Merge commit 'origin/master' into gallium-0.2
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/enums.h"
40 #include "main/ffvertex_prog.h"
41 #include "shader/program.h"
42 #include "shader/prog_cache.h"
43 #include "shader/prog_instruction.h"
44 #include "shader/prog_parameter.h"
45 #include "shader/prog_print.h"
46 #include "shader/prog_statevars.h"
47
48
49 struct state_key {
50 unsigned light_color_material_mask:12;
51 unsigned light_material_mask:12;
52 unsigned light_global_enabled:1;
53 unsigned light_local_viewer:1;
54 unsigned light_twoside:1;
55 unsigned light_color_material:1;
56 unsigned material_shininess_is_zero:1;
57 unsigned need_eye_coords:1;
58 unsigned normalize:1;
59 unsigned rescale_normals:1;
60
61 unsigned fog_source_is_depth:1;
62 unsigned tnl_do_vertex_fog:1;
63 unsigned separate_specular:1;
64 unsigned fog_mode:2;
65 unsigned point_attenuated:1;
66 unsigned point_array:1;
67 unsigned texture_enabled_global:1;
68 unsigned fragprog_inputs_read:12;
69
70 unsigned varying_vp_inputs;
71
72 struct {
73 unsigned light_enabled:1;
74 unsigned light_eyepos3_is_zero:1;
75 unsigned light_spotcutoff_is_180:1;
76 unsigned light_attenuated:1;
77 unsigned texunit_really_enabled:1;
78 unsigned texmat_enabled:1;
79 unsigned texgen_enabled:4;
80 unsigned texgen_mode0:4;
81 unsigned texgen_mode1:4;
82 unsigned texgen_mode2:4;
83 unsigned texgen_mode3:4;
84 } unit[8];
85 };
86
87
88
89 #define FOG_NONE 0
90 #define FOG_LINEAR 1
91 #define FOG_EXP 2
92 #define FOG_EXP2 3
93
94 static GLuint translate_fog_mode( GLenum mode )
95 {
96 switch (mode) {
97 case GL_LINEAR: return FOG_LINEAR;
98 case GL_EXP: return FOG_EXP;
99 case GL_EXP2: return FOG_EXP2;
100 default: return FOG_NONE;
101 }
102 }
103
104 #define TXG_NONE 0
105 #define TXG_OBJ_LINEAR 1
106 #define TXG_EYE_LINEAR 2
107 #define TXG_SPHERE_MAP 3
108 #define TXG_REFLECTION_MAP 4
109 #define TXG_NORMAL_MAP 5
110
111 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
112 {
113 if (!enabled)
114 return TXG_NONE;
115
116 switch (mode) {
117 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
118 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
119 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
120 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
121 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
122 default: return TXG_NONE;
123 }
124 }
125
126
127 /**
128 * Returns bitmask of flags indicating which materials are set per-vertex
129 * in the current VB.
130 * XXX get these from the VBO...
131 */
132 static GLbitfield
133 tnl_get_per_vertex_materials(GLcontext *ctx)
134 {
135 GLbitfield mask = 0x0;
136 #if 0
137 TNLcontext *tnl = TNL_CONTEXT(ctx);
138 struct vertex_buffer *VB = &tnl->vb;
139 GLuint i;
140
141 for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++)
142 if (VB->AttribPtr[i] && VB->AttribPtr[i]->stride)
143 mask |= 1 << (i - _TNL_FIRST_MAT);
144 #endif
145 return mask;
146 }
147
148 /**
149 * Should fog be computed per-vertex?
