Merge commit 'origin/master' into gallium-0.2
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/enums.h"
40 #include "main/ffvertex_prog.h"
41 #include "shader/program.h"
42 #include "shader/prog_cache.h"
43 #include "shader/prog_instruction.h"
44 #include "shader/prog_parameter.h"
45 #include "shader/prog_print.h"
46 #include "shader/prog_statevars.h"
47
48
49 struct state_key {
50 unsigned light_color_material_mask:12;
51 unsigned light_material_mask:12;
52 unsigned light_global_enabled:1;
53 unsigned light_local_viewer:1;
54 unsigned light_twoside:1;
55 unsigned light_color_material:1;
56 unsigned material_shininess_is_zero:1;
57 unsigned need_eye_coords:1;
58 unsigned normalize:1;
59 unsigned rescale_normals:1;
60
61 unsigned fog_source_is_depth:1;
62 unsigned tnl_do_vertex_fog:1;
63 unsigned separate_specular:1;
64 unsigned fog_mode:2;
65 unsigned point_attenuated:1;
66 unsigned point_array:1;
67 unsigned texture_enabled_global:1;
68 unsigned fragprog_inputs_read:12;
69
70 unsigned varying_vp_inputs;
71
72 struct {
73 unsigned light_enabled:1;
74 unsigned light_eyepos3_is_zero:1;
75 unsigned light_spotcutoff_is_180:1;
76 unsigned light_attenuated:1;
77 unsigned texunit_really_enabled:1;
78 unsigned texmat_enabled:1;
79 unsigned texgen_enabled:4;
80 unsigned texgen_mode0:4;
81 unsigned texgen_mode1:4;
82 unsigned texgen_mode2:4;
83 unsigned texgen_mode3:4;
84 } unit[8];
85 };
86
87
88
89 #define FOG_NONE 0
90 #define FOG_LINEAR 1
91 #define FOG_EXP 2
92 #define FOG_EXP2 3
93
94 static GLuint translate_fog_mode( GLenum mode )
95 {
96 switch (mode) {
97 case GL_LINEAR: return FOG_LINEAR;
98 case GL_EXP: return FOG_EXP;
99 case GL_EXP2: return FOG_EXP2;
100 default: return FOG_NONE;
101 }
102 }
103
104
105 #define TXG_NONE 0
106 #define TXG_OBJ_LINEAR 1
107 #define TXG_EYE_LINEAR 2
108 #define TXG_SPHERE_MAP 3
109 #define TXG_REFLECTION_MAP 4
110 #define TXG_NORMAL_MAP 5
111
112 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
113 {
114 if (!enabled)
115 return TXG_NONE;
116
117 switch (mode) {
118 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
119 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
120 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
121 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
122 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
123 default: return TXG_NONE;
124 }
125 }
126
127
128 /**
129 * Returns bitmask of flags indicating which materials are set per-vertex
130 * in the current VB.
131 * XXX get these from the VBO...
132 */
133 static GLbitfield
134 tnl_get_per_vertex_materials(GLcontext *ctx)
135 {
136 GLbitfield mask = 0x0;
137 #if 0
138 TNLcontext *tnl = TNL_CONTEXT(ctx);
139 struct vertex_buffer *VB = &tnl->vb;
140 GLuint i;
141
142 for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
143 if (VB->AttribPtr[i] && VB->AttribPtr[i]->stride)
144 mask |= 1 << (i - _TNL_FIRST_MAT);
145 #endif
146 return mask;
147 }
148
149
150 /**
151 * Should fog be computed per-vertex?
152 */
153 static GLboolean
154 tnl_get_per_vertex_fog(GLcontext *ctx)
155 {
156 #if 0
157 TNLcontext *tnl = TNL_CONTEXT(ctx);
158 return tnl->_DoVertexFog;
159 #else
160 return GL_FALSE;
161 #endif
162 }
163
164
165 static GLboolean check_active_shininess( GLcontext *ctx,
166 const struct state_key *key,
167 GLuint side )
168 {
169 GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
170
171 if (key->light_color_material_mask & bit)
172 return GL_TRUE;
173
174 if (key->light_material_mask & bit)
175 return GL_TRUE;
176
177 if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
178 return GL_TRUE;
179
180 return GL_FALSE;
181 }
182
183
184 static void make_state_key( GLcontext *ctx, struct state_key *key )
185 {
186 const struct gl_fragment_program *fp;
187 GLuint i;
188
189 memset(key, 0, sizeof(struct state_key));
190 fp = ctx->FragmentProgram._Current;
191
192 /* This now relies on texenvprogram.c being active:
193 */
194 assert(fp);
195
196 key->need_eye_coords = ctx->_NeedEyeCoords;
197
198 key->fragprog_inputs_read = fp->Base.InputsRead;
199 key->varying_vp_inputs = ctx->varying_vp_inputs;
200
201 if (ctx->RenderMode == GL_FEEDBACK) {
202 /* make sure the vertprog emits color and tex0 */
203 key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
204 }
205
206 key->separate_specular = (ctx->Light.Model.ColorControl ==
207 GL_SEPARATE_SPECULAR_COLOR);
208
209 if (ctx->Light.Enabled) {
210 key->light_global_enabled = 1;
211
212 if (ctx->Light.Model.LocalViewer)
213 key->light_local_viewer = 1;
214
215 if (ctx->Light.Model.TwoSide)
216 key->light_twoside = 1;
217
218 if (ctx->Light.ColorMaterialEnabled) {
219 key->light_color_material = 1;
220 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
221 }
222
223 key->light_material_mask = tnl_get_per_vertex_materials(ctx);
224
225 for (i = 0; i < MAX_LIGHTS; i++) {
226 struct gl_light *light = &ctx->Light.Light[i];
227
228 if (light->Enabled) {
229 key->unit[i].light_enabled = 1;
230
231 if (light->EyePosition[3] == 0.0)
232 key->unit[i].light_eyepos3_is_zero = 1;
233
234 if (light->SpotCutoff == 180.0)
235 key->unit[i].light_spotcutoff_is_180 = 1;
236
237 if (light->ConstantAttenuation != 1.0 ||
238 light->LinearAttenuation != 0.0 ||
239 light->QuadraticAttenuation != 0.0)
240 key->unit[i].light_attenuated = 1;
241 }
242 }
243
244 if (check_active_shininess(ctx, key, 0)) {
245 key->material_shininess_is_zero = 0;
246 }
247 else if (key->light_twoside &&
248 check_active_shininess(ctx, key, 1)) {
249 key->material_shininess_is_zero = 0;
250 }
251 else {
252 key->material_shininess_is_zero = 1;
253 }
254 }
255
256 if (ctx->Transform.Normalize)
257 key->normalize = 1;
258
259 if (ctx->Transform.RescaleNormals)
