02b4707f0783bf8f6127ef19fb4ef76087ee0c11
[mesa.git] / src / mesa / main / ff_fragment_shader.cpp
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30 extern "C" {
31 #include "glheader.h"
32 #include "imports.h"
33 #include "mtypes.h"
34 #include "main/uniforms.h"
35 #include "main/macros.h"
36 #include "main/samplerobj.h"
37 #include "program/program.h"
38 #include "program/prog_parameter.h"
39 #include "program/prog_cache.h"
40 #include "program/prog_instruction.h"
41 #include "program/prog_print.h"
42 #include "program/prog_statevars.h"
43 #include "program/programopt.h"
44 #include "texenvprogram.h"
45 }
46 #include "main/uniforms.h"
47 #include "../glsl/glsl_types.h"
48 #include "../glsl/ir.h"
49 #include "../glsl/ir_builder.h"
50 #include "../glsl/glsl_symbol_table.h"
51 #include "../glsl/glsl_parser_extras.h"
52 #include "../glsl/ir_optimization.h"
53 #include "../glsl/ir_print_visitor.h"
54 #include "../program/ir_to_mesa.h"
55
56 using namespace ir_builder;
57
58 /*
59 * Note on texture units:
60 *
61 * The number of texture units supported by fixed-function fragment
62 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
63 * That's because there's a one-to-one correspondence between texture
64 * coordinates and samplers in fixed-function processing.
65 *
66 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
67 * sets of texcoords, so is fixed-function fragment processing.
68 *
69 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
70 */
71
72
73 struct texenvprog_cache_item
74 {
75 GLuint hash;
76 void *key;
77 struct gl_shader_program *data;
78 struct texenvprog_cache_item *next;
79 };
80
81 static GLboolean
82 texenv_doing_secondary_color(struct gl_context *ctx)
83 {
84 if (ctx->Light.Enabled &&
85 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
86 return GL_TRUE;
87
88 if (ctx->Fog.ColorSumEnabled)
89 return GL_TRUE;
90
91 return GL_FALSE;
92 }
93
94 struct mode_opt {
95 #ifdef __GNUC__
96 __extension__ GLubyte Source:4; /**< SRC_x */
97 __extension__ GLubyte Operand:3; /**< OPR_x */
98 #else
99 GLubyte Source; /**< SRC_x */
100 GLubyte Operand; /**< OPR_x */
101 #endif
102 };
103
104 struct state_key {
105 GLuint nr_enabled_units:8;
106 GLuint enabled_units:8;
107 GLuint separate_specular:1;
108 GLuint fog_enabled:1;
109 GLuint fog_mode:2; /**< FOG_x */
110 GLuint inputs_available:12;
111 GLuint num_draw_buffers:4;
112
113 /* NOTE: This array of structs must be last! (see "keySize" below) */
114 struct {
115 GLuint enabled:1;
116 GLuint source_index:4; /**< TEXTURE_x_INDEX */
117 GLuint shadow:1;
118 GLuint ScaleShiftRGB:2;
119 GLuint ScaleShiftA:2;
120
121 GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */
122 GLuint ModeRGB:5; /**< MODE_x */
123
124 GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */
125 GLuint ModeA:5; /**< MODE_x */
126
127 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
128 struct mode_opt OptA[MAX_COMBINER_TERMS];
129 } unit[MAX_TEXTURE_UNITS];
130 };
131
132 #define FOG_LINEAR 0
133 #define FOG_EXP 1
134 #define FOG_EXP2 2
135 #define FOG_UNKNOWN 3
136
137 static GLuint translate_fog_mode( GLenum mode )
138 {
139 switch (mode) {
140 case GL_LINEAR: return FOG_LINEAR;
141 case GL_EXP: return FOG_EXP;
142 case GL_EXP2: return FOG_EXP2;
143 default: return FOG_UNKNOWN;
144 }
145 }
146
147 #define OPR_SRC_COLOR 0
148 #define OPR_ONE_MINUS_SRC_COLOR 1
149 #define OPR_SRC_ALPHA 2
150 #define OPR_ONE_MINUS_SRC_ALPHA 3
151 #define OPR_ZERO 4
152 #define OPR_ONE 5
153 #define OPR_UNKNOWN 7
154
155 static GLuint translate_operand( GLenum operand )
156 {
157 switch (operand) {
158 case GL_SRC_COLOR: return OPR_SRC_COLOR;
159 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
160 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
161 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
162 case GL_ZERO: return OPR_ZERO;
163 case GL_ONE: return OPR_ONE;
164 default:
165 assert(0);
166 return OPR_UNKNOWN;
167 }
168 }
169
170 #define SRC_TEXTURE 0
171 #define SRC_TEXTURE0 1
172 #define SRC_TEXTURE1 2
173 #define SRC_TEXTURE2 3
174 #define SRC_TEXTURE3 4
175 #define SRC_TEXTURE4 5
176 #define SRC_TEXTURE5 6
177 #define SRC_TEXTURE6 7
178 #define SRC_TEXTURE7 8
179 #define SRC_CONSTANT 9
180 #define SRC_PRIMARY_COLOR 10
181 #define SRC_PREVIOUS 11
182 #define SRC_ZERO 12
183 #define SRC_UNKNOWN 15
184
185 static GLuint translate_source( GLenum src )
186 {
187 switch (src) {
188 case GL_TEXTURE: return SRC_TEXTURE;
189 case GL_TEXTURE0:
190 case GL_TEXTURE1:
191 case GL_TEXTURE2:
192 case GL_TEXTURE3:
193 case GL_TEXTURE4:
194 case GL_TEXTURE5:
195 case GL_TEXTURE6:
196 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
197 case GL_CONSTANT: return SRC_CONSTANT;
198 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
199 case GL_PREVIOUS: return SRC_PREVIOUS;
200 case GL_ZERO:
201 return SRC_ZERO;
202 default:
203 assert(0);
204 return SRC_UNKNOWN;
205 }
206 }
207
208 #define MODE_REPLACE 0 /* r = a0 */
209 #define MODE_MODULATE 1 /* r = a0 * a1 */
210 #define MODE_ADD 2 /* r = a0 + a1 */
211 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
212 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
213 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
214 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
