glsl/main: remove unused params and make function static
[mesa.git] / src / mesa / main / ff_fragment_shader.cpp
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32 #include "main/imports.h"
33 #include "main/macros.h"
34 #include "main/samplerobj.h"
35 #include "main/shaderobj.h"
36 #include "main/texenvprogram.h"
37 #include "main/texobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ir_builder.h"
40 #include "compiler/glsl/ir_optimization.h"
41 #include "compiler/glsl/glsl_parser_extras.h"
42 #include "compiler/glsl/glsl_symbol_table.h"
43 #include "compiler/glsl_types.h"
44 #include "program/ir_to_mesa.h"
45 #include "program/program.h"
46 #include "program/programopt.h"
47 #include "program/prog_cache.h"
48 #include "program/prog_instruction.h"
49 #include "program/prog_parameter.h"
50 #include "program/prog_print.h"
51 #include "program/prog_statevars.h"
52 #include "util/bitscan.h"
53
54 using namespace ir_builder;
55
56 /*
57 * Note on texture units:
58 *
59 * The number of texture units supported by fixed-function fragment
60 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
61 * That's because there's a one-to-one correspondence between texture
62 * coordinates and samplers in fixed-function processing.
63 *
64 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
65 * sets of texcoords, so is fixed-function fragment processing.
66 *
67 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
68 */
69
70
71 struct texenvprog_cache_item
72 {
73 GLuint hash;
74 void *key;
75 struct gl_shader_program *data;
76 struct texenvprog_cache_item *next;
77 };
78
79 static GLboolean
80 texenv_doing_secondary_color(struct gl_context *ctx)
81 {
82 if (ctx->Light.Enabled &&
83 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
84 return GL_TRUE;
85
86 if (ctx->Fog.ColorSumEnabled)
87 return GL_TRUE;
88
89 return GL_FALSE;
90 }
91
92 struct mode_opt {
93 #ifdef __GNUC__
94 __extension__ GLubyte Source:4; /**< SRC_x */
95 __extension__ GLubyte Operand:3; /**< OPR_x */
96 #else
97 GLubyte Source; /**< SRC_x */
98 GLubyte Operand; /**< OPR_x */
99 #endif
100 };
101
102 struct state_key {
103 GLuint nr_enabled_units:8;
104 GLuint enabled_units:8;
105 GLuint separate_specular:1;
106 GLuint fog_enabled:1;
107 GLuint fog_mode:2; /**< FOG_x */
108 GLuint inputs_available:12;
109 GLuint num_draw_buffers:4;
110
111 /* NOTE: This array of structs must be last! (see "keySize" below) */
112 struct {
113 GLuint enabled:1;
114 GLuint source_index:4; /**< TEXTURE_x_INDEX */
115 GLuint shadow:1;
116 GLuint ScaleShiftRGB:2;
117 GLuint ScaleShiftA:2;
118
119 GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */
120 GLuint ModeRGB:5; /**< MODE_x */
121
122 GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */
123 GLuint ModeA:5; /**< MODE_x */
124
125 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
126 struct mode_opt OptA[MAX_COMBINER_TERMS];
127 } unit[MAX_TEXTURE_UNITS];
128 };
129
130 #define FOG_LINEAR 0
131 #define FOG_EXP 1
132 #define FOG_EXP2 2
133 #define FOG_UNKNOWN 3
134
135 static GLuint translate_fog_mode( GLenum mode )
136 {
137 switch (mode) {
138 case GL_LINEAR: return FOG_LINEAR;
139 case GL_EXP: return FOG_EXP;
140 case GL_EXP2: return FOG_EXP2;
141 default: return FOG_UNKNOWN;
142 }
143 }
144
145 #define OPR_SRC_COLOR 0
146 #define OPR_ONE_MINUS_SRC_COLOR 1
147 #define OPR_SRC_ALPHA 2
148 #define OPR_ONE_MINUS_SRC_ALPHA 3
149 #define OPR_ZERO 4
150 #define OPR_ONE 5
151 #define OPR_UNKNOWN 7
152
153 static GLuint translate_operand( GLenum operand )
154 {
155 switch (operand) {
156 case GL_SRC_COLOR: return OPR_SRC_COLOR;
157 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
158 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
159 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
160 case GL_ZERO: return OPR_ZERO;
161 case GL_ONE: return OPR_ONE;
162 default:
163 assert(0);
164 return OPR_UNKNOWN;
165 }
166 }
167
168 #define SRC_TEXTURE 0
169 #define SRC_TEXTURE0 1
170 #define SRC_TEXTURE1 2
171 #define SRC_TEXTURE2 3
172 #define SRC_TEXTURE3 4
173 #define SRC_TEXTURE4 5
174 #define SRC_TEXTURE5 6
175 #define SRC_TEXTURE6 7
176 #define SRC_TEXTURE7 8
177 #define SRC_CONSTANT 9
178 #define SRC_PRIMARY_COLOR 10
179 #define SRC_PREVIOUS 11
180 #define SRC_ZERO 12
181 #define SRC_UNKNOWN 15
182