260 key->rescale_normals = 1;
261
262 key->fog_mode = translate_fog_mode(fp->FogOption);
263
264 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
265 key->fog_source_is_depth = 1;
266
267 key->tnl_do_vertex_fog = tnl_get_per_vertex_fog(ctx);
268
269 if (ctx->Point._Attenuated)
270 key->point_attenuated = 1;
271
272 #if FEATURE_point_size_array
273 if (ctx->Array.ArrayObj->PointSize.Enabled)
274 key->point_array = 1;
275 #endif
276
277 if (ctx->Texture._TexGenEnabled ||
278 ctx->Texture._TexMatEnabled ||
279 ctx->Texture._EnabledUnits)
280 key->texture_enabled_global = 1;
281
282 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
283 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
284
285 if (texUnit->_ReallyEnabled)
286 key->unit[i].texunit_really_enabled = 1;
287
288 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
289 key->unit[i].texmat_enabled = 1;
290
291 if (texUnit->TexGenEnabled) {
292 key->unit[i].texgen_enabled = 1;
293
294 key->unit[i].texgen_mode0 =
295 translate_texgen( texUnit->TexGenEnabled & (1<<0),
296 texUnit->GenModeS );
297 key->unit[i].texgen_mode1 =
298 translate_texgen( texUnit->TexGenEnabled & (1<<1),
299 texUnit->GenModeT );
300 key->unit[i].texgen_mode2 =
301 translate_texgen( texUnit->TexGenEnabled & (1<<2),
302 texUnit->GenModeR );
303 key->unit[i].texgen_mode3 =
304 translate_texgen( texUnit->TexGenEnabled & (1<<3),
305 texUnit->GenModeQ );
306 }
307 }
308 }
309
310
311
312 /* Very useful debugging tool - produces annotated listing of
313 * generated program with line/function references for each
314 * instruction back into this file:
315 */
316 #define DISASSEM 0
317
318 /* Should be tunable by the driver - do we want to do matrix
319 * multiplications with DP4's or with MUL/MAD's? SSE works better
320 * with the latter, drivers may differ.
321 */
322 #define PREFER_DP4 0
323
324
325 /* Use uregs to represent registers internally, translate to Mesa's
326 * expected formats on emit.
327 *
328 * NOTE: These are passed by value extensively in this file rather
329 * than as usual by pointer reference. If this disturbs you, try
330 * remembering they are just 32bits in size.
331 *
332 * GCC is smart enough to deal with these dword-sized structures in
333 * much the same way as if I had defined them as dwords and was using
334 * macros to access and set the fields. This is much nicer and easier
335 * to evolve.
336 */
337 struct ureg {
338 GLuint file:4;
339 GLint idx:9; /* relative addressing may be negative */
340 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
341 GLuint negate:1;
342 GLuint swz:12;
343 GLuint pad:6;
344 };
345
346
347 struct tnl_program {
348 const struct state_key *state;
349 struct gl_vertex_program *program;
350 GLint max_inst; /** number of instructions allocated for program */
351
352 GLuint temp_in_use;
353 GLuint temp_reserved;
354
355 struct ureg eye_position;
356 struct ureg eye_position_z;
357 struct ureg eye_position_normalized;
358 struct ureg transformed_normal;
359 struct ureg identity;
360
361 GLuint materials;
362 GLuint color_materials;
363 };
364
365
366 static const struct ureg undef = {
367 PROGRAM_UNDEFINED,
368 0,
369 0,
370 0,
371 0
372 };
373
374 /* Local shorthand:
375 */
376 #define X SWIZZLE_X
377 #define Y SWIZZLE_Y
378 #define Z SWIZZLE_Z
379 #define W SWIZZLE_W
380
381
382 /* Construct a ureg:
383 */
384 static struct ureg make_ureg(GLuint file, GLint idx)
385 {
386 struct ureg reg;
387 reg.file = file;
388 reg.idx = idx;
389 reg.negate = 0;
390 reg.swz = SWIZZLE_NOOP;
391 reg.pad = 0;
392 return reg;
393 }
394
395
396
397 static struct ureg negate( struct ureg reg )
398 {
399 reg.negate ^= 1;
400 return reg;
401 }
402
403
404 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
405 {
406 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
407 GET_SWZ(reg.swz, y),
408 GET_SWZ(reg.swz, z),
409 GET_SWZ(reg.swz, w));
410
411 return reg;
412 }
413
414
415 static struct ureg swizzle1( struct ureg reg, int x )
416 {
417 return swizzle(reg, x, x, x, x);
418 }
419
420
421 static struct ureg get_temp( struct tnl_program *p )
422 {
423 int bit = _mesa_ffs( ~p->temp_in_use );
424 if (!bit) {
425 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
426 _mesa_exit(1);
427 }
428
429 if ((GLuint) bit > p->program->Base.NumTemporaries)
430 p->program->Base.NumTemporaries = bit;
431
432 p->temp_in_use |= 1<<(bit-1);
433 return make_ureg(PROGRAM_TEMPORARY, bit-1);
434 }
435
436
437 static struct ureg reserve_temp( struct tnl_program *p )
438 {
439 struct ureg temp = get_temp( p );
440 p->temp_reserved |= 1<<temp.idx;
441 return temp;
442 }
443
444
445 static void release_temp( struct tnl_program *p, struct ureg reg )
446 {
447 if (reg.file == PROGRAM_TEMPORARY) {
448 p->temp_in_use &= ~(1<<reg.idx);
449 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
450 }
451 }
452
453 static void release_temps( struct tnl_program *p )
454 {
455 p->temp_in_use = p->temp_reserved;
456 }
457
458
459 static struct ureg register_param5(struct tnl_program *p,
460 GLint s0,
461 GLint s1,
462 GLint s2,
463 GLint s3,
464 GLint s4)
465 {
466 gl_state_index tokens[STATE_LENGTH];
467 GLint idx;
468 tokens[0] = s0;
469 tokens[1] = s1;
470 tokens[2] = s2;
471 tokens[3] = s3;
472 tokens[4] = s4;
473 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
474 return make_ureg(PROGRAM_STATE_VAR, idx);
475 }
476
477
478 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
479 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
480 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
481 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
482
483
484
485 /**
486 * \param input one of VERT_ATTRIB_x tokens.
