3d7947bae10a7b5a3b771f4b5cd3d4983e602885
[mesa.git] / src / mesa / main / ff_fragment_shader.cpp
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30 extern "C" {
31 #include "glheader.h"
32 #include "imports.h"
33 #include "mtypes.h"
34 #include "main/uniforms.h"
35 #include "main/macros.h"
36 #include "program/program.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_cache.h"
39 #include "program/prog_instruction.h"
40 #include "program/prog_print.h"
41 #include "program/prog_statevars.h"
42 #include "program/programopt.h"
43 #include "texenvprogram.h"
44 }
45 #include "../glsl/glsl_types.h"
46 #include "../glsl/ir.h"
47 #include "../glsl/glsl_symbol_table.h"
48 #include "../glsl/glsl_parser_extras.h"
49 #include "../glsl/ir_optimization.h"
50 #include "../glsl/ir_print_visitor.h"
51 #include "../program/ir_to_mesa.h"
52
53 /*
54 * Note on texture units:
55 *
56 * The number of texture units supported by fixed-function fragment
57 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
58 * That's because there's a one-to-one correspondence between texture
59 * coordinates and samplers in fixed-function processing.
60 *
61 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
62 * sets of texcoords, so is fixed-function fragment processing.
63 *
64 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
65 */
66
67
68 struct texenvprog_cache_item
69 {
70 GLuint hash;
71 void *key;
72 struct gl_shader_program *data;
73 struct texenvprog_cache_item *next;
74 };
75
76 static GLboolean
77 texenv_doing_secondary_color(struct gl_context *ctx)
78 {
79 if (ctx->Light.Enabled &&
80 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
81 return GL_TRUE;
82
83 if (ctx->Fog.ColorSumEnabled)
84 return GL_TRUE;
85
86 return GL_FALSE;
87 }
88
89 struct mode_opt {
90 #ifdef __GNUC__
91 __extension__ GLubyte Source:4; /**< SRC_x */
92 __extension__ GLubyte Operand:3; /**< OPR_x */
93 #else
94 GLubyte Source; /**< SRC_x */
95 GLubyte Operand; /**< OPR_x */
96 #endif
97 };
98
99 struct state_key {
100 GLuint nr_enabled_units:8;
101 GLuint enabled_units:8;
102 GLuint separate_specular:1;
103 GLuint fog_enabled:1;
104 GLuint fog_mode:2; /**< FOG_x */
105 GLuint inputs_available:12;
106 GLuint num_draw_buffers:4;
107
108 /* NOTE: This array of structs must be last! (see "keySize" below) */
109 struct {
110 GLuint enabled:1;
111 GLuint source_index:4; /**< TEXTURE_x_INDEX */
112 GLuint shadow:1;
113 GLuint ScaleShiftRGB:2;
114 GLuint ScaleShiftA:2;
115
116 GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */
117 GLuint ModeRGB:5; /**< MODE_x */
118
119 GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */
120 GLuint ModeA:5; /**< MODE_x */
121
122 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
123 struct mode_opt OptA[MAX_COMBINER_TERMS];
124 } unit[MAX_TEXTURE_UNITS];
125 };
126
127 #define FOG_LINEAR 0
128 #define FOG_EXP 1
129 #define FOG_EXP2 2
130 #define FOG_UNKNOWN 3
131
132 static GLuint translate_fog_mode( GLenum mode )
133 {
134 switch (mode) {
135 case GL_LINEAR: return FOG_LINEAR;
136 case GL_EXP: return FOG_EXP;
137 case GL_EXP2: return FOG_EXP2;
138 default: return FOG_UNKNOWN;
139 }
140 }
141
142 #define OPR_SRC_COLOR 0
143 #define OPR_ONE_MINUS_SRC_COLOR 1
144 #define OPR_SRC_ALPHA 2
145 #define OPR_ONE_MINUS_SRC_ALPHA 3
146 #define OPR_ZERO 4
147 #define OPR_ONE 5
148 #define OPR_UNKNOWN 7
149
150 static GLuint translate_operand( GLenum operand )
151 {
152 switch (operand) {
153 case GL_SRC_COLOR: return OPR_SRC_COLOR;
154 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
155 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
156 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
157 case GL_ZERO: return OPR_ZERO;
158 case GL_ONE: return OPR_ONE;
159 default:
160 assert(0);
161 return OPR_UNKNOWN;
162 }
163 }
164
165 #define SRC_TEXTURE 0
166 #define SRC_TEXTURE0 1
167 #define SRC_TEXTURE1 2
168 #define SRC_TEXTURE2 3
169 #define SRC_TEXTURE3 4
170 #define SRC_TEXTURE4 5
171 #define SRC_TEXTURE5 6
172 #define SRC_TEXTURE6 7
173 #define SRC_TEXTURE7 8
174 #define SRC_CONSTANT 9
175 #define SRC_PRIMARY_COLOR 10
176 #define SRC_PREVIOUS 11
177 #define SRC_ZERO 12
178 #define SRC_UNKNOWN 15
179
180 static GLuint translate_source( GLenum src )
181 {
182 switch (src) {
183 case GL_TEXTURE: return SRC_TEXTURE;
184 case GL_TEXTURE0:
185 case GL_TEXTURE1:
186 case GL_TEXTURE2:
187 case GL_TEXTURE3:
188 case GL_TEXTURE4:
189 case GL_TEXTURE5:
190 case GL_TEXTURE6:
191 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
192 case GL_CONSTANT: return SRC_CONSTANT;
193 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
194 case GL_PREVIOUS: return SRC_PREVIOUS;
195 case GL_ZERO:
196 return SRC_ZERO;
197 default:
198 assert(0);
199 return SRC_UNKNOWN;
200 }
201 }
202
203 #define MODE_REPLACE 0 /* r = a0 */
204 #define MODE_MODULATE 1 /* r = a0 * a1 */
205 #define MODE_ADD 2 /* r = a0 + a1 */
206 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
207 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
208 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
209 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
210 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
211 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
212 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
213 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
214 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
215 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
216 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
217 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
218 #define MODE_BUMP_ENVMAP_ATI 15 /* special */
219 #define MODE_UNKNOWN 16
220
221 /**
222 * Translate GL combiner state into a MODE_x value
223 */
224 static GLuint translate_mode( GLenum envMode, GLenum mode )
225 {
226 switch (mode) {
227 case GL_REPLACE: return MODE_REPLACE;
228 case GL_MODULATE: return MODE_MODULATE;
229 case GL_ADD:
230 if (envMode == GL_COMBINE4_NV)
231 return MODE_ADD_PRODUCTS;
232 else
233 return MODE_ADD;
234 case GL_ADD_SIGNED:
235 if (envMode == GL_COMBINE4_NV)
236 return MODE_ADD_PRODUCTS_SIGNED;
237 else
238 return MODE_ADD_SIGNED;
239 case GL_INTERPOLATE: return MODE_INTERPOLATE;
240 case GL_SUBTRACT: return MODE_SUBTRACT;
241 case GL_DOT3_RGB: return MODE_DOT3_RGB;
242 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
243 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
244 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
245 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
246 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
247 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
248 case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
249 default:
250 assert(0);
251 return MODE_UNKNOWN;
252 }
253 }
254
255
256 /**
257 * Do we need to clamp the results of the given texture env/combine mode?
