program: Remove condition-code and precision support.
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/enums.h"
40 #include "main/ffvertex_prog.h"
41 #include "program/program.h"
42 #include "program/prog_cache.h"
43 #include "program/prog_instruction.h"
44 #include "program/prog_parameter.h"
45 #include "program/prog_print.h"
46 #include "program/prog_statevars.h"
47
48
49 /** Max of number of lights and texture coord units */
50 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
51
52 struct state_key {
53 unsigned light_color_material_mask:12;
54 unsigned light_global_enabled:1;
55 unsigned light_local_viewer:1;
56 unsigned light_twoside:1;
57 unsigned material_shininess_is_zero:1;
58 unsigned need_eye_coords:1;
59 unsigned normalize:1;
60 unsigned rescale_normals:1;
61
62 unsigned fog_source_is_depth:1;
63 unsigned fog_distance_mode:2;
64 unsigned separate_specular:1;
65 unsigned point_attenuated:1;
66 unsigned point_array:1;
67 unsigned texture_enabled_global:1;
68 unsigned fragprog_inputs_read:12;
69
70 GLbitfield64 varying_vp_inputs;
71
72 struct {
73 unsigned light_enabled:1;
74 unsigned light_eyepos3_is_zero:1;
75 unsigned light_spotcutoff_is_180:1;
76 unsigned light_attenuated:1;
77 unsigned texunit_really_enabled:1;
78 unsigned texmat_enabled:1;
79 unsigned coord_replace:1;
80 unsigned texgen_enabled:4;
81 unsigned texgen_mode0:4;
82 unsigned texgen_mode1:4;
83 unsigned texgen_mode2:4;
84 unsigned texgen_mode3:4;
85 } unit[NUM_UNITS];
86 };
87
88
89 #define TXG_NONE 0
90 #define TXG_OBJ_LINEAR 1
91 #define TXG_EYE_LINEAR 2
92 #define TXG_SPHERE_MAP 3
93 #define TXG_REFLECTION_MAP 4
94 #define TXG_NORMAL_MAP 5
95
96 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
97 {
98 if (!enabled)
99 return TXG_NONE;
100
101 switch (mode) {
102 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
103 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
104 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
105 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
106 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
107 default: return TXG_NONE;
108 }
109 }
110
111 #define FDM_EYE_RADIAL 0
112 #define FDM_EYE_PLANE 1
113 #define FDM_EYE_PLANE_ABS 2
114
115 static GLuint translate_fog_distance_mode( GLenum mode )
116 {
117 switch (mode) {
118 case GL_EYE_RADIAL_NV:
119 return FDM_EYE_RADIAL;
120 case GL_EYE_PLANE:
121 return FDM_EYE_PLANE;
122 default: /* shouldn't happen; fall through to a sensible default */
123 case GL_EYE_PLANE_ABSOLUTE_NV:
124 return FDM_EYE_PLANE_ABS;
125 }
126 }
127
128 static GLboolean check_active_shininess( struct gl_context *ctx,
129 const struct state_key *key,
130 GLuint side )
131 {
132 GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
133
134 if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
135 (key->light_color_material_mask & (1 << attr)))
136 return GL_TRUE;
137
138 if (key->varying_vp_inputs & VERT_BIT_GENERIC(attr))
139 return GL_TRUE;
140
141 if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
142 return GL_TRUE;
143
144 return GL_FALSE;
145 }
146
147
148 static void make_state_key( struct gl_context *ctx, struct state_key *key )
149 {
150 const struct gl_fragment_program *fp;
151 GLuint i;
152
153 memset(key, 0, sizeof(struct state_key));
154 fp = ctx->FragmentProgram._Current;
155
156 /* This now relies on texenvprogram.c being active:
157 */
158 assert(fp);
159
160 key->need_eye_coords = ctx->_NeedEyeCoords;
161
162 key->fragprog_inputs_read = fp->Base.InputsRead;
163 key->varying_vp_inputs = ctx->varying_vp_inputs;
164
165 if (ctx->RenderMode == GL_FEEDBACK) {
166 /* make sure the vertprog emits color and tex0 */
167 key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
168 }
169
170 key->separate_specular = (ctx->Light.Model.ColorControl ==
171 GL_SEPARATE_SPECULAR_COLOR);
172
173 if (ctx->Light.Enabled) {
174 key->light_global_enabled = 1;
175
176 if (ctx->Light.Model.LocalViewer)
177 key->light_local_viewer = 1;
178
179 if (ctx->Light.Model.TwoSide)
180 key->light_twoside = 1;
181
182 if (ctx->Light.ColorMaterialEnabled) {
183 key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
184 }
185
186 for (i = 0; i < MAX_LIGHTS; i++) {
187 struct gl_light *light = &ctx->Light.Light[i];
188
189 if (light->Enabled) {
190 key->unit[i].light_enabled = 1;
191
192 if (light->EyePosition[3] == 0.0F)
193 key->unit[i].light_eyepos3_is_zero = 1;
194
195 if (light->SpotCutoff == 180.0F)
196 key->unit[i].light_spotcutoff_is_180 = 1;
197
198 if (light->ConstantAttenuation != 1.0F ||
199 light->LinearAttenuation != 0.0F ||
200 light->QuadraticAttenuation != 0.0F)
201 key->unit[i].light_attenuated = 1;
202 }
203 }
204
205 if (check_active_shininess(ctx, key, 0)) {
206 key->material_shininess_is_zero = 0;
207 }
208 else if (key->light_twoside &&
209 check_active_shininess(ctx, key, 1)) {
210 key->material_shininess_is_zero = 0;
211 }
212 else {
213 key->material_shininess_is_zero = 1;
214 }
215 }
216
217 if (ctx->Transform.Normalize)
218 key->normalize = 1;
219
220 if (ctx->Transform.RescaleNormals)
221 key->rescale_normals = 1;
222
223 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) {
224 key->fog_source_is_depth = 1;
225 key->fog_distance_mode = translate_fog_distance_mode(ctx->Fog.FogDistanceMode);
226 }
227
228 if (ctx->Point._Attenuated)
229 key->point_attenuated = 1;
230
231 if (ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled)
