Merge remote branch 'origin/master' into radeon-rewrite
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/enums.h"
40 #include "main/ffvertex_prog.h"
41 #include "shader/program.h"
42 #include "shader/prog_cache.h"
43 #include "shader/prog_instruction.h"
44 #include "shader/prog_parameter.h"
45 #include "shader/prog_print.h"
46 #include "shader/prog_statevars.h"
47
48
49 struct state_key {
50 unsigned light_color_material_mask:12;
51 unsigned light_material_mask:12;
52 unsigned light_global_enabled:1;
53 unsigned light_local_viewer:1;
54 unsigned light_twoside:1;
55 unsigned light_color_material:1;
56 unsigned material_shininess_is_zero:1;
57 unsigned need_eye_coords:1;
58 unsigned normalize:1;
59 unsigned rescale_normals:1;
60
61 unsigned fog_source_is_depth:1;
62 unsigned tnl_do_vertex_fog:1;
63 unsigned separate_specular:1;
64 unsigned fog_mode:2;
65 unsigned point_attenuated:1;
66 unsigned point_array:1;
67 unsigned texture_enabled_global:1;
68 unsigned fragprog_inputs_read:12;
69
70 unsigned varying_vp_inputs;
71
72 struct {
73 unsigned light_enabled:1;
74 unsigned light_eyepos3_is_zero:1;
75 unsigned light_spotcutoff_is_180:1;
76 unsigned light_attenuated:1;
77 unsigned texunit_really_enabled:1;
78 unsigned texmat_enabled:1;
79 unsigned texgen_enabled:4;
80 unsigned texgen_mode0:4;
81 unsigned texgen_mode1:4;
82 unsigned texgen_mode2:4;
83 unsigned texgen_mode3:4;
84 } unit[8];
85 };
86
87
88
89 #define FOG_NONE 0
90 #define FOG_LINEAR 1
91 #define FOG_EXP 2
92 #define FOG_EXP2 3
93
94 static GLuint translate_fog_mode( GLenum mode )
95 {
96 switch (mode) {
97 case GL_LINEAR: return FOG_LINEAR;
98 case GL_EXP: return FOG_EXP;
99 case GL_EXP2: return FOG_EXP2;
100 default: return FOG_NONE;
101 }
102 }
103
104
105 #define TXG_NONE 0
106 #define TXG_OBJ_LINEAR 1
107 #define TXG_EYE_LINEAR 2
108 #define TXG_SPHERE_MAP 3
109 #define TXG_REFLECTION_MAP 4
110 #define TXG_NORMAL_MAP 5
111
112 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
113 {
114 if (!enabled)
115 return TXG_NONE;
116
117 switch (mode) {
118 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
119 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
120 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
121 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
122 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
123 default: return TXG_NONE;
124 }
125 }
126
127
128 /**
129 * Returns bitmask of flags indicating which materials are set per-vertex
130 * in the current VB.
131 * XXX get these from the VBO...
132 */
133 static GLbitfield
134 tnl_get_per_vertex_materials(GLcontext *ctx)
135 {
136 GLbitfield mask = 0x0;
137 #if 0
138 TNLcontext *tnl = TNL_CONTEXT(ctx);
139 struct vertex_buffer *VB = &tnl->vb;
140 GLuint i;
141
142 for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
143 if (VB->AttribPtr[i] && VB->AttribPtr[i]->stride)
144 mask |= 1 << (i - _TNL_FIRST_MAT);
145 #endif
146 return mask;
147 }
148
149
150 /**
151 * Should fog be computed per-vertex?
152 */
153 static GLboolean
154 tnl_get_per_vertex_fog(GLcontext *ctx)
155 {
156 #if 0
157 TNLcontext *tnl = TNL_CONTEXT(ctx);
158 return tnl->_DoVertexFog;
159 #else
160 return GL_FALSE;
161 #endif
162 }
163
164
165 static GLboolean check_active_shininess( GLcontext *ctx,
166 const struct state_key *key,
167 GLuint side )
168 {
169 GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
170
171 if (key->light_color_material_mask & bit)
172 return GL_TRUE;
173
174 if (key->light_material_mask & bit)
175 return GL_TRUE;
176
177 if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
178 return GL_TRUE;
179
180 return GL_FALSE;
181 }
182
183
184 static void make_state_key( GLcontext *ctx, struct state_key *key )
185 {
186 const struct gl_fragment_program *fp;
187 GLuint i;
188
189 memset(key, 0, sizeof(struct state_key));
190 fp = ctx->FragmentProgram._Current;
191
192 /* This now relies on texenvprogram.c being active:
193 */
194 assert(fp);
195
196 key->need_eye_coords = ctx->_NeedEyeCoords;
197
198 key->fragprog_inputs_read = fp->Base.InputsRead;
199 key->varying_vp_inputs = ctx->varying_vp_inputs;
200
201 if (ctx->RenderMode == GL_FEEDBACK) {
202 /* make sure the vertprog emits color and tex0 */
203 key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
204 }
205
206 key->separate_specular = (ctx->Light.Model.ColorControl ==
207 GL_SEPARATE_SPECULAR_COLOR);
208
209 if (ctx->Light.Enabled) {
210 key->light_global_enabled = 1;
211
212 if (ctx->Light.Model.LocalViewer)
213 key->light_local_viewer = 1;
214
215 if (ctx->Light.Model.TwoSide)
216 key->light_twoside = 1;
217
218 if (ctx->Light.ColorMaterialEnabled) {
219 key->light_color_material = 1;
220 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
221 }
222
223 key->light_material_mask = tnl_get_per_vertex_materials(ctx);
224
225 for (i = 0; i < MAX_LIGHTS; i++) {
226 struct gl_light *light = &ctx->Light.Light[i];
227
228 if (light->Enabled) {
229 key->unit[i].light_enabled = 1;
230
231 if (light->EyePosition[3] == 0.0)
232 key->unit[i].light_eyepos3_is_zero = 1;
233
234 if (light->SpotCutoff == 180.0)
235 key->unit[i].light_spotcutoff_is_180 = 1;
236
237 if (light->ConstantAttenuation != 1.0 ||
238 light->LinearAttenuation != 0.0 ||
239 light->QuadraticAttenuation != 0.0)
240 key->unit[i].light_attenuated = 1;
241 }
242 }
243
244 if (check_active_shininess(ctx, key, 0)) {
245 key->material_shininess_is_zero = 0;
246 }
247 else if (key->light_twoside &&
248 check_active_shininess(ctx, key, 1)) {
249 key->material_shininess_is_zero = 0;
250 }
251 else {
252 key->material_shininess_is_zero = 1;
253 }
254 }
255
256 if (ctx->Transform.Normalize)
257 key->normalize = 1;
258