183 static GLuint translate_source( GLenum src )
184 {
185 switch (src) {
186 case GL_TEXTURE: return SRC_TEXTURE;
187 case GL_TEXTURE0:
188 case GL_TEXTURE1:
189 case GL_TEXTURE2:
190 case GL_TEXTURE3:
191 case GL_TEXTURE4:
192 case GL_TEXTURE5:
193 case GL_TEXTURE6:
194 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
195 case GL_CONSTANT: return SRC_CONSTANT;
196 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
197 case GL_PREVIOUS: return SRC_PREVIOUS;
198 case GL_ZERO:
199 return SRC_ZERO;
200 default:
201 assert(0);
202 return SRC_UNKNOWN;
203 }
204 }
205
206 #define MODE_REPLACE 0 /* r = a0 */
207 #define MODE_MODULATE 1 /* r = a0 * a1 */
208 #define MODE_ADD 2 /* r = a0 + a1 */
209 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
210 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
211 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
212 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
213 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
214 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
215 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
216 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
217 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
218 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
219 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
220 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
221 #define MODE_UNKNOWN 16
222
223 /**
224 * Translate GL combiner state into a MODE_x value
225 */
226 static GLuint translate_mode( GLenum envMode, GLenum mode )
227 {
228 switch (mode) {
229 case GL_REPLACE: return MODE_REPLACE;
230 case GL_MODULATE: return MODE_MODULATE;
231 case GL_ADD:
232 if (envMode == GL_COMBINE4_NV)
233 return MODE_ADD_PRODUCTS;
234 else
235 return MODE_ADD;
236 case GL_ADD_SIGNED:
237 if (envMode == GL_COMBINE4_NV)
238 return MODE_ADD_PRODUCTS_SIGNED;
239 else
240 return MODE_ADD_SIGNED;
241 case GL_INTERPOLATE: return MODE_INTERPOLATE;
242 case GL_SUBTRACT: return MODE_SUBTRACT;
243 case GL_DOT3_RGB: return MODE_DOT3_RGB;
244 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
245 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
246 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
247 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
248 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
249 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
250 default:
251 assert(0);
252 return MODE_UNKNOWN;
253 }
254 }
255
256
257 /**
258 * Do we need to clamp the results of the given texture env/combine mode?
259 * If the inputs to the mode are in [0,1] we don't always have to clamp
260 * the results.
261 */
262 static GLboolean
263 need_saturate( GLuint mode )
264 {
265 switch (mode) {
266 case MODE_REPLACE:
267 case MODE_MODULATE:
268 case MODE_INTERPOLATE:
269 return GL_FALSE;
270 case MODE_ADD:
271 case MODE_ADD_SIGNED:
272 case MODE_SUBTRACT:
273 case MODE_DOT3_RGB:
274 case MODE_DOT3_RGB_EXT:
275 case MODE_DOT3_RGBA:
276 case MODE_DOT3_RGBA_EXT:
277 case MODE_MODULATE_ADD_ATI:
278 case MODE_MODULATE_SIGNED_ADD_ATI:
279 case MODE_MODULATE_SUBTRACT_ATI:
280 case MODE_ADD_PRODUCTS:
281 case MODE_ADD_PRODUCTS_SIGNED:
282 return GL_TRUE;
283 default:
284 assert(0);
285 return GL_FALSE;
286 }
287 }
288
289 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
290
291 /**
292 * Identify all possible varying inputs. The fragment program will
293 * never reference non-varying inputs, but will track them via state
294 * constants instead.
295 *
296 * This function figures out all the inputs that the fragment program
297 * has access to. The bitmask is later reduced to just those which
298 * are actually referenced.
299 */
300 static GLbitfield get_fp_input_mask( struct gl_context *ctx )
301 {
302 /* _NEW_PROGRAM */
303 const GLboolean vertexShader =
304 (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] &&
305 ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->LinkStatus &&
306 ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]);
307 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
308 GLbitfield fp_inputs = 0x0;
309
310 if (ctx->VertexProgram._Overriden) {
311 /* Somebody's messing with the vertex program and we don't have
312 * a clue what's happening. Assume that it could be producing
313 * all possible outputs.