232 key->point_array = 1;
233
234 if (ctx->Texture._TexGenEnabled ||
235 ctx->Texture._TexMatEnabled ||
236 ctx->Texture._MaxEnabledTexImageUnit != -1)
237 key->texture_enabled_global = 1;
238
239 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
240 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
241
242 if (texUnit->_Current)
243 key->unit[i].texunit_really_enabled = 1;
244
245 if (ctx->Point.PointSprite)
246 if (ctx->Point.CoordReplace[i])
247 key->unit[i].coord_replace = 1;
248
249 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
250 key->unit[i].texmat_enabled = 1;
251
252 if (texUnit->TexGenEnabled) {
253 key->unit[i].texgen_enabled = 1;
254
255 key->unit[i].texgen_mode0 =
256 translate_texgen( texUnit->TexGenEnabled & (1<<0),
257 texUnit->GenS.Mode );
258 key->unit[i].texgen_mode1 =
259 translate_texgen( texUnit->TexGenEnabled & (1<<1),
260 texUnit->GenT.Mode );
261 key->unit[i].texgen_mode2 =
262 translate_texgen( texUnit->TexGenEnabled & (1<<2),
263 texUnit->GenR.Mode );
264 key->unit[i].texgen_mode3 =
265 translate_texgen( texUnit->TexGenEnabled & (1<<3),
266 texUnit->GenQ.Mode );
267 }
268 }
269 }
270
271
272
273 /* Very useful debugging tool - produces annotated listing of
274 * generated program with line/function references for each
275 * instruction back into this file:
276 */
277 #define DISASSEM 0
278
279
280 /* Use uregs to represent registers internally, translate to Mesa's
281 * expected formats on emit.
282 *
283 * NOTE: These are passed by value extensively in this file rather
284 * than as usual by pointer reference. If this disturbs you, try
285 * remembering they are just 32bits in size.
286 *
287 * GCC is smart enough to deal with these dword-sized structures in
288 * much the same way as if I had defined them as dwords and was using
289 * macros to access and set the fields. This is much nicer and easier
290 * to evolve.
291 */
292 struct ureg {
293 GLuint file:4;
294 GLint idx:9; /* relative addressing may be negative */
295 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
296 GLuint abs:1;
297 GLuint negate:1;
298 GLuint swz:12;
299 GLuint pad:5;
300 };
301
302
303 struct tnl_program {
304 const struct state_key *state;
305 struct gl_vertex_program *program;
306 GLuint max_inst; /** number of instructions allocated for program */
307 GLboolean mvp_with_dp4;
308
309 GLuint temp_in_use;
310 GLuint temp_reserved;
311
312 struct ureg eye_position;
313 struct ureg eye_position_z;
314 struct ureg eye_position_normalized;
315 struct ureg transformed_normal;
316 struct ureg identity;
317
318 GLuint materials;
319 GLuint color_materials;
320 };
321
322
323 static const struct ureg undef = {
324 PROGRAM_UNDEFINED,
325 0,
326 0,
327 0,
328 0,
329 0
330 };
331
332 /* Local shorthand:
333 */
334 #define X SWIZZLE_X
335 #define Y SWIZZLE_Y
336 #define Z SWIZZLE_Z
337 #define W SWIZZLE_W
338
339
340 /* Construct a ureg:
341 */
342 static struct ureg make_ureg(GLuint file, GLint idx)
343 {
344 struct ureg reg;
345 reg.file = file;
346 reg.idx = idx;
347 reg.abs = 0;
348 reg.negate = 0;
349 reg.swz = SWIZZLE_NOOP;
350 reg.pad = 0;
351 return reg;
352 }
353
354
355
356 static struct ureg absolute( struct ureg reg )
357 {
358 reg.abs = 1;
359 reg.negate = 0;
360 return reg;
361 }
362
363
364 static struct ureg negate( struct ureg reg )
365 {
366 reg.negate ^= 1;
367 return reg;
368 }
369
370
371 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
372 {
373 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
374 GET_SWZ(reg.swz, y),
375 GET_SWZ(reg.swz, z),
376 GET_SWZ(reg.swz, w));
377 return reg;
378 }
379
380
381 static struct ureg swizzle1( struct ureg reg, int x )
382 {
383 return swizzle(reg, x, x, x, x);
384 }
385
386
387 static struct ureg get_temp( struct tnl_program *p )
388 {
389 int bit = ffs( ~p->temp_in_use );
390 if (!bit) {
391 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
392 exit(1);
393 }
394
395 if ((GLuint) bit > p->program->Base.NumTemporaries)
396 p->program->Base.NumTemporaries = bit;
397
398 p->temp_in_use |= 1<<(bit-1);
399 return make_ureg(PROGRAM_TEMPORARY, bit-1);
400 }
401
402
403 static struct ureg reserve_temp( struct tnl_program *p )
404 {
405 struct ureg temp = get_temp( p );
406 p->temp_reserved |= 1<<temp.idx;
407 return temp;
408 }
409
410
411 static void release_temp( struct tnl_program *p, struct ureg reg )
412 {
413 if (reg.file == PROGRAM_TEMPORARY) {
414 p->temp_in_use &= ~(1<<reg.idx);
415 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
416 }
417 }
418
419 static void release_temps( struct tnl_program *p )
420 {
421 p->temp_in_use = p->temp_reserved;
422 }
423
424
425 static struct ureg register_param5(struct tnl_program *p,
426 GLint s0,
427 GLint s1,
428 GLint s2,
429 GLint s3,
430 GLint s4)
431 {
432 gl_state_index tokens[STATE_LENGTH];
433 GLint idx;
434 tokens[0] = s0;
435 tokens[1] = s1;
436 tokens[2] = s2;
437 tokens[3] = s3;
438 tokens[4] = s4;
439 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
440 return make_ureg(PROGRAM_STATE_VAR, idx);
441 }
442
443
444 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
445 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
446 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
447 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
448
449
450
451 /**
452 * \param input one of VERT_ATTRIB_x tokens.