259 if (ctx->Transform.RescaleNormals)
260 key->rescale_normals = 1;
261
262 key->fog_mode = translate_fog_mode(fp->FogOption);
263
264 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
265 key->fog_source_is_depth = 1;
266
267 key->tnl_do_vertex_fog = tnl_get_per_vertex_fog(ctx);
268
269 if (ctx->Point._Attenuated)
270 key->point_attenuated = 1;
271
272 #if FEATURE_point_size_array
273 if (ctx->Array.ArrayObj->PointSize.Enabled)
274 key->point_array = 1;
275 #endif
276
277 if (ctx->Texture._TexGenEnabled ||
278 ctx->Texture._TexMatEnabled ||
279 ctx->Texture._EnabledUnits)
280 key->texture_enabled_global = 1;
281
282 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
283 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
284
285 if (texUnit->_ReallyEnabled)
286 key->unit[i].texunit_really_enabled = 1;
287
288 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
289 key->unit[i].texmat_enabled = 1;
290
291 if (texUnit->TexGenEnabled) {
292 key->unit[i].texgen_enabled = 1;
293
294 key->unit[i].texgen_mode0 =
295 translate_texgen( texUnit->TexGenEnabled & (1<<0),
296 texUnit->GenS.Mode );
297 key->unit[i].texgen_mode1 =
298 translate_texgen( texUnit->TexGenEnabled & (1<<1),
299 texUnit->GenT.Mode );
300 key->unit[i].texgen_mode2 =
301 translate_texgen( texUnit->TexGenEnabled & (1<<2),
302 texUnit->GenR.Mode );
303 key->unit[i].texgen_mode3 =
304 translate_texgen( texUnit->TexGenEnabled & (1<<3),
305 texUnit->GenQ.Mode );
306 }
307 }
308 }
309
310
311
312 /* Very useful debugging tool - produces annotated listing of
313 * generated program with line/function references for each
314 * instruction back into this file:
315 */
316 #define DISASSEM 0
317
318 /* Should be tunable by the driver - do we want to do matrix
319 * multiplications with DP4's or with MUL/MAD's? SSE works better
320 * with the latter, drivers may differ.
321 */
322 #define PREFER_DP4 0
323
324
325 /* Use uregs to represent registers internally, translate to Mesa's
326 * expected formats on emit.
327 *
328 * NOTE: These are passed by value extensively in this file rather
329 * than as usual by pointer reference. If this disturbs you, try
330 * remembering they are just 32bits in size.
331 *
332 * GCC is smart enough to deal with these dword-sized structures in
333 * much the same way as if I had defined them as dwords and was using
334 * macros to access and set the fields. This is much nicer and easier
335 * to evolve.
336 */
337 struct ureg {
338 GLuint file:4;
339 GLint idx:9; /* relative addressing may be negative */
340 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
341 GLuint negate:1;
342 GLuint swz:12;
343 GLuint pad:6;
344 };
345
346
347 struct tnl_program {
348 const struct state_key *state;
349 struct gl_vertex_program *program;
350 GLint max_inst; /** number of instructions allocated for program */
351
352 GLuint temp_in_use;
353 GLuint temp_reserved;
354
355 struct ureg eye_position;
356 struct ureg eye_position_z;
357 struct ureg eye_position_normalized;
358 struct ureg transformed_normal;
359 struct ureg identity;
360
361 GLuint materials;
362 GLuint color_materials;
363 };
364
365
366 static const struct ureg undef = {
367 PROGRAM_UNDEFINED,
368 0,
369 0,
370 0,
371 0
372 };
373
374 /* Local shorthand:
375 */
376 #define X SWIZZLE_X
377 #define Y SWIZZLE_Y
378 #define Z SWIZZLE_Z
379 #define W SWIZZLE_W
380
381
382 /* Construct a ureg:
383 */
384 static struct ureg make_ureg(GLuint file, GLint idx)
385 {
386 struct ureg reg;
387 reg.file = file;
388 reg.idx = idx;
389 reg.negate = 0;
390 reg.swz = SWIZZLE_NOOP;
391 reg.pad = 0;
392 return reg;
393 }
394
395
396
397 static struct ureg negate( struct ureg reg )
398 {
399 reg.negate ^= 1;
400 return reg;
401 }
402
403
404 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
405 {
406 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
407 GET_SWZ(reg.swz, y),
408 GET_SWZ(reg.swz, z),
409 GET_SWZ(reg.swz, w));
410 return reg;
411 }
412
413
414 static struct ureg swizzle1( struct ureg reg, int x )
415 {
416 return swizzle(reg, x, x, x, x);
417 }
418
419
420 static struct ureg get_temp( struct tnl_program *p )
421 {
422 int bit = _mesa_ffs( ~p->temp_in_use );
423 if (!bit) {
424 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
425 _mesa_exit(1);
426 }
427
428 if ((GLuint) bit > p->program->Base.NumTemporaries)
429 p->program->Base.NumTemporaries = bit;
430
431 p->temp_in_use |= 1<<(bit-1);
432 return make_ureg(PROGRAM_TEMPORARY, bit-1);
433 }
434
435
436 static struct ureg reserve_temp( struct tnl_program *p )
437 {
438 struct ureg temp = get_temp( p );
439 p->temp_reserved |= 1<<temp.idx;
440 return temp;
441 }
442
443
444 static void release_temp( struct tnl_program *p, struct ureg reg )
445 {
446 if (reg.file == PROGRAM_TEMPORARY) {
447 p->temp_in_use &= ~(1<<reg.idx);
448 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
449 }
450 }
451
452 static void release_temps( struct tnl_program *p )
453 {
454 p->temp_in_use = p->temp_reserved;
455 }
456
457
458 static struct ureg register_param5(struct tnl_program *p,
459 GLint s0,
460 GLint s1,
461 GLint s2,
462 GLint s3,
463 GLint s4)
464 {
465 gl_state_index tokens[STATE_LENGTH];
466 GLint idx;
467 tokens[0] = s0;
468 tokens[1] = s1;
469 tokens[2] = s2;
470 tokens[3] = s3;
471 tokens[4] = s4;
472 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
473 return make_ureg(PROGRAM_STATE_VAR, idx);
474 }
475
476
477 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
478 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
479 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
480 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
481
482
483
484 /**
485 * \param input one of VERT_ATTRIB_x tokens.
