mesa: save a temp on normalizes
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/enums.h"
40 #include "main/ffvertex_prog.h"
41 #include "shader/program.h"
42 #include "shader/prog_cache.h"
43 #include "shader/prog_instruction.h"
44 #include "shader/prog_parameter.h"
45 #include "shader/prog_print.h"
46 #include "shader/prog_statevars.h"
47
48
49 struct state_key {
50 unsigned light_global_enabled:1;
51 unsigned light_local_viewer:1;
52 unsigned light_twoside:1;
53 unsigned light_color_material:1;
54 unsigned light_color_material_mask:12;
55 unsigned light_material_mask:12;
56 unsigned material_shininess_is_zero:1;
57
58 unsigned need_eye_coords:1;
59 unsigned normalize:1;
60 unsigned rescale_normals:1;
61 unsigned fog_source_is_depth:1;
62 unsigned tnl_do_vertex_fog:1;
63 unsigned separate_specular:1;
64 unsigned fog_mode:2;
65 unsigned point_attenuated:1;
66 unsigned texture_enabled_global:1;
67 unsigned fragprog_inputs_read:12;
68
69 struct {
70 unsigned light_enabled:1;
71 unsigned light_eyepos3_is_zero:1;
72 unsigned light_spotcutoff_is_180:1;
73 unsigned light_attenuated:1;
74 unsigned texunit_really_enabled:1;
75 unsigned texmat_enabled:1;
76 unsigned texgen_enabled:4;
77 unsigned texgen_mode0:4;
78 unsigned texgen_mode1:4;
79 unsigned texgen_mode2:4;
80 unsigned texgen_mode3:4;
81 } unit[8];
82 };
83
84
85
86 #define FOG_NONE 0
87 #define FOG_LINEAR 1
88 #define FOG_EXP 2
89 #define FOG_EXP2 3
90
91 static GLuint translate_fog_mode( GLenum mode )
92 {
93 switch (mode) {
94 case GL_LINEAR: return FOG_LINEAR;
95 case GL_EXP: return FOG_EXP;
96 case GL_EXP2: return FOG_EXP2;
97 default: return FOG_NONE;
98 }
99 }
100
101 #define TXG_NONE 0
102 #define TXG_OBJ_LINEAR 1
103 #define TXG_EYE_LINEAR 2
104 #define TXG_SPHERE_MAP 3
105 #define TXG_REFLECTION_MAP 4
106 #define TXG_NORMAL_MAP 5
107
108 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
109 {
110 if (!enabled)
111 return TXG_NONE;
112
113 switch (mode) {
114 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
115 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
116 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
117 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
118 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
119 default: return TXG_NONE;
120 }
121 }
122
123
124 /**
125 * Returns bitmask of flags indicating which materials are set per-vertex
126 * in the current VB.
127 * XXX get these from the VBO...
128 */
129 static GLbitfield
130 tnl_get_per_vertex_materials(GLcontext *ctx)
131 {
132 GLbitfield mask = 0x0;
133 #if 0
134 TNLcontext *tnl = TNL_CONTEXT(ctx);
135 struct vertex_buffer *VB = &tnl->vb;
136 GLuint i;
137
138 for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
139 if (VB->AttribPtr[i] && VB->AttribPtr[i]->stride)
140 mask |= 1 << (i - _TNL_FIRST_MAT);
141 #endif
142 return mask;
143 }
144
145 /**
146 * Should fog be computed per-vertex?
147 */
148 static GLboolean
149 tnl_get_per_vertex_fog(GLcontext *ctx)
150 {
151 #if 0
152 TNLcontext *tnl = TNL_CONTEXT(ctx);
153 return tnl->_DoVertexFog;
154 #else
155 return GL_FALSE;
156 #endif
157 }
158
159 static GLboolean check_active_shininess( GLcontext *ctx,
160 const struct state_key *key,
161 GLuint side )
162 {
163 GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
164
165 if (key->light_color_material_mask & bit)
166 return GL_TRUE;
167
168 if (key->light_material_mask & bit)
169 return GL_TRUE;
170
171 if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
172 return GL_TRUE;
173
174 return GL_FALSE;
175 }
176
177
178
179
180 static struct state_key *make_state_key( GLcontext *ctx )
181 {
182 const struct gl_fragment_program *fp;
183 struct state_key *key = CALLOC_STRUCT(state_key);
184 GLuint i;
185
186 fp = ctx->FragmentProgram._Current;
187
188 /* This now relies on texenvprogram.c being active:
189 */
190 assert(fp);
191
192 key->need_eye_coords = ctx->_NeedEyeCoords;
193
194 key->fragprog_inputs_read = fp->Base.InputsRead;
195
196 if (ctx->RenderMode == GL_FEEDBACK) {
197 /* make sure the vertprog emits color and tex0 */
198 key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
199 }
200
201 key->separate_specular = (ctx->Light.Model.ColorControl ==
202 GL_SEPARATE_SPECULAR_COLOR);
203
204 if (ctx->Light.Enabled) {
205 key->light_global_enabled = 1;
206
207 if (ctx->Light.Model.LocalViewer)
208 key->light_local_viewer = 1;
209
210 if (ctx->Light.Model.TwoSide)
211 key->light_twoside = 1;
212
213 if (ctx->Light.ColorMaterialEnabled) {
214 key->light_color_material = 1;
215 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
216 }
217
218 key->light_material_mask = tnl_get_per_vertex_materials(ctx);
219
220 for (i = 0; i < MAX_LIGHTS; i++) {
221 struct gl_light *light = &ctx->Light.Light[i];
222
223 if (light->Enabled) {
224 key->unit[i].light_enabled = 1;
225
226 if (light->EyePosition[3] == 0.0)
227 key->unit[i].light_eyepos3_is_zero = 1;
228
229 if (light->SpotCutoff == 180.0)
230 key->unit[i].light_spotcutoff_is_180 = 1;
231
232 if (light->ConstantAttenuation != 1.0 ||
233 light->LinearAttenuation != 0.0 ||
234 light->QuadraticAttenuation != 0.0)
