mesa: add packing support for setting uniforms
[mesa.git] / src / mesa / main / ff_fragment_shader.cpp
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32 #include "main/imports.h"
33 #include "main/macros.h"
34 #include "main/samplerobj.h"
35 #include "main/shaderobj.h"
36 #include "main/state.h"
37 #include "main/texenvprogram.h"
38 #include "main/texobj.h"
39 #include "main/uniforms.h"
40 #include "compiler/glsl/ir_builder.h"
41 #include "compiler/glsl/ir_optimization.h"
42 #include "compiler/glsl/glsl_parser_extras.h"
43 #include "compiler/glsl/glsl_symbol_table.h"
44 #include "compiler/glsl_types.h"
45 #include "program/ir_to_mesa.h"
46 #include "program/program.h"
47 #include "program/programopt.h"
48 #include "program/prog_cache.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_parameter.h"
51 #include "program/prog_print.h"
52 #include "program/prog_statevars.h"
53 #include "util/bitscan.h"
54
55 using namespace ir_builder;
56
57 /*
58 * Note on texture units:
59 *
60 * The number of texture units supported by fixed-function fragment
61 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
62 * That's because there's a one-to-one correspondence between texture
63 * coordinates and samplers in fixed-function processing.
64 *
65 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
66 * sets of texcoords, so is fixed-function fragment processing.
67 *
68 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
69 */
70
71
72 static GLboolean
73 texenv_doing_secondary_color(struct gl_context *ctx)
74 {
75 if (ctx->Light.Enabled &&
76 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
77 return GL_TRUE;
78
79 if (ctx->Fog.ColorSumEnabled)
80 return GL_TRUE;
81
82 return GL_FALSE;
83 }
84
85 struct state_key {
86 GLuint nr_enabled_units:4;
87 GLuint separate_specular:1;
88 GLuint fog_mode:2; /**< FOG_x */
89 GLuint inputs_available:12;
90 GLuint num_draw_buffers:4;
91
92 /* NOTE: This array of structs must be last! (see "keySize" below) */
93 struct {
94 GLuint enabled:1;
95 GLuint source_index:4; /**< TEXTURE_x_INDEX */
96 GLuint shadow:1;
97
98 /***
99 * These are taken from struct gl_tex_env_combine_packed
100 * @{
101 */
102 GLuint ModeRGB:4;
103 GLuint ModeA:4;
104 GLuint ScaleShiftRGB:2;
105 GLuint ScaleShiftA:2;
106 GLuint NumArgsRGB:3;
107 GLuint NumArgsA:3;
108 struct gl_tex_env_argument ArgsRGB[MAX_COMBINER_TERMS];
109 struct gl_tex_env_argument ArgsA[MAX_COMBINER_TERMS];
110 /** @} */
111 } unit[MAX_TEXTURE_COORD_UNITS];
112 };
113
114
115 /**
116 * Do we need to clamp the results of the given texture env/combine mode?
117 * If the inputs to the mode are in [0,1] we don't always have to clamp
118 * the results.
119 */
120 static GLboolean
121 need_saturate( GLuint mode )
122 {
123 switch (mode) {
124 case TEXENV_MODE_REPLACE:
125 case TEXENV_MODE_MODULATE:
126 case TEXENV_MODE_INTERPOLATE:
127 return GL_FALSE;
128 case TEXENV_MODE_ADD:
129 case TEXENV_MODE_ADD_SIGNED:
130 case TEXENV_MODE_SUBTRACT:
131 case TEXENV_MODE_DOT3_RGB:
132 case TEXENV_MODE_DOT3_RGB_EXT:
133 case TEXENV_MODE_DOT3_RGBA:
134 case TEXENV_MODE_DOT3_RGBA_EXT:
135 case TEXENV_MODE_MODULATE_ADD_ATI:
136 case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
137 case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
138 case TEXENV_MODE_ADD_PRODUCTS_NV:
139 case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
140 return GL_TRUE;
141 default:
142 assert(0);
143 return GL_FALSE;
144 }
145 }
146
147 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
148
149 /**
150 * Identify all possible varying inputs. The fragment program will
151 * never reference non-varying inputs, but will track them via state
152 * constants instead.
153 *
154 * This function figures out all the inputs that the fragment program
155 * has access to and filters input bitmask.
156 */
157 static GLbitfield filter_fp_input_mask( GLbitfield fp_inputs,
158 struct gl_context *ctx )
159 {
160 if (ctx->VertexProgram._Overriden) {
161 /* Somebody's messing with the vertex program and we don't have
162 * a clue what's happening. Assume that it could be producing
163 * all possible outputs.