486 */
487 static struct ureg register_input( struct tnl_program *p, GLuint input )
488 {
489 /* Material attribs are passed here as inputs >= 32
490 */
491 if (input >= 32 || (p->state->varying_vp_inputs & (1<<input))) {
492 p->program->Base.InputsRead |= (1<<input);
493 return make_ureg(PROGRAM_INPUT, input);
494 }
495 else {
496 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
497 }
498 }
499
500
501 /**
502 * \param input one of VERT_RESULT_x tokens.
503 */
504 static struct ureg register_output( struct tnl_program *p, GLuint output )
505 {
506 p->program->Base.OutputsWritten |= (1<<output);
507 return make_ureg(PROGRAM_OUTPUT, output);
508 }
509
510
511 static struct ureg register_const4f( struct tnl_program *p,
512 GLfloat s0,
513 GLfloat s1,
514 GLfloat s2,
515 GLfloat s3)
516 {
517 GLfloat values[4];
518 GLint idx;
519 GLuint swizzle;
520 values[0] = s0;
521 values[1] = s1;
522 values[2] = s2;
523 values[3] = s3;
524 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
525 &swizzle );
526 ASSERT(swizzle == SWIZZLE_NOOP);
527 return make_ureg(PROGRAM_CONSTANT, idx);
528 }
529
530 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
531 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
532 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
533 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
534
535 static GLboolean is_undef( struct ureg reg )
536 {
537 return reg.file == PROGRAM_UNDEFINED;
538 }
539
540
541 static struct ureg get_identity_param( struct tnl_program *p )
542 {
543 if (is_undef(p->identity))
544 p->identity = register_const4f(p, 0,0,0,1);
545
546 return p->identity;
547 }
548
549 static void register_matrix_param5( struct tnl_program *p,
550 GLint s0, /* modelview, projection, etc */
551 GLint s1, /* texture matrix number */
552 GLint s2, /* first row */
553 GLint s3, /* last row */
554 GLint s4, /* inverse, transpose, etc */
555 struct ureg *matrix )
556 {
557 GLint i;
558
559 /* This is a bit sad as the support is there to pull the whole
560 * matrix out in one go:
561 */
562 for (i = 0; i <= s3 - s2; i++)
563 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
564 }
565
566
567 static void emit_arg( struct prog_src_register *src,
568 struct ureg reg )
569 {
570 src->File = reg.file;
571 src->Index = reg.idx;
572 src->Swizzle = reg.swz;
573 src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
574 src->Abs = 0;
575 src->RelAddr = 0;
576 /* Check that bitfield sizes aren't exceeded */
577 ASSERT(src->Index == reg.idx);
578 }
579
580
581 static void emit_dst( struct prog_dst_register *dst,
582 struct ureg reg, GLuint mask )
583 {
584 dst->File = reg.file;
585 dst->Index = reg.idx;
586 /* allow zero as a shorthand for xyzw */
587 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
588 dst->CondMask = COND_TR; /* always pass cond test */
589 dst->CondSwizzle = SWIZZLE_NOOP;
590 dst->CondSrc = 0;
591 dst->pad = 0;
592 /* Check that bitfield sizes aren't exceeded */
593 ASSERT(dst->Index == reg.idx);
594 }
595
596
597 static void debug_insn( struct prog_instruction *inst, const char *fn,
598 GLuint line )
599 {
600 if (DISASSEM) {
601 static const char *last_fn;
602
603 if (fn != last_fn) {
604 last_fn = fn;
605 _mesa_printf("%s:\n", fn);
606 }
607
608 _mesa_printf("%d:\t", line);
609 _mesa_print_instruction(inst);
610 }
611 }
612
613
614 static void emit_op3fn(struct tnl_program *p,
615 enum prog_opcode op,
616 struct ureg dest,
617 GLuint mask,
618 struct ureg src0,
619 struct ureg src1,
620 struct ureg src2,
621 const char *fn,
622 GLuint line)
623 {
624 GLuint nr;
625 struct prog_instruction *inst;
626
627 assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
628
629 if (p->program->Base.NumInstructions == p->max_inst) {
630 /* need to extend the program's instruction array */
631 struct prog_instruction *newInst;
632
633 /* double the size */
634 p->max_inst *= 2;
635
636 newInst = _mesa_alloc_instructions(p->max_inst);
637 if (!newInst) {
638 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
639 return;
640 }
641
642 _mesa_copy_instructions(newInst,
643 p->program->Base.Instructions,
644 p->program->Base.NumInstructions);
645
646 _mesa_free_instructions(p->program->Base.Instructions,
647 p->program->Base.NumInstructions);
648
649 p->program->Base.Instructions = newInst;
650 }
651
652 nr = p->program->Base.NumInstructions++;
653
654 inst = &p->program->Base.Instructions[nr];
655 inst->Opcode = (enum prog_opcode) op;
656 inst->Data = 0;
657
658 emit_arg( &inst->SrcReg[0], src0 );
659 emit_arg( &inst->SrcReg[1], src1 );
660 emit_arg( &inst->SrcReg[2], src2 );
661
662 emit_dst( &inst->DstReg, dest, mask );
663
664 debug_insn(inst, fn, line);
665 }
666
667
668 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
669 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
670
671 #define emit_op2(p, op, dst, mask, src0, src1) \
672 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
673
674 #define emit_op1(p, op, dst, mask, src0) \
675 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
676
677
678 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
679 {
680 if (reg.file == PROGRAM_TEMPORARY &&
681 !(p->temp_reserved & (1<<reg.idx)))
682 return reg;
683 else {
684 struct ureg temp = get_temp(p);
685 emit_op1(p, OPCODE_MOV, temp, 0, reg);
686 return temp;
687 }
688 }
689
690
691 /* Currently no tracking performed of input/output/register size or
692 * active elements. Could be used to reduce these operations, as
693 * could the matrix type.
