ctx->EvalMap.Map2Texture1.u1;
1661 v[1] = ctx->EvalMap.Map2Texture1.u2;
1662 v[2] = ctx->EvalMap.Map2Texture1.v1;
1663 v[3] = ctx->EvalMap.Map2Texture1.v2;
1664 break;
1665 case GL_MAP2_TEXTURE_COORD_2:
1666 v[0] = ctx->EvalMap.Map2Texture2.u1;
1667 v[1] = ctx->EvalMap.Map2Texture2.u2;
1668 v[2] = ctx->EvalMap.Map2Texture2.v1;
1669 v[3] = ctx->EvalMap.Map2Texture2.v2;
1670 break;
1671 case GL_MAP2_TEXTURE_COORD_3:
1672 v[0] = ctx->EvalMap.Map2Texture3.u1;
1673 v[1] = ctx->EvalMap.Map2Texture3.u2;
1674 v[2] = ctx->EvalMap.Map2Texture3.v1;
1675 v[3] = ctx->EvalMap.Map2Texture3.v2;
1676 break;
1677 case GL_MAP2_TEXTURE_COORD_4:
1678 v[0] = ctx->EvalMap.Map2Texture4.u1;
1679 v[1] = ctx->EvalMap.Map2Texture4.u2;
1680 v[2] = ctx->EvalMap.Map2Texture4.v1;
1681 v[3] = ctx->EvalMap.Map2Texture4.v2;
1682 break;
1683 case GL_MAP2_VERTEX_3:
1684 v[0] = ctx->EvalMap.Map2Vertex3.u1;
1685 v[1] = ctx->EvalMap.Map2Vertex3.u2;
1686 v[2] = ctx->EvalMap.Map2Vertex3.v1;
1687 v[3] = ctx->EvalMap.Map2Vertex3.v2;
1688 break;
1689 case GL_MAP2_VERTEX_4:
1690 v[0] = ctx->EvalMap.Map2Vertex4.u1;
1691 v[1] = ctx->EvalMap.Map2Vertex4.u2;
1692 v[2] = ctx->EvalMap.Map2Vertex4.v1;
1693 v[3] = ctx->EvalMap.Map2Vertex4.v2;
1694 break;
1695 default:
1696 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(target)" );
1697 }
1698 break;
1699 default:
1700 gl_error( ctx, GL_INVALID_ENUM, "glGetMapfv(query)" );
1701 }
1702 }
1703
1704
1705 void
1706 _mesa_GetMapiv( GLenum target, GLenum query, GLint *v )
1707 {
1708 GET_CURRENT_CONTEXT(ctx);
1709 GLuint i, n;
1710 GLfloat *data;
1711
1712 switch (query) {
1713 case GL_COEFF:
1714 switch (target) {
1715 case GL_MAP1_COLOR_4:
1716 data = ctx->EvalMap.Map1Color4.Points;
1717 n = ctx->EvalMap.Map1Color4.Order * 4;
1718 break;
1719 case GL_MAP1_INDEX:
1720 data = ctx->EvalMap.Map1Index.Points;
1721 n = ctx->EvalMap.Map1Index.Order;
1722 break;
1723 case GL_MAP1_NORMAL:
1724 data = ctx->EvalMap.Map1Normal.Points;
1725 n = ctx->EvalMap.Map1Normal.Order * 3;
1726 break;
1727 case GL_MAP1_TEXTURE_COORD_1:
1728 data = ctx->EvalMap.Map1Texture1.Points;
1729 n = ctx->EvalMap.Map1Texture1.Order * 1;
1730 break;
1731 case GL_MAP1_TEXTURE_COORD_2:
1732 data = ctx->EvalMap.Map1Texture2.Points;
1733 n = ctx->EvalMap.Map1Texture2.Order * 2;
1734 break;
1735 case GL_MAP1_TEXTURE_COORD_3:
1736 data = ctx->EvalMap.Map1Texture3.Points;
1737 n = ctx->EvalMap.Map1Texture3.Order * 3;
1738 break;
1739 case GL_MAP1_TEXTURE_COORD_4:
1740 data = ctx->EvalMap.Map1Texture4.Points;
1741 n = ctx->EvalMap.Map1Texture4.Order * 4;
1742 break;
1743 case GL_MAP1_VERTEX_3:
1744 data = ctx->EvalMap.Map1Vertex3.Points;
1745 n = ctx->EvalMap.Map1Vertex3.Order * 3;
1746 break;
1747 case GL_MAP1_VERTEX_4:
1748 data = ctx->EvalMap.Map1Vertex4.Points;
1749 n = ctx->EvalMap.Map1Vertex4.Order * 4;
1750 break;
1751 case GL_MAP2_COLOR_4:
1752 data = ctx->EvalMap.Map2Color4.Points;
1753 n = ctx->EvalMap.Map2Color4.Uorder
1754 * ctx->EvalMap.Map2Color4.Vorder * 4;
1755 break;
1756 case GL_MAP2_INDEX:
1757 data = ctx->EvalMap.Map2Index.Points;
1758 n = ctx->EvalMap.Map2Index.Uorder
1759 * ctx->EvalMap.Map2Index.Vorder;
1760 break;
1761 case GL_MAP2_NORMAL:
1762 data = ctx->EvalMap.Map2Normal.Points;
1763 n = ctx->EvalMap.Map2Normal.Uorder
1764 * ctx->EvalMap.Map2Normal.Vorder * 3;
1765 break;
1766 case GL_MAP2_TEXTURE_COORD_1:
1767 data = ctx->EvalMap.Map2Texture1.Points;
1768 n = ctx->EvalMap.Map2Texture1.Uorder
1769 * ctx->EvalMap.Map2Texture1.Vorder * 1;
1770 break;
1771 case GL_MAP2_TEXTURE_COORD_2:
1772 data = ctx->EvalMap.Map2Texture2.Points;
1773 n = ctx->EvalMap.Map2Texture2.Uorder
1774 * ctx->EvalMap.Map2Texture2.Vorder * 2;
1775 break;
1776 case GL_MAP2_TEXTURE_COORD_3:
1777 data = ctx->EvalMap.Map2Texture3.Points;
1778 n = ctx->EvalMap.Map2Texture3.Uorder
1779 * ctx->EvalMap.Map2Texture3.Vorder * 3;
1780 break;
1781 case GL_MAP2_TEXTURE_COORD_4:
1782 data = ctx->EvalMap.Map2Texture4.Points;
1783 n = ctx->EvalMap.Map2Texture4.Uorder
1784 * ctx->EvalMap.Map2Texture4.Vorder * 4;
1785 break;
1786 case GL_MAP2_VERTEX_3:
1787 data = ctx->EvalMap.Map2Vertex3.Points;
1788 n = ctx->EvalMap.Map2Vertex3.Uorder
1789 * ctx->EvalMap.Map2Vertex3.Vorder * 3;
1790 break;
1791 case GL_MAP2_VERTEX_4:
1792 data = ctx->EvalMap.Map2Vertex4.Points;
1793 n = ctx->EvalMap.Map2Vertex4.Uorder
1794 * ctx->EvalMap.Map2Vertex4.Vorder * 4;
1795 break;
1796 default:
1797 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1798 return;
1799 }
1800 if (data) {
1801 for (i=0;i<n;i++) {
1802 v[i] = ROUNDF(data[i]);