150 */
151 static GLboolean
152 tnl_get_per_vertex_fog(GLcontext *ctx)
153 {
154 #if 0
155 TNLcontext *tnl = TNL_CONTEXT(ctx);
156 return tnl->_DoVertexFog;
157 #else
158 return GL_FALSE;
159 #endif
160 }
161
162 static GLboolean check_active_shininess( GLcontext *ctx,
163 const struct state_key *key,
164 GLuint side )
165 {
166 GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
167
168 if (key->light_color_material_mask & bit)
169 return GL_TRUE;
170
171 if (key->light_material_mask & bit)
172 return GL_TRUE;
173
174 if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
175 return GL_TRUE;
176
177 return GL_FALSE;
178 }
179
180
181
182
183 static void make_state_key( GLcontext *ctx, struct state_key *key )
184 {
185 const struct gl_fragment_program *fp;
186 GLuint i;
187
188 memset(key, 0, sizeof(struct state_key));
189 fp = ctx->FragmentProgram._Current;
190
191 /* This now relies on texenvprogram.c being active:
192 */
193 assert(fp);
194
195 key->need_eye_coords = ctx->_NeedEyeCoords;
196
197 key->fragprog_inputs_read = fp->Base.InputsRead;
198 key->varying_vp_inputs = ctx->varying_vp_inputs;
199
200 if (ctx->RenderMode == GL_FEEDBACK) {
201 /* make sure the vertprog emits color and tex0 */
202 key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
203 }
204
205 key->separate_specular = (ctx->Light.Model.ColorControl ==
206 GL_SEPARATE_SPECULAR_COLOR);
207
208 if (ctx->Light.Enabled) {
209 key->light_global_enabled = 1;
210
211 if (ctx->Light.Model.LocalViewer)
212 key->light_local_viewer = 1;
213
214 if (ctx->Light.Model.TwoSide)
215 key->light_twoside = 1;
216
217 if (ctx->Light.ColorMaterialEnabled) {
218 key->light_color_material = 1;
219 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
220 }
221
222 key->light_material_mask = tnl_get_per_vertex_materials(ctx);
223
224 for (i = 0; i < MAX_LIGHTS; i++) {
225 struct gl_light *light = &ctx->Light.Light[i];
226
227 if (light->Enabled) {
228 key->unit[i].light_enabled = 1;
229
230 if (light->EyePosition[3] == 0.0)
231 key->unit[i].light_eyepos3_is_zero = 1;
232
233 if (light->SpotCutoff == 180.0)
234 key->unit[i].light_spotcutoff_is_180 = 1;
235
236 if (light->ConstantAttenuation != 1.0 ||
237 light->LinearAttenuation != 0.0 ||
238 light->QuadraticAttenuation != 0.0)
239 key->unit[i].light_attenuated = 1;
240 }
241 }
242
243 if (check_active_shininess(ctx, key, 0)) {
244 key->material_shininess_is_zero = 0;
245 }
246 else if (key->light_twoside &&
247 check_active_shininess(ctx, key, 1)) {
248 key->material_shininess_is_zero = 0;
249 }
250 else {
251 key->material_shininess_is_zero = 1;
252 }
253 }
254
255 if (ctx->Transform.Normalize)
256 key->normalize = 1;
257
258 if (ctx->Transform.RescaleNormals)
259 key->rescale_normals = 1;
260
261 key->fog_mode = translate_fog_mode(fp->FogOption);
262
263 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
264 key->fog_source_is_depth = 1;
265
266 key->tnl_do_vertex_fog = tnl_get_per_vertex_fog(ctx);
267
268 if (ctx->Point._Attenuated)
269 key->point_attenuated = 1;
270
271 #if FEATURE_point_size_array
272 if (ctx->Array.ArrayObj->PointSize.Enabled)
273 key->point_array = 1;
274 #endif
275
276 if (ctx->Texture._TexGenEnabled ||
277 ctx->Texture._TexMatEnabled ||
278 ctx->Texture._EnabledUnits)
279 key->texture_enabled_global = 1;
280
281 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
282 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
283
284 if (texUnit->_ReallyEnabled)
285 key->unit[i].texunit_really_enabled = 1;
286
287 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
288 key->unit[i].texmat_enabled = 1;
289
290 if (texUnit->TexGenEnabled) {
291 key->unit[i].texgen_enabled = 1;
292
293 key->unit[i].texgen_mode0 =
294 translate_texgen( texUnit->TexGenEnabled & (1<<0),
295 texUnit->GenModeS );
296 key->unit[i].texgen_mode1 =
297 translate_texgen( texUnit->TexGenEnabled & (1<<1),
298 texUnit->GenModeT );
299 key->unit[i].texgen_mode2 =
300 translate_texgen( texUnit->TexGenEnabled & (1<<2),
301 texUnit->GenModeR );
302 key->unit[i].texgen_mode3 =
303 translate_texgen( texUnit->TexGenEnabled & (1<<3),
304 texUnit->GenModeQ );
305 }
306 }
307 }
308
309
310
311 /* Very useful debugging tool - produces annotated listing of
312 * generated program with line/function references for each
313 * instruction back into this file:
314 */
315 #define DISASSEM 0
316
317 /* Should be tunable by the driver - do we want to do matrix
318 * multiplications with DP4's or with MUL/MAD's? SSE works better
319 * with the latter, drivers may differ.