453 */
454 static struct ureg register_input( struct tnl_program *p, GLuint input )
455 {
456 assert(input < VERT_ATTRIB_MAX);
457
458 if (p->state->varying_vp_inputs & VERT_BIT(input)) {
459 p->program->Base.InputsRead |= VERT_BIT(input);
460 return make_ureg(PROGRAM_INPUT, input);
461 }
462 else {
463 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
464 }
465 }
466
467
468 /**
469 * \param input one of VARYING_SLOT_x tokens.
470 */
471 static struct ureg register_output( struct tnl_program *p, GLuint output )
472 {
473 p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
474 return make_ureg(PROGRAM_OUTPUT, output);
475 }
476
477
478 static struct ureg register_const4f( struct tnl_program *p,
479 GLfloat s0,
480 GLfloat s1,
481 GLfloat s2,
482 GLfloat s3)
483 {
484 gl_constant_value values[4];
485 GLint idx;
486 GLuint swizzle;
487 values[0].f = s0;
488 values[1].f = s1;
489 values[2].f = s2;
490 values[3].f = s3;
491 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
492 &swizzle );
493 assert(swizzle == SWIZZLE_NOOP);
494 return make_ureg(PROGRAM_CONSTANT, idx);
495 }
496
497 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
498 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
499 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
500 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
501
502 static GLboolean is_undef( struct ureg reg )
503 {
504 return reg.file == PROGRAM_UNDEFINED;
505 }
506
507
508 static struct ureg get_identity_param( struct tnl_program *p )
509 {
510 if (is_undef(p->identity))
511 p->identity = register_const4f(p, 0,0,0,1);
512
513 return p->identity;
514 }
515
516 static void register_matrix_param5( struct tnl_program *p,
517 GLint s0, /* modelview, projection, etc */
518 GLint s1, /* texture matrix number */
519 GLint s2, /* first row */
520 GLint s3, /* last row */
521 GLint s4, /* inverse, transpose, etc */
522 struct ureg *matrix )
523 {
524 GLint i;
525
526 /* This is a bit sad as the support is there to pull the whole
527 * matrix out in one go:
528 */
529 for (i = 0; i <= s3 - s2; i++)
530 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
531 }
532
533
534 static void emit_arg( struct prog_src_register *src,
535 struct ureg reg )
536 {
537 src->File = reg.file;
538 src->Index = reg.idx;
539 src->Swizzle = reg.swz;
540 src->Abs = reg.abs;
541 src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
542 src->RelAddr = 0;
543 /* Check that bitfield sizes aren't exceeded */
544 assert(src->Index == reg.idx);
545 }
546
547
548 static void emit_dst( struct prog_dst_register *dst,
549 struct ureg reg, GLuint mask )
550 {
551 dst->File = reg.file;
552 dst->Index = reg.idx;
553 /* allow zero as a shorthand for xyzw */
554 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
555 /* Check that bitfield sizes aren't exceeded */
556 assert(dst->Index == reg.idx);
557 }
558
559
560 static void debug_insn( struct prog_instruction *inst, const char *fn,
561 GLuint line )
562 {
563 if (DISASSEM) {
564 static const char *last_fn;
565
566 if (fn != last_fn) {
567 last_fn = fn;
568 printf("%s:\n", fn);
569 }
570
571 printf("%d:\t", line);
572 _mesa_print_instruction(inst);
573 }
574 }
575
576
577 static void emit_op3fn(struct tnl_program *p,
578 enum prog_opcode op,
579 struct ureg dest,
580 GLuint mask,
581 struct ureg src0,
582 struct ureg src1,
583 struct ureg src2,
584 const char *fn,
585 GLuint line)
586 {
587 GLuint nr;
588 struct prog_instruction *inst;
589
590 assert(p->program->Base.NumInstructions <= p->max_inst);
591
592 if (p->program->Base.NumInstructions == p->max_inst) {
593 /* need to extend the program's instruction array */
594 struct prog_instruction *newInst;
595
596 /* double the size */
597 p->max_inst *= 2;
598
599 newInst = _mesa_alloc_instructions(p->max_inst);
600 if (!newInst) {
601 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
602 return;
603 }
604
605 _mesa_copy_instructions(newInst,
606 p->program->Base.Instructions,
607 p->program->Base.NumInstructions);
608
609 _mesa_free_instructions(p->program->Base.Instructions,
610 p->program->Base.NumInstructions);
611
612 p->program->Base.Instructions = newInst;
613 }
614
615 nr = p->program->Base.NumInstructions++;
616
617 inst = &p->program->Base.Instructions[nr];
618 inst->Opcode = (enum prog_opcode) op;
619
620 emit_arg( &inst->SrcReg[0], src0 );
621 emit_arg( &inst->SrcReg[1], src1 );
622 emit_arg( &inst->SrcReg[2], src2 );
623
624 emit_dst( &inst->DstReg, dest, mask );
625
626 debug_insn(inst, fn, line);
627 }
628
629
630 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
631 emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__)
632
633 #define emit_op2(p, op, dst, mask, src0, src1) \
634 emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__)
635
636 #define emit_op1(p, op, dst, mask, src0) \
637 emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__)
638
639
640 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
641 {
642 if (reg.file == PROGRAM_TEMPORARY &&
643 !(p->temp_reserved & (1<<reg.idx)))
644 return reg;
645 else {
646 struct ureg temp = get_temp(p);
647 emit_op1(p, OPCODE_MOV, temp, 0, reg);
648 return temp;
649 }
650 }
651
652
653 /* Currently no tracking performed of input/output/register size or
654 * active elements. Could be used to reduce these operations, as
655 * could the matrix type.