164 */
165 return fp_inputs;
166 }
167
168 if (ctx->RenderMode == GL_FEEDBACK) {
169 /* _NEW_RENDERMODE */
170 return fp_inputs & (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
171 }
172
173 /* _NEW_PROGRAM */
174 const GLboolean vertexShader =
175 ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] != NULL;
176 const GLboolean vertexProgram = _mesa_arb_vertex_program_enabled(ctx);
177
178 if (!(vertexProgram || vertexShader)) {
179 /* Fixed function vertex logic */
180 GLbitfield possible_inputs = 0;
181
182 /* _NEW_VARYING_VP_INPUTS */
183 GLbitfield varying_inputs = ctx->varying_vp_inputs;
184
185 /* These get generated in the setup routine regardless of the
186 * vertex program:
187 */
188 /* _NEW_POINT */
189 if (ctx->Point.PointSprite) {
190 /* All texture varyings are possible to use */
191 possible_inputs = VARYING_BITS_TEX_ANY;
192 }
193 else {
194 /* _NEW_TEXTURE_STATE */
195 const GLbitfield possible_tex_inputs =
196 ctx->Texture._TexGenEnabled |
197 ctx->Texture._TexMatEnabled |
198 ((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0);
199
200 possible_inputs = (possible_tex_inputs << VARYING_SLOT_TEX0);
201 }
202
203 /* First look at what values may be computed by the generated
204 * vertex program:
205 */
206 /* _NEW_LIGHT */
207 if (ctx->Light.Enabled) {
208 possible_inputs |= VARYING_BIT_COL0;
209
210 if (texenv_doing_secondary_color(ctx))
211 possible_inputs |= VARYING_BIT_COL1;
212 }
213
214 /* Then look at what might be varying as a result of enabled
215 * arrays, etc:
216 */
217 if (varying_inputs & VERT_BIT_COLOR0)
218 possible_inputs |= VARYING_BIT_COL0;
219 if (varying_inputs & VERT_BIT_COLOR1)
220 possible_inputs |= VARYING_BIT_COL1;
221
222 return fp_inputs & possible_inputs;
223 }
224
225 /* calculate from vp->outputs */
226 struct gl_program *vprog;
227
228 /* Choose GLSL vertex shader over ARB vertex program. Need this
229 * since vertex shader state validation comes after fragment state
230 * validation (see additional comments in state.c).
231 */
232 if (vertexShader)
233 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX];
234 else
235 vprog = ctx->VertexProgram.Current;
236
237 GLbitfield possible_inputs = vprog->info.outputs_written;
238
239 /* These get generated in the setup routine regardless of the
240 * vertex program:
241 */
242 /* _NEW_POINT */
243 if (ctx->Point.PointSprite) {
244 /* All texture varyings are possible to use */
245 possible_inputs |= VARYING_BITS_TEX_ANY;
246 }
247
248 return fp_inputs & possible_inputs;
249 }
250
251
252 /**
253 * Examine current texture environment state and generate a unique
254 * key to identify it.
255 */
256 static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
257 {
258 GLbitfield inputs_referenced = VARYING_BIT_COL0;
259 GLbitfield mask;
260 GLuint keySize;
261
262 memset(key, 0, sizeof(*key));
263
264 /* _NEW_TEXTURE_OBJECT */
265 mask = ctx->Texture._EnabledCoordUnits;
266 int i = -1;
267 while (mask) {
268 i = u_bit_scan(&mask);
269 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
270 const struct gl_texture_object *texObj = texUnit->_Current;
271 const struct gl_tex_env_combine_packed *comb =
272 &ctx->Texture.FixedFuncUnit[i]._CurrentCombinePacked;
273
274 if (!texObj)
275 continue;
276
277 key->unit[i].enabled = 1;
278 inputs_referenced |= VARYING_BIT_TEX(i);
279
280 key->unit[i].source_index = texObj->TargetIndex;
281
282 const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, i);
283 if (samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) {
284 const GLenum format = _mesa_texture_base_format(texObj);
285 key->unit[i].shadow = (format == GL_DEPTH_COMPONENT ||
286 format == GL_DEPTH_STENCIL_EXT);
287 }
288
289 key->unit[i].ModeRGB = comb->ModeRGB;
290 key->unit[i].ModeA = comb->ModeA;
291 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
292 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
293 key->unit[i].NumArgsRGB = comb->NumArgsRGB;
294 key->unit[i].NumArgsA = comb->NumArgsA;
295
296 memcpy(key->unit[i].ArgsRGB, comb->ArgsRGB, sizeof comb->ArgsRGB);
297 memcpy(key->unit[i].ArgsA, comb->ArgsA, sizeof comb->ArgsA);
298 }
299
300 key->nr_enabled_units = i + 1;
301
302 /* _NEW_LIGHT | _NEW_FOG */
303 if (texenv_doing_secondary_color(ctx)) {
304 key->separate_specular = 1;
305 inputs_referenced |= VARYING_BIT_COL1;
306 }
307
308 /* _NEW_FOG */
309 key->fog_mode = ctx->Fog._PackedEnabledMode;
310
311 /* _NEW_BUFFERS */
312 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