487 */
488 static struct ureg register_input( struct tnl_program *p, GLuint input )
489 {
490 /* Material attribs are passed here as inputs >= 32
491 */
492 if (input >= 32 || (p->state->varying_vp_inputs & (1<<input))) {
493 p->program->Base.InputsRead |= (1<<input);
494 return make_ureg(PROGRAM_INPUT, input);
495 }
496 else {
497 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
498 }
499 }
500
501
502 /**
503 * \param input one of VERT_RESULT_x tokens.
504 */
505 static struct ureg register_output( struct tnl_program *p, GLuint output )
506 {
507 p->program->Base.OutputsWritten |= (1<<output);
508 return make_ureg(PROGRAM_OUTPUT, output);
509 }
510
511
512 static struct ureg register_const4f( struct tnl_program *p,
513 GLfloat s0,
514 GLfloat s1,
515 GLfloat s2,
516 GLfloat s3)
517 {
518 GLfloat values[4];
519 GLint idx;
520 GLuint swizzle;
521 values[0] = s0;
522 values[1] = s1;
523 values[2] = s2;
524 values[3] = s3;
525 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
526 &swizzle );
527 ASSERT(swizzle == SWIZZLE_NOOP);
528 return make_ureg(PROGRAM_CONSTANT, idx);
529 }
530
531 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
532 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
533 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
534 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
535
536 static GLboolean is_undef( struct ureg reg )
537 {
538 return reg.file == PROGRAM_UNDEFINED;
539 }
540
541
542 static struct ureg get_identity_param( struct tnl_program *p )
543 {
544 if (is_undef(p->identity))
545 p->identity = register_const4f(p, 0,0,0,1);
546
547 return p->identity;
548 }
549
550 static void register_matrix_param5( struct tnl_program *p,
551 GLint s0, /* modelview, projection, etc */
552 GLint s1, /* texture matrix number */
553 GLint s2, /* first row */
554 GLint s3, /* last row */
555 GLint s4, /* inverse, transpose, etc */
556 struct ureg *matrix )
557 {
558 GLint i;
559
560 /* This is a bit sad as the support is there to pull the whole
561 * matrix out in one go:
562 */
563 for (i = 0; i <= s3 - s2; i++)
564 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
565 }
566
567
568 static void emit_arg( struct prog_src_register *src,
569 struct ureg reg )
570 {
571 src->File = reg.file;
572 src->Index = reg.idx;
573 src->Swizzle = reg.swz;
574 src->NegateBase = reg.negate ? NEGATE_XYZW : 0;
575 src->Abs = 0;
576 src->NegateAbs = 0;
577 src->RelAddr = 0;
578 /* Check that bitfield sizes aren't exceeded */
579 ASSERT(src->Index == reg.idx);
580 }
581
582
583 static void emit_dst( struct prog_dst_register *dst,
584 struct ureg reg, GLuint mask )
585 {
586 dst->File = reg.file;
587 dst->Index = reg.idx;
588 /* allow zero as a shorthand for xyzw */
589 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
590 dst->CondMask = COND_TR; /* always pass cond test */
591 dst->CondSwizzle = SWIZZLE_NOOP;
592 dst->CondSrc = 0;
593 dst->pad = 0;
594 /* Check that bitfield sizes aren't exceeded */
595 ASSERT(dst->Index == reg.idx);
596 }
597
598
599 static void debug_insn( struct prog_instruction *inst, const char *fn,
600 GLuint line )
601 {
602 if (DISASSEM) {
603 static const char *last_fn;
604
605 if (fn != last_fn) {
606 last_fn = fn;
607 _mesa_printf("%s:\n", fn);
608 }
609
610 _mesa_printf("%d:\t", line);
611 _mesa_print_instruction(inst);
612 }
613 }
614
615
616 static void emit_op3fn(struct tnl_program *p,
617 enum prog_opcode op,
618 struct ureg dest,
619 GLuint mask,
620 struct ureg src0,
621 struct ureg src1,
622 struct ureg src2,
623 const char *fn,
624 GLuint line)
625 {
626 GLuint nr;
627 struct prog_instruction *inst;
628
629 assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
630
631 if (p->program->Base.NumInstructions == p->max_inst) {
632 /* need to extend the program's instruction array */
633 struct prog_instruction *newInst;
634
635 /* double the size */
636 p->max_inst *= 2;
637
638 newInst = _mesa_alloc_instructions(p->max_inst);
639 if (!newInst) {
640 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
641 return;
642 }
643
644 _mesa_copy_instructions(newInst,
645 p->program->Base.Instructions,
646 p->program->Base.NumInstructions);
647
648 _mesa_free_instructions(p->program->Base.Instructions,
649 p->program->Base.NumInstructions);
650
651 p->program->Base.Instructions = newInst;
652 }
653
654 nr = p->program->Base.NumInstructions++;
655
656 inst = &p->program->Base.Instructions[nr];
657 inst->Opcode = (enum prog_opcode) op;
658 inst->StringPos = 0;
659 inst->Data = 0;
660
661 emit_arg( &inst->SrcReg[0], src0 );
662 emit_arg( &inst->SrcReg[1], src1 );
663 emit_arg( &inst->SrcReg[2], src2 );
664
665 emit_dst( &inst->DstReg, dest, mask );
666
667 debug_insn(inst, fn, line);
668 }
669
670
671 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
672 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
673
674 #define emit_op2(p, op, dst, mask, src0, src1) \
675 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
676
677 #define emit_op1(p, op, dst, mask, src0) \
678 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
679
680
681 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
682 {
683 if (reg.file == PROGRAM_TEMPORARY &&
684 !(p->temp_reserved & (1<<reg.idx)))
685 return reg;
686 else {
687 struct ureg temp = get_temp(p);
688 emit_op1(p, OPCODE_MOV, temp, 0, reg);
689 return temp;
690 }
691 }
692
693
694 /* Currently no tracking performed of input/output/register size or
695 * active elements. Could be used to reduce these operations, as
696 * could the matrix type.