656 */
657 static void emit_matrix_transform_vec4( struct tnl_program *p,
658 struct ureg dest,
659 const struct ureg *mat,
660 struct ureg src)
661 {
662 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
663 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
664 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
665 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
666 }
667
668
669 /* This version is much easier to implement if writemasks are not
670 * supported natively on the target or (like SSE), the target doesn't
671 * have a clean/obvious dotproduct implementation.
672 */
673 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
674 struct ureg dest,
675 const struct ureg *mat,
676 struct ureg src)
677 {
678 struct ureg tmp;
679
680 if (dest.file != PROGRAM_TEMPORARY)
681 tmp = get_temp(p);
682 else
683 tmp = dest;
684
685 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
686 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
687 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
688 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
689
690 if (dest.file != PROGRAM_TEMPORARY)
691 release_temp(p, tmp);
692 }
693
694
695 static void emit_matrix_transform_vec3( struct tnl_program *p,
696 struct ureg dest,
697 const struct ureg *mat,
698 struct ureg src)
699 {
700 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
701 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
702 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
703 }
704
705
706 static void emit_normalize_vec3( struct tnl_program *p,
707 struct ureg dest,
708 struct ureg src )
709 {
710 struct ureg tmp = get_temp(p);
711 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
712 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
713 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
714 release_temp(p, tmp);
715 }
716
717
718 static void emit_passthrough( struct tnl_program *p,
719 GLuint input,
720 GLuint output )
721 {
722 struct ureg out = register_output(p, output);
723 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
724 }
725
726
727 static struct ureg get_eye_position( struct tnl_program *p )
728 {
729 if (is_undef(p->eye_position)) {
730 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
731 struct ureg modelview[4];
732
733 p->eye_position = reserve_temp(p);
734
735 if (p->mvp_with_dp4) {
736 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
737 0, modelview );
738
739 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
740 }
741 else {
742 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
743 STATE_MATRIX_TRANSPOSE, modelview );
744
745 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
746 }
747 }
748
749 return p->eye_position;
750 }
751
752
753 static struct ureg get_eye_position_z( struct tnl_program *p )
754 {
755 if (!is_undef(p->eye_position))
756 return swizzle1(p->eye_position, Z);
757
758 if (is_undef(p->eye_position_z)) {
759 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
760 struct ureg modelview[4];
761
762 p->eye_position_z = reserve_temp(p);
763
764 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
765 0, modelview );
766
767 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
768 }
769
770 return p->eye_position_z;
771 }
772
773
774 static struct ureg get_eye_position_normalized( struct tnl_program *p )
775 {
776 if (is_undef(p->eye_position_normalized)) {
777 struct ureg eye = get_eye_position(p);
778 p->eye_position_normalized = reserve_temp(p);
779 emit_normalize_vec3(p, p->eye_position_normalized, eye);
780 }
781
782 return p->eye_position_normalized;
783 }
784
785
786 static struct ureg get_transformed_normal( struct tnl_program *p )
787 {
788 if (is_undef(p->transformed_normal) &&
789 !p->state->need_eye_coords &&
790 !p->state->normalize &&
791 !(p->state->need_eye_coords == p->state->rescale_normals))
792 {
793 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
794 }
795 else if (is_undef(p->transformed_normal))
796 {
797 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
798 struct ureg mvinv[3];
799 struct ureg transformed_normal = reserve_temp(p);
800
801 if (p->state->need_eye_coords) {
802 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
803 STATE_MATRIX_INVTRANS, mvinv );
804
805 /* Transform to eye space:
806 */
807 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
808 normal = transformed_normal;
809 }
810
811 /* Normalize/Rescale:
812 */
813 if (p->state->normalize) {
814 emit_normalize_vec3( p, transformed_normal, normal );
815 normal = transformed_normal;
816 }
817 else if (p->state->need_eye_coords == p->state->rescale_normals) {
818 /* This is already adjusted for eye/non-eye rendering:
819 */
820 struct ureg rescale = register_param2(p, STATE_INTERNAL,
821 STATE_NORMAL_SCALE);
822
823 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
824 normal = transformed_normal;
825 }
826
827 assert(normal.file == PROGRAM_TEMPORARY);
828 p->transformed_normal = normal;
829 }
830
831 return p->transformed_normal;
832 }
833
834
835 static void build_hpos( struct tnl_program *p )
836 {
837 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
838 struct ureg hpos = register_output( p, VARYING_SLOT_POS );
839 struct ureg mvp[4];
840
841 if (p->mvp_with_dp4) {
842 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
843 0, mvp );
844 emit_matrix_transform_vec4( p, hpos, mvp, pos );
845 }
846 else {
847 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
848 STATE_MATRIX_TRANSPOSE, mvp );
849 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
850 }
851 }
852
853
854 static GLuint material_attrib( GLuint side, GLuint property )
855 {
856 return (property - STATE_AMBIENT) * 2 + side;
857 }
858
859
860 /**
861 * Get a bitmask of which material values vary on a per-vertex basis.