215 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
216 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
217 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
218 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
219 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
220 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
221 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
222 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
223 #define MODE_BUMP_ENVMAP_ATI 15 /* special */
224 #define MODE_UNKNOWN 16
225
226 /**
227 * Translate GL combiner state into a MODE_x value
228 */
229 static GLuint translate_mode( GLenum envMode, GLenum mode )
230 {
231 switch (mode) {
232 case GL_REPLACE: return MODE_REPLACE;
233 case GL_MODULATE: return MODE_MODULATE;
234 case GL_ADD:
235 if (envMode == GL_COMBINE4_NV)
236 return MODE_ADD_PRODUCTS;
237 else
238 return MODE_ADD;
239 case GL_ADD_SIGNED:
240 if (envMode == GL_COMBINE4_NV)
241 return MODE_ADD_PRODUCTS_SIGNED;
242 else
243 return MODE_ADD_SIGNED;
244 case GL_INTERPOLATE: return MODE_INTERPOLATE;
245 case GL_SUBTRACT: return MODE_SUBTRACT;
246 case GL_DOT3_RGB: return MODE_DOT3_RGB;
247 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
248 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
249 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
250 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
251 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
252 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
253 case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
254 default:
255 assert(0);
256 return MODE_UNKNOWN;
257 }
258 }
259
260
261 /**
262 * Do we need to clamp the results of the given texture env/combine mode?
263 * If the inputs to the mode are in [0,1] we don't always have to clamp
264 * the results.
265 */
266 static GLboolean
267 need_saturate( GLuint mode )
268 {
269 switch (mode) {
270 case MODE_REPLACE:
271 case MODE_MODULATE:
272 case MODE_INTERPOLATE:
273 return GL_FALSE;
274 case MODE_ADD:
275 case MODE_ADD_SIGNED:
276 case MODE_SUBTRACT:
277 case MODE_DOT3_RGB:
278 case MODE_DOT3_RGB_EXT:
279 case MODE_DOT3_RGBA:
280 case MODE_DOT3_RGBA_EXT:
281 case MODE_MODULATE_ADD_ATI:
282 case MODE_MODULATE_SIGNED_ADD_ATI:
283 case MODE_MODULATE_SUBTRACT_ATI:
284 case MODE_ADD_PRODUCTS:
285 case MODE_ADD_PRODUCTS_SIGNED:
286 case MODE_BUMP_ENVMAP_ATI:
287 return GL_TRUE;
288 default:
289 assert(0);
290 return GL_FALSE;
291 }
292 }
293
294
295
296 /**
297 * Translate TEXTURE_x_BIT to TEXTURE_x_INDEX.
298 */
299 static GLuint translate_tex_src_bit( GLbitfield bit )
300 {
301 ASSERT(bit);
302 return ffs(bit) - 1;
303 }
304
305
306 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
307 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
308
309 /**
310 * Identify all possible varying inputs. The fragment program will
311 * never reference non-varying inputs, but will track them via state
312 * constants instead.
313 *
314 * This function figures out all the inputs that the fragment program
315 * has access to. The bitmask is later reduced to just those which
316 * are actually referenced.
317 */
318 static GLbitfield get_fp_input_mask( struct gl_context *ctx )
319 {
320 /* _NEW_PROGRAM */
321 const GLboolean vertexShader =
322 (ctx->Shader.CurrentVertexProgram &&
323 ctx->Shader.CurrentVertexProgram->LinkStatus &&
324 ctx->Shader.CurrentVertexProgram->_LinkedShaders[MESA_SHADER_VERTEX]);
325 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
326 GLbitfield fp_inputs = 0x0;
327
328 if (ctx->VertexProgram._Overriden) {
329 /* Somebody's messing with the vertex program and we don't have
330 * a clue what's happening. Assume that it could be producing
331 * all possible outputs.
332 */
333 fp_inputs = ~0;
334 }
335 else if (ctx->RenderMode == GL_FEEDBACK) {
336 /* _NEW_RENDERMODE */
337 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
338 }
339 else if (!(vertexProgram || vertexShader)) {
340 /* Fixed function vertex logic */
341 /* _NEW_VARYING_VP_INPUTS */
342 GLbitfield64 varying_inputs = ctx->varying_vp_inputs;
343
344 /* These get generated in the setup routine regardless of the
345 * vertex program:
346 */
347 /* _NEW_POINT */
348 if (ctx->Point.PointSprite)
349 varying_inputs |= FRAG_BITS_TEX_ANY;
350
351 /* First look at what values may be computed by the generated
352 * vertex program:
353 */
354 /* _NEW_LIGHT */
355 if (ctx->Light.Enabled) {
356 fp_inputs |= FRAG_BIT_COL0;
357
358 if (texenv_doing_secondary_color(ctx))
359 fp_inputs |= FRAG_BIT_COL1;
360 }
361
362 /* _NEW_TEXTURE */
363 fp_inputs |= (ctx->Texture._TexGenEnabled |
364 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
365
366 /* Then look at what might be varying as a result of enabled
367 * arrays, etc:
368 */
369 if (varying_inputs & VERT_BIT_COLOR0)
370 fp_inputs |= FRAG_BIT_COL0;
371 if (varying_inputs & VERT_BIT_COLOR1)
372 fp_inputs |= FRAG_BIT_COL1;
373
374 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
375 << FRAG_ATTRIB_TEX0);
376
377 }
378 else {
379 /* calculate from vp->outputs */
380 struct gl_program *vprog;
381 GLbitfield64 vp_outputs;
382
383 /* Choose GLSL vertex shader over ARB vertex program. Need this
384 * since vertex shader state validation comes after fragment state
385 * validation (see additional comments in state.c).