258 * If the inputs to the mode are in [0,1] we don't always have to clamp
259 * the results.
260 */
261 static GLboolean
262 need_saturate( GLuint mode )
263 {
264 switch (mode) {
265 case MODE_REPLACE:
266 case MODE_MODULATE:
267 case MODE_INTERPOLATE:
268 return GL_FALSE;
269 case MODE_ADD:
270 case MODE_ADD_SIGNED:
271 case MODE_SUBTRACT:
272 case MODE_DOT3_RGB:
273 case MODE_DOT3_RGB_EXT:
274 case MODE_DOT3_RGBA:
275 case MODE_DOT3_RGBA_EXT:
276 case MODE_MODULATE_ADD_ATI:
277 case MODE_MODULATE_SIGNED_ADD_ATI:
278 case MODE_MODULATE_SUBTRACT_ATI:
279 case MODE_ADD_PRODUCTS:
280 case MODE_ADD_PRODUCTS_SIGNED:
281 case MODE_BUMP_ENVMAP_ATI:
282 return GL_TRUE;
283 default:
284 assert(0);
285 return GL_FALSE;
286 }
287 }
288
289
290
291 /**
292 * Translate TEXTURE_x_BIT to TEXTURE_x_INDEX.
293 */
294 static GLuint translate_tex_src_bit( GLbitfield bit )
295 {
296 ASSERT(bit);
297 return _mesa_ffs(bit) - 1;
298 }
299
300
301 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
302 #define VERT_RESULT_TEX_ANY (0xff << VERT_RESULT_TEX0)
303
304 /**
305 * Identify all possible varying inputs. The fragment program will
306 * never reference non-varying inputs, but will track them via state
307 * constants instead.
308 *
309 * This function figures out all the inputs that the fragment program
310 * has access to. The bitmask is later reduced to just those which
311 * are actually referenced.
312 */
313 static GLbitfield get_fp_input_mask( struct gl_context *ctx )
314 {
315 /* _NEW_PROGRAM */
316 const GLboolean vertexShader =
317 (ctx->Shader.CurrentVertexProgram &&
318 ctx->Shader.CurrentVertexProgram->LinkStatus &&
319 ctx->Shader.CurrentVertexProgram->_LinkedShaders[MESA_SHADER_VERTEX]);
320 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
321 GLbitfield fp_inputs = 0x0;
322
323 if (ctx->VertexProgram._Overriden) {
324 /* Somebody's messing with the vertex program and we don't have
325 * a clue what's happening. Assume that it could be producing
326 * all possible outputs.
327 */
328 fp_inputs = ~0;
329 }
330 else if (ctx->RenderMode == GL_FEEDBACK) {
331 /* _NEW_RENDERMODE */
332 fp_inputs = (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
333 }
334 else if (!(vertexProgram || vertexShader)) {
335 /* Fixed function vertex logic */
336 /* _NEW_ARRAY */
337 GLbitfield varying_inputs = ctx->varying_vp_inputs;
338
339 /* These get generated in the setup routine regardless of the
340 * vertex program:
341 */
342 /* _NEW_POINT */
343 if (ctx->Point.PointSprite)
344 varying_inputs |= FRAG_BITS_TEX_ANY;
345
346 /* First look at what values may be computed by the generated
347 * vertex program:
348 */
349 /* _NEW_LIGHT */
350 if (ctx->Light.Enabled) {
351 fp_inputs |= FRAG_BIT_COL0;
352
353 if (texenv_doing_secondary_color(ctx))
354 fp_inputs |= FRAG_BIT_COL1;
355 }
356
357 /* _NEW_TEXTURE */
358 fp_inputs |= (ctx->Texture._TexGenEnabled |
359 ctx->Texture._TexMatEnabled) << FRAG_ATTRIB_TEX0;
360
361 /* Then look at what might be varying as a result of enabled
362 * arrays, etc:
363 */
364 if (varying_inputs & VERT_BIT_COLOR0)
365 fp_inputs |= FRAG_BIT_COL0;
366 if (varying_inputs & VERT_BIT_COLOR1)
367 fp_inputs |= FRAG_BIT_COL1;
368
369 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
370 << FRAG_ATTRIB_TEX0);
371
372 }
373 else {
374 /* calculate from vp->outputs */
375 struct gl_program *vprog;
376 GLbitfield64 vp_outputs;
377
378 /* Choose GLSL vertex shader over ARB vertex program. Need this
379 * since vertex shader state validation comes after fragment state
380 * validation (see additional comments in state.c).
381 */
382 if (vertexShader)
383 vprog = ctx->Shader.CurrentVertexProgram->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
384 else
385 vprog = &ctx->VertexProgram.Current->Base;
386
387 vp_outputs = vprog->OutputsWritten;
388
389 /* These get generated in the setup routine regardless of the
390 * vertex program:
391 */
392 /* _NEW_POINT */
393 if (ctx->Point.PointSprite)
394 vp_outputs |= FRAG_BITS_TEX_ANY;
395
396 if (vp_outputs & (1 << VERT_RESULT_COL0))
397 fp_inputs |= FRAG_BIT_COL0;
398 if (vp_outputs & (1 << VERT_RESULT_COL1))
399 fp_inputs |= FRAG_BIT_COL1;
400
401 fp_inputs |= (((vp_outputs & VERT_RESULT_TEX_ANY) >> VERT_RESULT_TEX0)
402 << FRAG_ATTRIB_TEX0);
403 }
404
405 return fp_inputs;
406 }
407
408
409 /**
410 * Examine current texture environment state and generate a unique
411 * key to identify it.