314 */
315 fp_inputs = ~0;
316 }
317 else if (ctx->RenderMode == GL_FEEDBACK) {
318 /* _NEW_RENDERMODE */
319 fp_inputs = (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
320 }
321 else if (!(vertexProgram || vertexShader)) {
322 /* Fixed function vertex logic */
323 /* _NEW_VARYING_VP_INPUTS */
324 GLbitfield64 varying_inputs = ctx->varying_vp_inputs;
325
326 /* These get generated in the setup routine regardless of the
327 * vertex program:
328 */
329 /* _NEW_POINT */
330 if (ctx->Point.PointSprite)
331 varying_inputs |= VARYING_BITS_TEX_ANY;
332
333 /* First look at what values may be computed by the generated
334 * vertex program:
335 */
336 /* _NEW_LIGHT */
337 if (ctx->Light.Enabled) {
338 fp_inputs |= VARYING_BIT_COL0;
339
340 if (texenv_doing_secondary_color(ctx))
341 fp_inputs |= VARYING_BIT_COL1;
342 }
343
344 /* _NEW_TEXTURE */
345 fp_inputs |= (ctx->Texture._TexGenEnabled |
346 ctx->Texture._TexMatEnabled) << VARYING_SLOT_TEX0;
347
348 /* Then look at what might be varying as a result of enabled
349 * arrays, etc:
350 */
351 if (varying_inputs & VERT_BIT_COLOR0)
352 fp_inputs |= VARYING_BIT_COL0;
353 if (varying_inputs & VERT_BIT_COLOR1)
354 fp_inputs |= VARYING_BIT_COL1;
355
356 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
357 << VARYING_SLOT_TEX0);
358
359 }
360 else {
361 /* calculate from vp->outputs */
362 struct gl_program *vprog;
363 GLbitfield64 vp_outputs;
364
365 /* Choose GLSL vertex shader over ARB vertex program. Need this
366 * since vertex shader state validation comes after fragment state
367 * validation (see additional comments in state.c).
368 */
369 if (vertexShader)
370 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
371 else
372 vprog = &ctx->VertexProgram.Current->Base;
373
374 vp_outputs = vprog->OutputsWritten;
375
376 /* These get generated in the setup routine regardless of the
377 * vertex program:
378 */
379 /* _NEW_POINT */
380 if (ctx->Point.PointSprite)
381 vp_outputs |= VARYING_BITS_TEX_ANY;
382
383 if (vp_outputs & (1 << VARYING_SLOT_COL0))
384 fp_inputs |= VARYING_BIT_COL0;
385 if (vp_outputs & (1 << VARYING_SLOT_COL1))
386 fp_inputs |= VARYING_BIT_COL1;
387
388 fp_inputs |= (((vp_outputs & VARYING_BITS_TEX_ANY) >> VARYING_SLOT_TEX0)
389 << VARYING_SLOT_TEX0);
390 }
391
392 return fp_inputs;
393 }
394
395
396 /**
397 * Examine current texture environment state and generate a unique
398 * key to identify it.
399 */
400 static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
401 {
402 GLuint j;
403 GLbitfield inputs_referenced = VARYING_BIT_COL0;
404 const GLbitfield inputs_available = get_fp_input_mask( ctx );
405 GLbitfield mask;
406 GLuint keySize;
407
408 memset(key, 0, sizeof(*key));
409
410 /* _NEW_TEXTURE */
411 mask = ctx->Texture._EnabledCoordUnits;
412 while (mask) {
413 const int i = u_bit_scan(&mask);
414 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
415 const struct gl_texture_object *texObj = texUnit->_Current;
416 const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
417 const struct gl_sampler_object *samp;
418 GLenum format;
419
420 if (!texObj)
421 continue;
422
423 samp = _mesa_get_samplerobj(ctx, i);
424 format = _mesa_texture_base_format(texObj);
425
426 key->unit[i].enabled = 1;
427 key->enabled_units |= (1<<i);
428 key->nr_enabled_units = i + 1;
429 inputs_referenced |= VARYING_BIT_TEX(i);
430
431 key->unit[i].source_index = _mesa_tex_target_to_index(ctx,
432 texObj->Target);
433
434 key->unit[i].shadow =
435 ((samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
436 ((format == GL_DEPTH_COMPONENT) ||
437 (format == GL_DEPTH_STENCIL_EXT)));
438
439 key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
440 key->unit[i].NumArgsA = comb->_NumArgsA;
441
442 key->unit[i].ModeRGB =
443 translate_mode(texUnit->EnvMode, comb->ModeRGB);
444 key->unit[i].ModeA =
445 translate_mode(texUnit->EnvMode, comb->ModeA);
446
447 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
448 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
449
450 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
451 key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
452 key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
453 key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
454 key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
455 }
456 }
457
458 /* _NEW_LIGHT | _NEW_FOG */
459 if (texenv_doing_secondary_color(ctx)) {
460 key->separate_specular = 1;
461 inputs_referenced |= VARYING_BIT_COL1;
462 }
463
464 /* _NEW_FOG */
465 if (ctx->Fog.Enabled) {
466 key->fog_enabled = 1;
467 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
468 inputs_referenced |= VARYING_BIT_FOGC; /* maybe */
469 }
470
471 /* _NEW_BUFFERS */
472 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
473
474 /* _NEW_COLOR */
475 if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
476 /* if alpha test is enabled we need to emit at least one color */
477 key->num_draw_buffers = 1;
478 }
479
480 key->inputs_available = (inputs_available & inputs_referenced);
481
482 /* compute size of state key, ignoring unused texture units */
483 keySize = sizeof(*key) - sizeof(key->unit)
484 + key->nr_enabled_units * sizeof(key->unit[0]);
485
486 return keySize;
487 }
488
489
490 /** State used to build the fragment program:
491 */
492 class texenv_fragment_program : public ir_factory {
493 public:
494 struct gl_shader_program *shader_program;
495 struct gl_shader *shader;
496 exec_list *top_instructions;
497 struct state_key *state;
498
499 ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
500 /* Reg containing each texture unit's sampled texture color,
501 * else undef.