320 */
321 #define PREFER_DP4 0
322
323
324 /* Use uregs to represent registers internally, translate to Mesa's
325 * expected formats on emit.
326 *
327 * NOTE: These are passed by value extensively in this file rather
328 * than as usual by pointer reference. If this disturbs you, try
329 * remembering they are just 32bits in size.
330 *
331 * GCC is smart enough to deal with these dword-sized structures in
332 * much the same way as if I had defined them as dwords and was using
333 * macros to access and set the fields. This is much nicer and easier
334 * to evolve.
335 */
336 struct ureg {
337 GLuint file:4;
338 GLint idx:9; /* relative addressing may be negative */
339 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
340 GLuint negate:1;
341 GLuint swz:12;
342 GLuint pad:6;
343 };
344
345
346 struct tnl_program {
347 const struct state_key *state;
348 struct gl_vertex_program *program;
349 GLint max_inst; /** number of instructions allocated for program */
350
351 GLuint temp_in_use;
352 GLuint temp_reserved;
353
354 struct ureg eye_position;
355 struct ureg eye_position_z;
356 struct ureg eye_position_normalized;
357 struct ureg transformed_normal;
358 struct ureg identity;
359
360 GLuint materials;
361 GLuint color_materials;
362 };
363
364
365 static const struct ureg undef = {
366 PROGRAM_UNDEFINED,
367 0,
368 0,
369 0,
370 0
371 };
372
373 /* Local shorthand:
374 */
375 #define X SWIZZLE_X
376 #define Y SWIZZLE_Y
377 #define Z SWIZZLE_Z
378 #define W SWIZZLE_W
379
380
381 /* Construct a ureg:
382 */
383 static struct ureg make_ureg(GLuint file, GLint idx)
384 {
385 struct ureg reg;
386 reg.file = file;
387 reg.idx = idx;
388 reg.negate = 0;
389 reg.swz = SWIZZLE_NOOP;
390 reg.pad = 0;
391 return reg;
392 }
393
394
395
396 static struct ureg negate( struct ureg reg )
397 {
398 reg.negate ^= 1;
399 return reg;
400 }
401
402
403 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
404 {
405 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
406 GET_SWZ(reg.swz, y),
407 GET_SWZ(reg.swz, z),
408 GET_SWZ(reg.swz, w));
409
410 return reg;
411 }
412
413 static struct ureg swizzle1( struct ureg reg, int x )
414 {
415 return swizzle(reg, x, x, x, x);
416 }
417
418 static struct ureg get_temp( struct tnl_program *p )
419 {
420 int bit = _mesa_ffs( ~p->temp_in_use );
421 if (!bit) {
422 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
423 _mesa_exit(1);
424 }
425
426 if ((GLuint) bit > p->program->Base.NumTemporaries)
427 p->program->Base.NumTemporaries = bit;
428
429 p->temp_in_use |= 1<<(bit-1);
430 return make_ureg(PROGRAM_TEMPORARY, bit-1);
431 }
432
433 static struct ureg reserve_temp( struct tnl_program *p )
434 {
435 struct ureg temp = get_temp( p );
436 p->temp_reserved |= 1<<temp.idx;
437 return temp;
438 }
439
440 static void release_temp( struct tnl_program *p, struct ureg reg )
441 {
442 if (reg.file == PROGRAM_TEMPORARY) {
443 p->temp_in_use &= ~(1<<reg.idx);
444 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
445 }
446 }
447
448 static void release_temps( struct tnl_program *p )
449 {
450 p->temp_in_use = p->temp_reserved;
451 }
452
453
454 static struct ureg register_param5(struct tnl_program *p,
455 GLint s0,
456 GLint s1,
457 GLint s2,
458 GLint s3,
459 GLint s4)
460 {
461 gl_state_index tokens[STATE_LENGTH];
462 GLint idx;
463 tokens[0] = s0;
464 tokens[1] = s1;
465 tokens[2] = s2;
466 tokens[3] = s3;
467 tokens[4] = s4;
468 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
469 return make_ureg(PROGRAM_STATE_VAR, idx);
470 }
471
472
473 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
474 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
475 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
476 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
477
478
479
480 /**
481 * \param input one of VERT_ATTRIB_x tokens.