386 */
387 if (vertexShader)
388 vprog = ctx->Shader.CurrentVertexProgram->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
389 else
390 vprog = &ctx->VertexProgram.Current->Base;
391
392 vp_outputs = vprog->OutputsWritten;
393
394 /* These get generated in the setup routine regardless of the
395 * vertex program:
396 */
397 /* _NEW_POINT */
398 if (ctx->Point.PointSprite)
399 vp_outputs |= FRAG_BITS_TEX_ANY;
400
401 if (vp_outputs & (1 << VERT_RESULT_COL0))
402 fp_inputs |= FRAG_BIT_COL0;
403 if (vp_outputs & (1 << VERT_RESULT_COL1))
404 fp_inputs |= FRAG_BIT_COL1;
405
406 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
407 << FRAG_ATTRIB_TEX0);
408 }
409
410 return fp_inputs;
411 }
412
413
414 /**
415 * Examine current texture environment state and generate a unique
416 * key to identify it.
417 */
418 static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
419 {
420 GLuint i, j;
421 GLbitfield inputs_referenced = FRAG_BIT_COL0;
422 const GLbitfield inputs_available = get_fp_input_mask( ctx );
423 GLuint keySize;
424
425 memset(key, 0, sizeof(*key));
426
427 /* _NEW_TEXTURE */
428 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
429 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
430 const struct gl_texture_object *texObj = texUnit->_Current;
431 const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
432 const struct gl_sampler_object *samp;
433 GLenum format;
434
435 if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
436 continue;
437
438 samp = _mesa_get_samplerobj(ctx, i);
439 format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat;
440
441 key->unit[i].enabled = 1;
442 key->enabled_units |= (1<<i);
443 key->nr_enabled_units = i + 1;
444 inputs_referenced |= FRAG_BIT_TEX(i);
445
446 key->unit[i].source_index =
447 translate_tex_src_bit(texUnit->_ReallyEnabled);
448
449 key->unit[i].shadow =
450 ((samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
451 ((format == GL_DEPTH_COMPONENT) ||
452 (format == GL_DEPTH_STENCIL_EXT)));
453
454 key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
455 key->unit[i].NumArgsA = comb->_NumArgsA;
456
457 key->unit[i].ModeRGB =
458 translate_mode(texUnit->EnvMode, comb->ModeRGB);
459 key->unit[i].ModeA =
460 translate_mode(texUnit->EnvMode, comb->ModeA);
461
462 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
463 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
464
465 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
466 key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
467 key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
468 key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
469 key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
470 }
471
472 if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
473 /* requires some special translation */
474 key->unit[i].NumArgsRGB = 2;
475 key->unit[i].ScaleShiftRGB = 0;
476 key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
477 key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
478 key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
479 key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
480 }
481 }
482
483 /* _NEW_LIGHT | _NEW_FOG */
484 if (texenv_doing_secondary_color(ctx)) {
485 key->separate_specular = 1;
486 inputs_referenced |= FRAG_BIT_COL1;
487 }
488
489 /* _NEW_FOG */
490 if (ctx->Fog.Enabled) {
491 key->fog_enabled = 1;
492 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
493 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
494 }
495
496 /* _NEW_BUFFERS */
497 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
498
499 /* _NEW_COLOR */
500 if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
501 /* if alpha test is enabled we need to emit at least one color */
502 key->num_draw_buffers = 1;
503 }
504
505 key->inputs_available = (inputs_available & inputs_referenced);
506
507 /* compute size of state key, ignoring unused texture units */
508 keySize = sizeof(*key) - sizeof(key->unit)
509 + key->nr_enabled_units * sizeof(key->unit[0]);
510
511 return keySize;
512 }
513
514
515 /** State used to build the fragment program:
516 */
517 class texenv_fragment_program : public ir_factory {
518 public:
519 struct gl_shader_program *shader_program;
520 struct gl_shader *shader;
521 exec_list *top_instructions;
522 struct state_key *state;
523
524 ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
525 /* Reg containing each texture unit's sampled texture color,
526 * else undef.
527 */
528
529 /* Texcoord override from bumpmapping. */
530 ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
531
532 /* Reg containing texcoord for a texture unit,
533 * needed for bump mapping, else undef.
534 */
535
536 ir_rvalue *src_previous; /**< Reg containing color from previous
537 * stage. May need to be decl'd.