235 key->unit[i].light_attenuated = 1;
236 }
237 }
238
239 if (check_active_shininess(ctx, key, 0)) {
240 key->material_shininess_is_zero = 0;
241 }
242 else if (key->light_twoside &&
243 check_active_shininess(ctx, key, 1)) {
244 key->material_shininess_is_zero = 0;
245 }
246 else {
247 key->material_shininess_is_zero = 1;
248 }
249 }
250
251 if (ctx->Transform.Normalize)
252 key->normalize = 1;
253
254 if (ctx->Transform.RescaleNormals)
255 key->rescale_normals = 1;
256
257 key->fog_mode = translate_fog_mode(fp->FogOption);
258
259 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
260 key->fog_source_is_depth = 1;
261
262 key->tnl_do_vertex_fog = tnl_get_per_vertex_fog(ctx);
263
264 if (ctx->Point._Attenuated)
265 key->point_attenuated = 1;
266
267 if (ctx->Texture._TexGenEnabled ||
268 ctx->Texture._TexMatEnabled ||
269 ctx->Texture._EnabledUnits)
270 key->texture_enabled_global = 1;
271
272 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
273 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
274
275 if (texUnit->_ReallyEnabled)
276 key->unit[i].texunit_really_enabled = 1;
277
278 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
279 key->unit[i].texmat_enabled = 1;
280
281 if (texUnit->TexGenEnabled) {
282 key->unit[i].texgen_enabled = 1;
283
284 key->unit[i].texgen_mode0 =
285 translate_texgen( texUnit->TexGenEnabled & (1<<0),
286 texUnit->GenModeS );
287 key->unit[i].texgen_mode1 =
288 translate_texgen( texUnit->TexGenEnabled & (1<<1),
289 texUnit->GenModeT );
290 key->unit[i].texgen_mode2 =
291 translate_texgen( texUnit->TexGenEnabled & (1<<2),
292 texUnit->GenModeR );
293 key->unit[i].texgen_mode3 =
294 translate_texgen( texUnit->TexGenEnabled & (1<<3),
295 texUnit->GenModeQ );
296 }
297 }
298
299 return key;
300 }
301
302
303
304 /* Very useful debugging tool - produces annotated listing of
305 * generated program with line/function references for each
306 * instruction back into this file:
307 */
308 #define DISASSEM 1
309
310 /* Should be tunable by the driver - do we want to do matrix
311 * multiplications with DP4's or with MUL/MAD's? SSE works better
312 * with the latter, drivers may differ.
313 */
314 #define PREFER_DP4 0
315
316 #define MAX_INSN 256
317
318 /* Use uregs to represent registers internally, translate to Mesa's
319 * expected formats on emit.
320 *
321 * NOTE: These are passed by value extensively in this file rather
322 * than as usual by pointer reference. If this disturbs you, try
323 * remembering they are just 32bits in size.
324 *
325 * GCC is smart enough to deal with these dword-sized structures in
326 * much the same way as if I had defined them as dwords and was using
327 * macros to access and set the fields. This is much nicer and easier
328 * to evolve.
329 */
330 struct ureg {
331 GLuint file:4;
332 GLint idx:8; /* relative addressing may be negative */
333 GLuint negate:1;
334 GLuint swz:12;
335 GLuint pad:7;
336 };
337
338
339 struct tnl_program {
340 const struct state_key *state;
341 struct gl_vertex_program *program;
342
343 GLuint temp_in_use;
344 GLuint temp_reserved;
345
346 struct ureg eye_position;
347 struct ureg eye_position_normalized;
348 struct ureg transformed_normal;
349 struct ureg identity;
350
351 GLuint materials;
352 GLuint color_materials;
353 };
354
355
356 static const struct ureg undef = {
357 PROGRAM_UNDEFINED,
358 ~0,
359 0,
360 0,
361 0
362 };
363
364 /* Local shorthand:
365 */
366 #define X SWIZZLE_X
367 #define Y SWIZZLE_Y
368 #define Z SWIZZLE_Z
369 #define W SWIZZLE_W
370
371
372 /* Construct a ureg:
373 */
374 static struct ureg make_ureg(GLuint file, GLint idx)
375 {
376 struct ureg reg;
377 reg.file = file;
378 reg.idx = idx;
379 reg.negate = 0;
380 reg.swz = SWIZZLE_NOOP;
381 reg.pad = 0;
382 return reg;
383 }
384
385
386
387 static struct ureg negate( struct ureg reg )
388 {
389 reg.negate ^= 1;
390 return reg;
391 }
392
393
394 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
395 {
396 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
397 GET_SWZ(reg.swz, y),
398 GET_SWZ(reg.swz, z),
399 GET_SWZ(reg.swz, w));
400
401 return reg;
402 }
403
404 static struct ureg swizzle1( struct ureg reg, int x )
405 {
406 return swizzle(reg, x, x, x, x);
407 }
408
409 static struct ureg get_temp( struct tnl_program *p )
410 {
411 int bit = _mesa_ffs( ~p->temp_in_use );
412 if (!bit) {
413 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
414 _mesa_exit(1);
415 }
416
417 if ((GLuint) bit > p->program->Base.NumTemporaries)
418 p->program->Base.NumTemporaries = bit;
419
420 p->temp_in_use |= 1<<(bit-1);
421 return make_ureg(PROGRAM_TEMPORARY, bit-1);
422 }
423
424 static struct ureg reserve_temp( struct tnl_program *p )
425 {
426 struct ureg temp = get_temp( p );
427 p->temp_reserved |= 1<<temp.idx;
428 return temp;
429 }
430
431 static void release_temp( struct tnl_program *p, struct ureg reg )
432 {
433 if (reg.file == PROGRAM_TEMPORARY) {
434 p->temp_in_use &= ~(1<<reg.idx);
435 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
436 }
437 }
438
439 static void release_temps( struct tnl_program *p )
440 {
441 p->temp_in_use = p->temp_reserved;
442 }
443
444