1803 }
1804 }
1805 break;
1806 case GL_ORDER:
1807 switch (target) {
1808 case GL_MAP1_COLOR_4:
1809 *v = ctx->EvalMap.Map1Color4.Order;
1810 break;
1811 case GL_MAP1_INDEX:
1812 *v = ctx->EvalMap.Map1Index.Order;
1813 break;
1814 case GL_MAP1_NORMAL:
1815 *v = ctx->EvalMap.Map1Normal.Order;
1816 break;
1817 case GL_MAP1_TEXTURE_COORD_1:
1818 *v = ctx->EvalMap.Map1Texture1.Order;
1819 break;
1820 case GL_MAP1_TEXTURE_COORD_2:
1821 *v = ctx->EvalMap.Map1Texture2.Order;
1822 break;
1823 case GL_MAP1_TEXTURE_COORD_3:
1824 *v = ctx->EvalMap.Map1Texture3.Order;
1825 break;
1826 case GL_MAP1_TEXTURE_COORD_4:
1827 *v = ctx->EvalMap.Map1Texture4.Order;
1828 break;
1829 case GL_MAP1_VERTEX_3:
1830 *v = ctx->EvalMap.Map1Vertex3.Order;
1831 break;
1832 case GL_MAP1_VERTEX_4:
1833 *v = ctx->EvalMap.Map1Vertex4.Order;
1834 break;
1835 case GL_MAP2_COLOR_4:
1836 v[0] = ctx->EvalMap.Map2Color4.Uorder;
1837 v[1] = ctx->EvalMap.Map2Color4.Vorder;
1838 break;
1839 case GL_MAP2_INDEX:
1840 v[0] = ctx->EvalMap.Map2Index.Uorder;
1841 v[1] = ctx->EvalMap.Map2Index.Vorder;
1842 break;
1843 case GL_MAP2_NORMAL:
1844 v[0] = ctx->EvalMap.Map2Normal.Uorder;
1845 v[1] = ctx->EvalMap.Map2Normal.Vorder;
1846 break;
1847 case GL_MAP2_TEXTURE_COORD_1:
1848 v[0] = ctx->EvalMap.Map2Texture1.Uorder;
1849 v[1] = ctx->EvalMap.Map2Texture1.Vorder;
1850 break;
1851 case GL_MAP2_TEXTURE_COORD_2:
1852 v[0] = ctx->EvalMap.Map2Texture2.Uorder;
1853 v[1] = ctx->EvalMap.Map2Texture2.Vorder;
1854 break;
1855 case GL_MAP2_TEXTURE_COORD_3:
1856 v[0] = ctx->EvalMap.Map2Texture3.Uorder;
1857 v[1] = ctx->EvalMap.Map2Texture3.Vorder;
1858 break;
1859 case GL_MAP2_TEXTURE_COORD_4:
1860 v[0] = ctx->EvalMap.Map2Texture4.Uorder;
1861 v[1] = ctx->EvalMap.Map2Texture4.Vorder;
1862 break;
1863 case GL_MAP2_VERTEX_3:
1864 v[0] = ctx->EvalMap.Map2Vertex3.Uorder;
1865 v[1] = ctx->EvalMap.Map2Vertex3.Vorder;
1866 break;
1867 case GL_MAP2_VERTEX_4:
1868 v[0] = ctx->EvalMap.Map2Vertex4.Uorder;
1869 v[1] = ctx->EvalMap.Map2Vertex4.Vorder;
1870 break;
1871 default:
1872 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1873 return;
1874 }
1875 break;
1876 case GL_DOMAIN:
1877 switch (target) {
1878 case GL_MAP1_COLOR_4:
1879 v[0] = ROUNDF(ctx->EvalMap.Map1Color4.u1);
1880 v[1] = ROUNDF(ctx->EvalMap.Map1Color4.u2);
1881 break;
1882 case GL_MAP1_INDEX:
1883 v[0] = ROUNDF(ctx->EvalMap.Map1Index.u1);
1884 v[1] = ROUNDF(ctx->EvalMap.Map1Index.u2);
1885 break;
1886 case GL_MAP1_NORMAL:
1887 v[0] = ROUNDF(ctx->EvalMap.Map1Normal.u1);
1888 v[1] = ROUNDF(ctx->EvalMap.Map1Normal.u2);
1889 break;
1890 case GL_MAP1_TEXTURE_COORD_1:
1891 v[0] = ROUNDF(ctx->EvalMap.Map1Texture1.u1);
1892 v[1] = ROUNDF(ctx->EvalMap.Map1Texture1.u2);
1893 break;
1894 case GL_MAP1_TEXTURE_COORD_2:
1895 v[0] = ROUNDF(ctx->EvalMap.Map1Texture2.u1);
1896 v[1] = ROUNDF(ctx->EvalMap.Map1Texture2.u2);
1897 break;
1898 case GL_MAP1_TEXTURE_COORD_3:
1899 v[0] = ROUNDF(ctx->EvalMap.Map1Texture3.u1);
1900 v[1] = ROUNDF(ctx->EvalMap.Map1Texture3.u2);
1901 break;
1902 case GL_MAP1_TEXTURE_COORD_4:
1903 v[0] = ROUNDF(ctx->EvalMap.Map1Texture4.u1);
1904 v[1] = ROUNDF(ctx->EvalMap.Map1Texture4.u2);
1905 break;
1906 case GL_MAP1_VERTEX_3:
1907 v[0] = ROUNDF(ctx->EvalMap.Map1Vertex3.u1);
1908 v[1] = ROUNDF(ctx->EvalMap.Map1Vertex3.u2);
1909 break;
1910 case GL_MAP1_VERTEX_4:
1911 v[0] = ROUNDF(ctx->EvalMap.Map1Vertex4.u1);
1912 v[1] = ROUNDF(ctx->EvalMap.Map1Vertex4.u2);
1913 break;
1914 case GL_MAP2_COLOR_4:
1915 v[0] = ROUNDF(ctx->EvalMap.Map2Color4.u1);
1916 v[1] = ROUNDF(ctx->EvalMap.Map2Color4.u2);
1917 v[2] = ROUNDF(ctx->EvalMap.Map2Color4.v1);
1918 v[3] = ROUNDF(ctx->EvalMap.Map2Color4.v2);
1919 break;
1920 case GL_MAP2_INDEX:
1921 v[0] = ROUNDF(ctx->EvalMap.Map2Index.u1);
1922 v[1] = ROUNDF(ctx->EvalMap.Map2Index.u2);
1923 v[2] = ROUNDF(ctx->EvalMap.Map2Index.v1);
1924 v[3] = ROUNDF(ctx->EvalMap.Map2Index.v2);
1925 break;
1926 case GL_MAP2_NORMAL:
1927 v[0] = ROUNDF(ctx->EvalMap.Map2Normal.u1);
1928 v[1] = ROUNDF(ctx->EvalMap.Map2Normal.u2);
1929 v[2] = ROUNDF(ctx->EvalMap.Map2Normal.v1);
1930 v[3] = ROUNDF(ctx->EvalMap.Map2Normal.v2);
1931 break;
1932 case GL_MAP2_TEXTURE_COORD_1:
1933 v[0] = ROUNDF(ctx->EvalMap.Map2Texture1.u1);
1934 v[1] = ROUNDF(ctx->EvalMap.Map2Texture1.u2);
1935 v[2] = ROUNDF(ctx->EvalMap.Map2Texture1.v1);
1936 v[3] = ROUNDF(ctx->EvalMap.Map2Texture1.v2);
1937 break;
1938 case GL_MAP2_TEXTURE_COORD_2:
1939 v[0] = ROUNDF(ctx->EvalMap.Map2Texture2.u1);
1940 v[1] = ROUNDF(ctx->EvalMap.Map2Texture2.u2);
1941 v[2] = ROUNDF(ctx->EvalMap.Map2Texture2.v1);