482 */
483 static struct ureg register_input( struct tnl_program *p, GLuint input )
484 {
485 /* Material attribs are passed here as inputs >= 32
486 */
487 if (input >= 32 || (p->state->varying_vp_inputs & (1<<input))) {
488 p->program->Base.InputsRead |= (1<<input);
489 return make_ureg(PROGRAM_INPUT, input);
490 }
491 else {
492 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
493 }
494 }
495
496 /**
497 * \param input one of VERT_RESULT_x tokens.
498 */
499 static struct ureg register_output( struct tnl_program *p, GLuint output )
500 {
501 p->program->Base.OutputsWritten |= (1<<output);
502 return make_ureg(PROGRAM_OUTPUT, output);
503 }
504
505 static struct ureg register_const4f( struct tnl_program *p,
506 GLfloat s0,
507 GLfloat s1,
508 GLfloat s2,
509 GLfloat s3)
510 {
511 GLfloat values[4];
512 GLint idx;
513 GLuint swizzle;
514 values[0] = s0;
515 values[1] = s1;
516 values[2] = s2;
517 values[3] = s3;
518 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
519 &swizzle );
520 ASSERT(swizzle == SWIZZLE_NOOP);
521 return make_ureg(PROGRAM_CONSTANT, idx);
522 }
523
524 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
525 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
526 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
527 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
528
529 static GLboolean is_undef( struct ureg reg )
530 {
531 return reg.file == PROGRAM_UNDEFINED;
532 }
533
534 static struct ureg get_identity_param( struct tnl_program *p )
535 {
536 if (is_undef(p->identity))
537 p->identity = register_const4f(p, 0,0,0,1);
538
539 return p->identity;
540 }
541
542 static void register_matrix_param5( struct tnl_program *p,
543 GLint s0, /* modelview, projection, etc */
544 GLint s1, /* texture matrix number */
545 GLint s2, /* first row */
546 GLint s3, /* last row */
547 GLint s4, /* inverse, transpose, etc */
548 struct ureg *matrix )
549 {
550 GLint i;
551
552 /* This is a bit sad as the support is there to pull the whole
553 * matrix out in one go:
554 */
555 for (i = 0; i <= s3 - s2; i++)
556 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
557 }
558
559
560 static void emit_arg( struct prog_src_register *src,
561 struct ureg reg )
562 {
563 src->File = reg.file;
564 src->Index = reg.idx;
565 src->Swizzle = reg.swz;
566 src->NegateBase = reg.negate ? NEGATE_XYZW : 0;
567 src->Abs = 0;
568 src->NegateAbs = 0;
569 src->RelAddr = 0;
570 /* Check that bitfield sizes aren't exceeded */
571 ASSERT(src->Index == reg.idx);
572 }
573
574 static void emit_dst( struct prog_dst_register *dst,
575 struct ureg reg, GLuint mask )
576 {
577 dst->File = reg.file;
578 dst->Index = reg.idx;
579 /* allow zero as a shorthand for xyzw */
580 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
581 dst->CondMask = COND_TR; /* always pass cond test */
582 dst->CondSwizzle = SWIZZLE_NOOP;
583 dst->CondSrc = 0;
584 dst->pad = 0;
585 /* Check that bitfield sizes aren't exceeded */
586 ASSERT(dst->Index == reg.idx);
587 }
588
589 static void debug_insn( struct prog_instruction *inst, const char *fn,
590 GLuint line )
591 {
592 if (DISASSEM) {
593 static const char *last_fn;
594
595 if (fn != last_fn) {
596 last_fn = fn;
597 _mesa_printf("%s:\n", fn);
598 }
599
600 _mesa_printf("%d:\t", line);
601 _mesa_print_instruction(inst);
602 }
603 }
604
605
606 static void emit_op3fn(struct tnl_program *p,
607 enum prog_opcode op,
608 struct ureg dest,
609 GLuint mask,
610 struct ureg src0,
611 struct ureg src1,
612 struct ureg src2,
613 const char *fn,
614 GLuint line)
615 {
616 GLuint nr;
617 struct prog_instruction *inst;
618
619 assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
620
621 if (p->program->Base.NumInstructions == p->max_inst) {
622 /* need to extend the program's instruction array */
623 struct prog_instruction *newInst;
624
625 /* double the size */
626 p->max_inst *= 2;
627
628 newInst = _mesa_alloc_instructions(p->max_inst);
629 if (!newInst) {
630 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
631 return;
632 }