445
446 static struct ureg register_input( struct tnl_program *p, GLuint input )
447 {
448 p->program->Base.InputsRead |= (1<<input);
449 return make_ureg(PROGRAM_INPUT, input);
450 }
451
452 static struct ureg register_output( struct tnl_program *p, GLuint output )
453 {
454 p->program->Base.OutputsWritten |= (1<<output);
455 return make_ureg(PROGRAM_OUTPUT, output);
456 }
457
458 static struct ureg register_const4f( struct tnl_program *p,
459 GLfloat s0,
460 GLfloat s1,
461 GLfloat s2,
462 GLfloat s3)
463 {
464 GLfloat values[4];
465 GLint idx;
466 GLuint swizzle;
467 values[0] = s0;
468 values[1] = s1;
469 values[2] = s2;
470 values[3] = s3;
471 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
472 &swizzle );
473 ASSERT(swizzle == SWIZZLE_NOOP);
474 return make_ureg(PROGRAM_CONSTANT, idx);
475 }
476
477 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
478 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
479 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
480 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
481
482 static GLboolean is_undef( struct ureg reg )
483 {
484 return reg.file == PROGRAM_UNDEFINED;
485 }
486
487 static struct ureg get_identity_param( struct tnl_program *p )
488 {
489 if (is_undef(p->identity))
490 p->identity = register_const4f(p, 0,0,0,1);
491
492 return p->identity;
493 }
494
495 static struct ureg register_param5(struct tnl_program *p,
496 GLint s0,
497 GLint s1,
498 GLint s2,
499 GLint s3,
500 GLint s4)
501 {
502 gl_state_index tokens[STATE_LENGTH];
503 GLint idx;
504 tokens[0] = s0;
505 tokens[1] = s1;
506 tokens[2] = s2;
507 tokens[3] = s3;
508 tokens[4] = s4;
509 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
510 return make_ureg(PROGRAM_STATE_VAR, idx);
511 }
512
513
514 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
515 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
516 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
517 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
518
519
520 static void register_matrix_param5( struct tnl_program *p,
521 GLint s0, /* modelview, projection, etc */
522 GLint s1, /* texture matrix number */
523 GLint s2, /* first row */
524 GLint s3, /* last row */
525 GLint s4, /* inverse, transpose, etc */
526 struct ureg *matrix )
527 {
528 GLint i;
529
530 /* This is a bit sad as the support is there to pull the whole
531 * matrix out in one go:
532 */
533 for (i = 0; i <= s3 - s2; i++)
534 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
535 }
536
537
538 static void emit_arg( struct prog_src_register *src,
539 struct ureg reg )
540 {
541 src->File = reg.file;
542 src->Index = reg.idx;
543 src->Swizzle = reg.swz;
544 src->NegateBase = reg.negate ? NEGATE_XYZW : 0;
545 src->Abs = 0;
546 src->NegateAbs = 0;
547 src->RelAddr = 0;
548 }
549
550 static void emit_dst( struct prog_dst_register *dst,
551 struct ureg reg, GLuint mask )
552 {
553 dst->File = reg.file;
554 dst->Index = reg.idx;
555 /* allow zero as a shorthand for xyzw */
556 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
557 dst->CondMask = COND_TR; /* always pass cond test */
558 dst->CondSwizzle = SWIZZLE_NOOP;
559 dst->CondSrc = 0;
560 dst->pad = 0;
561 }
562
563 static void debug_insn( struct prog_instruction *inst, const char *fn,
564 GLuint line )
565 {
566 if (DISASSEM) {
567 static const char *last_fn;
568
569 if (fn != last_fn) {
570 last_fn = fn;
571 _mesa_printf("%s:\n", fn);
572 }
573
574 _mesa_printf("%d:\t", line);
575 _mesa_print_instruction(inst);
576 }
577 }
578
579
580 static void emit_op3fn(struct tnl_program *p,
581 enum prog_opcode op,
582 struct ureg dest,
583 GLuint mask,
584 struct ureg src0,
585 struct ureg src1,
586 struct ureg src2,
587 const char *fn,
588 GLuint line)
589 {
590 GLuint nr = p->program->Base.NumInstructions++;
591 struct prog_instruction *inst = &p->program->Base.Instructions[nr];
592
593 if (p->program->Base.NumInstructions > MAX_INSN) {
594 _mesa_problem(0, "Out of instructions in emit_op3fn\n");
595 return;
596 }
597
598 inst->Opcode = (enum prog_opcode) op;
599 inst->StringPos = 0;
600 inst->Data = 0;
601
602 emit_arg( &inst->SrcReg[0], src0 );
603 emit_arg( &inst->SrcReg[1], src1 );
604 emit_arg( &inst->SrcReg[2], src2 );
605
606 emit_dst( &inst->DstReg, dest, mask );
607
608 debug_insn(inst, fn, line);
609 }
610
611
612 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
613 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
614
615 #define emit_op2(p, op, dst, mask, src0, src1) \
616 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
617
618 #define emit_op1(p, op, dst, mask, src0) \
619 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
620
621
622 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
623 {
624 if (reg.file == PROGRAM_TEMPORARY &&
625 !(p->temp_reserved & (1<<reg.idx)))
626 return reg;
627 else {
628 struct ureg temp = get_temp(p);
629 emit_op1(p, OPCODE_MOV, temp, 0, reg);
630 return temp;
631 }
632 }
633
634
635 /* Currently no tracking performed of input/output/register size or
636 * active elements. Could be used to reduce these operations, as
637 * could the matrix type.