694 */
695 static void emit_matrix_transform_vec4( struct tnl_program *p,
696 struct ureg dest,
697 const struct ureg *mat,
698 struct ureg src)
699 {
700 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
701 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
702 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
703 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
704 }
705
706
707 /* This version is much easier to implement if writemasks are not
708 * supported natively on the target or (like SSE), the target doesn't
709 * have a clean/obvious dotproduct implementation.
710 */
711 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
712 struct ureg dest,
713 const struct ureg *mat,
714 struct ureg src)
715 {
716 struct ureg tmp;
717
718 if (dest.file != PROGRAM_TEMPORARY)
719 tmp = get_temp(p);
720 else
721 tmp = dest;
722
723 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
724 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
725 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
726 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
727
728 if (dest.file != PROGRAM_TEMPORARY)
729 release_temp(p, tmp);
730 }
731
732
733 static void emit_matrix_transform_vec3( struct tnl_program *p,
734 struct ureg dest,
735 const struct ureg *mat,
736 struct ureg src)
737 {
738 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
739 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
740 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
741 }
742
743
744 static void emit_normalize_vec3( struct tnl_program *p,
745 struct ureg dest,
746 struct ureg src )
747 {
748 #if 0
749 /* XXX use this when drivers are ready for NRM3 */
750 emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
751 #else
752 struct ureg tmp = get_temp(p);
753 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
754 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
755 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
756 release_temp(p, tmp);
757 #endif
758 }
759
760
761 static void emit_passthrough( struct tnl_program *p,
762 GLuint input,
763 GLuint output )
764 {
765 struct ureg out = register_output(p, output);
766 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
767 }
768
769
770 static struct ureg get_eye_position( struct tnl_program *p )
771 {
772 if (is_undef(p->eye_position)) {
773 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
774 struct ureg modelview[4];
775
776 p->eye_position = reserve_temp(p);
777
778 if (PREFER_DP4) {
779 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
780 0, modelview );
781
782 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
783 }
784 else {
785 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
786 STATE_MATRIX_TRANSPOSE, modelview );
787
788 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
789 }
790 }
791
792 return p->eye_position;
793 }
794
795
796 static struct ureg get_eye_position_z( struct tnl_program *p )
797 {
798 if (!is_undef(p->eye_position))
799 return swizzle1(p->eye_position, Z);
800
801 if (is_undef(p->eye_position_z)) {
802 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
803 struct ureg modelview[4];
804
805 p->eye_position_z = reserve_temp(p);
806
807 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
808 0, modelview );
809
810 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
811 }
812
813 return p->eye_position_z;
814 }
815
816
817 static struct ureg get_eye_position_normalized( struct tnl_program *p )
818 {
819 if (is_undef(p->eye_position_normalized)) {
820 struct ureg eye = get_eye_position(p);
821 p->eye_position_normalized = reserve_temp(p);
822 emit_normalize_vec3(p, p->eye_position_normalized, eye);
823 }
824
825 return p->eye_position_normalized;
826 }
827
828
829 static struct ureg get_transformed_normal( struct tnl_program *p )
830 {
831 if (is_undef(p->transformed_normal) &&
832 !p->state->need_eye_coords &&
833 !p->state->normalize &&
834 !(p->state->need_eye_coords == p->state->rescale_normals))
835 {
836 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
837 }
838 else if (is_undef(p->transformed_normal))
839 {
840 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
841 struct ureg mvinv[3];
842 struct ureg transformed_normal = reserve_temp(p);
843
844 if (p->state->need_eye_coords) {
845 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
846 STATE_MATRIX_INVTRANS, mvinv );
847
848 /* Transform to eye space:
849 */
850 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
851 normal = transformed_normal;
852 }
853
854 /* Normalize/Rescale:
855 */
856 if (p->state->normalize) {
857 emit_normalize_vec3( p, transformed_normal, normal );
858 normal = transformed_normal;
859 }
860 else if (p->state->need_eye_coords == p->state->rescale_normals) {
861 /* This is already adjusted for eye/non-eye rendering:
862 */
863 struct ureg rescale = register_param2(p, STATE_INTERNAL,
864 STATE_NORMAL_SCALE);
865
866 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
867 normal = transformed_normal;
868 }
869
870 assert(normal.file == PROGRAM_TEMPORARY);
871 p->transformed_normal = normal;
872 }
873
874 return p->transformed_normal;
875 }
876
877
878 static void build_hpos( struct tnl_program *p )
879 {
880 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
881 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
882 struct ureg mvp[4];
883
884 if (PREFER_DP4) {
885 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
886 0, mvp );
887 emit_matrix_transform_vec4( p, hpos, mvp, pos );
888 }
889 else {
890 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
891 STATE_MATRIX_TRANSPOSE, mvp );
892 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
893 }
894 }
895
896
897 static GLuint material_attrib( GLuint side, GLuint property )
898 {
899 return (property - STATE_AMBIENT) * 2 + side;
900 }
901
902
903 /**
904 * Get a bitmask of which material values vary on a per-vertex basis.