1942 v[3] = ROUNDF(ctx->EvalMap.Map2Texture2.v2);
1943 break;
1944 case GL_MAP2_TEXTURE_COORD_3:
1945 v[0] = ROUNDF(ctx->EvalMap.Map2Texture3.u1);
1946 v[1] = ROUNDF(ctx->EvalMap.Map2Texture3.u2);
1947 v[2] = ROUNDF(ctx->EvalMap.Map2Texture3.v1);
1948 v[3] = ROUNDF(ctx->EvalMap.Map2Texture3.v2);
1949 break;
1950 case GL_MAP2_TEXTURE_COORD_4:
1951 v[0] = ROUNDF(ctx->EvalMap.Map2Texture4.u1);
1952 v[1] = ROUNDF(ctx->EvalMap.Map2Texture4.u2);
1953 v[2] = ROUNDF(ctx->EvalMap.Map2Texture4.v1);
1954 v[3] = ROUNDF(ctx->EvalMap.Map2Texture4.v2);
1955 break;
1956 case GL_MAP2_VERTEX_3:
1957 v[0] = ROUNDF(ctx->EvalMap.Map2Vertex3.u1);
1958 v[1] = ROUNDF(ctx->EvalMap.Map2Vertex3.u2);
1959 v[2] = ROUNDF(ctx->EvalMap.Map2Vertex3.v1);
1960 v[3] = ROUNDF(ctx->EvalMap.Map2Vertex3.v2);
1961 break;
1962 case GL_MAP2_VERTEX_4:
1963 v[0] = ROUNDF(ctx->EvalMap.Map2Vertex4.u1);
1964 v[1] = ROUNDF(ctx->EvalMap.Map2Vertex4.u2);
1965 v[2] = ROUNDF(ctx->EvalMap.Map2Vertex4.v1);
1966 v[3] = ROUNDF(ctx->EvalMap.Map2Vertex4.v2);
1967 break;
1968 default:
1969 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(target)" );
1970 }
1971 break;
1972 default:
1973 gl_error( ctx, GL_INVALID_ENUM, "glGetMapiv(query)" );
1974 }
1975 }
1976
1977
1978
1979 static void eval_points1( GLfloat outcoord[][4],
1980 GLfloat coord[][4],
1981 const GLuint *flags,
1982 GLuint start,
1983 GLfloat du, GLfloat u1 )
1984 {
1985 GLuint i;
1986 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
1987 if (flags[i] & VERT_EVAL_P1)
1988 outcoord[i][0] = coord[i][0] * du + u1;
1989 else if (flags[i] & VERT_EVAL_ANY) {
1990 outcoord[i][0] = coord[i][0];
1991 outcoord[i][1] = coord[i][1];
1992 }
1993 }
1994
1995 static void eval_points2( GLfloat outcoord[][4],
1996 GLfloat coord[][4],
1997 const GLuint *flags,
1998 GLuint start,
1999 GLfloat du, GLfloat u1,
2000 GLfloat dv, GLfloat v1 )
2001 {
2002 GLuint i;
2003 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2004 if (flags[i] & VERT_EVAL_P2) {
2005 outcoord[i][0] = coord[i][0] * du + u1;
2006 outcoord[i][1] = coord[i][1] * dv + v1;
2007 } else if (flags[i] & VERT_EVAL_ANY) {
2008 outcoord[i][0] = coord[i][0];
2009 outcoord[i][1] = coord[i][1];
2010 }
2011 }
2012
2013
2014 static const GLubyte dirty_flags[5] = {
2015 0, /* not possible */
2016 VEC_DIRTY_0,
2017 VEC_DIRTY_1,
2018 VEC_DIRTY_2,
2019 VEC_DIRTY_3
2020 };
2021
2022
2023 static GLvector4f *eval1_4f( GLvector4f *dest,
2024 GLfloat coord[][4],
2025 const GLuint *flags,
2026 GLuint start,
2027 GLuint dimension,
2028 struct gl_1d_map *map )
2029 {
2030 const GLfloat u1 = map->u1;
2031 const GLfloat du = map->du;
2032 GLfloat (*to)[4] = dest->data;
2033 GLuint i;
2034
2035 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2036 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2037 GLfloat u = (coord[i][0] - u1) * du;
2038 ASSIGN_4V(to[i], 0,0,0,1);
2039 horner_bezier_curve(map->Points, to[i], u, dimension, map->Order);
2040 }
2041
2042 dest->count = i;
2043 dest->start = VEC_ELT(dest, GLfloat, start);
2044 dest->size = MAX2(dest->size, dimension);
2045 dest->flags |= dirty_flags[dimension];
2046 return dest;
2047 }
2048
2049
2050 static GLvector1ui *eval1_1ui( GLvector1ui *dest,
2051 GLfloat coord[][4],
2052 const GLuint *flags,
2053 GLuint start,
2054 struct gl_1d_map *map )
2055 {
2056 const GLfloat u1 = map->u1;
2057 const GLfloat du = map->du;
2058 GLuint *to = dest->data;
2059 GLuint i;
2060
2061 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2062 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2063 GLfloat u = (coord[i][0] - u1) * du;
2064 GLfloat tmp;
2065 horner_bezier_curve(map->Points, &tmp, u, 1, map->Order);
2066 to[i] = (GLuint) (GLint) tmp;
2067 }
2068
2069 dest->start = VEC_ELT(dest, GLuint, start);
2070 dest->count = i;
2071 return dest;
2072 }
2073
2074 static GLvector3f *eval1_norm( GLvector3f *dest,
2075 GLfloat coord[][4],
2076 GLuint *flags, /* not const */
2077 GLuint start,
2078 struct gl_1d_map *map )
2079 {
2080 const GLfloat u1 = map->u1;
2081 const GLfloat du = map->du;
2082 GLfloat (*to)[3] = dest->data;
2083 GLuint i;
2084
2085 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2086 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2087 GLfloat u = (coord[i][0] - u1) * du;
2088 horner_bezier_curve(map->Points, to[i], u, 3, map->Order);
2089 flags[i+1] |= VERT_NORM; /* reset */
2090 }
2091
2092 dest->start = VEC_ELT(dest, GLfloat, start);
2093 dest->count = i;
2094 return dest;
2095 }
2096
2097 static GLvector4ub *eval1_color( GLvector4ub *dest,