412 */
413 static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
414 {
415 GLuint i, j;
416 GLbitfield inputs_referenced = FRAG_BIT_COL0;
417 const GLbitfield inputs_available = get_fp_input_mask( ctx );
418 GLuint keySize;
419
420 memset(key, 0, sizeof(*key));
421
422 /* _NEW_TEXTURE */
423 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
424 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
425 const struct gl_texture_object *texObj = texUnit->_Current;
426 const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
427 GLenum format;
428
429 if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
430 continue;
431
432 format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat;
433
434 key->unit[i].enabled = 1;
435 key->enabled_units |= (1<<i);
436 key->nr_enabled_units = i + 1;
437 inputs_referenced |= FRAG_BIT_TEX(i);
438
439 key->unit[i].source_index =
440 translate_tex_src_bit(texUnit->_ReallyEnabled);
441
442 key->unit[i].shadow =
443 ((texObj->Sampler.CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
444 ((format == GL_DEPTH_COMPONENT) ||
445 (format == GL_DEPTH_STENCIL_EXT)));
446
447 key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
448 key->unit[i].NumArgsA = comb->_NumArgsA;
449
450 key->unit[i].ModeRGB =
451 translate_mode(texUnit->EnvMode, comb->ModeRGB);
452 key->unit[i].ModeA =
453 translate_mode(texUnit->EnvMode, comb->ModeA);
454
455 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
456 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
457
458 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
459 key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
460 key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
461 key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
462 key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
463 }
464
465 if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
466 /* requires some special translation */
467 key->unit[i].NumArgsRGB = 2;
468 key->unit[i].ScaleShiftRGB = 0;
469 key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
470 key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
471 key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
472 key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
473 }
474 }
475
476 /* _NEW_LIGHT | _NEW_FOG */
477 if (texenv_doing_secondary_color(ctx)) {
478 key->separate_specular = 1;
479 inputs_referenced |= FRAG_BIT_COL1;
480 }
481
482 /* _NEW_FOG */
483 if (ctx->Fog.Enabled) {
484 key->fog_enabled = 1;
485 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
486 inputs_referenced |= FRAG_BIT_FOGC; /* maybe */
487 }
488
489 /* _NEW_BUFFERS */
490 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
491
492 /* _NEW_COLOR */
493 if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
494 /* if alpha test is enabled we need to emit at least one color */
495 key->num_draw_buffers = 1;
496 }
497
498 key->inputs_available = (inputs_available & inputs_referenced);
499
500 /* compute size of state key, ignoring unused texture units */
501 keySize = sizeof(*key) - sizeof(key->unit)
502 + key->nr_enabled_units * sizeof(key->unit[0]);
503
504 return keySize;
505 }
506
507
508 /** State used to build the fragment program:
509 */
510 struct texenv_fragment_program {
511 struct gl_shader_program *shader_program;
512 struct gl_shader *shader;
513 struct gl_fragment_program *program;
514 exec_list *instructions;
515 exec_list *top_instructions;
516 void *mem_ctx;
517 struct state_key *state;
518
519 GLbitfield alu_temps; /**< Track texture indirections, see spec. */
520 GLbitfield temps_output; /**< Track texture indirections, see spec. */
521 GLbitfield temp_in_use; /**< Tracks temporary regs which are in use. */
522 GLboolean error;
523
524 ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
525 /* Reg containing each texture unit's sampled texture color,
526 * else undef.
527 */
528
529 /* Texcoord override from bumpmapping. */
530 struct ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
531
532 /* Reg containing texcoord for a texture unit,
533 * needed for bump mapping, else undef.
534 */
535
536 ir_rvalue *src_previous; /**< Reg containing color from previous
537 * stage. May need to be decl'd.
538 */
539
540 GLuint last_tex_stage; /**< Number of last enabled texture unit */
541 };
542
543 static ir_rvalue *
544 get_current_attrib(struct texenv_fragment_program *p, GLuint attrib)
545 {
546 ir_variable *current;
547 ir_rvalue *val;
548
549 current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
550 current->max_array_access = MAX2(current->max_array_access, attrib);
551 val = new(p->mem_ctx) ir_dereference_variable(current);
552 ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
553 return new(p->mem_ctx) ir_dereference_array(val, index);
554 }
555
556 static ir_rvalue *
557 get_gl_Color(struct texenv_fragment_program *p)
558 {
559 if (p->state->inputs_available & FRAG_BIT_COL0) {
560 ir_variable *var = p->shader->symbols->get_variable("gl_Color");
561 assert(var);
562 return new(p->mem_ctx) ir_dereference_variable(var);
563 } else {
564 return get_current_attrib(p, VERT_ATTRIB_COLOR0);
565 }
566 }
567
568 static ir_rvalue *
569 get_source(struct texenv_fragment_program *p,
570 GLuint src, GLuint unit)
571 {
572 ir_variable *var;
573 ir_dereference *deref;
574
575 switch (src) {
576 case SRC_TEXTURE:
577 return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
578
579 case SRC_TEXTURE0:
580 case SRC_TEXTURE1:
581 case SRC_TEXTURE2:
582 case SRC_TEXTURE3:
583 case SRC_TEXTURE4:
584 case SRC_TEXTURE5:
585 case SRC_TEXTURE6:
586 case SRC_TEXTURE7:
587 return new(p->mem_ctx)
588 ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]);
589
590 case SRC_CONSTANT:
591 var = p->shader->symbols->get_variable("gl_TextureEnvColor");
592 assert(var);
593 deref = new(p->mem_ctx) ir_dereference_variable(var);
594 var->max_array_access = MAX2(var->max_array_access, unit);
595 return new(p->mem_ctx) ir_dereference_array(deref,
596 new(p->mem_ctx) ir_constant(unit));
597
598 case SRC_PRIMARY_COLOR:
599 var = p->shader->symbols->get_variable("gl_Color");
600 assert(var);
601 return new(p->mem_ctx) ir_dereference_variable(var);
602
603 case SRC_ZERO:
604 return new(p->mem_ctx) ir_constant(0.0f);
605
606 case SRC_PREVIOUS:
607 if (!p->src_previous) {
608 return get_gl_Color(p);
609 } else {
610 return p->src_previous->clone(p->mem_ctx, NULL);
611 }
612
613 default:
614 assert(0);
615 return NULL;
616 }
617 }
618
619 static ir_rvalue *
620 emit_combine_source(struct texenv_fragment_program *p,
621 GLuint unit,
622 GLuint source,
623 GLuint operand)
624 {
625 ir_rvalue *src;
626
627 src = get_source(p, source, unit);
628
629 switch (operand) {
630 case OPR_ONE_MINUS_SRC_COLOR:
631 return new(p->mem_ctx) ir_expression(ir_binop_sub,
632 new(p->mem_ctx) ir_constant(1.0f),
633 src);
634
635 case OPR_SRC_ALPHA:
636 return new(p->mem_ctx) ir_swizzle(src, 3, 3, 3, 3, 1);
637
638 case OPR_ONE_MINUS_SRC_ALPHA:
639 return new(p->mem_ctx) ir_expression(ir_binop_sub,
640 new(p->mem_ctx) ir_constant(1.0f),
641 new(p->mem_ctx) ir_swizzle(src,
642 3, 3,
643 3, 3, 1));
644 case OPR_ZERO:
645 return new(p->mem_ctx) ir_constant(0.0f);
646 case OPR_ONE:
647 return new(p->mem_ctx) ir_constant(1.0f);
648 case OPR_SRC_COLOR:
649 return src;
650 default:
651 assert(0);
652 return src;
653 }
654 }
655
656 /**
657 * Check if the RGB and Alpha sources and operands match for the given
658 * texture unit's combinder state. When the RGB and A sources and
659 * operands match, we can emit fewer instructions.