538 */
539 };
540
541 static ir_rvalue *
542 get_current_attrib(texenv_fragment_program *p, GLuint attrib)
543 {
544 ir_variable *current;
545 ir_rvalue *val;
546
547 current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
548 current->max_array_access = MAX2(current->max_array_access, attrib);
549 val = new(p->mem_ctx) ir_dereference_variable(current);
550 ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
551 return new(p->mem_ctx) ir_dereference_array(val, index);
552 }
553
554 static ir_rvalue *
555 get_gl_Color(texenv_fragment_program *p)
556 {
557 if (p->state->inputs_available & FRAG_BIT_COL0) {
558 ir_variable *var = p->shader->symbols->get_variable("gl_Color");
559 assert(var);
560 return new(p->mem_ctx) ir_dereference_variable(var);
561 } else {
562 return get_current_attrib(p, VERT_ATTRIB_COLOR0);
563 }
564 }
565
566 static ir_rvalue *
567 get_source(texenv_fragment_program *p,
568 GLuint src, GLuint unit)
569 {
570 ir_variable *var;
571 ir_dereference *deref;
572
573 switch (src) {
574 case SRC_TEXTURE:
575 return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
576
577 case SRC_TEXTURE0:
578 case SRC_TEXTURE1:
579 case SRC_TEXTURE2:
580 case SRC_TEXTURE3:
581 case SRC_TEXTURE4:
582 case SRC_TEXTURE5:
583 case SRC_TEXTURE6:
584 case SRC_TEXTURE7:
585 return new(p->mem_ctx)
586 ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]);
587
588 case SRC_CONSTANT:
589 var = p->shader->symbols->get_variable("gl_TextureEnvColor");
590 assert(var);
591 deref = new(p->mem_ctx) ir_dereference_variable(var);
592 var->max_array_access = MAX2(var->max_array_access, unit);
593 return new(p->mem_ctx) ir_dereference_array(deref,
594 new(p->mem_ctx) ir_constant(unit));
595
596 case SRC_PRIMARY_COLOR:
597 var = p->shader->symbols->get_variable("gl_Color");
598 assert(var);
599 return new(p->mem_ctx) ir_dereference_variable(var);
600
601 case SRC_ZERO:
602 return new(p->mem_ctx) ir_constant(0.0f);
603
604 case SRC_PREVIOUS:
605 if (!p->src_previous) {
606 return get_gl_Color(p);
607 } else {
608 return p->src_previous->clone(p->mem_ctx, NULL);
609 }
610
611 default:
612 assert(0);
613 return NULL;
614 }
615 }
616
617 static ir_rvalue *
618 emit_combine_source(texenv_fragment_program *p,
619 GLuint unit,
620 GLuint source,
621 GLuint operand)
622 {
623 ir_rvalue *src;
624
625 src = get_source(p, source, unit);
626
627 switch (operand) {
628 case OPR_ONE_MINUS_SRC_COLOR:
629 return sub(new(p->mem_ctx) ir_constant(1.0f), src);
630
631 case OPR_SRC_ALPHA:
632 return src->type->is_scalar() ? src : swizzle_w(src);
633
634 case OPR_ONE_MINUS_SRC_ALPHA: {
635 ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
636
637 return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
638 }
639
640 case OPR_ZERO:
641 return new(p->mem_ctx) ir_constant(0.0f);
642 case OPR_ONE:
643 return new(p->mem_ctx) ir_constant(1.0f);
644 case OPR_SRC_COLOR:
645 return src;
646 default:
647 assert(0);
648 return src;
649 }
650 }
651
652 /**
653 * Check if the RGB and Alpha sources and operands match for the given
654 * texture unit's combinder state. When the RGB and A sources and
655 * operands match, we can emit fewer instructions.
656 */
657 static GLboolean args_match( const struct state_key *key, GLuint unit )
658 {
659 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
660
661 for (i = 0; i < numArgs; i++) {
662 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
663 return GL_FALSE;
664
665 switch (key->unit[unit].OptA[i].Operand) {
666 case OPR_SRC_ALPHA:
667 switch (key->unit[unit].OptRGB[i].Operand) {
668 case OPR_SRC_COLOR:
669 case OPR_SRC_ALPHA:
670 break;
671 default:
672 return GL_FALSE;
673 }
674 break;
675 case OPR_ONE_MINUS_SRC_ALPHA:
676 switch (key->unit[unit].OptRGB[i].Operand) {
677 case OPR_ONE_MINUS_SRC_COLOR:
678 case OPR_ONE_MINUS_SRC_ALPHA:
679 break;
680 default:
681 return GL_FALSE;
682 }
683 break;
684 default:
685 return GL_FALSE; /* impossible */
686 }
687 }
688
689 return GL_TRUE;
690 }
691
692 static ir_rvalue *
693 smear(texenv_fragment_program *p, ir_rvalue *val)
694 {
695 if (!val->type->is_scalar())
696 return val;
697
698 return swizzle_xxxx(val);
699 }
700
701 static ir_rvalue *
702 emit_combine(texenv_fragment_program *p,
703 GLuint unit,
704 GLuint nr,
705 GLuint mode,
706 const struct mode_opt *opt)
707 {
708 ir_rvalue *src[MAX_COMBINER_TERMS];
709 ir_rvalue *tmp0, *tmp1;
710 GLuint i;
711
712 assert(nr <= MAX_COMBINER_TERMS);
713
714 for (i = 0; i < nr; i++)
715 src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
716
717 switch (mode) {
718 case MODE_REPLACE:
719 return src[0];
720
721 case MODE_MODULATE:
722 return mul(src[0], src[1]);
723
724 case MODE_ADD:
725 return add(src[0], src[1]);
726
727 case MODE_ADD_SIGNED:
728 return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
729
730 case MODE_INTERPOLATE:
731 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
732 tmp0 = mul(src[0], src[2]);
733 tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
734 src[2]->clone(p->mem_ctx, NULL)));
735 return add(tmp0, tmp1);
736
737 case MODE_SUBTRACT:
738 return sub(src[0], src[1]);
739
740 case MODE_DOT3_RGBA:
741 case MODE_DOT3_RGBA_EXT:
742 case MODE_DOT3_RGB_EXT:
743 case MODE_DOT3_RGB: {
744 tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
745 tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
746
747 tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
748 tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
749
750 return dot(swizzle_xyz(smear(p, tmp0)), swizzle_xyz(smear(p, tmp1)));
751 }
752 case MODE_MODULATE_ADD_ATI:
753 return add(mul(src[0], src[2]), src[1]);
754
755 case MODE_MODULATE_SIGNED_ADD_ATI:
756 return add(add(mul(src[0], src[2]), src[1]),
757 new(p->mem_ctx) ir_constant(-0.5f));
758
759 case MODE_MODULATE_SUBTRACT_ATI:
760 return sub(mul(src[0], src[2]), src[1]);
761
762 case MODE_ADD_PRODUCTS:
763 return add(mul(src[0], src[1]), mul(src[2], src[3]));
764
765 case MODE_ADD_PRODUCTS_SIGNED:
766 return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
767 new(p->mem_ctx) ir_constant(-0.5f));
768
769 case MODE_BUMP_ENVMAP_ATI:
770 /* special - not handled here */
771 assert(0);
772 return src[0];
773 default:
774 assert(0);
775 return src[0];
776 }
777 }
778
779 /**
780 * Generate instructions for one texture unit's env/combiner mode.