313
314 /* _NEW_COLOR */
315 if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
316 /* if alpha test is enabled we need to emit at least one color */
317 key->num_draw_buffers = 1;
318 }
319
320 key->inputs_available = filter_fp_input_mask(inputs_referenced, ctx);
321
322 /* compute size of state key, ignoring unused texture units */
323 keySize = sizeof(*key) - sizeof(key->unit)
324 + key->nr_enabled_units * sizeof(key->unit[0]);
325
326 return keySize;
327 }
328
329
330 /** State used to build the fragment program:
331 */
332 class texenv_fragment_program : public ir_factory {
333 public:
334 struct gl_shader_program *shader_program;
335 struct gl_shader *shader;
336 exec_list *top_instructions;
337 struct state_key *state;
338
339 ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
340 /* Reg containing each texture unit's sampled texture color,
341 * else undef.
342 */
343
344 /* Texcoord override from bumpmapping. */
345 ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
346
347 /* Reg containing texcoord for a texture unit,
348 * needed for bump mapping, else undef.
349 */
350
351 ir_rvalue *src_previous; /**< Reg containing color from previous
352 * stage. May need to be decl'd.
353 */
354 };
355
356 static ir_rvalue *
357 get_current_attrib(texenv_fragment_program *p, GLuint attrib)
358 {
359 ir_variable *current;
360 ir_rvalue *val;
361
362 current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
363 assert(current);
364 current->data.max_array_access = MAX2(current->data.max_array_access, (int)attrib);
365 val = new(p->mem_ctx) ir_dereference_variable(current);
366 ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
367 return new(p->mem_ctx) ir_dereference_array(val, index);
368 }
369
370 static ir_rvalue *
371 get_gl_Color(texenv_fragment_program *p)
372 {
373 if (p->state->inputs_available & VARYING_BIT_COL0) {
374 ir_variable *var = p->shader->symbols->get_variable("gl_Color");
375 assert(var);
376 return new(p->mem_ctx) ir_dereference_variable(var);
377 } else {
378 return get_current_attrib(p, VERT_ATTRIB_COLOR0);
379 }
380 }
381
382 static ir_rvalue *
383 get_source(texenv_fragment_program *p,
384 GLuint src, GLuint unit)
385 {
386 ir_variable *var;
387 ir_dereference *deref;
388
389 switch (src) {
390 case TEXENV_SRC_TEXTURE:
391 return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
392
393 case TEXENV_SRC_TEXTURE0:
394 case TEXENV_SRC_TEXTURE1:
395 case TEXENV_SRC_TEXTURE2:
396 case TEXENV_SRC_TEXTURE3:
397 case TEXENV_SRC_TEXTURE4:
398 case TEXENV_SRC_TEXTURE5:
399 case TEXENV_SRC_TEXTURE6:
400 case TEXENV_SRC_TEXTURE7:
401 return new(p->mem_ctx)
402 ir_dereference_variable(p->src_texture[src - TEXENV_SRC_TEXTURE0]);
403
404 case TEXENV_SRC_CONSTANT:
405 var = p->shader->symbols->get_variable("gl_TextureEnvColor");
406 assert(var);
407 deref = new(p->mem_ctx) ir_dereference_variable(var);
408 var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
409 return new(p->mem_ctx) ir_dereference_array(deref,
410 new(p->mem_ctx) ir_constant(unit));
411
412 case TEXENV_SRC_PRIMARY_COLOR:
413 var = p->shader->symbols->get_variable("gl_Color");
414 assert(var);
415 return new(p->mem_ctx) ir_dereference_variable(var);
416
417 case TEXENV_SRC_ZERO:
418 return new(p->mem_ctx) ir_constant(0.0f);
419
420 case TEXENV_SRC_ONE:
421 return new(p->mem_ctx) ir_constant(1.0f);
422
423 case TEXENV_SRC_PREVIOUS:
424 if (!p->src_previous) {
425 return get_gl_Color(p);
426 } else {
427 return p->src_previous->clone(p->mem_ctx, NULL);
428 }
429
430 default:
431 assert(0);
432 return NULL;
433 }
434 }
435
436 static ir_rvalue *
437 emit_combine_source(texenv_fragment_program *p,
438 GLuint unit,
439 GLuint source,
440 GLuint operand)
441 {
442 ir_rvalue *src;
443
444 src = get_source(p, source, unit);
445
446 switch (operand) {
447 case TEXENV_OPR_ONE_MINUS_COLOR:
448 return sub(new(p->mem_ctx) ir_constant(1.0f), src);
449
450 case TEXENV_OPR_ALPHA:
451 return src->type->is_scalar() ? src : swizzle_w(src);
452
453 case TEXENV_OPR_ONE_MINUS_ALPHA: {
454 ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
455
456 return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
457 }
458
459 case TEXENV_OPR_COLOR:
460 return src;
461
462 default:
463 assert(0);
464 return src;
465 }
466 }
467
468 /**
469 * Check if the RGB and Alpha sources and operands match for the given
470 * texture unit's combinder state. When the RGB and A sources and
471 * operands match, we can emit fewer instructions.