660 */
661 static GLboolean args_match( const struct state_key *key, GLuint unit )
662 {
663 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
664
665 for (i = 0; i < numArgs; i++) {
666 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
667 return GL_FALSE;
668
669 switch (key->unit[unit].OptA[i].Operand) {
670 case OPR_SRC_ALPHA:
671 switch (key->unit[unit].OptRGB[i].Operand) {
672 case OPR_SRC_COLOR:
673 case OPR_SRC_ALPHA:
674 break;
675 default:
676 return GL_FALSE;
677 }
678 break;
679 case OPR_ONE_MINUS_SRC_ALPHA:
680 switch (key->unit[unit].OptRGB[i].Operand) {
681 case OPR_ONE_MINUS_SRC_COLOR:
682 case OPR_ONE_MINUS_SRC_ALPHA:
683 break;
684 default:
685 return GL_FALSE;
686 }
687 break;
688 default:
689 return GL_FALSE; /* impossible */
690 }
691 }
692
693 return GL_TRUE;
694 }
695
696 static ir_rvalue *
697 smear(struct texenv_fragment_program *p, ir_rvalue *val)
698 {
699 if (!val->type->is_scalar())
700 return val;
701
702 return new(p->mem_ctx) ir_swizzle(val, 0, 0, 0, 0, 4);
703 }
704
705 static ir_rvalue *
706 emit_combine(struct texenv_fragment_program *p,
707 GLuint unit,
708 GLuint nr,
709 GLuint mode,
710 const struct mode_opt *opt)
711 {
712 ir_rvalue *src[MAX_COMBINER_TERMS];
713 ir_rvalue *tmp0, *tmp1;
714 GLuint i;
715
716 assert(nr <= MAX_COMBINER_TERMS);
717
718 for (i = 0; i < nr; i++)
719 src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
720
721 switch (mode) {
722 case MODE_REPLACE:
723 return src[0];
724
725 case MODE_MODULATE:
726 return new(p->mem_ctx) ir_expression(ir_binop_mul, src[0], src[1]);
727
728 case MODE_ADD:
729 return new(p->mem_ctx) ir_expression(ir_binop_add, src[0], src[1]);
730
731 case MODE_ADD_SIGNED:
732 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_add, src[0], src[1]);
733 return new(p->mem_ctx) ir_expression(ir_binop_add, tmp0,
734 new(p->mem_ctx) ir_constant(-0.5f));
735
736 case MODE_INTERPOLATE:
737 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
738 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[0], src[2]);
739
740 tmp1 = new(p->mem_ctx) ir_expression(ir_binop_sub,
741 new(p->mem_ctx) ir_constant(1.0f),
742 src[2]->clone(p->mem_ctx, NULL));
743 tmp1 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[1], tmp1);
744
745 return new(p->mem_ctx) ir_expression(ir_binop_add, tmp0, tmp1);
746
747 case MODE_SUBTRACT:
748 return new(p->mem_ctx) ir_expression(ir_binop_sub, src[0], src[1]);
749
750 case MODE_DOT3_RGBA:
751 case MODE_DOT3_RGBA_EXT:
752 case MODE_DOT3_RGB_EXT:
753 case MODE_DOT3_RGB: {
754 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[0],
755 new(p->mem_ctx) ir_constant(2.0f));
756 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_add, tmp0,
757 new(p->mem_ctx) ir_constant(-1.0f));
758 tmp0 = new(p->mem_ctx) ir_swizzle(smear(p, tmp0), 0, 1, 2, 3, 3);
759
760 tmp1 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[1],
761 new(p->mem_ctx) ir_constant(2.0f));
762 tmp1 = new(p->mem_ctx) ir_expression(ir_binop_add, tmp1,
763 new(p->mem_ctx) ir_constant(-1.0f));
764 tmp1 = new(p->mem_ctx) ir_swizzle(smear(p, tmp1), 0, 1, 2, 3, 3);
765
766 return new(p->mem_ctx) ir_expression(ir_binop_dot, tmp0, tmp1);
767 }
768 case MODE_MODULATE_ADD_ATI:
769 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[0], src[2]);
770 return new(p->mem_ctx) ir_expression(ir_binop_add, tmp0, src[1]);
771
772 case MODE_MODULATE_SIGNED_ADD_ATI:
773 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[0], src[2]);
774 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_add, tmp0, src[1]);
775 return new(p->mem_ctx) ir_expression(ir_binop_add, tmp0,
776 new(p->mem_ctx) ir_constant(-0.5f));
777
778 case MODE_MODULATE_SUBTRACT_ATI:
779 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[0], src[2]);
780 return new(p->mem_ctx) ir_expression(ir_binop_sub, tmp0, src[1]);
781
782 case MODE_ADD_PRODUCTS:
783 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[0], src[1]);
784 tmp1 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[2], src[3]);
785 return new(p->mem_ctx) ir_expression(ir_binop_add, tmp0, tmp1);
786
787 case MODE_ADD_PRODUCTS_SIGNED:
788 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[0], src[1]);
789 tmp1 = new(p->mem_ctx) ir_expression(ir_binop_mul, src[2], src[3]);
790 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_add, tmp0, tmp1);
791 return new(p->mem_ctx) ir_expression(ir_binop_add, tmp0,
792 new(p->mem_ctx) ir_constant(-0.5f));
793
794 case MODE_BUMP_ENVMAP_ATI:
795 /* special - not handled here */
796 assert(0);
797 return src[0];
798 default:
799 assert(0);
800 return src[0];
801 }
802 }
803
804 static ir_rvalue *
805 saturate(struct texenv_fragment_program *p, ir_rvalue *val)
806 {
807 val = new(p->mem_ctx) ir_expression(ir_binop_min, val,
808 new(p->mem_ctx) ir_constant(1.0f));
809 return new(p->mem_ctx) ir_expression(ir_binop_max, val,
810 new(p->mem_ctx) ir_constant(0.0f));
811 }
812
813 /**
814 * Generate instructions for one texture unit's env/combiner mode.
815 */
816 static ir_rvalue *
817 emit_texenv(struct texenv_fragment_program *p, GLuint unit)
818 {
819 const struct state_key *key = p->state;
820 GLboolean rgb_saturate, alpha_saturate;
821 GLuint rgb_shift, alpha_shift;
822
823 if (!key->unit[unit].enabled) {
824 return get_source(p, SRC_PREVIOUS, 0);
825 }
826 if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
827 /* this isn't really a env stage delivering a color and handled elsewhere */
828 return get_source(p, SRC_PREVIOUS, 0);
829 }
830
831 switch (key->unit[unit].ModeRGB) {
832 case MODE_DOT3_RGB_EXT:
833 alpha_shift = key->unit[unit].ScaleShiftA;
834 rgb_shift = 0;
835 break;
836 case MODE_DOT3_RGBA_EXT:
837 alpha_shift = 0;
838 rgb_shift = 0;
839 break;
840 default:
841 rgb_shift = key->unit[unit].ScaleShiftRGB;
842 alpha_shift = key->unit[unit].ScaleShiftA;
843 break;
844 }
845
846 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
847 * We don't want to clamp twice.