638 */
639 static void emit_matrix_transform_vec4( struct tnl_program *p,
640 struct ureg dest,
641 const struct ureg *mat,
642 struct ureg src)
643 {
644 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
645 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
646 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
647 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
648 }
649
650 /* This version is much easier to implement if writemasks are not
651 * supported natively on the target or (like SSE), the target doesn't
652 * have a clean/obvious dotproduct implementation.
653 */
654 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
655 struct ureg dest,
656 const struct ureg *mat,
657 struct ureg src)
658 {
659 struct ureg tmp;
660
661 if (dest.file != PROGRAM_TEMPORARY)
662 tmp = get_temp(p);
663 else
664 tmp = dest;
665
666 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
667 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
668 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
669 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
670
671 if (dest.file != PROGRAM_TEMPORARY)
672 release_temp(p, tmp);
673 }
674
675 static void emit_matrix_transform_vec3( struct tnl_program *p,
676 struct ureg dest,
677 const struct ureg *mat,
678 struct ureg src)
679 {
680 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
681 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
682 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
683 }
684
685
686 static void emit_normalize_vec3( struct tnl_program *p,
687 struct ureg dest,
688 struct ureg src )
689 {
690 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, src);
691 emit_op1(p, OPCODE_RSQ, dest, WRITEMASK_X, dest);
692 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(dest, X));
693 }
694
695 static void emit_passthrough( struct tnl_program *p,
696 GLuint input,
697 GLuint output )
698 {
699 struct ureg out = register_output(p, output);
700 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
701 }
702
703 static struct ureg get_eye_position( struct tnl_program *p )
704 {
705 if (is_undef(p->eye_position)) {
706 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
707 struct ureg modelview[4];
708
709 p->eye_position = reserve_temp(p);
710
711 if (PREFER_DP4) {
712 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
713 0, modelview );
714
715 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
716 }
717 else {
718 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
719 STATE_MATRIX_TRANSPOSE, modelview );
720
721 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
722 }
723 }
724
725 return p->eye_position;
726 }
727
728
729 static struct ureg get_eye_position_normalized( struct tnl_program *p )
730 {
731 if (is_undef(p->eye_position_normalized)) {
732 struct ureg eye = get_eye_position(p);
733 p->eye_position_normalized = reserve_temp(p);
734 emit_normalize_vec3(p, p->eye_position_normalized, eye);
735 }
736
737 return p->eye_position_normalized;
738 }
739
740
741 static struct ureg get_transformed_normal( struct tnl_program *p )
742 {
743 if (is_undef(p->transformed_normal) &&
744 !p->state->need_eye_coords &&
745 !p->state->normalize &&
746 !(p->state->need_eye_coords == p->state->rescale_normals))
747 {
748 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
749 }
750 else if (is_undef(p->transformed_normal))
751 {
752 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
753 struct ureg mvinv[3];
754 struct ureg transformed_normal = reserve_temp(p);
755
756 if (p->state->need_eye_coords) {
757 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
758 STATE_MATRIX_INVTRANS, mvinv );
759
760 /* Transform to eye space:
761 */
762 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
763 normal = transformed_normal;
764 }
765
766 /* Normalize/Rescale:
767 */
768 if (p->state->normalize) {
769 emit_normalize_vec3( p, transformed_normal, normal );
770 normal = transformed_normal;
771 }
772 else if (p->state->need_eye_coords == p->state->rescale_normals) {
773 /* This is already adjusted for eye/non-eye rendering:
774 */
775 struct ureg rescale = register_param2(p, STATE_INTERNAL,
776 STATE_NORMAL_SCALE);
777
778 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal,
779 swizzle1(rescale, X));
780 normal = transformed_normal;
781 }
782
783 assert(normal.file == PROGRAM_TEMPORARY);
784 p->transformed_normal = normal;
785 }
786
787 return p->transformed_normal;
788 }
789
790
791
792 static void build_hpos( struct tnl_program *p )
793 {
794 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
795 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
796 struct ureg mvp[4];
797
798 if (PREFER_DP4) {
799 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
800 0, mvp );
801 emit_matrix_transform_vec4( p, hpos, mvp, pos );
802 }
803 else {
804 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
805 STATE_MATRIX_TRANSPOSE, mvp );
806 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
807 }
808 }
809
810
811 static GLuint material_attrib( GLuint side, GLuint property )
812 {
813 return ((property - STATE_AMBIENT) * 2 +
814 side);
815 }
816
817 /* Get a bitmask of which material values vary on a per-vertex basis.