472 */
473 static GLboolean args_match( const struct state_key *key, GLuint unit )
474 {
475 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
476
477 for (i = 0; i < numArgs; i++) {
478 if (key->unit[unit].ArgsA[i].Source != key->unit[unit].ArgsRGB[i].Source)
479 return GL_FALSE;
480
481 switch (key->unit[unit].ArgsA[i].Operand) {
482 case TEXENV_OPR_ALPHA:
483 switch (key->unit[unit].ArgsRGB[i].Operand) {
484 case TEXENV_OPR_COLOR:
485 case TEXENV_OPR_ALPHA:
486 break;
487 default:
488 return GL_FALSE;
489 }
490 break;
491 case TEXENV_OPR_ONE_MINUS_ALPHA:
492 switch (key->unit[unit].ArgsRGB[i].Operand) {
493 case TEXENV_OPR_ONE_MINUS_COLOR:
494 case TEXENV_OPR_ONE_MINUS_ALPHA:
495 break;
496 default:
497 return GL_FALSE;
498 }
499 break;
500 default:
501 return GL_FALSE; /* impossible */
502 }
503 }
504
505 return GL_TRUE;
506 }
507
508 static ir_rvalue *
509 smear(ir_rvalue *val)
510 {
511 if (!val->type->is_scalar())
512 return val;
513
514 return swizzle_xxxx(val);
515 }
516
517 static ir_rvalue *
518 emit_combine(texenv_fragment_program *p,
519 GLuint unit,
520 GLuint nr,
521 GLuint mode,
522 const struct gl_tex_env_argument *opt)
523 {
524 ir_rvalue *src[MAX_COMBINER_TERMS];
525 ir_rvalue *tmp0, *tmp1;
526 GLuint i;
527
528 assert(nr <= MAX_COMBINER_TERMS);
529
530 for (i = 0; i < nr; i++)
531 src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
532
533 switch (mode) {
534 case TEXENV_MODE_REPLACE:
535 return src[0];
536
537 case TEXENV_MODE_MODULATE:
538 return mul(src[0], src[1]);
539
540 case TEXENV_MODE_ADD:
541 return add(src[0], src[1]);
542
543 case TEXENV_MODE_ADD_SIGNED:
544 return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
545
546 case TEXENV_MODE_INTERPOLATE:
547 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
548 tmp0 = mul(src[0], src[2]);
549 tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
550 src[2]->clone(p->mem_ctx, NULL)));
551 return add(tmp0, tmp1);
552
553 case TEXENV_MODE_SUBTRACT:
554 return sub(src[0], src[1]);
555
556 case TEXENV_MODE_DOT3_RGBA:
557 case TEXENV_MODE_DOT3_RGBA_EXT:
558 case TEXENV_MODE_DOT3_RGB_EXT:
559 case TEXENV_MODE_DOT3_RGB: {
560 tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
561 tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
562
563 tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
564 tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
565
566 return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
567 }
568 case TEXENV_MODE_MODULATE_ADD_ATI:
569 return add(mul(src[0], src[2]), src[1]);
570
571 case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
572 return add(add(mul(src[0], src[2]), src[1]),
573 new(p->mem_ctx) ir_constant(-0.5f));
574
575 case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
576 return sub(mul(src[0], src[2]), src[1]);
577
578 case TEXENV_MODE_ADD_PRODUCTS_NV:
579 return add(mul(src[0], src[1]), mul(src[2], src[3]));
580
581 case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
582 return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
583 new(p->mem_ctx) ir_constant(-0.5f));
584 default:
585 assert(0);
586 return src[0];
587 }
588 }
589
590 /**
591 * Generate instructions for one texture unit's env/combiner mode.