905 */
906 static void set_material_flags( struct tnl_program *p )
907 {
908 p->color_materials = 0;
909 p->materials = 0;
910
911 if (p->state->light_color_material) {
912 p->materials =
913 p->color_materials = p->state->light_color_material_mask;
914 }
915
916 p->materials |= p->state->light_material_mask;
917 }
918
919
920 /* XXX temporary!!! */
921 #define _TNL_ATTRIB_MAT_FRONT_AMBIENT 32
922
923 static struct ureg get_material( struct tnl_program *p, GLuint side,
924 GLuint property )
925 {
926 GLuint attrib = material_attrib(side, property);
927
928 if (p->color_materials & (1<<attrib))
929 return register_input(p, VERT_ATTRIB_COLOR0);
930 else if (p->materials & (1<<attrib))
931 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
932 else
933 return register_param3( p, STATE_MATERIAL, side, property );
934 }
935
936 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
937 MAT_BIT_FRONT_AMBIENT | \
938 MAT_BIT_FRONT_DIFFUSE) << (side))
939
940
941 /**
942 * Either return a precalculated constant value or emit code to
943 * calculate these values dynamically in the case where material calls
944 * are present between begin/end pairs.
945 *
946 * Probably want to shift this to the program compilation phase - if
947 * we always emitted the calculation here, a smart compiler could
948 * detect that it was constant (given a certain set of inputs), and
949 * lift it out of the main loop. That way the programs created here
950 * would be independent of the vertex_buffer details.
951 */
952 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
953 {
954 if (p->materials & SCENE_COLOR_BITS(side)) {
955 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
956 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
957 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
958 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
959 struct ureg tmp = make_temp(p, material_diffuse);
960 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
961 material_ambient, material_emission);
962 return tmp;
963 }
964 else
965 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
966 }
967
968
969 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
970 GLuint side, GLuint property )
971 {
972 GLuint attrib = material_attrib(side, property);
973 if (p->materials & (1<<attrib)) {
974 struct ureg light_value =
975 register_param3(p, STATE_LIGHT, light, property);
976 struct ureg material_value = get_material(p, side, property);
977 struct ureg tmp = get_temp(p);
978 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
979 return tmp;
980 }
981 else
982 return register_param4(p, STATE_LIGHTPROD, light, side, property);
983 }
984
985
986 static struct ureg calculate_light_attenuation( struct tnl_program *p,
987 GLuint i,
988 struct ureg VPpli,
989 struct ureg dist )
990 {
991 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
992 STATE_ATTENUATION);
993 struct ureg att = get_temp(p);
994
995 /* Calculate spot attenuation:
996 */
997 if (!p->state->unit[i].light_spotcutoff_is_180) {
998 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
999 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
1000 struct ureg spot = get_temp(p);
1001 struct ureg slt = get_temp(p);
1002
1003 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
1004 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
1005 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
1006 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
1007
1008 release_temp(p, spot);
1009 release_temp(p, slt);
1010 }
1011
1012 /* Calculate distance attenuation:
1013 */
1014 if (p->state->unit[i].light_attenuated) {
1015 /* 1/d,d,d,1/d */
1016 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
1017 /* 1,d,d*d,1/d */
1018 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
1019 /* 1/dist-atten */
1020 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
1021
1022 if (!p->state->unit[i].light_spotcutoff_is_180) {
1023 /* dist-atten */
1024 emit_op1(p, OPCODE_RCP, dist, 0, dist);
1025 /* spot-atten * dist-atten */
1026 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
1027 }
1028 else {
1029 /* dist-atten */
1030 emit_op1(p, OPCODE_RCP, att, 0, dist);
1031 }
1032 }
1033
1034 return att;
1035 }
1036
1037
1038 /**
1039 * Compute:
1040 * lit.y = MAX(0, dots.x)
1041 * lit.z = SLT(0, dots.x)
1042 */
1043 static void emit_degenerate_lit( struct tnl_program *p,
1044 struct ureg lit,
1045 struct ureg dots )
1046 {
1047 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
1048
1049 /* Note that lit.x & lit.w will not be examined. Note also that
1050 * dots.xyzw == dots.xxxx.
1051 */
1052
1053 /* MAX lit, id, dots;
1054 */
1055 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1056
1057 /* result[2] = (in > 0 ? 1 : 0)
1058 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
1059 */
1060 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1061 }
1062
1063
1064 /* Need to add some addtional parameters to allow lighting in object
1065 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1066 * space lighting.
1067 */
1068 static void build_lighting( struct tnl_program *p )
1069 {
1070 const GLboolean twoside = p->state->light_twoside;
1071 const GLboolean separate = p->state->separate_specular;
1072 GLuint nr_lights = 0, count = 0;
1073 struct ureg normal = get_transformed_normal(p);
1074 struct ureg lit = get_temp(p);
1075 struct ureg dots = get_temp(p);
1076 struct ureg _col0 = undef, _col1 = undef;
1077 struct ureg _bfc0 = undef, _bfc1 = undef;
1078 GLuint i;
1079
1080 /*
1081 * NOTE:
1082 * dots.x = dot(normal, VPpli)
1083 * dots.y = dot(normal, halfAngle)
1084 * dots.z = back.shininess
1085 * dots.w = front.shininess
1086 */
1087
1088 for (i = 0; i < MAX_LIGHTS; i++)
1089 if (p->state->unit[i].light_enabled)
1090 nr_lights++;
1091
1092 set_material_flags(p);
1093
1094 {
1095 if (!p->state->material_shininess_is_zero) {
1096 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1097 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1098 release_temp(p, shininess);
1099 }
1100
1101 _col0 = make_temp(p, get_scenecolor(p, 0));
1102 if (separate)
1103 _col1 = make_temp(p, get_identity_param(p));
1104 else
1105 _col1 = _col0;
1106 }
1107
1108 if (twoside) {
1109 if (!p->state->material_shininess_is_zero) {
1110 /* Note that we negate the back-face specular exponent here.
1111 * The negation will be un-done later in the back-face code below.
1112 */
1113 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1114 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1115 negate(swizzle1(shininess,X)));
1116 release_temp(p, shininess);
1117 }
1118
1119 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1120 if (separate)
1121 _bfc1 = make_temp(p, get_identity_param(p));
1122 else
1123 _bfc1 = _bfc0;
1124 }
1125
1126 /* If no lights, still need to emit the scenecolor.