818 */
819 static void set_material_flags( struct tnl_program *p )
820 {
821 p->color_materials = 0;
822 p->materials = 0;
823
824 if (p->state->light_color_material) {
825 p->materials =
826 p->color_materials = p->state->light_color_material_mask;
827 }
828
829 p->materials |= p->state->light_material_mask;
830 }
831
832
833 /* XXX temporary!!! */
834 #define _TNL_ATTRIB_MAT_FRONT_AMBIENT 32
835
836 static struct ureg get_material( struct tnl_program *p, GLuint side,
837 GLuint property )
838 {
839 GLuint attrib = material_attrib(side, property);
840
841 if (p->color_materials & (1<<attrib))
842 return register_input(p, VERT_ATTRIB_COLOR0);
843 else if (p->materials & (1<<attrib))
844 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
845 else
846 return register_param3( p, STATE_MATERIAL, side, property );
847 }
848
849 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
850 MAT_BIT_FRONT_AMBIENT | \
851 MAT_BIT_FRONT_DIFFUSE) << (side))
852
853 /* Either return a precalculated constant value or emit code to
854 * calculate these values dynamically in the case where material calls
855 * are present between begin/end pairs.
856 *
857 * Probably want to shift this to the program compilation phase - if
858 * we always emitted the calculation here, a smart compiler could
859 * detect that it was constant (given a certain set of inputs), and
860 * lift it out of the main loop. That way the programs created here
861 * would be independent of the vertex_buffer details.
862 */
863 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
864 {
865 if (p->materials & SCENE_COLOR_BITS(side)) {
866 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
867 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
868 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
869 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
870 struct ureg tmp = make_temp(p, material_diffuse);
871 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
872 material_ambient, material_emission);
873 return tmp;
874 }
875 else
876 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
877 }
878
879
880 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
881 GLuint side, GLuint property )
882 {
883 GLuint attrib = material_attrib(side, property);
884 if (p->materials & (1<<attrib)) {
885 struct ureg light_value =
886 register_param3(p, STATE_LIGHT, light, property);
887 struct ureg material_value = get_material(p, side, property);
888 struct ureg tmp = get_temp(p);
889 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
890 return tmp;
891 }
892 else
893 return register_param4(p, STATE_LIGHTPROD, light, side, property);
894 }
895
896 static struct ureg calculate_light_attenuation( struct tnl_program *p,
897 GLuint i,
898 struct ureg VPpli,
899 struct ureg dist )
900 {
901 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
902 STATE_ATTENUATION);
903 struct ureg att = get_temp(p);
904
905 /* Calculate spot attenuation:
906 */
907 if (!p->state->unit[i].light_spotcutoff_is_180) {
908 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
909 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
910 struct ureg spot = get_temp(p);
911 struct ureg slt = get_temp(p);
912
913 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
914 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
915 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
916 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
917
918 release_temp(p, spot);
919 release_temp(p, slt);
920 }
921
922 /* Calculate distance attenuation:
923 */
924 if (p->state->unit[i].light_attenuated) {
925
926 /* 1/d,d,d,1/d */
927 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
928 /* 1,d,d*d,1/d */
929 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
930 /* 1/dist-atten */
931 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
932
933 if (!p->state->unit[i].light_spotcutoff_is_180) {
934 /* dist-atten */
935 emit_op1(p, OPCODE_RCP, dist, 0, dist);
936 /* spot-atten * dist-atten */
937 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
938 } else {
939 /* dist-atten */
940 emit_op1(p, OPCODE_RCP, att, 0, dist);
941 }
942 }
943
944 return att;
945 }
946
947
948 static void emit_degenerate_lit( struct tnl_program *p,
949 struct ureg lit,
950 struct ureg dots )
951 {
952 struct ureg id = get_identity_param(p);
953
954 /* Note that result.x & result.w will not be examined. Note also that
955 * dots.xyzw == dots.xxxx.
956 */
957
958 /* result[1] = MAX2(in, 0)
959 */
960 emit_op2(p, OPCODE_MAX, lit, 0, id, dots);
961
962 /* result[2] = (in > 0 ? 1 : 0)
963 */
964 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z,
965 lit, /* 0 */
966 dots); /* in[0] */
967 }
968
969
970 /* Need to add some addtional parameters to allow lighting in object
971 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
972 * space lighting.
973 */
974 static void build_lighting( struct tnl_program *p )
975 {
976 const GLboolean twoside = p->state->light_twoside;
977 const GLboolean separate = p->state->separate_specular;
978 GLuint nr_lights = 0, count = 0;
979 struct ureg normal = get_transformed_normal(p);
980 struct ureg lit = get_temp(p);
981 struct ureg dots = get_temp(p);
982 struct ureg _col0 = undef, _col1 = undef;
983 struct ureg _bfc0 = undef, _bfc1 = undef;
984 GLuint i;
985
986 for (i = 0; i < MAX_LIGHTS; i++)
987 if (p->state->unit[i].light_enabled)
988 nr_lights++;
989
990 set_material_flags(p);
991
992 {
993 if (!p->state->material_shininess_is_zero) {
994 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
995 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
996 release_temp(p, shininess);
997 }
998
999 _col0 = make_temp(p, get_scenecolor(p, 0));
1000 if (separate)
1001 _col1 = make_temp(p, get_identity_param(p));
1002 else
1003 _col1 = _col0;
1004
1005 }
1006
1007 if (twoside) {
1008 if (!p->state->material_shininess_is_zero) {
1009 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1010 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1011 negate(swizzle1(shininess,X)));
1012 release_temp(p, shininess);
1013 }
1014
1015 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1016 if (separate)
1017 _bfc1 = make_temp(p, get_identity_param(p));
1018 else
1019 _bfc1 = _bfc0;
1020 }
1021
1022 /* If no lights, still need to emit the scenecolor.