697 */
698 static void emit_matrix_transform_vec4( struct tnl_program *p,
699 struct ureg dest,
700 const struct ureg *mat,
701 struct ureg src)
702 {
703 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
704 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
705 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
706 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
707 }
708
709
710 /* This version is much easier to implement if writemasks are not
711 * supported natively on the target or (like SSE), the target doesn't
712 * have a clean/obvious dotproduct implementation.
713 */
714 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
715 struct ureg dest,
716 const struct ureg *mat,
717 struct ureg src)
718 {
719 struct ureg tmp;
720
721 if (dest.file != PROGRAM_TEMPORARY)
722 tmp = get_temp(p);
723 else
724 tmp = dest;
725
726 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
727 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
728 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
729 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
730
731 if (dest.file != PROGRAM_TEMPORARY)
732 release_temp(p, tmp);
733 }
734
735
736 static void emit_matrix_transform_vec3( struct tnl_program *p,
737 struct ureg dest,
738 const struct ureg *mat,
739 struct ureg src)
740 {
741 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
742 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
743 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
744 }
745
746
747 static void emit_normalize_vec3( struct tnl_program *p,
748 struct ureg dest,
749 struct ureg src )
750 {
751 #if 0
752 /* XXX use this when drivers are ready for NRM3 */
753 emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
754 #else
755 struct ureg tmp = get_temp(p);
756 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
757 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
758 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
759 release_temp(p, tmp);
760 #endif
761 }
762
763
764 static void emit_passthrough( struct tnl_program *p,
765 GLuint input,
766 GLuint output )
767 {
768 struct ureg out = register_output(p, output);
769 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
770 }
771
772
773 static struct ureg get_eye_position( struct tnl_program *p )
774 {
775 if (is_undef(p->eye_position)) {
776 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
777 struct ureg modelview[4];
778
779 p->eye_position = reserve_temp(p);
780
781 if (PREFER_DP4) {
782 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
783 0, modelview );
784
785 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
786 }
787 else {
788 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
789 STATE_MATRIX_TRANSPOSE, modelview );
790
791 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
792 }
793 }
794
795 return p->eye_position;
796 }
797
798
799 static struct ureg get_eye_position_z( struct tnl_program *p )
800 {
801 if (!is_undef(p->eye_position))
802 return swizzle1(p->eye_position, Z);
803
804 if (is_undef(p->eye_position_z)) {
805 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
806 struct ureg modelview[4];
807
808 p->eye_position_z = reserve_temp(p);
809
810 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
811 0, modelview );
812
813 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
814 }
815
816 return p->eye_position_z;
817 }
818
819
820 static struct ureg get_eye_position_normalized( struct tnl_program *p )
821 {
822 if (is_undef(p->eye_position_normalized)) {
823 struct ureg eye = get_eye_position(p);
824 p->eye_position_normalized = reserve_temp(p);
825 emit_normalize_vec3(p, p->eye_position_normalized, eye);
826 }
827
828 return p->eye_position_normalized;
829 }
830
831
832 static struct ureg get_transformed_normal( struct tnl_program *p )
833 {
834 if (is_undef(p->transformed_normal) &&
835 !p->state->need_eye_coords &&
836 !p->state->normalize &&
837 !(p->state->need_eye_coords == p->state->rescale_normals))
838 {
839 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
840 }
841 else if (is_undef(p->transformed_normal))
842 {
843 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
844 struct ureg mvinv[3];
845 struct ureg transformed_normal = reserve_temp(p);
846
847 if (p->state->need_eye_coords) {
848 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
849 STATE_MATRIX_INVTRANS, mvinv );
850
851 /* Transform to eye space:
852 */
853 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
854 normal = transformed_normal;
855 }
856
857 /* Normalize/Rescale:
858 */
859 if (p->state->normalize) {
860 emit_normalize_vec3( p, transformed_normal, normal );
861 normal = transformed_normal;
862 }
863 else if (p->state->need_eye_coords == p->state->rescale_normals) {
864 /* This is already adjusted for eye/non-eye rendering:
865 */
866 struct ureg rescale = register_param2(p, STATE_INTERNAL,
867 STATE_NORMAL_SCALE);
868
869 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
870 normal = transformed_normal;
871 }
872
873 assert(normal.file == PROGRAM_TEMPORARY);
874 p->transformed_normal = normal;
875 }
876
877 return p->transformed_normal;
878 }
879
880
881 static void build_hpos( struct tnl_program *p )
882 {
883 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
884 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
885 struct ureg mvp[4];
886
887 if (PREFER_DP4) {
888 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
889 0, mvp );
890 emit_matrix_transform_vec4( p, hpos, mvp, pos );
891 }
892 else {
893 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
894 STATE_MATRIX_TRANSPOSE, mvp );
895 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
896 }
897 }
898
899
900 static GLuint material_attrib( GLuint side, GLuint property )
901 {
902 return ((property - STATE_AMBIENT) * 2 +
903 side);
904 }
905
906
907 /**
908 * Get a bitmask of which material values vary on a per-vertex basis.