1127 */
1128 {
1129 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1130 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1131 }
1132
1133 if (separate) {
1134 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1135 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1136 }
1137
1138 if (twoside) {
1139 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1140 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1141 }
1142
1143 if (twoside && separate) {
1144 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1145 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1146 }
1147
1148 if (nr_lights == 0) {
1149 release_temps(p);
1150 return;
1151 }
1152
1153 for (i = 0; i < MAX_LIGHTS; i++) {
1154 if (p->state->unit[i].light_enabled) {
1155 struct ureg half = undef;
1156 struct ureg att = undef, VPpli = undef;
1157
1158 count++;
1159
1160 if (p->state->unit[i].light_eyepos3_is_zero) {
1161 /* Can used precomputed constants in this case.
1162 * Attenuation never applies to infinite lights.
1163 */
1164 VPpli = register_param3(p, STATE_INTERNAL,
1165 STATE_LIGHT_POSITION_NORMALIZED, i);
1166
1167 if (!p->state->material_shininess_is_zero) {
1168 if (p->state->light_local_viewer) {
1169 struct ureg eye_hat = get_eye_position_normalized(p);
1170 half = get_temp(p);
1171 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1172 emit_normalize_vec3(p, half, half);
1173 }
1174 else {
1175 half = register_param3(p, STATE_INTERNAL,
1176 STATE_LIGHT_HALF_VECTOR, i);
1177 }
1178 }
1179 }
1180 else {
1181 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1182 STATE_LIGHT_POSITION, i);
1183 struct ureg V = get_eye_position(p);
1184 struct ureg dist = get_temp(p);
1185
1186 VPpli = get_temp(p);
1187
1188 /* Calculate VPpli vector
1189 */
1190 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1191
1192 /* Normalize VPpli. The dist value also used in
1193 * attenuation below.
1194 */
1195 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1196 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1197 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1198
1199 /* Calculate attenuation:
1200 */
1201 if (!p->state->unit[i].light_spotcutoff_is_180 ||
1202 p->state->unit[i].light_attenuated) {
1203 att = calculate_light_attenuation(p, i, VPpli, dist);
1204 }
1205
1206 /* Calculate viewer direction, or use infinite viewer:
1207 */
1208 if (!p->state->material_shininess_is_zero) {
1209 half = get_temp(p);
1210
1211 if (p->state->light_local_viewer) {
1212 struct ureg eye_hat = get_eye_position_normalized(p);
1213 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1214 }
1215 else {
1216 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1217 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1218 }
1219
1220 emit_normalize_vec3(p, half, half);
1221 }
1222
1223 release_temp(p, dist);
1224 }
1225
1226 /* Calculate dot products:
1227 */
1228 if (p->state->material_shininess_is_zero) {
1229 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1230 }
1231 else {
1232 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1233 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1234 }
1235
1236 /* Front face lighting:
1237 */
1238 {
1239 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1240 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1241 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1242 struct ureg res0, res1;
1243 GLuint mask0, mask1;
1244
1245 if (count == nr_lights) {
1246 if (separate) {
1247 mask0 = WRITEMASK_XYZ;
1248 mask1 = WRITEMASK_XYZ;
1249 res0 = register_output( p, VERT_RESULT_COL0 );
1250 res1 = register_output( p, VERT_RESULT_COL1 );
1251 }
1252 else {
1253 mask0 = 0;
1254 mask1 = WRITEMASK_XYZ;
1255 res0 = _col0;
1256 res1 = register_output( p, VERT_RESULT_COL0 );
1257 }
1258 }
1259 else {
1260 mask0 = 0;
1261 mask1 = 0;
1262 res0 = _col0;
1263 res1 = _col1;
1264 }
1265
1266 if (!is_undef(att)) {
1267 /* light is attenuated by distance */
1268 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1269 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1270 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1271 }
1272 else if (!p->state->material_shininess_is_zero) {
1273 /* there's a non-zero specular term */
1274 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1275 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1276 }
1277 else {
1278 /* no attenutation, no specular */
1279 emit_degenerate_lit(p, lit, dots);
1280 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1281 }
1282
1283 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1284 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1285
1286 release_temp(p, ambient);
1287 release_temp(p, diffuse);
1288 release_temp(p, specular);
1289 }
1290
1291 /* Back face lighting:
1292 */
1293 if (twoside) {
1294 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1295 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1296 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1297 struct ureg res0, res1;
1298 GLuint mask0, mask1;
1299
1300 if (count == nr_lights) {
1301 if (separate) {
1302 mask0 = WRITEMASK_XYZ;
1303 mask1 = WRITEMASK_XYZ;
1304 res0 = register_output( p, VERT_RESULT_BFC0 );
1305 res1 = register_output( p, VERT_RESULT_BFC1 );
1306 }
1307 else {
1308 mask0 = 0;
1309 mask1 = WRITEMASK_XYZ;
1310 res0 = _bfc0;
1311 res1 = register_output( p, VERT_RESULT_BFC0 );
1312 }
1313 }
1314 else {
1315 res0 = _bfc0;
1316 res1 = _bfc1;
1317 mask0 = 0;
1318 mask1 = 0;
1319 }
1320
1321 /* For the back face we need to negate the X and Y component
1322 * dot products. dots.Z has the negated back-face specular
1323 * exponent. We swizzle that into the W position. This
1324 * negation makes the back-face specular term positive again.
1325 */
1326 dots = negate(swizzle(dots,X,Y,W,Z));
1327
1328 if (!is_undef(att)) {
1329 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1330 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1331 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1332 }
1333 else if (!p->state->material_shininess_is_zero) {
1334 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1335 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1336 }
1337 else {
1338 emit_degenerate_lit(p, lit, dots);
1339 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1340 }
1341
1342 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1343 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1344 /* restore dots to its original state for subsequent lights
1345 * by negating and swizzling again.