2098 GLfloat coord[][4],
2099 GLuint *flags, /* not const */
2100 GLuint start,
2101 struct gl_1d_map *map )
2102 {
2103 const GLfloat u1 = map->u1;
2104 const GLfloat du = map->du;
2105 GLubyte (*to)[4] = dest->data;
2106 GLuint i;
2107
2108 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2109 if (flags[i] & (VERT_EVAL_C1|VERT_EVAL_P1)) {
2110 GLfloat u = (coord[i][0] - u1) * du;
2111 GLfloat fcolor[4];
2112 horner_bezier_curve(map->Points, fcolor, u, 4, map->Order);
2113 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2114 flags[i+1] |= VERT_RGBA; /* reset */
2115 }
2116
2117 dest->start = VEC_ELT(dest, GLubyte, start);
2118 dest->count = i;
2119 return dest;
2120 }
2121
2122
2123
2124
2125 static GLvector4f *eval2_obj_norm( GLvector4f *obj_ptr,
2126 GLvector3f *norm_ptr,
2127 GLfloat coord[][4],
2128 GLuint *flags,
2129 GLuint start,
2130 GLuint dimension,
2131 struct gl_2d_map *map )
2132 {
2133 const GLfloat u1 = map->u1;
2134 const GLfloat du = map->du;
2135 const GLfloat v1 = map->v1;
2136 const GLfloat dv = map->dv;
2137 GLfloat (*obj)[4] = obj_ptr->data;
2138 GLfloat (*normal)[3] = norm_ptr->data;
2139 GLuint i;
2140
2141 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2142 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2143 GLfloat u = (coord[i][0] - u1) * du;
2144 GLfloat v = (coord[i][1] - v1) * dv;
2145 GLfloat du[4], dv[4];
2146
2147 ASSIGN_4V(obj[i], 0,0,0,1);
2148 de_casteljau_surf(map->Points, obj[i], du, dv, u, v, dimension,
2149 map->Uorder, map->Vorder);
2150
2151 CROSS3(normal[i], du, dv);
2152 NORMALIZE_3FV(normal[i]);
2153 flags[i+1] |= VERT_NORM;
2154 }
2155
2156 obj_ptr->start = VEC_ELT(obj_ptr, GLfloat, start);
2157 obj_ptr->count = i;
2158 obj_ptr->size = MAX2(obj_ptr->size, dimension);
2159 obj_ptr->flags |= dirty_flags[dimension];
2160 return obj_ptr;
2161 }
2162
2163
2164 static GLvector4f *eval2_4f( GLvector4f *dest,
2165 GLfloat coord[][4],
2166 const GLuint *flags,
2167 GLuint start,
2168 GLuint dimension,
2169 struct gl_2d_map *map )
2170 {
2171 const GLfloat u1 = map->u1;
2172 const GLfloat du = map->du;
2173 const GLfloat v1 = map->v1;
2174 const GLfloat dv = map->dv;
2175 GLfloat (*to)[4] = dest->data;
2176 GLuint i;
2177
2178 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2179 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2180 GLfloat u = (coord[i][0] - u1) * du;
2181 GLfloat v = (coord[i][1] - v1) * dv;
2182 horner_bezier_surf(map->Points, to[i], u, v, dimension,
2183 map->Uorder, map->Vorder);
2184 }
2185
2186 dest->start = VEC_ELT(dest, GLfloat, start);
2187 dest->count = i;
2188 dest->size = MAX2(dest->size, dimension);
2189 dest->flags |= dirty_flags[dimension];
2190 return dest;
2191 }
2192
2193
2194 static GLvector3f *eval2_norm( GLvector3f *dest,
2195 GLfloat coord[][4],
2196 GLuint *flags,
2197 GLuint start,
2198 struct gl_2d_map *map )
2199 {
2200 const GLfloat u1 = map->u1;
2201 const GLfloat du = map->du;
2202 const GLfloat v1 = map->v1;
2203 const GLfloat dv = map->dv;
2204 GLfloat (*to)[3] = dest->data;
2205 GLuint i;
2206
2207 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2208 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2209 GLfloat u = (coord[i][0] - u1) * du;
2210 GLfloat v = (coord[i][1] - v1) * dv;
2211 horner_bezier_surf(map->Points, to[i], u, v, 3,
2212 map->Uorder, map->Vorder);
2213 flags[i+1] |= VERT_NORM; /* reset */
2214 }
2215
2216 dest->start = VEC_ELT(dest, GLfloat, start);
2217 dest->count = i;
2218 return dest;
2219 }
2220
2221
2222 static GLvector1ui *eval2_1ui( GLvector1ui *dest,
2223 GLfloat coord[][4],
2224 const GLuint *flags,
2225 GLuint start,
2226 struct gl_2d_map *map )
2227 {
2228 const GLfloat u1 = map->u1;
2229 const GLfloat du = map->du;
2230 const GLfloat v1 = map->v1;
2231 const GLfloat dv = map->dv;
2232 GLuint *to = dest->data;
2233 GLuint i;
2234
2235 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2236 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2237 GLfloat u = (coord[i][0] - u1) * du;
2238 GLfloat v = (coord[i][1] - v1) * dv;
2239 GLfloat tmp;
2240 horner_bezier_surf(map->Points, &tmp, u, v, 1,
2241 map->Uorder, map->Vorder);
2242
2243 to[i] = (GLuint) (GLint) tmp;
2244 }
2245
2246 dest->start = VEC_ELT(dest, GLuint, start);
2247 dest->count = i;
2248 return dest;
2249 }
2250
2251
2252
2253 static GLvector4ub *eval2_color( GLvector4ub *dest,
2254 GLfloat coord[][4],
2255 GLuint *flags,
2256 GLuint start,
2257 struct gl_2d_map *map )
2258 {
2259 const GLfloat u1 = map->u1;
2260 const GLfloat du = map->du;