781 */
782 static ir_rvalue *
783 emit_texenv(texenv_fragment_program *p, GLuint unit)
784 {
785 const struct state_key *key = p->state;
786 GLboolean rgb_saturate, alpha_saturate;
787 GLuint rgb_shift, alpha_shift;
788
789 if (!key->unit[unit].enabled) {
790 return get_source(p, SRC_PREVIOUS, 0);
791 }
792 if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
793 /* this isn't really a env stage delivering a color and handled elsewhere */
794 return get_source(p, SRC_PREVIOUS, 0);
795 }
796
797 switch (key->unit[unit].ModeRGB) {
798 case MODE_DOT3_RGB_EXT:
799 alpha_shift = key->unit[unit].ScaleShiftA;
800 rgb_shift = 0;
801 break;
802 case MODE_DOT3_RGBA_EXT:
803 alpha_shift = 0;
804 rgb_shift = 0;
805 break;
806 default:
807 rgb_shift = key->unit[unit].ScaleShiftRGB;
808 alpha_shift = key->unit[unit].ScaleShiftA;
809 break;
810 }
811
812 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
813 * We don't want to clamp twice.
814 */
815 if (rgb_shift)
816 rgb_saturate = GL_FALSE; /* saturate after rgb shift */
817 else if (need_saturate(key->unit[unit].ModeRGB))
818 rgb_saturate = GL_TRUE;
819 else
820 rgb_saturate = GL_FALSE;
821
822 if (alpha_shift)
823 alpha_saturate = GL_FALSE; /* saturate after alpha shift */
824 else if (need_saturate(key->unit[unit].ModeA))
825 alpha_saturate = GL_TRUE;
826 else
827 alpha_saturate = GL_FALSE;
828
829 ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
830 ir_dereference *deref;
831 ir_rvalue *val;
832
833 /* Emit the RGB and A combine ops
834 */
835 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
836 args_match(key, unit)) {
837 val = emit_combine(p, unit,
838 key->unit[unit].NumArgsRGB,
839 key->unit[unit].ModeRGB,
840 key->unit[unit].OptRGB);
841 val = smear(p, val);
842 if (rgb_saturate)
843 val = saturate(val);
844
845 p->emit(assign(temp_var, val));
846 }
847 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
848 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
849 ir_rvalue *val = emit_combine(p, unit,
850 key->unit[unit].NumArgsRGB,
851 key->unit[unit].ModeRGB,
852 key->unit[unit].OptRGB);
853 val = smear(p, val);
854 if (rgb_saturate)
855 val = saturate(val);
856 p->emit(assign(temp_var, val));
857 }
858 else {
859 /* Need to do something to stop from re-emitting identical
860 * argument calculations here:
861 */
862 val = emit_combine(p, unit,
863 key->unit[unit].NumArgsRGB,
864 key->unit[unit].ModeRGB,
865 key->unit[unit].OptRGB);
866 val = swizzle_xyz(smear(p, val));
867 if (rgb_saturate)
868 val = saturate(val);
869 p->emit(assign(temp_var, val, WRITEMASK_XYZ));
870
871 val = emit_combine(p, unit,
872 key->unit[unit].NumArgsA,
873 key->unit[unit].ModeA,
874 key->unit[unit].OptA);
875 val = swizzle_w(smear(p, val));
876 if (alpha_saturate)
877 val = saturate(val);
878 p->emit(assign(temp_var, val, WRITEMASK_W));
879 }
880
881 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
882
883 /* Deal with the final shift:
884 */
885 if (alpha_shift || rgb_shift) {
886 ir_constant *shift;
887
888 if (rgb_shift == alpha_shift) {
889 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
890 }
891 else {
892 float const_data[4] = {
893 float(1 << rgb_shift),
894 float(1 << rgb_shift),
895 float(1 << rgb_shift),
896 float(1 << alpha_shift)
897 };
898 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
899 (ir_constant_data *)const_data);
900 }
901
902 return saturate(mul(deref, shift));
903 }
904 else
905 return deref;
906 }
907
908
909 /**
910 * Generate instruction for getting a texture source term.