909 */
910 static void set_material_flags( struct tnl_program *p )
911 {
912 p->color_materials = 0;
913 p->materials = 0;
914
915 if (p->state->light_color_material) {
916 p->materials =
917 p->color_materials = p->state->light_color_material_mask;
918 }
919
920 p->materials |= p->state->light_material_mask;
921 }
922
923
924 /* XXX temporary!!! */
925 #define _TNL_ATTRIB_MAT_FRONT_AMBIENT 32
926
927 static struct ureg get_material( struct tnl_program *p, GLuint side,
928 GLuint property )
929 {
930 GLuint attrib = material_attrib(side, property);
931
932 if (p->color_materials & (1<<attrib))
933 return register_input(p, VERT_ATTRIB_COLOR0);
934 else if (p->materials & (1<<attrib))
935 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
936 else
937 return register_param3( p, STATE_MATERIAL, side, property );
938 }
939
940 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
941 MAT_BIT_FRONT_AMBIENT | \
942 MAT_BIT_FRONT_DIFFUSE) << (side))
943
944
945 /**
946 * Either return a precalculated constant value or emit code to
947 * calculate these values dynamically in the case where material calls
948 * are present between begin/end pairs.
949 *
950 * Probably want to shift this to the program compilation phase - if
951 * we always emitted the calculation here, a smart compiler could
952 * detect that it was constant (given a certain set of inputs), and
953 * lift it out of the main loop. That way the programs created here
954 * would be independent of the vertex_buffer details.
955 */
956 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
957 {
958 if (p->materials & SCENE_COLOR_BITS(side)) {
959 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
960 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
961 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
962 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
963 struct ureg tmp = make_temp(p, material_diffuse);
964 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
965 material_ambient, material_emission);
966 return tmp;
967 }
968 else
969 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
970 }
971
972
973 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
974 GLuint side, GLuint property )
975 {
976 GLuint attrib = material_attrib(side, property);
977 if (p->materials & (1<<attrib)) {
978 struct ureg light_value =
979 register_param3(p, STATE_LIGHT, light, property);
980 struct ureg material_value = get_material(p, side, property);
981 struct ureg tmp = get_temp(p);
982 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
983 return tmp;
984 }
985 else
986 return register_param4(p, STATE_LIGHTPROD, light, side, property);
987 }
988
989
990 static struct ureg calculate_light_attenuation( struct tnl_program *p,
991 GLuint i,
992 struct ureg VPpli,
993 struct ureg dist )
994 {
995 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
996 STATE_ATTENUATION);
997 struct ureg att = get_temp(p);
998
999 /* Calculate spot attenuation:
1000 */
1001 if (!p->state->unit[i].light_spotcutoff_is_180) {
1002 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
1003 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
1004 struct ureg spot = get_temp(p);
1005 struct ureg slt = get_temp(p);
1006
1007 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
1008 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
1009 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
1010 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
1011
1012 release_temp(p, spot);
1013 release_temp(p, slt);
1014 }
1015
1016 /* Calculate distance attenuation:
1017 */
1018 if (p->state->unit[i].light_attenuated) {
1019
1020 /* 1/d,d,d,1/d */
1021 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
1022 /* 1,d,d*d,1/d */
1023 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
1024 /* 1/dist-atten */
1025 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
1026
1027 if (!p->state->unit[i].light_spotcutoff_is_180) {
1028 /* dist-atten */
1029 emit_op1(p, OPCODE_RCP, dist, 0, dist);
1030 /* spot-atten * dist-atten */
1031 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
1032 } else {
1033 /* dist-atten */
1034 emit_op1(p, OPCODE_RCP, att, 0, dist);
1035 }
1036 }
1037
1038 return att;
1039 }
1040
1041
1042 /**
1043 * Compute:
1044 * lit.y = MAX(0, dots.x)
1045 * lit.z = SLT(0, dots.x)
1046 */
1047 static void emit_degenerate_lit( struct tnl_program *p,
1048 struct ureg lit,
1049 struct ureg dots )
1050 {
1051 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
1052
1053 /* Note that lit.x & lit.w will not be examined. Note also that
1054 * dots.xyzw == dots.xxxx.
1055 */
1056
1057 /* MAX lit, id, dots;
1058 */
1059 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1060
1061 /* result[2] = (in > 0 ? 1 : 0)
1062 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
1063 */
1064 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1065 }
1066
1067
1068 /* Need to add some addtional parameters to allow lighting in object
1069 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1070 * space lighting.
1071 */
1072 static void build_lighting( struct tnl_program *p )
1073 {
1074 const GLboolean twoside = p->state->light_twoside;
1075 const GLboolean separate = p->state->separate_specular;
1076 GLuint nr_lights = 0, count = 0;
1077 struct ureg normal = get_transformed_normal(p);
1078 struct ureg lit = get_temp(p);
1079 struct ureg dots = get_temp(p);
1080 struct ureg _col0 = undef, _col1 = undef;
1081 struct ureg _bfc0 = undef, _bfc1 = undef;
1082 GLuint i;
1083
1084 /*
1085 * NOTE:
1086 * dot.x = dot(normal, VPpli)
1087 * dot.y = dot(normal, halfAngle)
1088 * dot.z = back.shininess
1089 * dot.w = front.shininess
1090 */
1091
1092 for (i = 0; i < MAX_LIGHTS; i++)
1093 if (p->state->unit[i].light_enabled)
1094 nr_lights++;
1095
1096 set_material_flags(p);
1097
1098 {
1099 if (!p->state->material_shininess_is_zero) {
1100 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1101 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1102 release_temp(p, shininess);
1103 }
1104
1105 _col0 = make_temp(p, get_scenecolor(p, 0));
1106 if (separate)
1107 _col1 = make_temp(p, get_identity_param(p));
1108 else
1109 _col1 = _col0;
1110
1111 }
1112
1113 if (twoside) {
1114 if (!p->state->material_shininess_is_zero) {
1115 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1116 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1117 negate(swizzle1(shininess,X)));
1118 release_temp(p, shininess);
1119 }
1120
1121 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1122 if (separate)
1123 _bfc1 = make_temp(p, get_identity_param(p));
1124 else
1125 _bfc1 = _bfc0;
1126 }
1127
1128 /* If no lights, still need to emit the scenecolor.