2261 const GLfloat v1 = map->v1;
2262 const GLfloat dv = map->dv;
2263 GLubyte (*to)[4] = dest->data;
2264 GLuint i;
2265
2266 for (i = start ; !(flags[i] & VERT_END_VB) ; i++)
2267 if (flags[i] & (VERT_EVAL_C2|VERT_EVAL_P2)) {
2268 GLfloat u = (coord[i][0] - u1) * du;
2269 GLfloat v = (coord[i][1] - v1) * dv;
2270 GLfloat fcolor[4];
2271 horner_bezier_surf(map->Points, fcolor, u, v, 4,
2272 map->Uorder, map->Vorder);
2273 FLOAT_RGBA_TO_UBYTE_RGBA(to[i], fcolor);
2274 flags[i+1] |= VERT_RGBA; /* reset */
2275 }
2276
2277 dest->start = VEC_ELT(dest, GLubyte, start);
2278 dest->count = i;
2279 return dest;
2280 }
2281
2282
2283 static GLvector4f *copy_4f( GLvector4f *out, CONST GLvector4f *in,
2284 const GLuint *flags,
2285 GLuint start )
2286 {
2287 GLfloat (*to)[4] = out->data;
2288 GLfloat (*from)[4] = in->data;
2289 GLuint i;
2290
2291 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2292 if (!(flags[i] & VERT_EVAL_ANY))
2293 COPY_4FV( to[i], from[i] );
2294
2295 out->start = VEC_ELT(out, GLfloat, start);
2296 return out;
2297 }
2298
2299 static GLvector3f *copy_3f( GLvector3f *out, CONST GLvector3f *in,
2300 const GLuint *flags,
2301 GLuint start )
2302 {
2303 GLfloat (*to)[3] = out->data;
2304 GLfloat (*from)[3] = in->data;
2305 GLuint i;
2306
2307 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2308 if (!(flags[i] & VERT_EVAL_ANY))
2309 COPY_3V( to[i], from[i] );
2310
2311 out->start = VEC_ELT(out, GLfloat, start);
2312 return out;
2313 }
2314
2315 static GLvector4ub *copy_4ub( GLvector4ub *out,
2316 CONST GLvector4ub *in,
2317 const GLuint *flags,
2318 GLuint start )
2319 {
2320 GLubyte (*to)[4] = out->data;
2321 GLubyte (*from)[4] = in->data;
2322 GLuint i;
2323
2324 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2325 if (!(flags[i] & VERT_EVAL_ANY))
2326 COPY_4UBV( to[i], from[i] );
2327
2328 out->start = VEC_ELT(out, GLubyte, start);
2329 return out;
2330 }
2331
2332 static GLvector1ui *copy_1ui( GLvector1ui *out,
2333 CONST GLvector1ui *in,
2334 const GLuint *flags,
2335 GLuint start )
2336 {
2337 GLuint *to = out->data;
2338 CONST GLuint *from = in->data;
2339 GLuint i;
2340
2341 for ( i = start ; !(flags[i] & VERT_END_VB) ; i++)
2342 if (!(flags[i] & VERT_EVAL_ANY))
2343 to[i] = from[i];
2344
2345 out->start = VEC_ELT(out, GLuint, start);
2346 return out;
2347 }
2348
2349
2350 /* KW: Rewrote this to perform eval on a whole buffer at once.
2351 * Only evaluates active data items, and avoids scribbling
2352 * the source buffer if we are running from a display list.
2353 *
2354 * If the user (in this case looser) sends eval coordinates
2355 * or runs a display list containing eval coords with no
2356 * vertex maps enabled, we have to either copy all non-eval
2357 * data to a new buffer, or find a way of working around
2358 * the eval data. I choose the second option.
2359 *
2360 * KW: This code not reached by cva - use IM to access storage.
2361 */
2362 void gl_eval_vb( struct vertex_buffer *VB )
2363 {
2364 struct immediate *IM = VB->IM;
2365 GLcontext *ctx = VB->ctx;
2366 GLuint req = ctx->CVA.elt.inputs;
2367 GLfloat (*coord)[4] = VB->ObjPtr->data;
2368 GLuint *flags = VB->Flag;
2369 GLuint new_flags = 0;
2370
2371
2372 GLuint any_eval1 = VB->OrFlag & (VERT_EVAL_C1|VERT_EVAL_P1);
2373 GLuint any_eval2 = VB->OrFlag & (VERT_EVAL_C2|VERT_EVAL_P2);
2374 GLuint all_eval = IM->AndFlag & VERT_EVAL_ANY;
2375
2376 /* Handle the degenerate cases.
2377 */
2378 if (any_eval1 && !ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3) {
2379 VB->PurgeFlags |= (VERT_EVAL_C1|VERT_EVAL_P1);
2380 VB->EarlyCull = 0;
2381 any_eval1 = GL_FALSE;
2382 }
2383
2384 if (any_eval2 && !ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3) {
2385 VB->PurgeFlags |= (VERT_EVAL_C2|VERT_EVAL_P2);
2386 VB->EarlyCull = 0;
2387 any_eval2 = GL_FALSE;
2388 }
2389
2390 /* KW: This really is a degenerate case - doing this disables
2391 * culling, and causes dummy values for the missing vertices to be
2392 * transformed and clip tested. It also forces the individual
2393 * cliptesting of each primitive in vb_render. I wish there was a
2394 * nice alternative, but I can't say I want to put effort into
2395 * optimizing such a bad usage of the library - I'd much rather
2396 * work on useful changes.
2397 */
2398 if (VB->PurgeFlags) {
2399 if (!any_eval1 && !any_eval2 && all_eval) VB->Count = VB->Start;
2400 gl_purge_vertices( VB );
2401 if (!any_eval1 && !any_eval2) return;
2402 } else
2403 VB->IndirectCount = VB->Count;
2404
2405 /* Translate points into coords.