862 */
863 static void set_material_flags( struct tnl_program *p )
864 {
865 p->color_materials = 0;
866 p->materials = 0;
867
868 if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
869 p->materials =
870 p->color_materials = p->state->light_color_material_mask;
871 }
872
873 p->materials |= (p->state->varying_vp_inputs >> VERT_ATTRIB_GENERIC0);
874 }
875
876
877 static struct ureg get_material( struct tnl_program *p, GLuint side,
878 GLuint property )
879 {
880 GLuint attrib = material_attrib(side, property);
881
882 if (p->color_materials & (1<<attrib))
883 return register_input(p, VERT_ATTRIB_COLOR0);
884 else if (p->materials & (1<<attrib)) {
885 /* Put material values in the GENERIC slots -- they are not used
886 * for anything in fixed function mode.
887 */
888 return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
889 }
890 else
891 return register_param3( p, STATE_MATERIAL, side, property );
892 }
893
894 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
895 MAT_BIT_FRONT_AMBIENT | \
896 MAT_BIT_FRONT_DIFFUSE) << (side))
897
898
899 /**
900 * Either return a precalculated constant value or emit code to
901 * calculate these values dynamically in the case where material calls
902 * are present between begin/end pairs.
903 *
904 * Probably want to shift this to the program compilation phase - if
905 * we always emitted the calculation here, a smart compiler could
906 * detect that it was constant (given a certain set of inputs), and
907 * lift it out of the main loop. That way the programs created here
908 * would be independent of the vertex_buffer details.
909 */
910 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
911 {
912 if (p->materials & SCENE_COLOR_BITS(side)) {
913 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
914 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
915 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
916 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
917 struct ureg tmp = make_temp(p, material_diffuse);
918 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
919 material_ambient, material_emission);
920 return tmp;
921 }
922 else
923 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
924 }
925
926
927 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
928 GLuint side, GLuint property )
929 {
930 GLuint attrib = material_attrib(side, property);
931 if (p->materials & (1<<attrib)) {
932 struct ureg light_value =
933 register_param3(p, STATE_LIGHT, light, property);
934 struct ureg material_value = get_material(p, side, property);
935 struct ureg tmp = get_temp(p);
936 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
937 return tmp;
938 }
939 else
940 return register_param4(p, STATE_LIGHTPROD, light, side, property);
941 }
942
943
944 static struct ureg calculate_light_attenuation( struct tnl_program *p,
945 GLuint i,
946 struct ureg VPpli,
947 struct ureg dist )
948 {
949 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
950 STATE_ATTENUATION);
951 struct ureg att = undef;
952
953 /* Calculate spot attenuation:
954 */
955 if (!p->state->unit[i].light_spotcutoff_is_180) {
956 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
957 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
958 struct ureg spot = get_temp(p);
959 struct ureg slt = get_temp(p);
960
961 att = get_temp(p);
962
963 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
964 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
965 emit_op2(p, OPCODE_POW, spot, 0, absolute(spot), swizzle1(attenuation, W));
966 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
967
968 release_temp(p, spot);
969 release_temp(p, slt);
970 }
971
972 /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
973 *
974 * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
975 */
976 if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
977 if (is_undef(att))
978 att = get_temp(p);
979 /* 1/d,d,d,1/d */
980 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
981 /* 1,d,d*d,1/d */
982 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
983 /* 1/dist-atten */
984 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
985
986 if (!p->state->unit[i].light_spotcutoff_is_180) {
987 /* dist-atten */
988 emit_op1(p, OPCODE_RCP, dist, 0, dist);
989 /* spot-atten * dist-atten */
990 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
991 }
992 else {
993 /* dist-atten */
994 emit_op1(p, OPCODE_RCP, att, 0, dist);
995 }
996 }
997
998 return att;
999 }
1000
1001
1002 /**
1003 * Compute:
1004 * lit.y = MAX(0, dots.x)
1005 * lit.z = SLT(0, dots.x)
1006 */
1007 static void emit_degenerate_lit( struct tnl_program *p,
1008 struct ureg lit,
1009 struct ureg dots )
1010 {
1011 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
1012
1013 /* Note that lit.x & lit.w will not be examined. Note also that
1014 * dots.xyzw == dots.xxxx.
1015 */
1016
1017 /* MAX lit, id, dots;
1018 */
1019 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1020
1021 /* result[2] = (in > 0 ? 1 : 0)
1022 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
1023 */
1024 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1025 }
1026
1027
1028 /* Need to add some addtional parameters to allow lighting in object
1029 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1030 * space lighting.
1031 */
1032 static void build_lighting( struct tnl_program *p )
1033 {
1034 const GLboolean twoside = p->state->light_twoside;
1035 const GLboolean separate = p->state->separate_specular;
1036 GLuint nr_lights = 0, count = 0;
1037 struct ureg normal = get_transformed_normal(p);
1038 struct ureg lit = get_temp(p);
1039 struct ureg dots = get_temp(p);
1040 struct ureg _col0 = undef, _col1 = undef;
1041 struct ureg _bfc0 = undef, _bfc1 = undef;
1042 GLuint i;
1043
1044 /*
1045 * NOTE:
1046 * dots.x = dot(normal, VPpli)
1047 * dots.y = dot(normal, halfAngle)
1048 * dots.z = back.shininess
1049 * dots.w = front.shininess
1050 */
1051
1052 for (i = 0; i < MAX_LIGHTS; i++)
1053 if (p->state->unit[i].light_enabled)
1054 nr_lights++;
1055
1056 set_material_flags(p);
1057
1058 {
1059 if (!p->state->material_shininess_is_zero) {
1060 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1061 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1062 release_temp(p, shininess);
1063 }
1064
1065 _col0 = make_temp(p, get_scenecolor(p, 0));
1066 if (separate)
1067 _col1 = make_temp(p, get_identity_param(p));
1068 else
1069 _col1 = _col0;
1070 }
1071
1072 if (twoside) {
1073 if (!p->state->material_shininess_is_zero) {
1074 /* Note that we negate the back-face specular exponent here.