633
634 _mesa_copy_instructions(newInst,
635 p->program->Base.Instructions,
636 p->program->Base.NumInstructions);
637
638 _mesa_free_instructions(p->program->Base.Instructions,
639 p->program->Base.NumInstructions);
640
641 p->program->Base.Instructions = newInst;
642 }
643
644 nr = p->program->Base.NumInstructions++;
645
646 inst = &p->program->Base.Instructions[nr];
647 inst->Opcode = (enum prog_opcode) op;
648 inst->StringPos = 0;
649 inst->Data = 0;
650
651 emit_arg( &inst->SrcReg[0], src0 );
652 emit_arg( &inst->SrcReg[1], src1 );
653 emit_arg( &inst->SrcReg[2], src2 );
654
655 emit_dst( &inst->DstReg, dest, mask );
656
657 debug_insn(inst, fn, line);
658 }
659
660
661 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
662 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
663
664 #define emit_op2(p, op, dst, mask, src0, src1) \
665 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
666
667 #define emit_op1(p, op, dst, mask, src0) \
668 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
669
670
671 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
672 {
673 if (reg.file == PROGRAM_TEMPORARY &&
674 !(p->temp_reserved & (1<<reg.idx)))
675 return reg;
676 else {
677 struct ureg temp = get_temp(p);
678 emit_op1(p, OPCODE_MOV, temp, 0, reg);
679 return temp;
680 }
681 }
682
683
684 /* Currently no tracking performed of input/output/register size or
685 * active elements. Could be used to reduce these operations, as
686 * could the matrix type.
687 */
688 static void emit_matrix_transform_vec4( struct tnl_program *p,
689 struct ureg dest,
690 const struct ureg *mat,
691 struct ureg src)
692 {
693 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
694 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
695 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
696 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
697 }
698
699 /* This version is much easier to implement if writemasks are not
700 * supported natively on the target or (like SSE), the target doesn't
701 * have a clean/obvious dotproduct implementation.
702 */
703 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
704 struct ureg dest,
705 const struct ureg *mat,
706 struct ureg src)
707 {
708 struct ureg tmp;
709
710 if (dest.file != PROGRAM_TEMPORARY)
711 tmp = get_temp(p);
712 else
713 tmp = dest;
714
715 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
716 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
717 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
718 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
719
720 if (dest.file != PROGRAM_TEMPORARY)
721 release_temp(p, tmp);
722 }
723
724 static void emit_matrix_transform_vec3( struct tnl_program *p,
725 struct ureg dest,
726 const struct ureg *mat,
727 struct ureg src)
728 {
729 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
730 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
731 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
732 }
733
734
735 static void emit_normalize_vec3( struct tnl_program *p,
736 struct ureg dest,
737 struct ureg src )
738 {
739 struct ureg tmp = get_temp(p);
740 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
741 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
742 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
743 release_temp(p, tmp);
744 }
745
746 static void emit_passthrough( struct tnl_program *p,
747 GLuint input,
748 GLuint output )
749 {
750 struct ureg out = register_output(p, output);
751 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
752 }
753
754 static struct ureg get_eye_position( struct tnl_program *p )
755 {
756 if (is_undef(p->eye_position)) {
757 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
758 struct ureg modelview[4];
759
760 p->eye_position = reserve_temp(p);
761
762 if (PREFER_DP4) {
763 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
764 0, modelview );
765
766 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
767 }
768 else {
769 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