592 */
593 static ir_rvalue *
594 emit_texenv(texenv_fragment_program *p, GLuint unit)
595 {
596 const struct state_key *key = p->state;
597 GLboolean rgb_saturate, alpha_saturate;
598 GLuint rgb_shift, alpha_shift;
599
600 if (!key->unit[unit].enabled) {
601 return get_source(p, TEXENV_SRC_PREVIOUS, 0);
602 }
603
604 switch (key->unit[unit].ModeRGB) {
605 case TEXENV_MODE_DOT3_RGB_EXT:
606 alpha_shift = key->unit[unit].ScaleShiftA;
607 rgb_shift = 0;
608 break;
609 case TEXENV_MODE_DOT3_RGBA_EXT:
610 alpha_shift = 0;
611 rgb_shift = 0;
612 break;
613 default:
614 rgb_shift = key->unit[unit].ScaleShiftRGB;
615 alpha_shift = key->unit[unit].ScaleShiftA;
616 break;
617 }
618
619 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
620 * We don't want to clamp twice.
621 */
622 if (rgb_shift)
623 rgb_saturate = GL_FALSE; /* saturate after rgb shift */
624 else if (need_saturate(key->unit[unit].ModeRGB))
625 rgb_saturate = GL_TRUE;
626 else
627 rgb_saturate = GL_FALSE;
628
629 if (alpha_shift)
630 alpha_saturate = GL_FALSE; /* saturate after alpha shift */
631 else if (need_saturate(key->unit[unit].ModeA))
632 alpha_saturate = GL_TRUE;
633 else
634 alpha_saturate = GL_FALSE;
635
636 ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
637 ir_dereference *deref;
638 ir_rvalue *val;
639
640 /* Emit the RGB and A combine ops
641 */
642 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
643 args_match(key, unit)) {
644 val = emit_combine(p, unit,
645 key->unit[unit].NumArgsRGB,
646 key->unit[unit].ModeRGB,
647 key->unit[unit].ArgsRGB);
648 val = smear(val);
649 if (rgb_saturate)
650 val = saturate(val);
651
652 p->emit(assign(temp_var, val));
653 }
654 else if (key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA_EXT ||
655 key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA) {
656 ir_rvalue *val = emit_combine(p, unit,
657 key->unit[unit].NumArgsRGB,
658 key->unit[unit].ModeRGB,
659 key->unit[unit].ArgsRGB);
660 val = smear(val);
661 if (rgb_saturate)
662 val = saturate(val);
663 p->emit(assign(temp_var, val));
664 }
665 else {
666 /* Need to do something to stop from re-emitting identical
667 * argument calculations here:
668 */
669 val = emit_combine(p, unit,
670 key->unit[unit].NumArgsRGB,
671 key->unit[unit].ModeRGB,
672 key->unit[unit].ArgsRGB);
673 val = swizzle_xyz(smear(val));
674 if (rgb_saturate)
675 val = saturate(val);
676 p->emit(assign(temp_var, val, WRITEMASK_XYZ));
677
678 val = emit_combine(p, unit,
679 key->unit[unit].NumArgsA,
680 key->unit[unit].ModeA,
681 key->unit[unit].ArgsA);
682 val = swizzle_w(smear(val));
683 if (alpha_saturate)
684 val = saturate(val);
685 p->emit(assign(temp_var, val, WRITEMASK_W));
686 }
687
688 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
689
690 /* Deal with the final shift:
691 */
692 if (alpha_shift || rgb_shift) {
693 ir_constant *shift;
694
695 if (rgb_shift == alpha_shift) {
696 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
697 }
698 else {
699 ir_constant_data const_data;
700
701 const_data.f[0] = float(1 << rgb_shift);
702 const_data.f[1] = float(1 << rgb_shift);
703 const_data.f[2] = float(1 << rgb_shift);
704 const_data.f[3] = float(1 << alpha_shift);
705
706 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
707 &const_data);
708 }
709
710 return saturate(mul(deref, shift));
711 }
712 else
713 return deref;
714 }
715
716
717 /**
718 * Generate instruction for getting a texture source term.