848 */
849 if (rgb_shift)
850 rgb_saturate = GL_FALSE; /* saturate after rgb shift */
851 else if (need_saturate(key->unit[unit].ModeRGB))
852 rgb_saturate = GL_TRUE;
853 else
854 rgb_saturate = GL_FALSE;
855
856 if (alpha_shift)
857 alpha_saturate = GL_FALSE; /* saturate after alpha shift */
858 else if (need_saturate(key->unit[unit].ModeA))
859 alpha_saturate = GL_TRUE;
860 else
861 alpha_saturate = GL_FALSE;
862
863 ir_variable *temp_var = new(p->mem_ctx) ir_variable(glsl_type::vec4_type,
864 "texenv_combine",
865 ir_var_temporary);
866 p->instructions->push_tail(temp_var);
867
868 ir_dereference *deref;
869 ir_assignment *assign;
870 ir_rvalue *val;
871
872 /* Emit the RGB and A combine ops
873 */
874 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
875 args_match(key, unit)) {
876 val = emit_combine(p, unit,
877 key->unit[unit].NumArgsRGB,
878 key->unit[unit].ModeRGB,
879 key->unit[unit].OptRGB);
880 val = smear(p, val);
881 if (rgb_saturate)
882 val = saturate(p, val);
883
884 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
885 assign = new(p->mem_ctx) ir_assignment(deref, val);
886 p->instructions->push_tail(assign);
887 }
888 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
889 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
890 ir_rvalue *val = emit_combine(p, unit,
891 key->unit[unit].NumArgsRGB,
892 key->unit[unit].ModeRGB,
893 key->unit[unit].OptRGB);
894 val = smear(p, val);
895 if (rgb_saturate)
896 val = saturate(p, val);
897 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
898 assign = new(p->mem_ctx) ir_assignment(deref, val);
899 p->instructions->push_tail(assign);
900 }
901 else {
902 /* Need to do something to stop from re-emitting identical
903 * argument calculations here:
904 */
905 val = emit_combine(p, unit,
906 key->unit[unit].NumArgsRGB,
907 key->unit[unit].ModeRGB,
908 key->unit[unit].OptRGB);
909 val = smear(p, val);
910 val = new(p->mem_ctx) ir_swizzle(val, 0, 1, 2, 3, 3);
911 if (rgb_saturate)
912 val = saturate(p, val);
913 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
914 assign = new(p->mem_ctx) ir_assignment(deref, val, NULL, WRITEMASK_XYZ);
915 p->instructions->push_tail(assign);
916
917 val = emit_combine(p, unit,
918 key->unit[unit].NumArgsA,
919 key->unit[unit].ModeA,
920 key->unit[unit].OptA);
921 val = smear(p, val);
922 val = new(p->mem_ctx) ir_swizzle(val, 3, 3, 3, 3, 1);
923 if (alpha_saturate)
924 val = saturate(p, val);
925 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
926 assign = new(p->mem_ctx) ir_assignment(deref, val, NULL, WRITEMASK_W);
927 p->instructions->push_tail(assign);
928 }
929
930 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
931
932 /* Deal with the final shift:
933 */
934 if (alpha_shift || rgb_shift) {
935 ir_constant *shift;
936
937 if (rgb_shift == alpha_shift) {
938 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
939 }
940 else {
941 float const_data[4] = {
942 1 << rgb_shift,
943 1 << rgb_shift,
944 1 << rgb_shift,
945 1 << alpha_shift
946 };
947 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
948 (ir_constant_data *)const_data);
949 }
950
951 return saturate(p, new(p->mem_ctx) ir_expression(ir_binop_mul,
952 deref, shift));
953 }
954 else
955 return deref;
956 }
957
958
959 /**
960 * Generate instruction for getting a texture source term.
961 */
962 static void load_texture( struct texenv_fragment_program *p, GLuint unit )
963 {
964 ir_dereference *deref;
965 ir_assignment *assign;
966
967 if (p->src_texture[unit])
968 return;
969
970 const GLuint texTarget = p->state->unit[unit].source_index;
971 ir_rvalue *texcoord;
972
973 if (!(p->state->inputs_available & (FRAG_BIT_TEX0 << unit))) {
974 texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
975 } else if (p->texcoord_tex[unit]) {
976 texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
977 } else {
978 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
979 assert(tc_array);
980 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
981 ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
982 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
983 tc_array->max_array_access = MAX2(tc_array->max_array_access, unit);
984 }
985
986 if (!p->state->unit[unit].enabled) {
987 p->src_texture[unit] = new(p->mem_ctx) ir_variable(glsl_type::vec4_type,
988 "dummy_tex",
989 ir_var_temporary);
990 p->instructions->push_tail(p->src_texture[unit]);
991
992 deref = new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
993 assign = new(p->mem_ctx) ir_assignment(deref,
994 new(p->mem_ctx) ir_constant(0.0f));
995 p->instructions->push_tail(assign);
996 return ;
997 }
998
999 const glsl_type *sampler_type = NULL;
1000 int coords = 0;
1001
1002 switch (texTarget) {
1003 case TEXTURE_1D_INDEX:
1004 if (p->state->unit[unit].shadow)
1005 sampler_type = p->shader->symbols->get_type("sampler1DShadow");
1006 else
1007 sampler_type = p->shader->symbols->get_type("sampler1D");
1008 coords = 1;
1009 break;
1010 case TEXTURE_1D_ARRAY_INDEX:
1011 if (p->state->unit[unit].shadow)
1012 sampler_type = p->shader->symbols->get_type("sampler1DArrayShadow");
1013 else
1014 sampler_type = p->shader->symbols->get_type("sampler1DArray");
1015 coords = 2;
1016 break;
1017 case TEXTURE_2D_INDEX:
1018 if (p->state->unit[unit].shadow)
1019 sampler_type = p->shader->symbols->get_type("sampler2DShadow");
1020 else
1021 sampler_type = p->shader->symbols->get_type("sampler2D");
1022 coords = 2;
1023 break;
1024 case TEXTURE_2D_ARRAY_INDEX:
1025 if (p->state->unit[unit].shadow)
1026 sampler_type = p->shader->symbols->get_type("sampler2DArrayShadow");
1027 else
1028 sampler_type = p->shader->symbols->get_type("sampler2DArray");
1029 coords = 3;
1030 break;
1031 case TEXTURE_RECT_INDEX:
1032 if (p->state->unit[unit].shadow)
1033 sampler_type = p->shader->symbols->get_type("sampler2DRectShadow");
1034 else