2406 */
2407 if (any_eval1 && (VB->OrFlag & VERT_EVAL_P1))
2408 {
2409 eval_points1( IM->Obj, coord, flags, IM->Start,
2410 ctx->Eval.MapGrid1du,
2411 ctx->Eval.MapGrid1u1);
2412
2413 coord = IM->Obj;
2414 }
2415
2416 if (any_eval2 && (VB->OrFlag & VERT_EVAL_P2))
2417 {
2418 eval_points2( IM->Obj, coord, flags, IM->Start,
2419 ctx->Eval.MapGrid2du,
2420 ctx->Eval.MapGrid2u1,
2421 ctx->Eval.MapGrid2dv,
2422 ctx->Eval.MapGrid2v1 );
2423
2424 coord = IM->Obj;
2425 }
2426
2427 /* Perform the evaluations on active data elements.
2428 */
2429 if (req & VERT_INDEX)
2430 {
2431 GLvector1ui *in_index = VB->IndexPtr;
2432 GLvector1ui *out_index = &IM->v.Index;
2433
2434 if (ctx->Eval.Map1Index && any_eval1)
2435 VB->IndexPtr = eval1_1ui( out_index, coord, flags, IM->Start,
2436 &ctx->EvalMap.Map1Index );
2437
2438 if (ctx->Eval.Map2Index && any_eval2)
2439 VB->IndexPtr = eval2_1ui( out_index, coord, flags, IM->Start,
2440 &ctx->EvalMap.Map2Index );
2441
2442 if (VB->IndexPtr != in_index) {
2443 new_flags |= VERT_INDEX;
2444 if (!all_eval)
2445 VB->IndexPtr = copy_1ui( out_index, in_index, flags, IM->Start );
2446 }
2447 }
2448
2449 if (req & VERT_RGBA)
2450 {
2451 GLvector4ub *in_color = VB->ColorPtr;
2452 GLvector4ub *out_color = &IM->v.Color;
2453
2454 if (ctx->Eval.Map1Color4 && any_eval1)
2455 VB->ColorPtr = eval1_color( out_color, coord, flags, IM->Start,
2456 &ctx->EvalMap.Map1Color4 );
2457
2458 if (ctx->Eval.Map2Color4 && any_eval2)
2459 VB->ColorPtr = eval2_color( out_color, coord, flags, IM->Start,
2460 &ctx->EvalMap.Map2Color4 );
2461
2462 if (VB->ColorPtr != in_color) {
2463 new_flags |= VERT_RGBA;
2464 if (!all_eval)
2465 VB->ColorPtr = copy_4ub( out_color, in_color, flags, IM->Start );
2466 }
2467
2468 VB->Color[0] = VB->Color[1] = VB->ColorPtr;
2469 }
2470
2471
2472 if (req & VERT_NORM)
2473 {
2474 GLvector3f *in_normal = VB->NormalPtr;
2475 GLvector3f *out_normal = &IM->v.Normal;
2476
2477 if (ctx->Eval.Map1Normal && any_eval1)
2478 VB->NormalPtr = eval1_norm( out_normal, coord, flags, IM->Start,
2479 &ctx->EvalMap.Map1Normal );
2480
2481 if (ctx->Eval.Map2Normal && any_eval2)
2482 VB->NormalPtr = eval2_norm( out_normal, coord, flags, IM->Start,
2483 &ctx->EvalMap.Map2Normal );
2484
2485 if (VB->NormalPtr != in_normal) {
2486 new_flags |= VERT_NORM;
2487 if (!all_eval)
2488 VB->NormalPtr = copy_3f( out_normal, in_normal, flags, IM->Start );
2489 }
2490 }
2491
2492
2493 if (req & VERT_TEX_ANY(0))
2494 {
2495 GLvector4f *tc = VB->TexCoordPtr[0];
2496 GLvector4f *in = tc;
2497 GLvector4f *out = &IM->v.TexCoord[0];
2498
2499 if (any_eval1) {
2500 if (ctx->Eval.Map1TextureCoord4)
2501 tc = eval1_4f( out, coord, flags, IM->Start,
2502 4, &ctx->EvalMap.Map1Texture4);
2503 else if (ctx->Eval.Map1TextureCoord3)
2504 tc = eval1_4f( out, coord, flags, IM->Start, 3,
2505 &ctx->EvalMap.Map1Texture3);
2506 else if (ctx->Eval.Map1TextureCoord2)
2507 tc = eval1_4f( out, coord, flags, IM->Start, 2,
2508 &ctx->EvalMap.Map1Texture2);
2509 else if (ctx->Eval.Map1TextureCoord1)
2510 tc = eval1_4f( out, coord, flags, IM->Start, 1,
2511 &ctx->EvalMap.Map1Texture1);
2512 }
2513
2514 if (any_eval2) {
2515 if (ctx->Eval.Map2TextureCoord4)
2516 tc = eval2_4f( out, coord, flags, IM->Start,
2517 4, &ctx->EvalMap.Map2Texture4);
2518 else if (ctx->Eval.Map2TextureCoord3)
2519 tc = eval2_4f( out, coord, flags, IM->Start,
2520 3, &ctx->EvalMap.Map2Texture3);
2521 else if (ctx->Eval.Map2TextureCoord2)
2522 tc = eval2_4f( out, coord, flags, IM->Start,
2523 2, &ctx->EvalMap.Map2Texture2);
2524 else if (ctx->Eval.Map2TextureCoord1)
2525 tc = eval2_4f( out, coord, flags, IM->Start,
2526 1, &ctx->EvalMap.Map2Texture1);
2527 }
2528
2529 if (tc != in) {
2530 new_flags |= VERT_TEX_ANY(0); /* fix for sizes.. */
2531 if (!all_eval)
2532 tc = copy_4f( out, in, flags, IM->Start );
2533 }
2534
2535 VB->TexCoordPtr[0] = tc;
2536 }
2537
2538
2539 {
2540 GLvector4f *in = VB->ObjPtr;
2541 GLvector4f *out = &IM->v.Obj;
2542 GLvector4f *obj = in;
2543
2544 if (any_eval1) {
2545 if (ctx->Eval.Map1Vertex4)
2546 obj = eval1_4f( out, coord, flags, IM->Start,
2547 4, &ctx->EvalMap.Map1Vertex4);
2548 else