502 */
503
504 /* Texcoord override from bumpmapping. */
505 ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
506
507 /* Reg containing texcoord for a texture unit,
508 * needed for bump mapping, else undef.
509 */
510
511 ir_rvalue *src_previous; /**< Reg containing color from previous
512 * stage. May need to be decl'd.
513 */
514 };
515
516 static ir_rvalue *
517 get_current_attrib(texenv_fragment_program *p, GLuint attrib)
518 {
519 ir_variable *current;
520 ir_rvalue *val;
521
522 current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
523 assert(current);
524 current->data.max_array_access = MAX2(current->data.max_array_access, (int)attrib);
525 val = new(p->mem_ctx) ir_dereference_variable(current);
526 ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
527 return new(p->mem_ctx) ir_dereference_array(val, index);
528 }
529
530 static ir_rvalue *
531 get_gl_Color(texenv_fragment_program *p)
532 {
533 if (p->state->inputs_available & VARYING_BIT_COL0) {
534 ir_variable *var = p->shader->symbols->get_variable("gl_Color");
535 assert(var);
536 return new(p->mem_ctx) ir_dereference_variable(var);
537 } else {
538 return get_current_attrib(p, VERT_ATTRIB_COLOR0);
539 }
540 }
541
542 static ir_rvalue *
543 get_source(texenv_fragment_program *p,
544 GLuint src, GLuint unit)
545 {
546 ir_variable *var;
547 ir_dereference *deref;
548
549 switch (src) {
550 case SRC_TEXTURE:
551 return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
552
553 case SRC_TEXTURE0:
554 case SRC_TEXTURE1:
555 case SRC_TEXTURE2:
556 case SRC_TEXTURE3:
557 case SRC_TEXTURE4:
558 case SRC_TEXTURE5:
559 case SRC_TEXTURE6:
560 case SRC_TEXTURE7:
561 return new(p->mem_ctx)
562 ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]);
563
564 case SRC_CONSTANT:
565 var = p->shader->symbols->get_variable("gl_TextureEnvColor");
566 assert(var);
567 deref = new(p->mem_ctx) ir_dereference_variable(var);
568 var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
569 return new(p->mem_ctx) ir_dereference_array(deref,
570 new(p->mem_ctx) ir_constant(unit));
571
572 case SRC_PRIMARY_COLOR:
573 var = p->shader->symbols->get_variable("gl_Color");
574 assert(var);
575 return new(p->mem_ctx) ir_dereference_variable(var);
576
577 case SRC_ZERO:
578 return new(p->mem_ctx) ir_constant(0.0f);
579
580 case SRC_PREVIOUS:
581 if (!p->src_previous) {
582 return get_gl_Color(p);
583 } else {
584 return p->src_previous->clone(p->mem_ctx, NULL);
585 }
586
587 default:
588 assert(0);
589 return NULL;
590 }
591 }
592
593 static ir_rvalue *
594 emit_combine_source(texenv_fragment_program *p,
595 GLuint unit,
596 GLuint source,
597 GLuint operand)
598 {
599 ir_rvalue *src;
600
601 src = get_source(p, source, unit);
602
603 switch (operand) {
604 case OPR_ONE_MINUS_SRC_COLOR:
605 return sub(new(p->mem_ctx) ir_constant(1.0f), src);
606
607 case OPR_SRC_ALPHA:
608 return src->type->is_scalar() ? src : swizzle_w(src);
609
610 case OPR_ONE_MINUS_SRC_ALPHA: {
611 ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
612
613 return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
614 }
615
616 case OPR_ZERO:
617 return new(p->mem_ctx) ir_constant(0.0f);
618 case OPR_ONE:
619 return new(p->mem_ctx) ir_constant(1.0f);
620 case OPR_SRC_COLOR:
621 return src;
622 default:
623 assert(0);
624 return src;
625 }
626 }
627
628 /**
629 * Check if the RGB and Alpha sources and operands match for the given
630 * texture unit's combinder state. When the RGB and A sources and
631 * operands match, we can emit fewer instructions.