1129 */
1130 {
1131 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1132 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1133 }
1134
1135 if (separate) {
1136 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1137 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1138 }
1139
1140 if (twoside) {
1141 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1142 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1143 }
1144
1145 if (twoside && separate) {
1146 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1147 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1148 }
1149
1150 if (nr_lights == 0) {
1151 release_temps(p);
1152 return;
1153 }
1154
1155 for (i = 0; i < MAX_LIGHTS; i++) {
1156 if (p->state->unit[i].light_enabled) {
1157 struct ureg half = undef;
1158 struct ureg att = undef, VPpli = undef;
1159
1160 count++;
1161
1162 if (p->state->unit[i].light_eyepos3_is_zero) {
1163 /* Can used precomputed constants in this case.
1164 * Attenuation never applies to infinite lights.
1165 */
1166 VPpli = register_param3(p, STATE_INTERNAL,
1167 STATE_LIGHT_POSITION_NORMALIZED, i);
1168
1169 if (!p->state->material_shininess_is_zero) {
1170 if (p->state->light_local_viewer) {
1171 struct ureg eye_hat = get_eye_position_normalized(p);
1172 half = get_temp(p);
1173 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1174 emit_normalize_vec3(p, half, half);
1175 } else {
1176 half = register_param3(p, STATE_INTERNAL,
1177 STATE_LIGHT_HALF_VECTOR, i);
1178 }
1179 }
1180 }
1181 else {
1182 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1183 STATE_LIGHT_POSITION, i);
1184 struct ureg V = get_eye_position(p);
1185 struct ureg dist = get_temp(p);
1186
1187 VPpli = get_temp(p);
1188
1189 /* Calculate VPpli vector
1190 */
1191 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1192
1193 /* Normalize VPpli. The dist value also used in
1194 * attenuation below.
1195 */
1196 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1197 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1198 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1199
1200 /* Calculate attenuation:
1201 */
1202 if (!p->state->unit[i].light_spotcutoff_is_180 ||
1203 p->state->unit[i].light_attenuated) {
1204 att = calculate_light_attenuation(p, i, VPpli, dist);
1205 }
1206
1207 /* Calculate viewer direction, or use infinite viewer:
1208 */
1209 if (!p->state->material_shininess_is_zero) {
1210 half = get_temp(p);
1211
1212 if (p->state->light_local_viewer) {
1213 struct ureg eye_hat = get_eye_position_normalized(p);
1214 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1215 }
1216 else {
1217 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1218 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1219 }
1220
1221 emit_normalize_vec3(p, half, half);
1222 }
1223
1224 release_temp(p, dist);
1225 }
1226
1227 /* Calculate dot products:
1228 */
1229 if (p->state->material_shininess_is_zero) {
1230 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1231 }
1232 else {
1233 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1234 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1235 }
1236
1237 /* Front face lighting:
1238 */
1239 {
1240 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1241 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1242 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1243 struct ureg res0, res1;
1244 GLuint mask0, mask1;
1245
1246 if (count == nr_lights) {
1247 if (separate) {
1248 mask0 = WRITEMASK_XYZ;
1249 mask1 = WRITEMASK_XYZ;
1250 res0 = register_output( p, VERT_RESULT_COL0 );
1251 res1 = register_output( p, VERT_RESULT_COL1 );
1252 }
1253 else {
1254 mask0 = 0;
1255 mask1 = WRITEMASK_XYZ;
1256 res0 = _col0;
1257 res1 = register_output( p, VERT_RESULT_COL0 );
1258 }
1259 } else {
1260 mask0 = 0;
1261 mask1 = 0;
1262 res0 = _col0;
1263 res1 = _col1;
1264 }
1265
1266 if (!is_undef(att)) {
1267 /* light is attenuated by distance */
1268 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1269 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1270 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1271 }
1272 else if (!p->state->material_shininess_is_zero) {
1273 /* there's a non-zero specular term */
1274 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1275 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1276 }
1277 else {
1278 /* no attenutation, no specular */
1279 emit_degenerate_lit(p, lit, dots);
1280 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1281 }
1282
1283 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1284 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1285
1286 release_temp(p, ambient);
1287 release_temp(p, diffuse);
1288 release_temp(p, specular);
1289 }
1290
1291 /* Back face lighting:
1292 */
1293 if (twoside) {
1294 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1295 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1296 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1297 struct ureg res0, res1;
1298 GLuint mask0, mask1;
1299
1300 if (count == nr_lights) {
1301 if (separate) {
1302 mask0 = WRITEMASK_XYZ;
1303 mask1 = WRITEMASK_XYZ;
1304 res0 = register_output( p, VERT_RESULT_BFC0 );
1305 res1 = register_output( p, VERT_RESULT_BFC1 );
1306 }
1307 else {
1308 mask0 = 0;
1309 mask1 = WRITEMASK_XYZ;
1310 res0 = _bfc0;
1311 res1 = register_output( p, VERT_RESULT_BFC0 );
1312 }
1313 } else {
1314 res0 = _bfc0;
1315 res1 = _bfc1;
1316 mask0 = 0;
1317 mask1 = 0;
1318 }
1319
1320 dots = negate(swizzle(dots,X,Y,W,Z));
1321
1322 if (!is_undef(att)) {
1323 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1324 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1325 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1326 }
1327 else if (!p->state->material_shininess_is_zero) {
1328 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1329 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1330 }
1331 else {
1332 emit_degenerate_lit(p, lit, dots);
1333 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1334 }
1335
1336 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1337 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1338 /* restore negate flag for next lighting */
1339 dots = negate(dots);
1340
1341 release_temp(p, ambient);
1342 release_temp(p, diffuse);
1343 release_temp(p, specular);
1344 }
1345
1346 release_temp(p, half);
1347 release_temp(p, VPpli);
1348 release_temp(p, att);
1349 }
1350 }
1351
1352 release_temps( p );
1353 }
1354
1355
1356 static void build_fog( struct tnl_program *p )
1357 {
1358 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1359 struct ureg input;
1360
1361 if (p->state->fog_source_is_depth) {
1362 input = get_eye_position_z(p);
1363 }
1364 else {
1365 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1366 }
1367
1368 if (p->state->fog_mode && p->state->tnl_do_vertex_fog) {
1369 struct ureg params = register_param2(p, STATE_INTERNAL,
1370 STATE_FOG_PARAMS_OPTIMIZED);
1371 struct ureg tmp = get_temp(p);
1372 GLboolean useabs = (p->state->fog_mode != FOG_EXP2);
1373
1374 if (useabs) {
1375 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1376 }
1377
1378 switch (p->state->fog_mode) {
1379 case FOG_LINEAR: {
1380 struct ureg id = get_identity_param(p);
1381 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
1382 swizzle1(params,X), swizzle1(params,Y));
1383 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1384 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1385 break;
1386 }
1387 case FOG_EXP:
1388 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
1389 swizzle1(params,Z));
1390 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1391 break;
1392 case FOG_EXP2:
1393 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1394 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1395 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1396 break;
1397 }
1398
1399 release_temp(p, tmp);
1400 }
1401 else {
1402 /* results = incoming fog coords (compute fog per-fragment later)
1403 *
1404 * KW: Is it really necessary to do anything in this case?