1075 * The negation will be un-done later in the back-face code below.
1076 */
1077 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1078 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1079 negate(swizzle1(shininess,X)));
1080 release_temp(p, shininess);
1081 }
1082
1083 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1084 if (separate)
1085 _bfc1 = make_temp(p, get_identity_param(p));
1086 else
1087 _bfc1 = _bfc0;
1088 }
1089
1090 /* If no lights, still need to emit the scenecolor.
1091 */
1092 {
1093 struct ureg res0 = register_output( p, VARYING_SLOT_COL0 );
1094 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1095 }
1096
1097 if (separate) {
1098 struct ureg res1 = register_output( p, VARYING_SLOT_COL1 );
1099 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1100 }
1101
1102 if (twoside) {
1103 struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 );
1104 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1105 }
1106
1107 if (twoside && separate) {
1108 struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 );
1109 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1110 }
1111
1112 if (nr_lights == 0) {
1113 release_temps(p);
1114 return;
1115 }
1116
1117 for (i = 0; i < MAX_LIGHTS; i++) {
1118 if (p->state->unit[i].light_enabled) {
1119 struct ureg half = undef;
1120 struct ureg att = undef, VPpli = undef;
1121 struct ureg dist = undef;
1122
1123 count++;
1124 if (p->state->unit[i].light_eyepos3_is_zero) {
1125 VPpli = register_param3(p, STATE_INTERNAL,
1126 STATE_LIGHT_POSITION_NORMALIZED, i);
1127 } else {
1128 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1129 STATE_LIGHT_POSITION, i);
1130 struct ureg V = get_eye_position(p);
1131
1132 VPpli = get_temp(p);
1133 dist = get_temp(p);
1134
1135 /* Calculate VPpli vector
1136 */
1137 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1138
1139 /* Normalize VPpli. The dist value also used in
1140 * attenuation below.
1141 */
1142 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1143 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1144 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1145 }
1146
1147 /* Calculate attenuation:
1148 */
1149 att = calculate_light_attenuation(p, i, VPpli, dist);
1150 release_temp(p, dist);
1151
1152 /* Calculate viewer direction, or use infinite viewer:
1153 */
1154 if (!p->state->material_shininess_is_zero) {
1155 if (p->state->light_local_viewer) {
1156 struct ureg eye_hat = get_eye_position_normalized(p);
1157 half = get_temp(p);
1158 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1159 emit_normalize_vec3(p, half, half);
1160 } else if (p->state->unit[i].light_eyepos3_is_zero) {
1161 half = register_param3(p, STATE_INTERNAL,
1162 STATE_LIGHT_HALF_VECTOR, i);
1163 } else {
1164 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1165 half = get_temp(p);
1166 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1167 emit_normalize_vec3(p, half, half);
1168 }
1169 }
1170
1171 /* Calculate dot products:
1172 */
1173 if (p->state->material_shininess_is_zero) {
1174 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1175 }
1176 else {
1177 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1178 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1179 }
1180
1181 /* Front face lighting:
1182 */
1183 {
1184 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1185 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1186 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1187 struct ureg res0, res1;
1188 GLuint mask0, mask1;
1189
1190 if (count == nr_lights) {
1191 if (separate) {
1192 mask0 = WRITEMASK_XYZ;
1193 mask1 = WRITEMASK_XYZ;
1194 res0 = register_output( p, VARYING_SLOT_COL0 );
1195 res1 = register_output( p, VARYING_SLOT_COL1 );
1196 }
1197 else {
1198 mask0 = 0;
1199 mask1 = WRITEMASK_XYZ;
1200 res0 = _col0;
1201 res1 = register_output( p, VARYING_SLOT_COL0 );
1202 }
1203 }
1204 else {
1205 mask0 = 0;
1206 mask1 = 0;
1207 res0 = _col0;
1208 res1 = _col1;
1209 }
1210
1211 if (!is_undef(att)) {
1212 /* light is attenuated by distance */
1213 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1214 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1215 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1216 }
1217 else if (!p->state->material_shininess_is_zero) {
1218 /* there's a non-zero specular term */
1219 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1220 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1221 }
1222 else {
1223 /* no attenutation, no specular */
1224 emit_degenerate_lit(p, lit, dots);
1225 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1226 }
1227
1228 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1229 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1230
1231 release_temp(p, ambient);
1232 release_temp(p, diffuse);
1233 release_temp(p, specular);
1234 }
1235
1236 /* Back face lighting:
1237 */
1238 if (twoside) {
1239 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1240 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1241 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1242 struct ureg res0, res1;
1243 GLuint mask0, mask1;
1244
1245 if (count == nr_lights) {
1246 if (separate) {
1247 mask0 = WRITEMASK_XYZ;
1248 mask1 = WRITEMASK_XYZ;
1249 res0 = register_output( p, VARYING_SLOT_BFC0 );
1250 res1 = register_output( p, VARYING_SLOT_BFC1 );
1251 }
1252 else {
1253 mask0 = 0;
1254 mask1 = WRITEMASK_XYZ;
1255 res0 = _bfc0;
1256 res1 = register_output( p, VARYING_SLOT_BFC0 );
1257 }
1258 }
1259 else {
1260 res0 = _bfc0;
1261 res1 = _bfc1;
1262 mask0 = 0;
1263 mask1 = 0;
1264 }
1265
1266 /* For the back face we need to negate the X and Y component
1267 * dot products. dots.Z has the negated back-face specular
1268 * exponent. We swizzle that into the W position. This
1269 * negation makes the back-face specular term positive again.
1270 */
1271 dots = negate(swizzle(dots,X,Y,W,Z));
1272
1273 if (!is_undef(att)) {
1274 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1275 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1276 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1277 }
1278 else if (!p->state->material_shininess_is_zero) {
1279 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1280 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1281 }
1282 else {
1283 emit_degenerate_lit(p, lit, dots);
1284 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1285 }
1286
1287 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1288 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1289 /* restore dots to its original state for subsequent lights
1290 * by negating and swizzling again.