632 */
633 static GLboolean args_match( const struct state_key *key, GLuint unit )
634 {
635 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
636
637 for (i = 0; i < numArgs; i++) {
638 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
639 return GL_FALSE;
640
641 switch (key->unit[unit].OptA[i].Operand) {
642 case OPR_SRC_ALPHA:
643 switch (key->unit[unit].OptRGB[i].Operand) {
644 case OPR_SRC_COLOR:
645 case OPR_SRC_ALPHA:
646 break;
647 default:
648 return GL_FALSE;
649 }
650 break;
651 case OPR_ONE_MINUS_SRC_ALPHA:
652 switch (key->unit[unit].OptRGB[i].Operand) {
653 case OPR_ONE_MINUS_SRC_COLOR:
654 case OPR_ONE_MINUS_SRC_ALPHA:
655 break;
656 default:
657 return GL_FALSE;
658 }
659 break;
660 default:
661 return GL_FALSE; /* impossible */
662 }
663 }
664
665 return GL_TRUE;
666 }
667
668 static ir_rvalue *
669 smear(ir_rvalue *val)
670 {
671 if (!val->type->is_scalar())
672 return val;
673
674 return swizzle_xxxx(val);
675 }
676
677 static ir_rvalue *
678 emit_combine(texenv_fragment_program *p,
679 GLuint unit,
680 GLuint nr,
681 GLuint mode,
682 const struct mode_opt *opt)
683 {
684 ir_rvalue *src[MAX_COMBINER_TERMS];
685 ir_rvalue *tmp0, *tmp1;
686 GLuint i;
687
688 assert(nr <= MAX_COMBINER_TERMS);
689
690 for (i = 0; i < nr; i++)
691 src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
692
693 switch (mode) {
694 case MODE_REPLACE:
695 return src[0];
696
697 case MODE_MODULATE:
698 return mul(src[0], src[1]);
699
700 case MODE_ADD:
701 return add(src[0], src[1]);
702
703 case MODE_ADD_SIGNED:
704 return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
705
706 case MODE_INTERPOLATE:
707 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
708 tmp0 = mul(src[0], src[2]);
709 tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
710 src[2]->clone(p->mem_ctx, NULL)));
711 return add(tmp0, tmp1);
712
713 case MODE_SUBTRACT:
714 return sub(src[0], src[1]);
715
716 case MODE_DOT3_RGBA:
717 case MODE_DOT3_RGBA_EXT:
718 case MODE_DOT3_RGB_EXT:
719 case MODE_DOT3_RGB: {
720 tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
721 tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
722
723 tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
724 tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
725
726 return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
727 }
728 case MODE_MODULATE_ADD_ATI:
729 return add(mul(src[0], src[2]), src[1]);
730
731 case MODE_MODULATE_SIGNED_ADD_ATI:
732 return add(add(mul(src[0], src[2]), src[1]),
733 new(p->mem_ctx) ir_constant(-0.5f));
734
735 case MODE_MODULATE_SUBTRACT_ATI:
736 return sub(mul(src[0], src[2]), src[1]);
737
738 case MODE_ADD_PRODUCTS:
739 return add(mul(src[0], src[1]), mul(src[2], src[3]));
740
741 case MODE_ADD_PRODUCTS_SIGNED:
742 return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
743 new(p->mem_ctx) ir_constant(-0.5f));
744 default:
745 assert(0);
746 return src[0];
747 }
748 }
749
750 /**
751 * Generate instructions for one texture unit's env/combiner mode.
752 */
753 static ir_rvalue *
754 emit_texenv(texenv_fragment_program *p, GLuint unit)
755 {
756 const struct state_key *key = p->state;
757 GLboolean rgb_saturate, alpha_saturate;
758 GLuint rgb_shift, alpha_shift;
759
760 if (!key->unit[unit].enabled) {
761 return get_source(p, SRC_PREVIOUS, 0);
762 }
763
764 switch (key->unit[unit].ModeRGB) {
765 case MODE_DOT3_RGB_EXT:
766 alpha_shift = key->unit[unit].ScaleShiftA;
767 rgb_shift = 0;
768 break;
769 case MODE_DOT3_RGBA_EXT:
770 alpha_shift = 0;
771 rgb_shift = 0;
772 break;
773 default:
774 rgb_shift = key->unit[unit].ScaleShiftRGB;
775 alpha_shift = key->unit[unit].ScaleShiftA;
776 break;
777 }
778
779 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
780 * We don't want to clamp twice.