1023 */
1024 {
1025 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1026 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1027 }
1028
1029 if (separate) {
1030 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1031 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1032 }
1033
1034 if (twoside) {
1035 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1036 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1037 }
1038
1039 if (twoside && separate) {
1040 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1041 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1042 }
1043
1044 if (nr_lights == 0) {
1045 release_temps(p);
1046 return;
1047 }
1048
1049 for (i = 0; i < MAX_LIGHTS; i++) {
1050 if (p->state->unit[i].light_enabled) {
1051 struct ureg half = undef;
1052 struct ureg att = undef, VPpli = undef;
1053
1054 count++;
1055
1056 if (p->state->unit[i].light_eyepos3_is_zero) {
1057 /* Can used precomputed constants in this case.
1058 * Attenuation never applies to infinite lights.
1059 */
1060 VPpli = register_param3(p, STATE_INTERNAL,
1061 STATE_LIGHT_POSITION_NORMALIZED, i);
1062
1063 if (!p->state->material_shininess_is_zero) {
1064 if (p->state->light_local_viewer) {
1065 struct ureg eye_hat = get_eye_position_normalized(p);
1066 half = get_temp(p);
1067 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1068 emit_normalize_vec3(p, half, half);
1069 } else {
1070 half = register_param3(p, STATE_INTERNAL,
1071 STATE_LIGHT_HALF_VECTOR, i);
1072 }
1073 }
1074 }
1075 else {
1076 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1077 STATE_LIGHT_POSITION, i);
1078 struct ureg V = get_eye_position(p);
1079 struct ureg dist = get_temp(p);
1080
1081 VPpli = get_temp(p);
1082
1083 /* Calculate VPpli vector
1084 */
1085 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1086
1087 /* Normalize VPpli. The dist value also used in
1088 * attenuation below.
1089 */
1090 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1091 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1092 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1093
1094 /* Calculate attenuation:
1095 */
1096 if (!p->state->unit[i].light_spotcutoff_is_180 ||
1097 p->state->unit[i].light_attenuated) {
1098 att = calculate_light_attenuation(p, i, VPpli, dist);
1099 }
1100
1101 /* Calculate viewer direction, or use infinite viewer:
1102 */
1103 if (!p->state->material_shininess_is_zero) {
1104 half = get_temp(p);
1105
1106 if (p->state->light_local_viewer) {
1107 struct ureg eye_hat = get_eye_position_normalized(p);
1108 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1109 }
1110 else {
1111 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1112 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1113 }
1114
1115 emit_normalize_vec3(p, half, half);
1116 }
1117
1118 release_temp(p, dist);
1119 }
1120
1121 /* Calculate dot products:
1122 */
1123 if (p->state->material_shininess_is_zero) {
1124 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1125 }
1126 else {
1127 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1128 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1129 }
1130
1131 /* Front face lighting:
1132 */
1133 {
1134 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1135 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1136 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1137 struct ureg res0, res1;
1138 GLuint mask0, mask1;
1139
1140 if (p->state->material_shininess_is_zero) {
1141 emit_degenerate_lit(p, lit, dots);
1142 } else {
1143 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1144 }
1145
1146 if (!is_undef(att))
1147 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1148
1149
1150 if (count == nr_lights) {
1151 if (separate) {
1152 mask0 = WRITEMASK_XYZ;
1153 mask1 = WRITEMASK_XYZ;
1154 res0 = register_output( p, VERT_RESULT_COL0 );
1155 res1 = register_output( p, VERT_RESULT_COL1 );
1156 }
1157 else {
1158 mask0 = 0;
1159 mask1 = WRITEMASK_XYZ;
1160 res0 = _col0;
1161 res1 = register_output( p, VERT_RESULT_COL0 );
1162 }
1163 } else {
1164 mask0 = 0;
1165 mask1 = 0;
1166 res0 = _col0;
1167 res1 = _col1;
1168 }
1169
1170 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1171 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1172 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1173
1174 release_temp(p, ambient);
1175 release_temp(p, diffuse);
1176 release_temp(p, specular);
1177 }
1178
1179 /* Back face lighting:
1180 */
1181 if (twoside) {
1182 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1183 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1184 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1185 struct ureg res0, res1;
1186 GLuint mask0, mask1;
1187
1188 if (p->state->material_shininess_is_zero) {
1189 emit_degenerate_lit(p, lit, negate(swizzle(dots,X,Y,W,Z)));
1190 } else {
1191 emit_op1(p, OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z)));
1192 }
1193
1194 if (!is_undef(att))
1195 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1196
1197 if (count == nr_lights) {
1198 if (separate) {
1199 mask0 = WRITEMASK_XYZ;
1200 mask1 = WRITEMASK_XYZ;
1201 res0 = register_output( p, VERT_RESULT_BFC0 );
1202 res1 = register_output( p, VERT_RESULT_BFC1 );
1203 }
1204 else {
1205 mask0 = 0;
1206 mask1 = WRITEMASK_XYZ;
1207 res0 = _bfc0;
1208 res1 = register_output( p, VERT_RESULT_BFC0 );
1209 }
1210 } else {
1211 res0 = _bfc0;
1212 res1 = _bfc1;
1213 mask0 = 0;
1214 mask1 = 0;
1215 }
1216
1217 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1218 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1219 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1220
1221 release_temp(p, ambient);
1222 release_temp(p, diffuse);
1223 release_temp(p, specular);
1224 }
1225
1226 release_temp(p, half);
1227 release_temp(p, VPpli);
1228 release_temp(p, att);
1229 }
1230 }
1231
1232 release_temps( p );
1233 }
1234
1235
1236 static void build_fog( struct tnl_program *p )
1237 {
1238 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1239 struct ureg input;
1240
1241 if (p->state->fog_source_is_depth) {
1242 input = swizzle1(get_eye_position(p), Z);
1243 }
1244 else {
1245 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1246 }
1247
1248 if (p->state->fog_mode && p->state->tnl_do_vertex_fog) {
1249 struct ureg params = register_param2(p, STATE_INTERNAL,
1250 STATE_FOG_PARAMS_OPTIMIZED);
1251 struct ureg tmp = get_temp(p);
1252 GLboolean useabs = (p->state->fog_mode != FOG_EXP2);
1253
1254 if (useabs) {
1255 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1256 }
1257
1258 switch (p->state->fog_mode) {
1259 case FOG_LINEAR: {
1260 struct ureg id = get_identity_param(p);
1261 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
1262 swizzle1(params,X), swizzle1(params,Y));
1263 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1264 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1265 break;
1266 }
1267 case FOG_EXP:
1268 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
1269 swizzle1(params,Z));
1270 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1271 break;
1272 case FOG_EXP2:
1273 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1274 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1275 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1276 break;
1277 }
1278
1279 release_temp(p, tmp);
1280 }
1281 else {
1282 /* results = incoming fog coords (compute fog per-fragment later)
1283 *
1284 * KW: Is it really necessary to do anything in this case?