1291 */
1292 dots = negate(swizzle(dots,X,Y,W,Z));
1293
1294 release_temp(p, ambient);
1295 release_temp(p, diffuse);
1296 release_temp(p, specular);
1297 }
1298
1299 release_temp(p, half);
1300 release_temp(p, VPpli);
1301 release_temp(p, att);
1302 }
1303 }
1304
1305 release_temps( p );
1306 }
1307
1308
1309 static void build_fog( struct tnl_program *p )
1310 {
1311 struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
1312 struct ureg input;
1313
1314 if (p->state->fog_source_is_depth) {
1315
1316 switch (p->state->fog_distance_mode) {
1317 case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
1318 input = get_eye_position(p);
1319 emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input);
1320 emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog);
1321 emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog);
1322 break;
1323 case FDM_EYE_PLANE: /* Z = Ze */
1324 input = get_eye_position_z(p);
1325 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1326 break;
1327 case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
1328 input = get_eye_position_z(p);
1329 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1330 break;
1331 default:
1332 assert(!"Bad fog mode in build_fog()");
1333 break;
1334 }
1335
1336 }
1337 else {
1338 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1339 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1340 }
1341
1342 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1343 }
1344
1345
1346 static void build_reflect_texgen( struct tnl_program *p,
1347 struct ureg dest,
1348 GLuint writemask )
1349 {
1350 struct ureg normal = get_transformed_normal(p);
1351 struct ureg eye_hat = get_eye_position_normalized(p);
1352 struct ureg tmp = get_temp(p);
1353
1354 /* n.u */
1355 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1356 /* 2n.u */
1357 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1358 /* (-2n.u)n + u */
1359 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1360
1361 release_temp(p, tmp);
1362 }
1363
1364
1365 static void build_sphere_texgen( struct tnl_program *p,
1366 struct ureg dest,
1367 GLuint writemask )
1368 {
1369 struct ureg normal = get_transformed_normal(p);
1370 struct ureg eye_hat = get_eye_position_normalized(p);
1371 struct ureg tmp = get_temp(p);
1372 struct ureg half = register_scalar_const(p, .5);
1373 struct ureg r = get_temp(p);
1374 struct ureg inv_m = get_temp(p);
1375 struct ureg id = get_identity_param(p);
1376
1377 /* Could share the above calculations, but it would be
1378 * a fairly odd state for someone to set (both sphere and
1379 * reflection active for different texture coordinate
1380 * components. Of course - if two texture units enable
1381 * reflect and/or sphere, things start to tilt in favour
1382 * of seperating this out:
1383 */
1384
1385 /* n.u */
1386 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1387 /* 2n.u */
1388 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1389 /* (-2n.u)n + u */
1390 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1391 /* r + 0,0,1 */
1392 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1393 /* rx^2 + ry^2 + (rz+1)^2 */
1394 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1395 /* 2/m */
1396 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1397 /* 1/m */
1398 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1399 /* r/m + 1/2 */
1400 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1401
1402 release_temp(p, tmp);
1403 release_temp(p, r);
1404 release_temp(p, inv_m);
1405 }
1406
1407
1408 static void build_texture_transform( struct tnl_program *p )
1409 {
1410 GLuint i, j;
1411
1412 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1413
1414 if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i)))
1415 continue;
1416
1417 if (p->state->unit[i].coord_replace)
1418 continue;
1419
1420 if (p->state->unit[i].texgen_enabled ||
1421 p->state->unit[i].texmat_enabled) {
1422
1423 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1424 struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i);
1425 struct ureg out_texgen = undef;
1426
1427 if (p->state->unit[i].texgen_enabled) {
1428 GLuint copy_mask = 0;
1429 GLuint sphere_mask = 0;
1430 GLuint reflect_mask = 0;
1431 GLuint normal_mask = 0;
1432 GLuint modes[4];
1433
1434 if (texmat_enabled)
1435 out_texgen = get_temp(p);
1436 else
1437 out_texgen = out;
1438
1439 modes[0] = p->state->unit[i].texgen_mode0;
1440 modes[1] = p->state->unit[i].texgen_mode1;
1441 modes[2] = p->state->unit[i].texgen_mode2;
1442 modes[3] = p->state->unit[i].texgen_mode3;
1443
1444 for (j = 0; j < 4; j++) {
1445 switch (modes[j]) {
1446 case TXG_OBJ_LINEAR: {
1447 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1448 struct ureg plane =
1449 register_param3(p, STATE_TEXGEN, i,
1450 STATE_TEXGEN_OBJECT_S + j);
1451
1452 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1453 obj, plane );
1454 break;
1455 }
1456 case TXG_EYE_LINEAR: {
1457 struct ureg eye = get_eye_position(p);
1458 struct ureg plane =
1459 register_param3(p, STATE_TEXGEN, i,
1460 STATE_TEXGEN_EYE_S + j);
1461
1462 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1463 eye, plane );
1464 break;
1465 }
1466 case TXG_SPHERE_MAP:
1467 sphere_mask |= WRITEMASK_X << j;
1468 break;
1469 case TXG_REFLECTION_MAP:
1470 reflect_mask |= WRITEMASK_X << j;
1471 break;
1472 case TXG_NORMAL_MAP:
1473 normal_mask |= WRITEMASK_X << j;
1474 break;
1475 case TXG_NONE:
1476 copy_mask |= WRITEMASK_X << j;
1477 }
1478 }
1479
1480 if (sphere_mask) {
1481 build_sphere_texgen(p, out_texgen, sphere_mask);
1482 }
1483
1484 if (reflect_mask) {
1485 build_reflect_texgen(p, out_texgen, reflect_mask);
1486 }
1487
1488 if (normal_mask) {
1489 struct ureg normal = get_transformed_normal(p);
1490 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1491 }
1492
1493 if (copy_mask) {
1494 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1495 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1496 }
1497 }
1498
1499 if (texmat_enabled) {
1500 struct ureg texmat[4];
1501 struct ureg in = (!is_undef(out_texgen) ?