781 */
782 if (rgb_shift)
783 rgb_saturate = GL_FALSE; /* saturate after rgb shift */
784 else if (need_saturate(key->unit[unit].ModeRGB))
785 rgb_saturate = GL_TRUE;
786 else
787 rgb_saturate = GL_FALSE;
788
789 if (alpha_shift)
790 alpha_saturate = GL_FALSE; /* saturate after alpha shift */
791 else if (need_saturate(key->unit[unit].ModeA))
792 alpha_saturate = GL_TRUE;
793 else
794 alpha_saturate = GL_FALSE;
795
796 ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
797 ir_dereference *deref;
798 ir_rvalue *val;
799
800 /* Emit the RGB and A combine ops
801 */
802 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
803 args_match(key, unit)) {
804 val = emit_combine(p, unit,
805 key->unit[unit].NumArgsRGB,
806 key->unit[unit].ModeRGB,
807 key->unit[unit].OptRGB);
808 val = smear(val);
809 if (rgb_saturate)
810 val = saturate(val);
811
812 p->emit(assign(temp_var, val));
813 }
814 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
815 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
816 ir_rvalue *val = emit_combine(p, unit,
817 key->unit[unit].NumArgsRGB,
818 key->unit[unit].ModeRGB,
819 key->unit[unit].OptRGB);
820 val = smear(val);
821 if (rgb_saturate)
822 val = saturate(val);
823 p->emit(assign(temp_var, val));
824 }
825 else {
826 /* Need to do something to stop from re-emitting identical
827 * argument calculations here:
828 */
829 val = emit_combine(p, unit,
830 key->unit[unit].NumArgsRGB,
831 key->unit[unit].ModeRGB,
832 key->unit[unit].OptRGB);
833 val = swizzle_xyz(smear(val));
834 if (rgb_saturate)
835 val = saturate(val);
836 p->emit(assign(temp_var, val, WRITEMASK_XYZ));
837
838 val = emit_combine(p, unit,
839 key->unit[unit].NumArgsA,
840 key->unit[unit].ModeA,
841 key->unit[unit].OptA);
842 val = swizzle_w(smear(val));
843 if (alpha_saturate)
844 val = saturate(val);
845 p->emit(assign(temp_var, val, WRITEMASK_W));
846 }
847
848 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
849
850 /* Deal with the final shift:
851 */
852 if (alpha_shift || rgb_shift) {
853 ir_constant *shift;
854
855 if (rgb_shift == alpha_shift) {
856 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
857 }
858 else {
859 ir_constant_data const_data;
860
861 const_data.f[0] = float(1 << rgb_shift);
862 const_data.f[1] = float(1 << rgb_shift);
863 const_data.f[2] = float(1 << rgb_shift);
864 const_data.f[3] = float(1 << alpha_shift);
865
866 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
867 &const_data);
868 }
869
870 return saturate(mul(deref, shift));
871 }
872 else
873 return deref;
874 }
875
876
877 /**
878 * Generate instruction for getting a texture source term.
879 */
880 static void load_texture( texenv_fragment_program *p, GLuint unit )
881 {
882 ir_dereference *deref;
883
884 if (p->src_texture[unit])
885 return;
886
887 const GLuint texTarget = p->state->unit[unit].source_index;
888 ir_rvalue *texcoord;
889
890 if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
891 texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
892 } else if (p->texcoord_tex[unit]) {
893 texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
894 } else {
895 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
896 assert(tc_array);
897 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
898 ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
899 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
900 tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
901 }
902
903 if (!p->state->unit[unit].enabled) {
904 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
905 "dummy_tex");
906 p->emit(p->src_texture[unit]);
907
908 p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
909 return ;
910 }
911
912 const glsl_type *sampler_type = NULL;
913 int coords = 0;
914
915 switch (texTarget) {
916 case TEXTURE_1D_INDEX:
917 if (p->state->unit[unit].shadow)
918 sampler_type = glsl_type::sampler1DShadow_type;
919 else
920 sampler_type = glsl_type::sampler1D_type;
921 coords = 1;
922 break;
923 case TEXTURE_1D_ARRAY_INDEX:
924 if (p->state->unit[unit].shadow)
925 sampler_type = glsl_type::sampler1DArrayShadow_type;
926 else
927 sampler_type = glsl_type::sampler1DArray_type;
928 coords = 2;
929 break;
930 case TEXTURE_2D_INDEX:
931 if (p->state->unit[unit].shadow)
932 sampler_type = glsl_type::sampler2DShadow_type;
933 else
934 sampler_type = glsl_type::sampler2D_type;
935 coords = 2;
936 break;
937 case TEXTURE_2D_ARRAY_INDEX:
938 if (p->state->unit[unit].shadow)
939 sampler_type = glsl_type::sampler2DArrayShadow_type;
940 else
941 sampler_type = glsl_type::sampler2DArray_type;
942 coords = 3;
943 break;
944 case TEXTURE_RECT_INDEX:
945 if (p->state->unit[unit].shadow)
946 sampler_type = glsl_type::sampler2DRectShadow_type;
947 else
948 sampler_type = glsl_type::sampler2DRect_type;
949 coords = 2;
950 break;
951 case TEXTURE_3D_INDEX:
952 assert(!p->state->unit[unit].shadow);
953 sampler_type = glsl_type::sampler3D_type;
954 coords = 3;
955 break;
956 case TEXTURE_CUBE_INDEX:
957 if (p->state->unit[unit].shadow)
958 sampler_type = glsl_type::samplerCubeShadow_type;
959 else
960 sampler_type = glsl_type::samplerCube_type;
961 coords = 3;
962 break;
963 case TEXTURE_EXTERNAL_INDEX:
964 assert(!p->state->unit[unit].shadow);
965 sampler_type = glsl_type::samplerExternalOES_type;
966 coords = 2;
967 break;
968 }
969
970 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
971 "tex");
972
973 ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
974
975
976 char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
977 ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
978 sampler_name,
979 ir_var_uniform);
980 p->top_instructions->push_head(sampler);
981
982 /* Set the texture unit for this sampler in the same way that
983 * layout(binding=X) would.