719 */
720 static void load_texture( texenv_fragment_program *p, GLuint unit )
721 {
722 ir_dereference *deref;
723
724 if (p->src_texture[unit])
725 return;
726
727 const GLuint texTarget = p->state->unit[unit].source_index;
728 ir_rvalue *texcoord;
729
730 if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
731 texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
732 } else if (p->texcoord_tex[unit]) {
733 texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
734 } else {
735 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
736 assert(tc_array);
737 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
738 ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
739 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
740 tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
741 }
742
743 if (!p->state->unit[unit].enabled) {
744 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
745 "dummy_tex");
746 p->emit(p->src_texture[unit]);
747
748 p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
749 return ;
750 }
751
752 const glsl_type *sampler_type = NULL;
753 int coords = 0;
754
755 switch (texTarget) {
756 case TEXTURE_1D_INDEX:
757 if (p->state->unit[unit].shadow)
758 sampler_type = glsl_type::sampler1DShadow_type;
759 else
760 sampler_type = glsl_type::sampler1D_type;
761 coords = 1;
762 break;
763 case TEXTURE_1D_ARRAY_INDEX:
764 if (p->state->unit[unit].shadow)
765 sampler_type = glsl_type::sampler1DArrayShadow_type;
766 else
767 sampler_type = glsl_type::sampler1DArray_type;
768 coords = 2;
769 break;
770 case TEXTURE_2D_INDEX:
771 if (p->state->unit[unit].shadow)
772 sampler_type = glsl_type::sampler2DShadow_type;
773 else
774 sampler_type = glsl_type::sampler2D_type;
775 coords = 2;
776 break;
777 case TEXTURE_2D_ARRAY_INDEX:
778 if (p->state->unit[unit].shadow)
779 sampler_type = glsl_type::sampler2DArrayShadow_type;
780 else
781 sampler_type = glsl_type::sampler2DArray_type;
782 coords = 3;
783 break;
784 case TEXTURE_RECT_INDEX:
785 if (p->state->unit[unit].shadow)
786 sampler_type = glsl_type::sampler2DRectShadow_type;
787 else
788 sampler_type = glsl_type::sampler2DRect_type;
789 coords = 2;
790 break;
791 case TEXTURE_3D_INDEX:
792 assert(!p->state->unit[unit].shadow);
793 sampler_type = glsl_type::sampler3D_type;
794 coords = 3;
795 break;
796 case TEXTURE_CUBE_INDEX:
797 if (p->state->unit[unit].shadow)
798 sampler_type = glsl_type::samplerCubeShadow_type;
799 else
800 sampler_type = glsl_type::samplerCube_type;
801 coords = 3;
802 break;
803 case TEXTURE_EXTERNAL_INDEX:
804 assert(!p->state->unit[unit].shadow);
805 sampler_type = glsl_type::samplerExternalOES_type;
806 coords = 2;
807 break;
808 }
809
810 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
811 "tex");
812
813 ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
814
815
816 char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
817 ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
818 sampler_name,
819 ir_var_uniform);
820 p->top_instructions->push_head(sampler);
821
822 /* Set the texture unit for this sampler in the same way that
823 * layout(binding=X) would.
824 */
825 sampler->data.explicit_binding = true;
826 sampler->data.binding = unit;
827
828 deref = new(p->mem_ctx) ir_dereference_variable(sampler);
829 tex->set_sampler(deref, glsl_type::vec4_type);
830
831 tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
832
833 if (p->state->unit[unit].shadow) {
834 texcoord = texcoord->clone(p->mem_ctx, NULL);
835 tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord,
836 coords, 0, 0, 0,
837 1);
838 coords++;
839 }
840
841 texcoord = texcoord->clone(p->mem_ctx, NULL);
842 tex->projector = swizzle_w(texcoord);
843
844 p->emit(assign(p->src_texture[unit], tex));
845 }
846
847 static void
848 load_texenv_source(texenv_fragment_program *p,
849 GLuint src, GLuint unit)
850 {
851 switch (src) {
852 case TEXENV_SRC_TEXTURE:
853 load_texture(p, unit);
854 break;
855
856 case TEXENV_SRC_TEXTURE0:
857 case TEXENV_SRC_TEXTURE1:
858 case TEXENV_SRC_TEXTURE2:
859 case TEXENV_SRC_TEXTURE3:
860 case TEXENV_SRC_TEXTURE4:
861 case TEXENV_SRC_TEXTURE5:
862 case TEXENV_SRC_TEXTURE6:
863 case TEXENV_SRC_TEXTURE7:
864 load_texture(p, src - TEXENV_SRC_TEXTURE0);
865 break;
866
867 default:
868 /* not a texture src - do nothing */
869 break;
870 }
871 }
872
873
874 /**
875 * Generate instructions for loading all texture source terms.