1346 */
1347 dots = negate(swizzle(dots,X,Y,W,Z));
1348
1349 release_temp(p, ambient);
1350 release_temp(p, diffuse);
1351 release_temp(p, specular);
1352 }
1353
1354 release_temp(p, half);
1355 release_temp(p, VPpli);
1356 release_temp(p, att);
1357 }
1358 }
1359
1360 release_temps( p );
1361 }
1362
1363
1364 static void build_fog( struct tnl_program *p )
1365 {
1366 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1367 struct ureg input;
1368
1369 if (p->state->fog_source_is_depth) {
1370 input = get_eye_position_z(p);
1371 }
1372 else {
1373 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1374 }
1375
1376 if (p->state->fog_mode && p->state->tnl_do_vertex_fog) {
1377 struct ureg params = register_param2(p, STATE_INTERNAL,
1378 STATE_FOG_PARAMS_OPTIMIZED);
1379 struct ureg tmp = get_temp(p);
1380 GLboolean useabs = (p->state->fog_mode != FOG_EXP2);
1381
1382 if (useabs) {
1383 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1384 }
1385
1386 switch (p->state->fog_mode) {
1387 case FOG_LINEAR: {
1388 struct ureg id = get_identity_param(p);
1389 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
1390 swizzle1(params,X), swizzle1(params,Y));
1391 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1392 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1393 break;
1394 }
1395 case FOG_EXP:
1396 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
1397 swizzle1(params,Z));
1398 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1399 break;
1400 case FOG_EXP2:
1401 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1402 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1403 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1404 break;
1405 }
1406
1407 release_temp(p, tmp);
1408 }
1409 else {
1410 /* results = incoming fog coords (compute fog per-fragment later)
1411 *
1412 * KW: Is it really necessary to do anything in this case?
1413 * BP: Yes, we always need to compute the absolute value, unless
1414 * we want to push that down into the fragment program...
1415 */
1416 GLboolean useabs = GL_TRUE;
1417 emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input);
1418 }
1419 }
1420
1421
1422 static void build_reflect_texgen( struct tnl_program *p,
1423 struct ureg dest,
1424 GLuint writemask )
1425 {
1426 struct ureg normal = get_transformed_normal(p);
1427 struct ureg eye_hat = get_eye_position_normalized(p);
1428 struct ureg tmp = get_temp(p);
1429
1430 /* n.u */
1431 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1432 /* 2n.u */
1433 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1434 /* (-2n.u)n + u */
1435 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1436
1437 release_temp(p, tmp);
1438 }
1439
1440
1441 static void build_sphere_texgen( struct tnl_program *p,
1442 struct ureg dest,
1443 GLuint writemask )
1444 {
1445 struct ureg normal = get_transformed_normal(p);
1446 struct ureg eye_hat = get_eye_position_normalized(p);
1447 struct ureg tmp = get_temp(p);
1448 struct ureg half = register_scalar_const(p, .5);
1449 struct ureg r = get_temp(p);
1450 struct ureg inv_m = get_temp(p);
1451 struct ureg id = get_identity_param(p);
1452
1453 /* Could share the above calculations, but it would be
1454 * a fairly odd state for someone to set (both sphere and
1455 * reflection active for different texture coordinate
1456 * components. Of course - if two texture units enable
1457 * reflect and/or sphere, things start to tilt in favour
1458 * of seperating this out:
1459 */
1460
1461 /* n.u */
1462 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1463 /* 2n.u */
1464 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1465 /* (-2n.u)n + u */
1466 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1467 /* r + 0,0,1 */
1468 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1469 /* rx^2 + ry^2 + (rz+1)^2 */
1470 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1471 /* 2/m */
1472 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1473 /* 1/m */
1474 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1475 /* r/m + 1/2 */
1476 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1477
1478 release_temp(p, tmp);
1479 release_temp(p, r);
1480 release_temp(p, inv_m);
1481 }
1482
1483
1484 static void build_texture_transform( struct tnl_program *p )
1485 {
1486 GLuint i, j;
1487
1488 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1489
1490 if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1491 continue;
1492
1493 if (p->state->unit[i].texgen_enabled ||
1494 p->state->unit[i].texmat_enabled) {
1495
1496 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1497 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1498 struct ureg out_texgen = undef;
1499
1500 if (p->state->unit[i].texgen_enabled) {
1501 GLuint copy_mask = 0;
1502 GLuint sphere_mask = 0;
1503 GLuint reflect_mask = 0;
1504 GLuint normal_mask = 0;
1505 GLuint modes[4];
1506
1507 if (texmat_enabled)
1508 out_texgen = get_temp(p);
1509 else
1510 out_texgen = out;
1511
1512 modes[0] = p->state->unit[i].texgen_mode0;
1513 modes[1] = p->state->unit[i].texgen_mode1;
1514 modes[2] = p->state->unit[i].texgen_mode2;
1515 modes[3] = p->state->unit[i].texgen_mode3;
1516
1517 for (j = 0; j < 4; j++) {
1518 switch (modes[j]) {
1519 case TXG_OBJ_LINEAR: {
1520 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1521 struct ureg plane =
1522 register_param3(p, STATE_TEXGEN, i,
1523 STATE_TEXGEN_OBJECT_S + j);
1524
1525 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1526 obj, plane );
1527 break;
1528 }
1529 case TXG_EYE_LINEAR: {
1530 struct ureg eye = get_eye_position(p);
1531 struct ureg plane =
1532 register_param3(p, STATE_TEXGEN, i,
1533 STATE_TEXGEN_EYE_S + j);
1534
1535 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1536 eye, plane );
1537 break;
1538 }
1539 case TXG_SPHERE_MAP:
1540 sphere_mask |= WRITEMASK_X << j;
1541 break;
1542 case TXG_REFLECTION_MAP:
1543 reflect_mask |= WRITEMASK_X << j;
1544 break;
1545 case TXG_NORMAL_MAP:
1546 normal_mask |= WRITEMASK_X << j;
1547 break;
1548 case TXG_NONE:
1549 copy_mask |= WRITEMASK_X << j;
1550 }
1551 }
1552
1553 if (sphere_mask) {
1554 build_sphere_texgen(p, out_texgen, sphere_mask);
1555 }
1556
1557 if (reflect_mask) {
1558 build_reflect_texgen(p, out_texgen, reflect_mask);
1559 }
1560
1561 if (normal_mask) {
1562 struct ureg normal = get_transformed_normal(p);
1563 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1564 }
1565
1566 if (copy_mask) {
1567 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1568 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1569 }
1570 }
1571
1572 if (texmat_enabled) {
1573 struct ureg texmat[4];
1574 struct ureg in = (!is_undef(out_texgen) ?