984 */
985 sampler->data.explicit_binding = true;
986 sampler->data.binding = unit;
987
988 deref = new(p->mem_ctx) ir_dereference_variable(sampler);
989 tex->set_sampler(deref, glsl_type::vec4_type);
990
991 tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
992
993 if (p->state->unit[unit].shadow) {
994 texcoord = texcoord->clone(p->mem_ctx, NULL);
995 tex->shadow_comparitor = new(p->mem_ctx) ir_swizzle(texcoord,
996 coords, 0, 0, 0,
997 1);
998 coords++;
999 }
1000
1001 texcoord = texcoord->clone(p->mem_ctx, NULL);
1002 tex->projector = swizzle_w(texcoord);
1003
1004 p->emit(assign(p->src_texture[unit], tex));
1005 }
1006
1007 static void
1008 load_texenv_source(texenv_fragment_program *p,
1009 GLuint src, GLuint unit)
1010 {
1011 switch (src) {
1012 case SRC_TEXTURE:
1013 load_texture(p, unit);
1014 break;
1015
1016 case SRC_TEXTURE0:
1017 case SRC_TEXTURE1:
1018 case SRC_TEXTURE2:
1019 case SRC_TEXTURE3:
1020 case SRC_TEXTURE4:
1021 case SRC_TEXTURE5:
1022 case SRC_TEXTURE6:
1023 case SRC_TEXTURE7:
1024 load_texture(p, src - SRC_TEXTURE0);
1025 break;
1026
1027 default:
1028 /* not a texture src - do nothing */
1029 break;
1030 }
1031 }
1032
1033
1034 /**
1035 * Generate instructions for loading all texture source terms.
1036 */
1037 static GLboolean
1038 load_texunit_sources( texenv_fragment_program *p, GLuint unit )
1039 {
1040 const struct state_key *key = p->state;
1041 GLuint i;
1042
1043 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1044 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1045 }
1046
1047 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1048 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1049 }
1050
1051 return GL_TRUE;
1052 }
1053
1054 /**
1055 * Applies the fog calculations.
1056 *
1057 * This is basically like the ARB_fragment_prorgam fog options. Note
1058 * that ffvertex_prog.c produces fogcoord for us when
1059 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
1060 */
1061 static ir_rvalue *
1062 emit_fog_instructions(texenv_fragment_program *p,
1063 ir_rvalue *fragcolor)
1064 {
1065 struct state_key *key = p->state;
1066 ir_rvalue *f, *temp;
1067 ir_variable *params, *oparams;
1068 ir_variable *fogcoord;
1069
1070 /* Temporary storage for the whole fog result. Fog calculations
1071 * only affect rgb so we're hanging on to the .a value of fragcolor
1072 * this way.
1073 */
1074 ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
1075 p->emit(assign(fog_result, fragcolor));
1076
1077 fragcolor = swizzle_xyz(fog_result);
1078
1079 oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
1080 assert(oparams);
1081 fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
1082 assert(fogcoord);
1083 params = p->shader->symbols->get_variable("gl_Fog");
1084 assert(params);
1085 f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
1086
1087 ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
1088
1089 switch (key->fog_mode) {
1090 case FOG_LINEAR:
1091 /* f = (end - z) / (end - start)
1092 *
1093 * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
1094 * (end / (end - start)) so we can generate a single MAD.
1095 */
1096 f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
1097 break;
1098 case FOG_EXP:
1099 /* f = e^(-(density * fogcoord))
1100 *
1101 * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
1102 * use EXP2 which is generally the native instruction without
1103 * having to do any further math on the fog density uniform.
1104 */
1105 f = mul(f, swizzle_z(oparams));
1106 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1107 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1108 break;
1109 case FOG_EXP2:
1110 /* f = e^(-(density * fogcoord)^2)
1111 *
1112 * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
1113 * can do this like FOG_EXP but with a squaring after the
1114 * multiply by density.