1035 sampler_type = p->shader->symbols->get_type("sampler2DRect");
1036 coords = 2;
1037 break;
1038 case TEXTURE_3D_INDEX:
1039 assert(!p->state->unit[unit].shadow);
1040 sampler_type = p->shader->symbols->get_type("sampler3D");
1041 coords = 3;
1042 break;
1043 case TEXTURE_CUBE_INDEX:
1044 if (p->state->unit[unit].shadow)
1045 sampler_type = p->shader->symbols->get_type("samplerCubeShadow");
1046 else
1047 sampler_type = p->shader->symbols->get_type("samplerCube");
1048 coords = 3;
1049 break;
1050 case TEXTURE_EXTERNAL_INDEX:
1051 assert(!p->state->unit[unit].shadow);
1052 sampler_type = p->shader->symbols->get_type("samplerExternalOES");
1053 coords = 2;
1054 break;
1055 }
1056
1057 p->src_texture[unit] = new(p->mem_ctx) ir_variable(glsl_type::vec4_type,
1058 "tex",
1059 ir_var_temporary);
1060 p->instructions->push_tail(p->src_texture[unit]);
1061
1062 ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
1063
1064
1065 char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
1066 ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
1067 sampler_name,
1068 ir_var_uniform);
1069 p->top_instructions->push_head(sampler);
1070 deref = new(p->mem_ctx) ir_dereference_variable(sampler);
1071 tex->set_sampler(deref, glsl_type::vec4_type);
1072
1073 tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
1074
1075 if (p->state->unit[unit].shadow) {
1076 texcoord = texcoord->clone(p->mem_ctx, NULL);
1077 tex->shadow_comparitor = new(p->mem_ctx) ir_swizzle(texcoord,
1078 coords, 0, 0, 0,
1079 1);
1080 coords++;
1081 }
1082
1083 texcoord = texcoord->clone(p->mem_ctx, NULL);
1084 tex->projector = new(p->mem_ctx) ir_swizzle(texcoord, 3, 0, 0, 0, 1);
1085
1086 deref = new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
1087 assign = new(p->mem_ctx) ir_assignment(deref, tex);
1088 p->instructions->push_tail(assign);
1089 }
1090
1091 static void
1092 load_texenv_source(struct texenv_fragment_program *p,
1093 GLuint src, GLuint unit)
1094 {
1095 switch (src) {
1096 case SRC_TEXTURE:
1097 load_texture(p, unit);
1098 break;
1099
1100 case SRC_TEXTURE0:
1101 case SRC_TEXTURE1:
1102 case SRC_TEXTURE2:
1103 case SRC_TEXTURE3:
1104 case SRC_TEXTURE4:
1105 case SRC_TEXTURE5:
1106 case SRC_TEXTURE6:
1107 case SRC_TEXTURE7:
1108 load_texture(p, src - SRC_TEXTURE0);
1109 break;
1110
1111 default:
1112 /* not a texture src - do nothing */
1113 break;
1114 }
1115 }
1116
1117
1118 /**
1119 * Generate instructions for loading all texture source terms.
1120 */
1121 static GLboolean
1122 load_texunit_sources( struct texenv_fragment_program *p, GLuint unit )
1123 {
1124 const struct state_key *key = p->state;
1125 GLuint i;
1126
1127 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1128 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1129 }
1130
1131 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1132 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1133 }
1134
1135 return GL_TRUE;
1136 }
1137
1138 /**
1139 * Generate instructions for loading bump map textures.
1140 */
1141 static void
1142 load_texunit_bumpmap( struct texenv_fragment_program *p, GLuint unit )
1143 {
1144 const struct state_key *key = p->state;
1145 GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
1146 ir_rvalue *bump;
1147 ir_rvalue *texcoord;
1148 ir_variable *rot_mat_0_var, *rot_mat_1_var;
1149 ir_dereference_variable *rot_mat_0, *rot_mat_1;
1150
1151 rot_mat_0_var = p->shader->symbols->get_variable("gl_BumpRotMatrix0MESA");
1152 rot_mat_1_var = p->shader->symbols->get_variable("gl_BumpRotMatrix1MESA");
1153 rot_mat_0 = new(p->mem_ctx) ir_dereference_variable(rot_mat_0_var);
1154 rot_mat_1 = new(p->mem_ctx) ir_dereference_variable(rot_mat_1_var);
1155
1156 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
1157 assert(tc_array);
1158 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
1159 ir_rvalue *index = new(p->mem_ctx) ir_constant(bumpedUnitNr);
1160 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
1161 tc_array->max_array_access = MAX2(tc_array->max_array_access, unit);
1162
1163 load_texenv_source( p, unit + SRC_TEXTURE0, unit );
1164
1165 /* Apply rot matrix and add coords to be available in next phase.
1166 * dest = Arg1 + (Arg0.xx * rotMat0) + (Arg0.yy * rotMat1)
1167 * note only 2 coords are affected the rest are left unchanged (mul by 0)
1168 */
1169 ir_dereference *deref;
1170 ir_assignment *assign;
1171 ir_rvalue *bump_x, *bump_y;
1172
1173 texcoord = smear(p, texcoord);
1174
1175 /* bump_texcoord = texcoord */
1176 ir_variable *bumped = new(p->mem_ctx) ir_variable(texcoord->type,
1177 "bump_texcoord",
1178 ir_var_temporary);
1179 p->instructions->push_tail(bumped);
1180
1181 deref = new(p->mem_ctx) ir_dereference_variable(bumped);
1182 assign = new(p->mem_ctx) ir_assignment(deref, texcoord);
1183 p->instructions->push_tail(assign);
1184
1185 /* bump_texcoord.xy += arg0.x * rotmat0 + arg0.y * rotmat1 */
1186 bump = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
1187 bump_x = new(p->mem_ctx) ir_swizzle(bump, 0, 0, 0, 0, 1);
1188 bump = bump->clone(p->mem_ctx, NULL);
1189 bump_y = new(p->mem_ctx) ir_swizzle(bump, 1, 0, 0, 0, 1);
1190
1191 bump_x = new(p->mem_ctx) ir_expression(ir_binop_mul, bump_x, rot_mat_0);
1192 bump_y = new(p->mem_ctx) ir_expression(ir_binop_mul, bump_y, rot_mat_1);
1193
1194 ir_expression *expr;
1195 expr = new(p->mem_ctx) ir_expression(ir_binop_add, bump_x, bump_y);
1196
1197 deref = new(p->mem_ctx) ir_dereference_variable(bumped);
1198 expr = new(p->mem_ctx) ir_expression(ir_binop_add,
1199 new(p->mem_ctx) ir_swizzle(deref,
1200 0, 1, 1, 1,
1201 2),
1202 expr);
1203
1204 deref = new(p->mem_ctx) ir_dereference_variable(bumped);
1205 assign = new(p->mem_ctx) ir_assignment(deref, expr, NULL, WRITEMASK_XY);
1206 p->instructions->push_tail(assign);
1207
1208 p->texcoord_tex[bumpedUnitNr] = bumped;
1209 }
1210
1211 /**
1212 * Applies the fog calculations.