911 */
912 static void load_texture( texenv_fragment_program *p, GLuint unit )
913 {
914 ir_dereference *deref;
915
916 if (p->src_texture[unit])
917 return;
918
919 const GLuint texTarget = p->state->unit[unit].source_index;
920 ir_rvalue *texcoord;
921
922 if (!(p->state->inputs_available & (FRAG_BIT_TEX0 << unit))) {
923 texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
924 } else if (p->texcoord_tex[unit]) {
925 texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
926 } else {
927 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
928 assert(tc_array);
929 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
930 ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
931 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
932 tc_array->max_array_access = MAX2(tc_array->max_array_access, unit);
933 }
934
935 if (!p->state->unit[unit].enabled) {
936 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
937 "dummy_tex");
938 p->emit(p->src_texture[unit]);
939
940 p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
941 return ;
942 }
943
944 const glsl_type *sampler_type = NULL;
945 int coords = 0;
946
947 switch (texTarget) {
948 case TEXTURE_1D_INDEX:
949 if (p->state->unit[unit].shadow)
950 sampler_type = p->shader->symbols->get_type("sampler1DShadow");
951 else
952 sampler_type = p->shader->symbols->get_type("sampler1D");
953 coords = 1;
954 break;
955 case TEXTURE_1D_ARRAY_INDEX:
956 if (p->state->unit[unit].shadow)
957 sampler_type = p->shader->symbols->get_type("sampler1DArrayShadow");
958 else
959 sampler_type = p->shader->symbols->get_type("sampler1DArray");
960 coords = 2;
961 break;
962 case TEXTURE_2D_INDEX:
963 if (p->state->unit[unit].shadow)
964 sampler_type = p->shader->symbols->get_type("sampler2DShadow");
965 else
966 sampler_type = p->shader->symbols->get_type("sampler2D");
967 coords = 2;
968 break;
969 case TEXTURE_2D_ARRAY_INDEX:
970 if (p->state->unit[unit].shadow)
971 sampler_type = p->shader->symbols->get_type("sampler2DArrayShadow");
972 else
973 sampler_type = p->shader->symbols->get_type("sampler2DArray");
974 coords = 3;
975 break;
976 case TEXTURE_RECT_INDEX:
977 if (p->state->unit[unit].shadow)
978 sampler_type = p->shader->symbols->get_type("sampler2DRectShadow");
979 else
980 sampler_type = p->shader->symbols->get_type("sampler2DRect");
981 coords = 2;
982 break;
983 case TEXTURE_3D_INDEX:
984 assert(!p->state->unit[unit].shadow);
985 sampler_type = p->shader->symbols->get_type("sampler3D");
986 coords = 3;
987 break;
988 case TEXTURE_CUBE_INDEX:
989 if (p->state->unit[unit].shadow)
990 sampler_type = p->shader->symbols->get_type("samplerCubeShadow");
991 else
992 sampler_type = p->shader->symbols->get_type("samplerCube");
993 coords = 3;
994 break;
995 case TEXTURE_EXTERNAL_INDEX:
996 assert(!p->state->unit[unit].shadow);
997 sampler_type = p->shader->symbols->get_type("samplerExternalOES");
998 coords = 2;
999 break;
1000 }
1001
1002 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
1003 "tex");
1004
1005 ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
1006
1007
1008 char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
1009 ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
1010 sampler_name,
1011 ir_var_uniform);
1012 p->top_instructions->push_head(sampler);
1013
1014 /* Set the texture unit for this sampler. The linker will pick this value
1015 * up and do-the-right-thing.
1016 *
1017 * NOTE: The cast to int is important. Without it, the constant will have
1018 * type uint, and things later on may get confused.
1019 */
1020 sampler->constant_value = new(p->mem_ctx) ir_constant(int(unit));
1021
1022 deref = new(p->mem_ctx) ir_dereference_variable(sampler);
1023 tex->set_sampler(deref, glsl_type::vec4_type);
1024
1025 tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
1026
1027 if (p->state->unit[unit].shadow) {
1028 texcoord = texcoord->clone(p->mem_ctx, NULL);
1029 tex->shadow_comparitor = new(p->mem_ctx) ir_swizzle(texcoord,
1030 coords, 0, 0, 0,
1031 1);
1032 coords++;
1033 }
1034
1035 texcoord = texcoord->clone(p->mem_ctx, NULL);
1036 tex->projector = swizzle_w(texcoord);
1037
1038 p->emit(assign(p->src_texture[unit], tex));
1039 }
1040
1041 static void
1042 load_texenv_source(texenv_fragment_program *p,
1043 GLuint src, GLuint unit)
1044 {
1045 switch (src) {
1046 case SRC_TEXTURE:
1047 load_texture(p, unit);
1048 break;
1049
1050 case SRC_TEXTURE0:
1051 case SRC_TEXTURE1:
1052 case SRC_TEXTURE2:
1053 case SRC_TEXTURE3:
1054 case SRC_TEXTURE4:
1055 case SRC_TEXTURE5:
1056 case SRC_TEXTURE6:
1057 case SRC_TEXTURE7:
1058 load_texture(p, src - SRC_TEXTURE0);
1059 break;
1060
1061 default:
1062 /* not a texture src - do nothing */
1063 break;
1064 }
1065 }
1066
1067
1068 /**
1069 * Generate instructions for loading all texture source terms.
1070 */
1071 static GLboolean
1072 load_texunit_sources( texenv_fragment_program *p, GLuint unit )
1073 {
1074 const struct state_key *key = p->state;
1075 GLuint i;
1076
1077 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1078 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1079 }
1080
1081 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1082 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1083 }
1084
1085 return GL_TRUE;
1086 }
1087
1088 /**
1089 * Generate instructions for loading bump map textures.