1502 out_texgen :
1503 register_input(p, VERT_ATTRIB_TEX0+i));
1504 if (p->mvp_with_dp4) {
1505 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1506 0, texmat );
1507 emit_matrix_transform_vec4( p, out, texmat, in );
1508 }
1509 else {
1510 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1511 STATE_MATRIX_TRANSPOSE, texmat );
1512 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1513 }
1514 }
1515
1516 release_temps(p);
1517 }
1518 else {
1519 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i);
1520 }
1521 }
1522 }
1523
1524
1525 /**
1526 * Point size attenuation computation.
1527 */
1528 static void build_atten_pointsize( struct tnl_program *p )
1529 {
1530 struct ureg eye = get_eye_position_z(p);
1531 struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1532 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1533 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1534 struct ureg ut = get_temp(p);
1535
1536 /* dist = |eyez| */
1537 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1538 /* p1 + dist * (p2 + dist * p3); */
1539 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1540 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1541 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1542 ut, swizzle1(state_attenuation, X));
1543
1544 /* 1 / sqrt(factor) */
1545 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1546
1547 #if 0
1548 /* out = pointSize / sqrt(factor) */
1549 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1550 #else
1551 /* this is a good place to clamp the point size since there's likely
1552 * no hardware registers to clamp point size at rasterization time.
1553 */
1554 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1555 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1556 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1557 #endif
1558
1559 release_temp(p, ut);
1560 }
1561
1562
1563 /**
1564 * Pass-though per-vertex point size, from user's point size array.
1565 */
1566 static void build_array_pointsize( struct tnl_program *p )
1567 {
1568 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1569 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1570 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1571 }
1572
1573
1574 static void build_tnl_program( struct tnl_program *p )
1575 {
1576 /* Emit the program, starting with the modelview, projection transforms:
1577 */
1578 build_hpos(p);
1579
1580 /* Lighting calculations:
1581 */
1582 if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) {
1583 if (p->state->light_global_enabled)
1584 build_lighting(p);
1585 else {
1586 if (p->state->fragprog_inputs_read & VARYING_BIT_COL0)
1587 emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0);
1588
1589 if (p->state->fragprog_inputs_read & VARYING_BIT_COL1)
1590 emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1);
1591 }
1592 }
1593
1594 if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC)
1595 build_fog(p);
1596
1597 if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY)
1598 build_texture_transform(p);
1599
1600 if (p->state->point_attenuated)
1601 build_atten_pointsize(p);
1602 else if (p->state->point_array)
1603 build_array_pointsize(p);
1604
1605 /* Finish up:
1606 */
1607 emit_op1(p, OPCODE_END, undef, 0, undef);
1608
1609 /* Disassemble:
1610 */
1611 if (DISASSEM) {
1612 printf ("\n");
1613 }
1614 }
1615
1616
1617 static void
1618 create_new_program( const struct state_key *key,
1619 struct gl_vertex_program *program,
1620 GLboolean mvp_with_dp4,
1621 GLuint max_temps)
1622 {
1623 struct tnl_program p;
1624
1625 memset(&p, 0, sizeof(p));
1626 p.state = key;
1627 p.program = program;
1628 p.eye_position = undef;
1629 p.eye_position_z = undef;
1630 p.eye_position_normalized = undef;
1631 p.transformed_normal = undef;
1632 p.identity = undef;
1633 p.temp_in_use = 0;
1634 p.mvp_with_dp4 = mvp_with_dp4;
1635
1636 if (max_temps >= sizeof(int) * 8)
1637 p.temp_reserved = 0;
1638 else
1639 p.temp_reserved = ~((1<<max_temps)-1);
1640
1641 /* Start by allocating 32 instructions.
1642 * If we need more, we'll grow the instruction array as needed.
1643 */
1644 p.max_inst = 32;
1645 p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1646 p.program->Base.String = NULL;
1647 p.program->Base.NumInstructions =
1648 p.program->Base.NumTemporaries =
1649 p.program->Base.NumParameters =
1650 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1651 p.program->Base.Parameters = _mesa_new_parameter_list();
1652 p.program->Base.InputsRead = 0;
1653 p.program->Base.OutputsWritten = 0;
1654
1655 build_tnl_program( &p );
1656 }
1657
1658
1659 /**
1660 * Return a vertex program which implements the current fixed-function
1661 * transform/lighting/texgen operations.
1662 */
1663 struct gl_vertex_program *
1664 _mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1665 {
1666 struct gl_vertex_program *prog;
1667 struct state_key key;
1668
1669 /* Grab all the relevant state and put it in a single structure:
1670 */
1671 make_state_key(ctx, &key);
1672
1673 /* Look for an already-prepared program for this state:
1674 */
1675 prog = gl_vertex_program(
1676 _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key)));
1677
1678 if (!prog) {
1679 /* OK, we'll have to build a new one */
1680 if (0)
1681 printf("Build new TNL program\n");
1682
1683 prog = gl_vertex_program(ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0));
1684 if (!prog)
1685 return NULL;
1686
1687 create_new_program( &key, prog,
1688 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
1689 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps );
1690
1691 if (ctx->Driver.ProgramStringNotify)
1692 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1693 &prog->Base );
1694
1695 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1696 &key, sizeof(key), &prog->Base);
1697 }
1698
1699 return prog;
1700 }