1213 *
1214 * This is basically like the ARB_fragment_prorgam fog options. Note
1215 * that ffvertex_prog.c produces fogcoord for us when
1216 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
1217 */
1218 static ir_rvalue *
1219 emit_fog_instructions(struct texenv_fragment_program *p,
1220 ir_rvalue *fragcolor)
1221 {
1222 struct state_key *key = p->state;
1223 ir_rvalue *f, *temp;
1224 ir_variable *params, *oparams;
1225 ir_variable *fogcoord;
1226 ir_assignment *assign;
1227
1228 /* Temporary storage for the whole fog result. Fog calculations
1229 * only affect rgb so we're hanging on to the .a value of fragcolor
1230 * this way.
1231 */
1232 ir_variable *fog_result = new(p->mem_ctx) ir_variable(glsl_type::vec4_type,
1233 "fog_result",
1234 ir_var_auto);
1235 p->instructions->push_tail(fog_result);
1236 temp = new(p->mem_ctx) ir_dereference_variable(fog_result);
1237 assign = new(p->mem_ctx) ir_assignment(temp, fragcolor);
1238 p->instructions->push_tail(assign);
1239
1240 temp = new(p->mem_ctx) ir_dereference_variable(fog_result);
1241 fragcolor = new(p->mem_ctx) ir_swizzle(temp, 0, 1, 2, 3, 3);
1242
1243 oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
1244 fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
1245 params = p->shader->symbols->get_variable("gl_Fog");
1246 f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
1247
1248 ir_variable *f_var = new(p->mem_ctx) ir_variable(glsl_type::float_type,
1249 "fog_factor", ir_var_auto);
1250 p->instructions->push_tail(f_var);
1251
1252 switch (key->fog_mode) {
1253 case FOG_LINEAR:
1254 /* f = (end - z) / (end - start)
1255 *
1256 * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
1257 * (end / (end - start)) so we can generate a single MAD.
1258 */
1259 temp = new(p->mem_ctx) ir_dereference_variable(oparams);
1260 temp = new(p->mem_ctx) ir_swizzle(temp, 0, 0, 0, 0, 1);
1261 f = new(p->mem_ctx) ir_expression(ir_binop_mul, f, temp);
1262
1263 temp = new(p->mem_ctx) ir_dereference_variable(oparams);
1264 temp = new(p->mem_ctx) ir_swizzle(temp, 1, 0, 0, 0, 1);
1265 f = new(p->mem_ctx) ir_expression(ir_binop_add, f, temp);
1266 break;
1267 case FOG_EXP:
1268 /* f = e^(-(density * fogcoord))
1269 *
1270 * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
1271 * use EXP2 which is generally the native instruction without
1272 * having to do any further math on the fog density uniform.
1273 */
1274 temp = new(p->mem_ctx) ir_dereference_variable(oparams);
1275 temp = new(p->mem_ctx) ir_swizzle(temp, 2, 0, 0, 0, 1);
1276 f = new(p->mem_ctx) ir_expression(ir_binop_mul, f, temp);
1277 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1278 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1279 break;
1280 case FOG_EXP2:
1281 /* f = e^(-(density * fogcoord)^2)
1282 *
1283 * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
1284 * can do this like FOG_EXP but with a squaring after the
1285 * multiply by density.
1286 */
1287 ir_variable *temp_var = new(p->mem_ctx) ir_variable(glsl_type::float_type,
1288 "fog_temp",
1289 ir_var_auto);
1290 p->instructions->push_tail(temp_var);
1291
1292 temp = new(p->mem_ctx) ir_dereference_variable(oparams);
1293 temp = new(p->mem_ctx) ir_swizzle(temp, 3, 0, 0, 0, 1);
1294 f = new(p->mem_ctx) ir_expression(ir_binop_mul,
1295 f, temp);
1296
1297 temp = new(p->mem_ctx) ir_dereference_variable(temp_var);
1298 ir_assignment *assign = new(p->mem_ctx) ir_assignment(temp, f);
1299 p->instructions->push_tail(assign);
1300
1301 f = new(p->mem_ctx) ir_dereference_variable(temp_var);
1302 temp = new(p->mem_ctx) ir_dereference_variable(temp_var);
1303 f = new(p->mem_ctx) ir_expression(ir_binop_mul, f, temp);
1304 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1305 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1306 break;
1307 }
1308
1309 f = saturate(p, f);
1310
1311 temp = new(p->mem_ctx) ir_dereference_variable(f_var);
1312 assign = new(p->mem_ctx) ir_assignment(temp, f);
1313 p->instructions->push_tail(assign);
1314
1315 f = new(p->mem_ctx) ir_dereference_variable(f_var);
1316 f = new(p->mem_ctx) ir_expression(ir_binop_sub,
1317 new(p->mem_ctx) ir_constant(1.0f),
1318 f);
1319 temp = new(p->mem_ctx) ir_dereference_variable(params);
1320 temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
1321 temp = new(p->mem_ctx) ir_swizzle(temp, 0, 1, 2, 3, 3);
1322 temp = new(p->mem_ctx) ir_expression(ir_binop_mul, temp, f);
1323
1324 f = new(p->mem_ctx) ir_dereference_variable(f_var);
1325 f = new(p->mem_ctx) ir_expression(ir_binop_mul, fragcolor, f);
1326 f = new(p->mem_ctx) ir_expression(ir_binop_add, temp, f);
1327
1328 ir_dereference *deref = new(p->mem_ctx) ir_dereference_variable(fog_result);
1329 assign = new(p->mem_ctx) ir_assignment(deref, f, NULL, WRITEMASK_XYZ);
1330 p->instructions->push_tail(assign);
1331
1332 return new(p->mem_ctx) ir_dereference_variable(fog_result);
1333 }
1334
1335 static void
1336 emit_instructions(struct texenv_fragment_program *p)
1337 {
1338 struct state_key *key = p->state;
1339 GLuint unit;
1340
1341 if (key->enabled_units) {
1342 /* Zeroth pass - bump map textures first */
1343 for (unit = 0; unit < key->nr_enabled_units; unit++) {
1344 if (key->unit[unit].enabled &&
1345 key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
1346 load_texunit_bumpmap(p, unit);
1347 }
1348 }
1349
1350 /* First pass - to support texture_env_crossbar, first identify
1351 * all referenced texture sources and emit texld instructions
1352 * for each:
1353 */
1354 for (unit = 0; unit < key->nr_enabled_units; unit++)
1355 if (key->unit[unit].enabled) {
1356 load_texunit_sources(p, unit);
1357 p->last_tex_stage = unit;
1358 }
1359
1360 /* Second pass - emit combine instructions to build final color:
1361 */
1362 for (unit = 0; unit < key->nr_enabled_units; unit++) {
1363 if (key->unit[unit].enabled) {
1364 p->src_previous = emit_texenv(p, unit);
1365 }
1366 }
1367 }
1368
1369 ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0);
1370 ir_dereference_variable *deref;
1371 ir_assignment *assign;
1372
1373 if (key->separate_specular) {
1374 ir_rvalue *tmp0;
1375 ir_variable *spec_result = new(p->mem_ctx) ir_variable(glsl_type::vec4_type,
1376 "specular_add",
1377 ir_var_temporary);
1378
1379 p->instructions->push_tail(spec_result);
1380
1381 deref = new(p->mem_ctx) ir_dereference_variable(spec_result);
1382 assign = new(p->mem_ctx) ir_assignment(deref, cf);
1383 p->instructions->push_tail(assign);
1384
1385 deref = new(p->mem_ctx) ir_dereference_variable(spec_result);
1386 tmp0 = new(p->mem_ctx) ir_swizzle(deref, 0, 1, 2, 3, 3);
1387
1388 ir_rvalue *secondary;
1389 if (p->state->inputs_available & FRAG_BIT_COL1) {
1390 ir_variable *var =
1391 p->shader->symbols->get_variable("gl_SecondaryColor");
1392 assert(var);
1393 secondary = new(p->mem_ctx) ir_dereference_variable(var);
1394 } else {
1395 secondary = get_current_attrib(p, VERT_ATTRIB_COLOR1);
1396 }
1397 secondary = new(p->mem_ctx) ir_swizzle(secondary, 0, 1, 2, 3, 3);
1398
1399 tmp0 = new(p->mem_ctx) ir_expression(ir_binop_add, tmp0, secondary);
1400
1401 deref = new(p->mem_ctx) ir_dereference_variable(spec_result);
1402 assign = new(p->mem_ctx) ir_assignment(deref, tmp0, NULL, WRITEMASK_XYZ);
1403 p->instructions->push_tail(assign);
1404
1405 cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1406 }
1407
1408 if (key->fog_enabled) {
1409 cf = emit_fog_instructions(p, cf);
1410 }
1411
1412 ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1413 assert(frag_color);
1414 deref = new(p->mem_ctx) ir_dereference_variable(frag_color);
1415 assign = new(p->mem_ctx) ir_assignment(deref, cf);
1416 p->instructions->push_tail(assign);
1417 }
1418
1419 /**
1420 * Generate a new fragment program which implements the context's
1421 * current texture env/combine mode.