1090 */
1091 static void
1092 load_texunit_bumpmap( texenv_fragment_program *p, GLuint unit )
1093 {
1094 const struct state_key *key = p->state;
1095 GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
1096 ir_rvalue *bump;
1097 ir_rvalue *texcoord;
1098 ir_variable *rot_mat_0, *rot_mat_1;
1099
1100 rot_mat_0 = p->shader->symbols->get_variable("gl_BumpRotMatrix0MESA");
1101 rot_mat_1 = p->shader->symbols->get_variable("gl_BumpRotMatrix1MESA");
1102
1103 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
1104 assert(tc_array);
1105 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
1106 ir_rvalue *index = new(p->mem_ctx) ir_constant(bumpedUnitNr);
1107 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
1108 tc_array->max_array_access = MAX2(tc_array->max_array_access, unit);
1109
1110 load_texenv_source( p, unit + SRC_TEXTURE0, unit );
1111
1112 /* Apply rot matrix and add coords to be available in next phase.
1113 * dest = Arg1 + (Arg0.xx * rotMat0) + (Arg0.yy * rotMat1)
1114 * note only 2 coords are affected the rest are left unchanged (mul by 0)
1115 */
1116 ir_rvalue *bump_x, *bump_y;
1117
1118 texcoord = smear(p, texcoord);
1119
1120 /* bump_texcoord = texcoord */
1121 ir_variable *bumped = p->make_temp(texcoord->type, "bump_texcoord");
1122 p->emit(bumped);
1123 p->emit(assign(bumped, texcoord));
1124
1125 /* bump_texcoord.xy += arg0.x * rotmat0 + arg0.y * rotmat1 */
1126 bump = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
1127 bump_x = mul(swizzle_x(bump), rot_mat_0);
1128 bump_y = mul(swizzle_y(bump->clone(p->mem_ctx, NULL)), rot_mat_1);
1129
1130 p->emit(assign(bumped, add(swizzle_xy(bumped), add(bump_x, bump_y)),
1131 WRITEMASK_XY));
1132
1133 p->texcoord_tex[bumpedUnitNr] = bumped;
1134 }
1135
1136 /**
1137 * Applies the fog calculations.
1138 *
1139 * This is basically like the ARB_fragment_prorgam fog options. Note
1140 * that ffvertex_prog.c produces fogcoord for us when
1141 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
1142 */
1143 static ir_rvalue *
1144 emit_fog_instructions(texenv_fragment_program *p,
1145 ir_rvalue *fragcolor)
1146 {
1147 struct state_key *key = p->state;
1148 ir_rvalue *f, *temp;
1149 ir_variable *params, *oparams;
1150 ir_variable *fogcoord;
1151
1152 /* Temporary storage for the whole fog result. Fog calculations
1153 * only affect rgb so we're hanging on to the .a value of fragcolor
1154 * this way.
1155 */
1156 ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
1157 p->emit(assign(fog_result, fragcolor));
1158
1159 fragcolor = swizzle_xyz(fog_result);
1160
1161 oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
1162 fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
1163 params = p->shader->symbols->get_variable("gl_Fog");
1164 f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
1165
1166 ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
1167
1168 switch (key->fog_mode) {
1169 case FOG_LINEAR:
1170 /* f = (end - z) / (end - start)
1171 *
1172 * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
1173 * (end / (end - start)) so we can generate a single MAD.
1174 */
1175 f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
1176 break;
1177 case FOG_EXP:
1178 /* f = e^(-(density * fogcoord))
1179 *
1180 * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
1181 * use EXP2 which is generally the native instruction without
1182 * having to do any further math on the fog density uniform.
1183 */
1184 f = mul(f, swizzle_z(oparams));
1185 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1186 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1187 break;
1188 case FOG_EXP2:
1189 /* f = e^(-(density * fogcoord)^2)
1190 *
1191 * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
1192 * can do this like FOG_EXP but with a squaring after the
1193 * multiply by density.
1194 */
1195 ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
1196 p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
1197
1198 f = mul(temp_var, temp_var);
1199 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1200 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1201 break;
1202 }
1203
1204 p->emit(assign(f_var, saturate(f)));
1205
1206 f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
1207 temp = new(p->mem_ctx) ir_dereference_variable(params);
1208 temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
1209 temp = mul(swizzle_xyz(temp), f);
1210
1211 p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
1212
1213 return new(p->mem_ctx) ir_dereference_variable(fog_result);
1214 }
1215
1216 static void
1217 emit_instructions(texenv_fragment_program *p)
1218 {
1219 struct state_key *key = p->state;
1220 GLuint unit;
1221
1222 if (key->enabled_units) {
1223 /* Zeroth pass - bump map textures first */
1224 for (unit = 0; unit < key->nr_enabled_units; unit++) {
1225 if (key->unit[unit].enabled &&
1226 key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1227 load_texunit_bumpmap(p, unit);
1228 }
1229 }
1230
1231 /* First pass - to support texture_env_crossbar, first identify
1232 * all referenced texture sources and emit texld instructions
1233 * for each:
1234 */
1235 for (unit = 0; unit < key->nr_enabled_units; unit++)
1236 if (key->unit[unit].enabled) {
1237 load_texunit_sources(p, unit);
1238 }
1239
1240 /* Second pass - emit combine instructions to build final color:
1241 */
1242 for (unit = 0; unit < key->nr_enabled_units; unit++) {
1243 if (key->unit[unit].enabled) {
1244 p->src_previous = emit_texenv(p, unit);
1245 }
1246 }
1247 }
1248
1249 ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0);
1250
1251 if (key->separate_specular) {
1252 ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
1253 "specular_add");
1254 p->emit(assign(spec_result, cf));
1255
1256 ir_rvalue *secondary;
1257 if (p->state->inputs_available & FRAG_BIT_COL1) {
1258 ir_variable *var =
1259 p->shader->symbols->get_variable("gl_SecondaryColor");
1260 assert(var);
1261 secondary = swizzle_xyz(var);
1262 } else {
1263 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1264 }
1265
1266 p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1267 WRITEMASK_XYZ));
1268
1269 cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1270 }
1271
1272 if (key->fog_enabled) {
1273 cf = emit_fog_instructions(p, cf);
1274 }
1275
1276 ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1277 assert(frag_color);
1278 p->emit(assign(frag_color, cf));
1279 }
1280
1281 /**
1282 * Generate a new fragment program which implements the context's
1283 * current texture env/combine mode.