1115 */
1116 ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
1117 p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
1118
1119 f = mul(temp_var, temp_var);
1120 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1121 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1122 break;
1123 }
1124
1125 p->emit(assign(f_var, saturate(f)));
1126
1127 f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
1128 temp = new(p->mem_ctx) ir_dereference_variable(params);
1129 temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
1130 temp = mul(swizzle_xyz(temp), f);
1131
1132 p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
1133
1134 return new(p->mem_ctx) ir_dereference_variable(fog_result);
1135 }
1136
1137 static void
1138 emit_instructions(texenv_fragment_program *p)
1139 {
1140 struct state_key *key = p->state;
1141 GLuint unit;
1142
1143 if (key->enabled_units) {
1144 /* First pass - to support texture_env_crossbar, first identify
1145 * all referenced texture sources and emit texld instructions
1146 * for each:
1147 */
1148 for (unit = 0; unit < key->nr_enabled_units; unit++)
1149 if (key->unit[unit].enabled) {
1150 load_texunit_sources(p, unit);
1151 }
1152
1153 /* Second pass - emit combine instructions to build final color:
1154 */
1155 for (unit = 0; unit < key->nr_enabled_units; unit++) {
1156 if (key->unit[unit].enabled) {
1157 p->src_previous = emit_texenv(p, unit);
1158 }
1159 }
1160 }
1161
1162 ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0);
1163
1164 if (key->separate_specular) {
1165 ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
1166 "specular_add");
1167 p->emit(assign(spec_result, cf));
1168
1169 ir_rvalue *secondary;
1170 if (p->state->inputs_available & VARYING_BIT_COL1) {
1171 ir_variable *var =
1172 p->shader->symbols->get_variable("gl_SecondaryColor");
1173 assert(var);
1174 secondary = swizzle_xyz(var);
1175 } else {
1176 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1177 }
1178
1179 p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1180 WRITEMASK_XYZ));
1181
1182 cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1183 }
1184
1185 if (key->fog_enabled) {
1186 cf = emit_fog_instructions(p, cf);
1187 }
1188
1189 ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1190 assert(frag_color);
1191 p->emit(assign(frag_color, cf));
1192 }
1193
1194 /**
1195 * Generate a new fragment program which implements the context's
1196 * current texture env/combine mode.
1197 */
1198 static struct gl_shader_program *
1199 create_new_program(struct gl_context *ctx, struct state_key *key)
1200 {
1201 texenv_fragment_program p;
1202 unsigned int unit;
1203 _mesa_glsl_parse_state *state;
1204
1205 p.mem_ctx = ralloc_context(NULL);
1206 p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
1207 p.shader->ir = new(p.shader) exec_list;
1208 state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1209 p.shader);
1210 p.shader->symbols = state->symbols;
1211 p.top_instructions = p.shader->ir;
1212 p.instructions = p.shader->ir;
1213 p.state = key;
1214 p.shader_program = _mesa_new_shader_program(0);
1215
1216 /* Tell the linker to ignore the fact that we're building a
1217 * separate shader, in case we're in a GLES2 context that would
1218 * normally reject that. The real problem is that we're building a
1219 * fixed function program in a GLES2 context at all, but that's a
1220 * big mess to clean up.
1221 */
1222 p.shader_program->SeparateShader = GL_TRUE;
1223
1224 state->language_version = 130;
1225 state->es_shader = false;
1226 if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1227 state->OES_EGL_image_external_enable = true;
1228 _mesa_glsl_initialize_types(state);
1229 _mesa_glsl_initialize_variables(p.instructions, state);
1230
1231 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1232 p.src_texture[unit] = NULL;
1233 p.texcoord_tex[unit] = NULL;
1234 }
1235
1236 p.src_previous = NULL;
1237
1238 ir_function *main_f = new(p.mem_ctx) ir_function("main");
1239 p.emit(main_f);
1240 state->symbols->add_function(main_f);
1241
1242 ir_function_signature *main_sig =
1243 new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1244 main_sig->is_defined = true;
1245 main_f->add_signature(main_sig);
1246
1247 p.instructions = &main_sig->body;
1248 if (key->num_draw_buffers)
1249 emit_instructions(&p);
1250
1251 validate_ir_tree(p.shader->ir);
1252
1253 const struct gl_shader_compiler_options *options =
1254 &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
1255
1256 while (do_common_optimization(p.shader->ir, false, false, options,
1257 ctx->Const.NativeIntegers))
1258 ;
1259 reparent_ir(p.shader->ir, p.shader->ir);
1260
1261 p.shader->CompileStatus = true;
1262 p.shader->Version = state->language_version;
1263 p.shader->uses_builtin_functions = state->uses_builtin_functions;
1264 p.shader_program->Shaders =
1265 (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1266 p.shader_program->Shaders[0] = p.shader;
1267 p.shader_program->NumShaders = 1;
1268
1269 _mesa_glsl_link_shader(ctx, p.shader_program);
1270
1271 if (!p.shader_program->LinkStatus)
1272 _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1273 p.shader_program->InfoLog);
1274
1275 ralloc_free(p.mem_ctx);
1276 return p.shader_program;
1277 }
1278
1279 extern "C" {
1280
1281 /**
1282 * Return a fragment program which implements the current
1283 * fixed-function texture, fog and color-sum operations.
1284 */
1285 struct gl_shader_program *
1286 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1287 {
1288 struct gl_shader_program *shader_program;
1289 struct state_key key;
1290 GLuint keySize;
1291
1292 keySize = make_state_key(ctx, &key);
1293
1294 shader_program = (struct gl_shader_program *)
1295 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1296 &key, keySize);
1297
1298 if (!shader_program) {
1299 shader_program = create_new_program(ctx, &key);
1300
1301 _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1302 &key, keySize, shader_program);
1303 }
1304
1305 return shader_program;
1306 }
1307
1308 }