876 */
877 static GLboolean
878 load_texunit_sources( texenv_fragment_program *p, GLuint unit )
879 {
880 const struct state_key *key = p->state;
881 GLuint i;
882
883 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
884 load_texenv_source( p, key->unit[unit].ArgsRGB[i].Source, unit );
885 }
886
887 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
888 load_texenv_source( p, key->unit[unit].ArgsA[i].Source, unit );
889 }
890
891 return GL_TRUE;
892 }
893
894 /**
895 * Applies the fog calculations.
896 *
897 * This is basically like the ARB_fragment_prorgam fog options. Note
898 * that ffvertex_prog.c produces fogcoord for us when
899 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
900 */
901 static ir_rvalue *
902 emit_fog_instructions(texenv_fragment_program *p,
903 ir_rvalue *fragcolor)
904 {
905 struct state_key *key = p->state;
906 ir_rvalue *f, *temp;
907 ir_variable *params, *oparams;
908 ir_variable *fogcoord;
909
910 /* Temporary storage for the whole fog result. Fog calculations
911 * only affect rgb so we're hanging on to the .a value of fragcolor
912 * this way.
913 */
914 ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
915 p->emit(assign(fog_result, fragcolor));
916
917 fragcolor = swizzle_xyz(fog_result);
918
919 oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
920 assert(oparams);
921 fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
922 assert(fogcoord);
923 params = p->shader->symbols->get_variable("gl_Fog");
924 assert(params);
925 f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
926
927 ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
928
929 switch (key->fog_mode) {
930 case FOG_LINEAR:
931 /* f = (end - z) / (end - start)
932 *
933 * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
934 * (end / (end - start)) so we can generate a single MAD.
935 */
936 f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
937 break;
938 case FOG_EXP:
939 /* f = e^(-(density * fogcoord))
940 *
941 * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
942 * use EXP2 which is generally the native instruction without
943 * having to do any further math on the fog density uniform.
944 */
945 f = mul(f, swizzle_z(oparams));
946 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
947 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
948 break;
949 case FOG_EXP2:
950 /* f = e^(-(density * fogcoord)^2)
951 *
952 * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
953 * can do this like FOG_EXP but with a squaring after the
954 * multiply by density.
955 */
956 ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
957 p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
958
959 f = mul(temp_var, temp_var);
960 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
961 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
962 break;
963 }
964
965 p->emit(assign(f_var, saturate(f)));
966
967 f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
968 temp = new(p->mem_ctx) ir_dereference_variable(params);
969 temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
970 temp = mul(swizzle_xyz(temp), f);
971
972 p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
973
974 return new(p->mem_ctx) ir_dereference_variable(fog_result);
975 }
976
977 static void
978 emit_instructions(texenv_fragment_program *p)
979 {
980 struct state_key *key = p->state;
981 GLuint unit;
982
983 if (key->nr_enabled_units) {
984 /* First pass - to support texture_env_crossbar, first identify
985 * all referenced texture sources and emit texld instructions
986 * for each:
987 */
988 for (unit = 0; unit < key->nr_enabled_units; unit++)
989 if (key->unit[unit].enabled) {
990 load_texunit_sources(p, unit);
991 }
992
993 /* Second pass - emit combine instructions to build final color:
994 */
995 for (unit = 0; unit < key->nr_enabled_units; unit++) {
996 if (key->unit[unit].enabled) {
997 p->src_previous = emit_texenv(p, unit);
998 }
999 }
1000 }
1001
1002 ir_rvalue *cf = get_source(p, TEXENV_SRC_PREVIOUS, 0);
1003
1004 if (key->separate_specular) {
1005 ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
1006 "specular_add");
1007 p->emit(assign(spec_result, cf));
1008
1009 ir_rvalue *secondary;
1010 if (p->state->inputs_available & VARYING_BIT_COL1) {
1011 ir_variable *var =
1012 p->shader->symbols->get_variable("gl_SecondaryColor");
1013 assert(var);
1014 secondary = swizzle_xyz(var);
1015 } else {
1016 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1017 }
1018
1019 p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1020 WRITEMASK_XYZ));
1021
1022 cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1023 }
1024
1025 if (key->fog_mode) {
1026 cf = emit_fog_instructions(p, cf);
1027 }
1028
1029 ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1030 assert(frag_color);
1031 p->emit(assign(frag_color, cf));
1032 }
1033
1034 /**
1035 * Generate a new fragment program which implements the context's
1036 * current texture env/combine mode.