1284 */
1285 static struct gl_shader_program *
1286 create_new_program(struct gl_context *ctx, struct state_key *key)
1287 {
1288 texenv_fragment_program p;
1289 unsigned int unit;
1290 _mesa_glsl_parse_state *state;
1291
1292 p.mem_ctx = ralloc_context(NULL);
1293 p.shader = ctx->Driver.NewShader(ctx, 0, GL_FRAGMENT_SHADER);
1294 p.shader->ir = new(p.shader) exec_list;
1295 state = new(p.shader) _mesa_glsl_parse_state(ctx, GL_FRAGMENT_SHADER,
1296 p.shader);
1297 p.shader->symbols = state->symbols;
1298 p.top_instructions = p.shader->ir;
1299 p.instructions = p.shader->ir;
1300 p.state = key;
1301 p.shader_program = ctx->Driver.NewShaderProgram(ctx, 0);
1302
1303 /* Tell the linker to ignore the fact that we're building a
1304 * separate shader, in case we're in a GLES2 context that would
1305 * normally reject that. The real problem is that we're building a
1306 * fixed function program in a GLES2 context at all, but that's a
1307 * big mess to clean up.
1308 */
1309 p.shader_program->InternalSeparateShader = GL_TRUE;
1310
1311 state->language_version = 130;
1312 state->es_shader = false;
1313 if (ctx->Extensions.OES_EGL_image_external)
1314 state->OES_EGL_image_external_enable = true;
1315 _mesa_glsl_initialize_types(state);
1316 _mesa_glsl_initialize_variables(p.instructions, state);
1317
1318 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1319 p.src_texture[unit] = NULL;
1320 p.texcoord_tex[unit] = NULL;
1321 }
1322
1323 p.src_previous = NULL;
1324
1325 ir_function *main_f = new(p.mem_ctx) ir_function("main");
1326 p.emit(main_f);
1327 state->symbols->add_function(main_f);
1328
1329 ir_function_signature *main_sig =
1330 new(p.mem_ctx) ir_function_signature(p.shader->symbols->get_type("void"));
1331 main_sig->is_defined = true;
1332 main_f->add_signature(main_sig);
1333
1334 p.instructions = &main_sig->body;
1335 if (key->num_draw_buffers)
1336 emit_instructions(&p);
1337
1338 validate_ir_tree(p.shader->ir);
1339
1340 while (do_common_optimization(p.shader->ir, false, false, 32))
1341 ;
1342 reparent_ir(p.shader->ir, p.shader->ir);
1343
1344 p.shader->CompileStatus = true;
1345 p.shader->Version = state->language_version;
1346 p.shader->num_builtins_to_link = state->num_builtins_to_link;
1347 p.shader_program->Shaders =
1348 (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1349 p.shader_program->Shaders[0] = p.shader;
1350 p.shader_program->NumShaders = 1;
1351
1352 _mesa_glsl_link_shader(ctx, p.shader_program);
1353
1354 /* Set the sampler uniforms, and relink to get them into the linked
1355 * program.
1356 */
1357 struct gl_shader *const fs =
1358 p.shader_program->_LinkedShaders[MESA_SHADER_FRAGMENT];
1359 struct gl_program *const fp = fs->Program;
1360
1361 _mesa_generate_parameters_list_for_uniforms(p.shader_program, fs,
1362 fp->Parameters);
1363
1364 _mesa_associate_uniform_storage(ctx, p.shader_program, fp->Parameters);
1365
1366 _mesa_update_shader_textures_used(p.shader_program, fp);
1367 if (ctx->Driver.SamplerUniformChange)
1368 ctx->Driver.SamplerUniformChange(ctx, fp->Target, fp);
1369
1370 if (!p.shader_program->LinkStatus)
1371 _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1372 p.shader_program->InfoLog);
1373
1374 ralloc_free(p.mem_ctx);
1375 return p.shader_program;
1376 }
1377
1378 extern "C" {
1379
1380 /**
1381 * Return a fragment program which implements the current
1382 * fixed-function texture, fog and color-sum operations.
1383 */
1384 struct gl_shader_program *
1385 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1386 {
1387 struct gl_shader_program *shader_program;
1388 struct state_key key;
1389 GLuint keySize;
1390
1391 keySize = make_state_key(ctx, &key);
1392
1393 shader_program = (struct gl_shader_program *)
1394 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1395 &key, keySize);
1396
1397 if (!shader_program) {
1398 shader_program = create_new_program(ctx, &key);
1399
1400 _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1401 &key, keySize, shader_program);
1402 }
1403
1404 return shader_program;
1405 }
1406
1407 }