1405 * BP: Yes, we always need to compute the absolute value, unless
1406 * we want to push that down into the fragment program...
1407 */
1408 GLboolean useabs = GL_TRUE;
1409 emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input);
1410 }
1411 }
1412
1413
1414 static void build_reflect_texgen( struct tnl_program *p,
1415 struct ureg dest,
1416 GLuint writemask )
1417 {
1418 struct ureg normal = get_transformed_normal(p);
1419 struct ureg eye_hat = get_eye_position_normalized(p);
1420 struct ureg tmp = get_temp(p);
1421
1422 /* n.u */
1423 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1424 /* 2n.u */
1425 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1426 /* (-2n.u)n + u */
1427 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1428
1429 release_temp(p, tmp);
1430 }
1431
1432
1433 static void build_sphere_texgen( struct tnl_program *p,
1434 struct ureg dest,
1435 GLuint writemask )
1436 {
1437 struct ureg normal = get_transformed_normal(p);
1438 struct ureg eye_hat = get_eye_position_normalized(p);
1439 struct ureg tmp = get_temp(p);
1440 struct ureg half = register_scalar_const(p, .5);
1441 struct ureg r = get_temp(p);
1442 struct ureg inv_m = get_temp(p);
1443 struct ureg id = get_identity_param(p);
1444
1445 /* Could share the above calculations, but it would be
1446 * a fairly odd state for someone to set (both sphere and
1447 * reflection active for different texture coordinate
1448 * components. Of course - if two texture units enable
1449 * reflect and/or sphere, things start to tilt in favour
1450 * of seperating this out:
1451 */
1452
1453 /* n.u */
1454 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1455 /* 2n.u */
1456 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1457 /* (-2n.u)n + u */
1458 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1459 /* r + 0,0,1 */
1460 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1461 /* rx^2 + ry^2 + (rz+1)^2 */
1462 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1463 /* 2/m */
1464 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1465 /* 1/m */
1466 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1467 /* r/m + 1/2 */
1468 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1469
1470 release_temp(p, tmp);
1471 release_temp(p, r);
1472 release_temp(p, inv_m);
1473 }
1474
1475
1476 static void build_texture_transform( struct tnl_program *p )
1477 {
1478 GLuint i, j;
1479
1480 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1481
1482 if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1483 continue;
1484
1485 if (p->state->unit[i].texgen_enabled ||
1486 p->state->unit[i].texmat_enabled) {
1487
1488 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1489 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1490 struct ureg out_texgen = undef;
1491
1492 if (p->state->unit[i].texgen_enabled) {
1493 GLuint copy_mask = 0;
1494 GLuint sphere_mask = 0;
1495 GLuint reflect_mask = 0;
1496 GLuint normal_mask = 0;
1497 GLuint modes[4];
1498
1499 if (texmat_enabled)
1500 out_texgen = get_temp(p);
1501 else
1502 out_texgen = out;
1503
1504 modes[0] = p->state->unit[i].texgen_mode0;
1505 modes[1] = p->state->unit[i].texgen_mode1;
1506 modes[2] = p->state->unit[i].texgen_mode2;
1507 modes[3] = p->state->unit[i].texgen_mode3;
1508
1509 for (j = 0; j < 4; j++) {
1510 switch (modes[j]) {
1511 case TXG_OBJ_LINEAR: {
1512 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1513 struct ureg plane =
1514 register_param3(p, STATE_TEXGEN, i,
1515 STATE_TEXGEN_OBJECT_S + j);
1516
1517 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1518 obj, plane );
1519 break;
1520 }
1521 case TXG_EYE_LINEAR: {
1522 struct ureg eye = get_eye_position(p);
1523 struct ureg plane =
1524 register_param3(p, STATE_TEXGEN, i,
1525 STATE_TEXGEN_EYE_S + j);
1526
1527 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1528 eye, plane );
1529 break;
1530 }
1531 case TXG_SPHERE_MAP:
1532 sphere_mask |= WRITEMASK_X << j;
1533 break;
1534 case TXG_REFLECTION_MAP:
1535 reflect_mask |= WRITEMASK_X << j;
1536 break;
1537 case TXG_NORMAL_MAP:
1538 normal_mask |= WRITEMASK_X << j;
1539 break;
1540 case TXG_NONE:
1541 copy_mask |= WRITEMASK_X << j;
1542 }
1543 }
1544
1545 if (sphere_mask) {
1546 build_sphere_texgen(p, out_texgen, sphere_mask);
1547 }
1548
1549 if (reflect_mask) {
1550 build_reflect_texgen(p, out_texgen, reflect_mask);
1551 }
1552
1553 if (normal_mask) {
1554 struct ureg normal = get_transformed_normal(p);
1555 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1556 }
1557
1558 if (copy_mask) {
1559 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1560 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1561 }
1562 }
1563
1564 if (texmat_enabled) {
1565 struct ureg texmat[4];
1566 struct ureg in = (!is_undef(out_texgen) ?