1037 */
1038 static struct gl_shader_program *
1039 create_new_program(struct gl_context *ctx, struct state_key *key)
1040 {
1041 texenv_fragment_program p;
1042 unsigned int unit;
1043 _mesa_glsl_parse_state *state;
1044
1045 p.mem_ctx = ralloc_context(NULL);
1046 p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
1047 #ifdef DEBUG
1048 p.shader->SourceChecksum = 0xf18ed; /* fixed */
1049 #endif
1050 p.shader->ir = new(p.shader) exec_list;
1051 state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1052 p.shader);
1053 p.shader->symbols = state->symbols;
1054 p.top_instructions = p.shader->ir;
1055 p.instructions = p.shader->ir;
1056 p.state = key;
1057 p.shader_program = _mesa_new_shader_program(0);
1058
1059 /* Tell the linker to ignore the fact that we're building a
1060 * separate shader, in case we're in a GLES2 context that would
1061 * normally reject that. The real problem is that we're building a
1062 * fixed function program in a GLES2 context at all, but that's a
1063 * big mess to clean up.
1064 */
1065 p.shader_program->SeparateShader = GL_TRUE;
1066
1067 /* The legacy GLSL shadow functions follow the depth texture
1068 * mode and return vec4. The GLSL 1.30 shadow functions return float and
1069 * ignore the depth texture mode. That's a shader and state dependency
1070 * that's difficult to deal with. st/mesa uses a simple but not
1071 * completely correct solution: if the shader declares GLSL >= 1.30 and
1072 * the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle
1073 * instead. Thus, the GLSL 1.30 shadow function will get the result in .x
1074 * and legacy shadow functions will get it in .w as expected.
1075 * For the fixed-function fragment shader, use 120 to get correct behavior
1076 * for GL_ALPHA.
1077 */
1078 state->language_version = 120;
1079
1080 state->es_shader = false;
1081 if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1082 state->OES_EGL_image_external_enable = true;
1083 _mesa_glsl_initialize_types(state);
1084 _mesa_glsl_initialize_variables(p.instructions, state);
1085
1086 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1087 p.src_texture[unit] = NULL;
1088 p.texcoord_tex[unit] = NULL;
1089 }
1090
1091 p.src_previous = NULL;
1092
1093 ir_function *main_f = new(p.mem_ctx) ir_function("main");
1094 p.emit(main_f);
1095 state->symbols->add_function(main_f);
1096
1097 ir_function_signature *main_sig =
1098 new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1099 main_sig->is_defined = true;
1100 main_f->add_signature(main_sig);
1101
1102 p.instructions = &main_sig->body;
1103 if (key->num_draw_buffers)
1104 emit_instructions(&p);
1105
1106 validate_ir_tree(p.shader->ir);
1107
1108 const struct gl_shader_compiler_options *options =
1109 &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
1110
1111 /* Conservative approach: Don't optimize here, the linker does it too. */
1112 if (!ctx->Const.GLSLOptimizeConservatively) {
1113 while (do_common_optimization(p.shader->ir, false, false, options,
1114 ctx->Const.NativeIntegers))
1115 ;
1116 }
1117
1118 reparent_ir(p.shader->ir, p.shader->ir);
1119
1120 p.shader->CompileStatus = COMPILE_SUCCESS;
1121 p.shader->Version = state->language_version;
1122 p.shader_program->Shaders =
1123 (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1124 p.shader_program->Shaders[0] = p.shader;
1125 p.shader_program->NumShaders = 1;
1126
1127 _mesa_glsl_link_shader(ctx, p.shader_program);
1128
1129 if (!p.shader_program->data->LinkStatus)
1130 _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1131 p.shader_program->data->InfoLog);
1132
1133 ralloc_free(p.mem_ctx);
1134 return p.shader_program;
1135 }
1136
1137 extern "C" {
1138
1139 /**
1140 * Return a fragment program which implements the current
1141 * fixed-function texture, fog and color-sum operations.
1142 */
1143 struct gl_shader_program *
1144 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1145 {
1146 struct gl_shader_program *shader_program;
1147 struct state_key key;
1148 GLuint keySize;
1149
1150 keySize = make_state_key(ctx, &key);
1151
1152 shader_program = (struct gl_shader_program *)
1153 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1154 &key, keySize);
1155
1156 if (!shader_program) {
1157 shader_program = create_new_program(ctx, &key);
1158
1159 _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1160 &key, keySize, shader_program);
1161 }
1162
1163 return shader_program;
1164 }
1165
1166 }