2549 obj = eval1_4f( out, coord, flags, IM->Start,
2550 3, &ctx->EvalMap.Map1Vertex3);
2551 }
2552
2553 if (any_eval2) {
2554 if (ctx->Eval.Map2Vertex4)
2555 {
2556 if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2557 obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start,
2558 4, &ctx->EvalMap.Map2Vertex4 );
2559 else
2560 obj = eval2_4f( out, coord, flags, IM->Start,
2561 4, &ctx->EvalMap.Map2Vertex4);
2562 }
2563 else if (ctx->Eval.Map2Vertex3)
2564 {
2565 if (ctx->Eval.AutoNormal && (req & VERT_NORM))
2566 obj = eval2_obj_norm( out, VB->NormalPtr, coord, flags, IM->Start,
2567 3, &ctx->EvalMap.Map2Vertex3 );
2568 else
2569 obj = eval2_4f( out, coord, flags, IM->Start,
2570 3, &ctx->EvalMap.Map2Vertex3 );
2571 }
2572 }
2573
2574 if (obj != in && !all_eval)
2575 obj = copy_4f( out, in, flags, IM->Start );
2576
2577 VB->ObjPtr = obj;
2578 }
2579
2580 if (new_flags) {
2581 GLuint *oldflags = VB->Flag;
2582 GLuint *flags = VB->Flag = VB->EvaluatedFlags;
2583 GLuint i;
2584 GLuint count = VB->Count;
2585
2586 if (!flags) {
2587 VB->EvaluatedFlags = (GLuint *) MALLOC(VB->Size * sizeof(GLuint));
2588 flags = VB->Flag = VB->EvaluatedFlags;
2589 }
2590
2591 if (all_eval) {
2592 for (i = 0 ; i < count ; i++)
2593 flags[i] = oldflags[i] | new_flags;
2594 } else {
2595 GLuint andflag = ~0;
2596 for (i = 0 ; i < count ; i++) {
2597 if (oldflags[i] & VERT_EVAL_ANY)
2598 flags[i] = oldflags[i] | new_flags;
2599 andflag &= flags[i];
2600 }
2601 }
2602 }
2603 }
2604
2605
2606 void
2607 _mesa_MapGrid1f( GLint un, GLfloat u1, GLfloat u2 )
2608 {
2609 GET_CURRENT_CONTEXT(ctx);
2610 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid1f");
2611
2612 if (un<1) {
2613 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid1f" );
2614 return;
2615 }
2616 ctx->Eval.MapGrid1un = un;
2617 ctx->Eval.MapGrid1u1 = u1;
2618 ctx->Eval.MapGrid1u2 = u2;
2619 ctx->Eval.MapGrid1du = (u2 - u1) / (GLfloat) un;
2620 }
2621
2622
2623 void
2624 _mesa_MapGrid1d( GLint un, GLdouble u1, GLdouble u2 )
2625 {
2626 _mesa_MapGrid1f( un, u1, u2 );
2627 }
2628
2629
2630 void
2631 _mesa_MapGrid2f( GLint un, GLfloat u1, GLfloat u2,
2632 GLint vn, GLfloat v1, GLfloat v2 )
2633 {
2634 GET_CURRENT_CONTEXT(ctx);
2635 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glMapGrid2f");
2636 if (un<1) {
2637 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(un)" );
2638 return;
2639 }
2640 if (vn<1) {
2641 gl_error( ctx, GL_INVALID_VALUE, "glMapGrid2f(vn)" );
2642 return;
2643 }
2644 ctx->Eval.MapGrid2un = un;
2645 ctx->Eval.MapGrid2u1 = u1;
2646 ctx->Eval.MapGrid2u2 = u2;
2647 ctx->Eval.MapGrid2du = (u2 - u1) / (GLfloat) un;
2648 ctx->Eval.MapGrid2vn = vn;
2649 ctx->Eval.MapGrid2v1 = v1;
2650 ctx->Eval.MapGrid2v2 = v2;
2651 ctx->Eval.MapGrid2dv = (v2 - v1) / (GLfloat) vn;
2652 }
2653
2654
2655 void
2656 _mesa_MapGrid2d( GLint un, GLdouble u1, GLdouble u2,
2657 GLint vn, GLdouble v1, GLdouble v2 )
2658 {
2659 _mesa_MapGrid2f( un, u1, u2, vn, v1, v2 );
2660 }
2661
2662
2663
2664
2665 /* KW: If are compiling, we don't know whether eval will produce a
2666 * vertex when it is run in the future. If this is pure immediate
2667 * mode, eval is a noop if neither vertex map is enabled.
2668 *
2669 * Thus we need to have a check in the display list code or
2670 * elsewhere for eval(1,2) vertices in the case where
2671 * map(1,2)_vertex is disabled, and to purge those vertices from
2672 * the vb. This is currently done
2673 * via modifications to the cull_vb and render_vb operations, and
2674 * by using the existing cullmask mechanism for all other operations.
2675 */
2676
2677
2678 /* KW: Because the eval values don't become 'current', fixup will flow
2679 * through these vertices, and then evaluation will write on top
2680 * of the fixup results.
2681 *
2682 * This is a little inefficient, but at least it is correct. This
2683 * could be short-circuited in the case where all vertices are
2684 * eval-vertices, or more generally by a cullmask in fixup.
2685 *
2686 * Note: using Obj to hold eval coord data. This data is actually
2687 * transformed if eval is disabled. But disabling eval & sending
2688 * eval coords is stupid, right?