1422 */
1423 static struct gl_shader_program *
1424 create_new_program(struct gl_context *ctx, struct state_key *key)
1425 {
1426 struct texenv_fragment_program p;
1427 unsigned int unit;
1428 _mesa_glsl_parse_state *state;
1429
1430 memset(&p, 0, sizeof(p));
1431 p.mem_ctx = ralloc_context(NULL);
1432 p.shader = ctx->Driver.NewShader(ctx, 0, GL_FRAGMENT_SHADER);
1433 p.shader->ir = new(p.shader) exec_list;
1434 state = new(p.shader) _mesa_glsl_parse_state(ctx, GL_FRAGMENT_SHADER,
1435 p.shader);
1436 p.shader->symbols = state->symbols;
1437 p.top_instructions = p.shader->ir;
1438 p.instructions = p.shader->ir;
1439 p.state = key;
1440 p.shader_program = ctx->Driver.NewShaderProgram(ctx, 0);
1441
1442 /* Tell the linker to ignore the fact that we're building a
1443 * separate shader, in case we're in a GLES2 context that would
1444 * normally reject that. The real problem is that we're building a
1445 * fixed function program in a GLES2 context at all, but that's a
1446 * big mess to clean up.
1447 */
1448 p.shader_program->InternalSeparateShader = GL_TRUE;
1449
1450 state->language_version = 130;
1451 if (ctx->Extensions.OES_EGL_image_external)
1452 state->OES_EGL_image_external_enable = true;
1453 _mesa_glsl_initialize_types(state);
1454 _mesa_glsl_initialize_variables(p.instructions, state);
1455
1456 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1457 p.src_texture[unit] = NULL;
1458 p.texcoord_tex[unit] = NULL;
1459 }
1460
1461 p.src_previous = NULL;
1462
1463 p.last_tex_stage = 0;
1464
1465 ir_function *main_f = new(p.mem_ctx) ir_function("main");
1466 p.instructions->push_tail(main_f);
1467 state->symbols->add_function(main_f);
1468
1469 ir_function_signature *main_sig =
1470 new(p.mem_ctx) ir_function_signature(p.shader->symbols->get_type("void"));
1471 main_sig->is_defined = true;
1472 main_f->add_signature(main_sig);
1473
1474 p.instructions = &main_sig->body;
1475 if (key->num_draw_buffers)
1476 emit_instructions(&p);
1477
1478 validate_ir_tree(p.shader->ir);
1479
1480 while (do_common_optimization(p.shader->ir, false, false, 32))
1481 ;
1482 reparent_ir(p.shader->ir, p.shader->ir);
1483
1484 p.shader->CompileStatus = true;
1485 p.shader->Version = state->language_version;
1486 p.shader->num_builtins_to_link = state->num_builtins_to_link;
1487 p.shader_program->Shaders =
1488 (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1489 p.shader_program->Shaders[0] = p.shader;
1490 p.shader_program->NumShaders = 1;
1491
1492 _mesa_glsl_link_shader(ctx, p.shader_program);
1493
1494 /* Set the sampler uniforms, and relink to get them into the linked
1495 * program.
1496 */
1497 struct gl_program *fp;
1498 fp = p.shader_program->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
1499
1500 for (unsigned int i = 0; i < MAX_TEXTURE_UNITS; i++) {
1501 char *name = ralloc_asprintf(p.mem_ctx, "sampler_%d", i);
1502 int loc = _mesa_get_uniform_location(ctx, p.shader_program, name);
1503 if (loc != -1) {
1504 /* Avoid using _mesa_uniform() because it flags state
1505 * updates, so if we're generating this shader_program in a
1506 * state update, we end up recursing. Instead, just set the
1507 * value, which is picked up at re-link.
1508 */
1509 loc = (loc & 0xffff) + (loc >> 16);
1510 int sampler = fp->Parameters->ParameterValues[loc][0].f;
1511
1512 fp->SamplerUnits[sampler] = i;
1513 }
1514 }
1515 _mesa_update_shader_textures_used(fp);
1516 (void) ctx->Driver.ProgramStringNotify(ctx, fp->Target, fp);
1517
1518 if (!p.shader_program->LinkStatus)
1519 _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1520 p.shader_program->InfoLog);
1521
1522 ralloc_free(p.mem_ctx);
1523 return p.shader_program;
1524 }
1525
1526 extern "C" {
1527
1528 /**
1529 * Return a fragment program which implements the current
1530 * fixed-function texture, fog and color-sum operations.
1531 */
1532 struct gl_shader_program *
1533 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1534 {
1535 struct gl_shader_program *shader_program;
1536 struct state_key key;
1537 GLuint keySize;
1538
1539 keySize = make_state_key(ctx, &key);
1540
1541 shader_program = (struct gl_shader_program *)
1542 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1543 &key, keySize);
1544
1545 if (!shader_program) {
1546 shader_program = create_new_program(ctx, &key);
1547
1548 _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1549 &key, keySize, shader_program);
1550 }
1551
1552 return shader_program;
1553 }
1554
1555 }