1575 out_texgen :
1576 register_input(p, VERT_ATTRIB_TEX0+i));
1577 if (PREFER_DP4) {
1578 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1579 0, texmat );
1580 emit_matrix_transform_vec4( p, out, texmat, in );
1581 }
1582 else {
1583 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1584 STATE_MATRIX_TRANSPOSE, texmat );
1585 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1586 }
1587 }
1588
1589 release_temps(p);
1590 }
1591 else {
1592 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1593 }
1594 }
1595 }
1596
1597
1598 /**
1599 * Point size attenuation computation.
1600 */
1601 static void build_atten_pointsize( struct tnl_program *p )
1602 {
1603 struct ureg eye = get_eye_position_z(p);
1604 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1605 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1606 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1607 struct ureg ut = get_temp(p);
1608
1609 /* dist = |eyez| */
1610 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1611 /* p1 + dist * (p2 + dist * p3); */
1612 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1613 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1614 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1615 ut, swizzle1(state_attenuation, X));
1616
1617 /* 1 / sqrt(factor) */
1618 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1619
1620 #if 0
1621 /* out = pointSize / sqrt(factor) */
1622 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1623 #else
1624 /* this is a good place to clamp the point size since there's likely
1625 * no hardware registers to clamp point size at rasterization time.
1626 */
1627 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1628 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1629 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1630 #endif
1631
1632 release_temp(p, ut);
1633 }
1634
1635
1636 /**
1637 * Emit constant point size.
1638 */
1639 static void build_constant_pointsize( struct tnl_program *p )
1640 {
1641 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1642 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1643 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, state_size);
1644 }
1645
1646
1647 /**
1648 * Pass-though per-vertex point size, from user's point size array.
1649 */
1650 static void build_array_pointsize( struct tnl_program *p )
1651 {
1652 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1653 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1654 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1655 }
1656
1657
1658 static void build_tnl_program( struct tnl_program *p )
1659 {
1660 /* Emit the program, starting with modelviewproject:
1661 */
1662 build_hpos(p);
1663
1664 /* Lighting calculations:
1665 */
1666 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1667 if (p->state->light_global_enabled)
1668 build_lighting(p);
1669 else {
1670 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1671 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1672
1673 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1674 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1675 }
1676 }
1677
1678 if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1679 p->state->fog_mode != FOG_NONE)
1680 build_fog(p);
1681
1682 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1683 build_texture_transform(p);
1684
1685 if (p->state->point_attenuated)
1686 build_atten_pointsize(p);
1687 else if (p->state->point_array)
1688 build_array_pointsize(p);
1689 #if 0
1690 else
1691 build_constant_pointsize(p);
1692 #else
1693 (void) build_constant_pointsize;
1694 #endif
1695
1696 /* Finish up:
1697 */
1698 emit_op1(p, OPCODE_END, undef, 0, undef);
1699
1700 /* Disassemble:
1701 */
1702 if (DISASSEM) {
1703 _mesa_printf ("\n");
1704 }
1705 }
1706
1707
1708 static void
1709 create_new_program( const struct state_key *key,
1710 struct gl_vertex_program *program,
1711 GLuint max_temps)
1712 {
1713 struct tnl_program p;
1714
1715 _mesa_memset(&p, 0, sizeof(p));
1716 p.state = key;
1717 p.program = program;
1718 p.eye_position = undef;
1719 p.eye_position_z = undef;
1720 p.eye_position_normalized = undef;
1721 p.transformed_normal = undef;
1722 p.identity = undef;
1723 p.temp_in_use = 0;
1724
1725 if (max_temps >= sizeof(int) * 8)
1726 p.temp_reserved = 0;
1727 else
1728 p.temp_reserved = ~((1<<max_temps)-1);
1729
1730 /* Start by allocating 32 instructions.
1731 * If we need more, we'll grow the instruction array as needed.
1732 */
1733 p.max_inst = 32;
1734 p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1735 p.program->Base.String = NULL;
1736 p.program->Base.NumInstructions =
1737 p.program->Base.NumTemporaries =
1738 p.program->Base.NumParameters =
1739 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1740 p.program->Base.Parameters = _mesa_new_parameter_list();
1741 p.program->Base.InputsRead = 0;
1742 p.program->Base.OutputsWritten = 0;
1743
1744 build_tnl_program( &p );
1745 }
1746
1747
1748 /**
1749 * Return a vertex program which implements the current fixed-function
1750 * transform/lighting/texgen operations.
1751 * XXX move this into core mesa (main/)
1752 */
1753 struct gl_vertex_program *
1754 _mesa_get_fixed_func_vertex_program(GLcontext *ctx)
1755 {
1756 struct gl_vertex_program *prog;
1757 struct state_key key;
1758
1759 /* Grab all the relevent state and put it in a single structure:
1760 */
1761 make_state_key(ctx, &key);
1762
1763 /* Look for an already-prepared program for this state:
1764 */
1765 prog = (struct gl_vertex_program *)
1766 _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key));
1767
1768 if (!prog) {
1769 /* OK, we'll have to build a new one */
1770 if (0)
1771 _mesa_printf("Build new TNL program\n");
1772
1773 prog = (struct gl_vertex_program *)
1774 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1775 if (!prog)
1776 return NULL;
1777
1778 create_new_program( &key, prog,
1779 ctx->Const.VertexProgram.MaxTemps );
1780
1781 #if 0
1782 if (ctx->Driver.ProgramStringNotify)
1783 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1784 &prog->Base );
1785 #endif
1786 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1787 &key, sizeof(key), &prog->Base);
1788 }
1789
1790 return prog;
1791 }