2689 */
2690
2691
2692 #define EVALCOORD1(IM, x) \
2693 { \
2694 GLuint count = IM->Count++; \
2695 IM->Flag[count] |= VERT_EVAL_C1; \
2696 ASSIGN_4V(IM->Obj[count], x, 0, 0, 1); \
2697 if (count == VB_MAX-1) \
2698 IM->maybe_transform_vb( IM ); \
2699 }
2700
2701 #define EVALCOORD2(IM, x, y) \
2702 { \
2703 GLuint count = IM->Count++; \
2704 IM->Flag[count] |= VERT_EVAL_C2; \
2705 ASSIGN_4V(IM->Obj[count], x, y, 0, 1); \
2706 if (count == VB_MAX-1) \
2707 IM->maybe_transform_vb( IM ); \
2708 }
2709
2710 #define EVALPOINT1(IM, x) \
2711 { \
2712 GLuint count = IM->Count++; \
2713 IM->Flag[count] |= VERT_EVAL_P1; \
2714 ASSIGN_4V(IM->Obj[count], x, 0, 0, 1); \
2715 if (count == VB_MAX-1) \
2716 IM->maybe_transform_vb( IM ); \
2717 }
2718
2719 #define EVALPOINT2(IM, x, y) \
2720 { \
2721 GLuint count = IM->Count++; \
2722 IM->Flag[count] |= VERT_EVAL_P2; \
2723 ASSIGN_4V(IM->Obj[count], x, y, 0, 1); \
2724 if (count == VB_MAX-1) \
2725 IM->maybe_transform_vb( IM ); \
2726 }
2727
2728
2729 /* Lame internal function:
2730 */
2731 void gl_EvalCoord1f( GLcontext *CC, GLfloat u )
2732 {
2733 struct immediate *i = CC->input;
2734 EVALCOORD1( i, u );
2735 }
2736
2737
2738 void
2739 _mesa_EvalCoord1d( GLdouble u )
2740 {
2741 GET_IMMEDIATE;
2742 EVALCOORD1( IM, (GLfloat) u );
2743 }
2744
2745
2746 void
2747 _mesa_EvalCoord1f( GLfloat u )
2748 {
2749 GET_IMMEDIATE;
2750 EVALCOORD1( IM, u );
2751 }
2752
2753
2754 void
2755 _mesa_EvalCoord1dv( const GLdouble *u )
2756 {
2757 GET_IMMEDIATE;
2758 EVALCOORD1( IM, (GLfloat) *u );
2759 }
2760
2761
2762 void
2763 _mesa_EvalCoord1fv( const GLfloat *u )
2764 {
2765 GET_IMMEDIATE;
2766 EVALCOORD1( IM, (GLfloat) *u );
2767 }
2768
2769
2770 void
2771 _mesa_EvalCoord2d( GLdouble u, GLdouble v )
2772 {
2773 GET_IMMEDIATE;
2774 EVALCOORD2( IM, (GLfloat) u, (GLfloat) v );
2775 }
2776
2777
2778 void
2779 _mesa_EvalCoord2f( GLfloat u, GLfloat v )
2780 {
2781 GET_IMMEDIATE;
2782 EVALCOORD2( IM, u, v );
2783 }
2784
2785
2786 /* Lame internal function:
2787 */
2788 void gl_EvalCoord2f( GLcontext *CC, GLfloat u, GLfloat v )
2789 {
2790 struct immediate *i = CC->input;
2791 EVALCOORD2( i, u, v );
2792 }
2793
2794
2795 void
2796 _mesa_EvalCoord2dv( const GLdouble *u )
2797 {
2798 GET_IMMEDIATE;
2799 EVALCOORD2( IM, (GLfloat) u[0], (GLfloat) u[1] );
2800 }
2801
2802
2803 void
2804 _mesa_EvalCoord2fv( const GLfloat *u )
2805 {
2806 GET_IMMEDIATE;
2807 EVALCOORD2( IM, u[0], u[1] );
2808 }
2809
2810
2811 void
2812 _mesa_EvalPoint1( GLint i )
2813 {
2814 GET_IMMEDIATE;
2815 EVALPOINT1( IM, i );
2816 }
2817
2818
2819 void
2820 _mesa_EvalPoint2( GLint i, GLint j )
2821 {
2822 GET_IMMEDIATE;
2823 EVALPOINT2( IM, i, j );
2824 }
2825
2826
2827
2828
2829
2830 void
2831 _mesa_EvalMesh1( GLenum mode, GLint i1, GLint i2 )
2832 {
2833 GET_CURRENT_CONTEXT(ctx);
2834 GLint i;
2835 GLfloat u, du;
2836 GLenum prim;
2837
2838 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh1");
2839
2840 switch (mode) {
2841 case GL_POINT:
2842 prim = GL_POINTS;
2843 break;
2844 case GL_LINE:
2845 prim = GL_LINE_STRIP;
2846 break;
2847 default:
2848 gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh1(mode)" );
2849 return;
2850 }
2851
2852 /* No effect if vertex maps disabled.
2853 */
2854 if (!ctx->Eval.Map1Vertex4 && !ctx->Eval.Map1Vertex3)
2855 return;
2856
2857 du = ctx->Eval.MapGrid1du;
2858 u = ctx->Eval.MapGrid1u1 + i1 * du;
2859
2860 /* KW: Could short-circuit this to avoid the immediate mechanism.
2861 */
2862 RESET_IMMEDIATE(ctx);
2863
2864 gl_Begin( ctx, prim );
2865 for (i=i1;i<=i2;i++,u+=du) {
2866 gl_EvalCoord1f( ctx, u );
2867 }
2868 gl_End(ctx);
2869 }
2870
2871
2872
2873 void
2874 _mesa_EvalMesh2( GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2 )
2875 {
2876 GET_CURRENT_CONTEXT(ctx);
2877 GLint i, j;
2878 GLfloat u, du, v, dv, v1, u1;
2879
2880 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glEvalMesh2");
2881
2882 /* No effect if vertex maps disabled.
2883 */
2884 if (!ctx->Eval.Map2Vertex4 && !ctx->Eval.Map2Vertex3)
2885 return;
2886
2887 du = ctx->Eval.MapGrid2du;
2888 dv = ctx->Eval.MapGrid2dv;
2889 v1 = ctx->Eval.MapGrid2v1 + j1 * dv;
2890 u1 = ctx->Eval.MapGrid2u1 + i1 * du;
2891
2892 RESET_IMMEDIATE(ctx);
2893
2894 switch (mode) {
2895 case GL_POINT:
2896 gl_Begin( ctx, GL_POINTS );
2897 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2898 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2899 gl_EvalCoord2f( ctx, u, v );
2900 }
2901 }
2902 gl_End(ctx);
2903 break;
2904 case GL_LINE:
2905 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2906 gl_Begin( ctx, GL_LINE_STRIP );
2907 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2908 gl_EvalCoord2f( ctx, u, v );
2909 }
2910 gl_End(ctx);
2911 }
2912 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2913 gl_Begin( ctx, GL_LINE_STRIP );
2914 for (v=v1,j=j1;j<=j2;j++,v+=dv) {
2915 gl_EvalCoord2f( ctx, u, v );
2916 }
2917 gl_End(ctx);
2918 }
2919 break;
2920 case GL_FILL:
2921 for (v=v1,j=j1;j<j2;j++,v+=dv) {
2922 /* NOTE: a quad strip can't be used because the four */
2923 /* can't be guaranteed to be coplanar! */
2924 gl_Begin( ctx, GL_TRIANGLE_STRIP );
2925 for (u=u1,i=i1;i<=i2;i++,u+=du) {
2926 gl_EvalCoord2f( ctx, u, v );
2927 gl_EvalCoord2f( ctx, u, v+dv );
2928 }
2929 gl_End(ctx);
2930 }
2931 break;
2932 default:
2933 gl_error( ctx, GL_INVALID_ENUM, "glEvalMesh2(mode)" );
2934 return;
2935 }
2936 }
2937
2938
2939