1285 * BP: Yes, we always need to compute the absolute value, unless
1286 * we want to push that down into the fragment program...
1287 */
1288 GLboolean useabs = GL_TRUE;
1289 emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input);
1290 }
1291 }
1292
1293 static void build_reflect_texgen( struct tnl_program *p,
1294 struct ureg dest,
1295 GLuint writemask )
1296 {
1297 struct ureg normal = get_transformed_normal(p);
1298 struct ureg eye_hat = get_eye_position_normalized(p);
1299 struct ureg tmp = get_temp(p);
1300
1301 /* n.u */
1302 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1303 /* 2n.u */
1304 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1305 /* (-2n.u)n + u */
1306 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1307
1308 release_temp(p, tmp);
1309 }
1310
1311 static void build_sphere_texgen( struct tnl_program *p,
1312 struct ureg dest,
1313 GLuint writemask )
1314 {
1315 struct ureg normal = get_transformed_normal(p);
1316 struct ureg eye_hat = get_eye_position_normalized(p);
1317 struct ureg tmp = get_temp(p);
1318 struct ureg half = register_scalar_const(p, .5);
1319 struct ureg r = get_temp(p);
1320 struct ureg inv_m = get_temp(p);
1321 struct ureg id = get_identity_param(p);
1322
1323 /* Could share the above calculations, but it would be
1324 * a fairly odd state for someone to set (both sphere and
1325 * reflection active for different texture coordinate
1326 * components. Of course - if two texture units enable
1327 * reflect and/or sphere, things start to tilt in favour
1328 * of seperating this out:
1329 */
1330
1331 /* n.u */
1332 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1333 /* 2n.u */
1334 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1335 /* (-2n.u)n + u */
1336 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1337 /* r + 0,0,1 */
1338 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1339 /* rx^2 + ry^2 + (rz+1)^2 */
1340 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1341 /* 2/m */
1342 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1343 /* 1/m */
1344 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1345 /* r/m + 1/2 */
1346 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1347
1348 release_temp(p, tmp);
1349 release_temp(p, r);
1350 release_temp(p, inv_m);
1351 }
1352
1353
1354 static void build_texture_transform( struct tnl_program *p )
1355 {
1356 GLuint i, j;
1357
1358 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1359
1360 if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1361 continue;
1362
1363 if (p->state->unit[i].texgen_enabled ||
1364 p->state->unit[i].texmat_enabled) {
1365
1366 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1367 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1368 struct ureg out_texgen = undef;
1369
1370 if (p->state->unit[i].texgen_enabled) {
1371 GLuint copy_mask = 0;
1372 GLuint sphere_mask = 0;
1373 GLuint reflect_mask = 0;
1374 GLuint normal_mask = 0;
1375 GLuint modes[4];
1376
1377 if (texmat_enabled)
1378 out_texgen = get_temp(p);
1379 else
1380 out_texgen = out;
1381
1382 modes[0] = p->state->unit[i].texgen_mode0;
1383 modes[1] = p->state->unit[i].texgen_mode1;
1384 modes[2] = p->state->unit[i].texgen_mode2;
1385 modes[3] = p->state->unit[i].texgen_mode3;
1386
1387 for (j = 0; j < 4; j++) {
1388 switch (modes[j]) {
1389 case TXG_OBJ_LINEAR: {
1390 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1391 struct ureg plane =
1392 register_param3(p, STATE_TEXGEN, i,
1393 STATE_TEXGEN_OBJECT_S + j);
1394
1395 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1396 obj, plane );
1397 break;
1398 }
1399 case TXG_EYE_LINEAR: {
1400 struct ureg eye = get_eye_position(p);
1401 struct ureg plane =
1402 register_param3(p, STATE_TEXGEN, i,
1403 STATE_TEXGEN_EYE_S + j);
1404
1405 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1406 eye, plane );
1407 break;
1408 }
1409 case TXG_SPHERE_MAP:
1410 sphere_mask |= WRITEMASK_X << j;
1411 break;
1412 case TXG_REFLECTION_MAP:
1413 reflect_mask |= WRITEMASK_X << j;
1414 break;
1415 case TXG_NORMAL_MAP:
1416 normal_mask |= WRITEMASK_X << j;
1417 break;
1418 case TXG_NONE:
1419 copy_mask |= WRITEMASK_X << j;
1420 }
1421
1422 }
1423
1424
1425 if (sphere_mask) {
1426 build_sphere_texgen(p, out_texgen, sphere_mask);
1427 }
1428
1429 if (reflect_mask) {
1430 build_reflect_texgen(p, out_texgen, reflect_mask);
1431 }
1432
1433 if (normal_mask) {
1434 struct ureg normal = get_transformed_normal(p);
1435 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1436 }
1437
1438 if (copy_mask) {
1439 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1440 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1441 }
1442 }
1443
1444 if (texmat_enabled) {
1445 struct ureg texmat[4];
1446 struct ureg in = (!is_undef(out_texgen) ?