1567 out_texgen :
1568 register_input(p, VERT_ATTRIB_TEX0+i));
1569 if (PREFER_DP4) {
1570 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1571 0, texmat );
1572 emit_matrix_transform_vec4( p, out, texmat, in );
1573 }
1574 else {
1575 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1576 STATE_MATRIX_TRANSPOSE, texmat );
1577 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1578 }
1579 }
1580
1581 release_temps(p);
1582 }
1583 else {
1584 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1585 }
1586 }
1587 }
1588
1589
1590 /**
1591 * Point size attenuation computation.
1592 */
1593 static void build_atten_pointsize( struct tnl_program *p )
1594 {
1595 struct ureg eye = get_eye_position_z(p);
1596 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1597 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1598 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1599 struct ureg ut = get_temp(p);
1600
1601 /* dist = |eyez| */
1602 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1603 /* p1 + dist * (p2 + dist * p3); */
1604 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1605 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1606 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1607 ut, swizzle1(state_attenuation, X));
1608
1609 /* 1 / sqrt(factor) */
1610 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1611
1612 #if 0
1613 /* out = pointSize / sqrt(factor) */
1614 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1615 #else
1616 /* this is a good place to clamp the point size since there's likely
1617 * no hardware registers to clamp point size at rasterization time.
1618 */
1619 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1620 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1621 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1622 #endif
1623
1624 release_temp(p, ut);
1625 }
1626
1627
1628 /**
1629 * Emit constant point size.
1630 */
1631 static void build_constant_pointsize( struct tnl_program *p )
1632 {
1633 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1634 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1635 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, state_size);
1636 }
1637
1638
1639 /**
1640 * Pass-though per-vertex point size, from user's point size array.
1641 */
1642 static void build_array_pointsize( struct tnl_program *p )
1643 {
1644 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1645 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1646 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1647 }
1648
1649
1650 static void build_tnl_program( struct tnl_program *p )
1651 { /* Emit the program, starting with modelviewproject:
1652 */
1653 build_hpos(p);
1654
1655 /* Lighting calculations:
1656 */
1657 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1658 if (p->state->light_global_enabled)
1659 build_lighting(p);
1660 else {
1661 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1662 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1663
1664 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1665 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1666 }
1667 }
1668
1669 if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1670 p->state->fog_mode != FOG_NONE)
1671 build_fog(p);
1672
1673 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1674 build_texture_transform(p);
1675
1676 if (p->state->point_attenuated)
1677 build_atten_pointsize(p);
1678 else if (p->state->point_array)
1679 build_array_pointsize(p);
1680 #if 0
1681 else
1682 build_constant_pointsize(p);
1683 #else
1684 (void) build_constant_pointsize;
1685 #endif
1686
1687 /* Finish up:
1688 */
1689 emit_op1(p, OPCODE_END, undef, 0, undef);
1690
1691 /* Disassemble:
1692 */
1693 if (DISASSEM) {
1694 _mesa_printf ("\n");
1695 }
1696 }
1697
1698
1699 static void
1700 create_new_program( const struct state_key *key,
1701 struct gl_vertex_program *program,
1702 GLuint max_temps)
1703 {
1704 struct tnl_program p;
1705
1706 _mesa_memset(&p, 0, sizeof(p));
1707 p.state = key;
1708 p.program = program;
1709 p.eye_position = undef;
1710 p.eye_position_z = undef;
1711 p.eye_position_normalized = undef;
1712 p.transformed_normal = undef;
1713 p.identity = undef;
1714 p.temp_in_use = 0;
1715
1716 if (max_temps >= sizeof(int) * 8)
1717 p.temp_reserved = 0;
1718 else
1719 p.temp_reserved = ~((1<<max_temps)-1);
1720
1721 /* Start by allocating 32 instructions.
1722 * If we need more, we'll grow the instruction array as needed.
1723 */
1724 p.max_inst = 32;
1725 p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1726 p.program->Base.String = NULL;
1727 p.program->Base.NumInstructions =
1728 p.program->Base.NumTemporaries =
1729 p.program->Base.NumParameters =
1730 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1731 p.program->Base.Parameters = _mesa_new_parameter_list();
1732 p.program->Base.InputsRead = 0;
1733 p.program->Base.OutputsWritten = 0;
1734
1735 build_tnl_program( &p );
1736 }
1737
1738
1739 /**
1740 * Return a vertex program which implements the current fixed-function
1741 * transform/lighting/texgen operations.
1742 * XXX move this into core mesa (main/)
1743 */
1744 struct gl_vertex_program *
1745 _mesa_get_fixed_func_vertex_program(GLcontext *ctx)
1746 {
1747 struct gl_vertex_program *prog;
1748 struct state_key key;
1749
1750 /* Grab all the relevent state and put it in a single structure:
1751 */
1752 make_state_key(ctx, &key);
1753
1754 /* Look for an already-prepared program for this state:
1755 */
1756 prog = (struct gl_vertex_program *)
1757 _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key));
1758
1759 if (!prog) {
1760 /* OK, we'll have to build a new one */
1761 if (0)
1762 _mesa_printf("Build new TNL program\n");
1763
1764 prog = (struct gl_vertex_program *)
1765 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1766 if (!prog)
1767 return NULL;
1768
1769 create_new_program( &key, prog,
1770 ctx->Const.VertexProgram.MaxTemps );
1771
1772 #if 0
1773 if (ctx->Driver.ProgramStringNotify)
1774 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1775 &prog->Base );
1776 #endif
1777 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1778 &key, sizeof(key), &prog->Base);
1779 }
1780
1781 return prog;
1782 }