1447 out_texgen :
1448 register_input(p, VERT_ATTRIB_TEX0+i));
1449 if (PREFER_DP4) {
1450 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1451 0, texmat );
1452 emit_matrix_transform_vec4( p, out, texmat, in );
1453 }
1454 else {
1455 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1456 STATE_MATRIX_TRANSPOSE, texmat );
1457 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1458 }
1459 }
1460
1461 release_temps(p);
1462 }
1463 else {
1464 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1465 }
1466 }
1467 }
1468
1469
1470 static void build_pointsize( struct tnl_program *p )
1471 {
1472 struct ureg eye = get_eye_position(p);
1473 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1474 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1475 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1476 struct ureg ut = get_temp(p);
1477
1478 /* dist = |eyez| */
1479 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1480 /* p1 + dist * (p2 + dist * p3); */
1481 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1482 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1483 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1484 ut, swizzle1(state_attenuation, X));
1485
1486 /* 1 / sqrt(factor) */
1487 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1488
1489 #if 0
1490 /* out = pointSize / sqrt(factor) */
1491 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1492 #else
1493 /* this is a good place to clamp the point size since there's likely
1494 * no hardware registers to clamp point size at rasterization time.
1495 */
1496 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1497 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1498 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1499 #endif
1500
1501 release_temp(p, ut);
1502 }
1503
1504 /**
1505 * Emit constant point size.
1506 */
1507 static void constant_pointsize( struct tnl_program *p )
1508 {
1509 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1510 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1511 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, state_size);
1512 }
1513
1514 static void build_tnl_program( struct tnl_program *p )
1515 { /* Emit the program, starting with modelviewproject:
1516 */
1517 build_hpos(p);
1518
1519 /* Lighting calculations:
1520 */
1521 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1522 if (p->state->light_global_enabled)
1523 build_lighting(p);
1524 else {
1525 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1526 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1527
1528 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1529 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1530 }
1531 }
1532
1533 if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1534 p->state->fog_mode != FOG_NONE)
1535 build_fog(p);
1536
1537 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1538 build_texture_transform(p);
1539
1540 if (p->state->point_attenuated)
1541 build_pointsize(p);
1542 #if 0
1543 else
1544 constant_pointsize(p);
1545 #endif
1546
1547 /* Finish up:
1548 */
1549 emit_op1(p, OPCODE_END, undef, 0, undef);
1550
1551 /* Disassemble:
1552 */
1553 if (DISASSEM) {
1554 _mesa_printf ("\n");
1555 }
1556 }
1557
1558
1559 static void
1560 create_new_program( const struct state_key *key,
1561 struct gl_vertex_program *program,
1562 GLuint max_temps)
1563 {
1564 struct tnl_program p;
1565
1566 _mesa_memset(&p, 0, sizeof(p));
1567 p.state = key;
1568 p.program = program;
1569 p.eye_position = undef;
1570 p.eye_position_normalized = undef;
1571 p.transformed_normal = undef;
1572 p.identity = undef;
1573 p.temp_in_use = 0;
1574
1575 if (max_temps >= sizeof(int) * 8)
1576 p.temp_reserved = 0;
1577 else
1578 p.temp_reserved = ~((1<<max_temps)-1);
1579
1580 p.program->Base.Instructions = _mesa_alloc_instructions(MAX_INSN);
1581 p.program->Base.String = NULL;
1582 p.program->Base.NumInstructions =
1583 p.program->Base.NumTemporaries =
1584 p.program->Base.NumParameters =
1585 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1586 p.program->Base.Parameters = _mesa_new_parameter_list();
1587 p.program->Base.InputsRead = 0;
1588 p.program->Base.OutputsWritten = 0;
1589
1590 build_tnl_program( &p );
1591 }
1592
1593
1594 /**
1595 * Return a vertex program which implements the current fixed-function
1596 * transform/lighting/texgen operations.
1597 * XXX move this into core mesa (main/)
1598 */
1599 struct gl_vertex_program *
1600 _mesa_get_fixed_func_vertex_program(GLcontext *ctx)
1601 {
1602 struct gl_vertex_program *prog;
1603 struct state_key *key;
1604
1605 /* Grab all the relevent state and put it in a single structure:
1606 */
1607 key = make_state_key(ctx);
1608
1609 /* Look for an already-prepared program for this state:
1610 */
1611 prog = (struct gl_vertex_program *)
1612 _mesa_search_program_cache(ctx->VertexProgram.Cache, key, sizeof(*key));
1613
1614 if (!prog) {
1615 /* OK, we'll have to build a new one */
1616 if (0)
1617 _mesa_printf("Build new TNL program\n");
1618
1619 prog = (struct gl_vertex_program *)
1620 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1621 if (!prog)
1622 return NULL;
1623
1624 create_new_program( key, prog,
1625 ctx->Const.VertexProgram.MaxTemps );
1626
1627 #if 0
1628 if (ctx->Driver.ProgramStringNotify)
1629 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1630 &prog->Base );
1631 #endif
1632 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1633 key, sizeof(*key), &prog->Base);
1634 }
1635
1636 _mesa_free(key);
1637
1638 return prog;
1639 }