770 STATE_MATRIX_TRANSPOSE, modelview );
771
772 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
773 }
774 }
775
776 return p->eye_position;
777 }
778
779
780 static struct ureg get_eye_position_z( struct tnl_program *p )
781 {
782 if (!is_undef(p->eye_position))
783 return swizzle1(p->eye_position, Z);
784
785 if (is_undef(p->eye_position_z)) {
786 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
787 struct ureg modelview[4];
788
789 p->eye_position_z = reserve_temp(p);
790
791 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
792 0, modelview );
793
794 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
795 }
796
797 return p->eye_position_z;
798 }
799
800
801
802 static struct ureg get_eye_position_normalized( struct tnl_program *p )
803 {
804 if (is_undef(p->eye_position_normalized)) {
805 struct ureg eye = get_eye_position(p);
806 p->eye_position_normalized = reserve_temp(p);
807 emit_normalize_vec3(p, p->eye_position_normalized, eye);
808 }
809
810 return p->eye_position_normalized;
811 }
812
813
814 static struct ureg get_transformed_normal( struct tnl_program *p )
815 {
816 if (is_undef(p->transformed_normal) &&
817 !p->state->need_eye_coords &&
818 !p->state->normalize &&
819 !(p->state->need_eye_coords == p->state->rescale_normals))
820 {
821 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
822 }
823 else if (is_undef(p->transformed_normal))
824 {
825 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
826 struct ureg mvinv[3];
827 struct ureg transformed_normal = reserve_temp(p);
828
829 if (p->state->need_eye_coords) {
830 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
831 STATE_MATRIX_INVTRANS, mvinv );
832
833 /* Transform to eye space:
834 */
835 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
836 normal = transformed_normal;
837 }
838
839 /* Normalize/Rescale:
840 */
841 if (p->state->normalize) {
842 emit_normalize_vec3( p, transformed_normal, normal );
843 normal = transformed_normal;
844 }
845 else if (p->state->need_eye_coords == p->state->rescale_normals) {
846 /* This is already adjusted for eye/non-eye rendering:
847 */
848 struct ureg rescale = register_param2(p, STATE_INTERNAL,
849 STATE_NORMAL_SCALE);
850
851 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
852 normal = transformed_normal;
853 }
854
855 assert(normal.file == PROGRAM_TEMPORARY);
856 p->transformed_normal = normal;
857 }
858
859 return p->transformed_normal;
860 }
861
862
863
864 static void build_hpos( struct tnl_program *p )
865 {
866 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
867 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
868 struct ureg mvp[4];
869
870 if (PREFER_DP4) {
871 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
872 0, mvp );
873 emit_matrix_transform_vec4( p, hpos, mvp, pos );
874 }
875 else {
876 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
877 STATE_MATRIX_TRANSPOSE, mvp );
878 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
879 }
880 }
881
882
883 static GLuint material_attrib( GLuint side, GLuint property )
884 {
885 return ((property - STATE_AMBIENT) * 2 +
886 side);
887 }
888
889 /* Get a bitmask of which material values vary on a per-vertex basis.
890 */
891 static void set_material_flags( struct tnl_program *p )
892 {
893 p->color_materials = 0;
894 p->materials = 0;
895
896 if (p->state->light_color_material) {
897 p->materials =
898 p->color_materials = p->state->light_color_material_mask;
899 }
900
901 p->materials |= p->state->light_material_mask;
902 }
903
904
905 /* XXX temporary!!! */
906 #define _TNL_ATTRIB_MAT_FRONT_AMBIENT 32
907
908 static struct ureg get_material( struct tnl_program *p, GLuint side,
909 GLuint property )
910 {
911 GLuint attrib = material_attrib(side, property);
912
913 if (p->color_materials & (1<<attrib))
914 return register_input(p, VERT_ATTRIB_COLOR0);
915 else if (p->materials & (1<<attrib))
916 return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT );
917 else
918 return register_param3( p, STATE_MATERIAL, side, property );
919 }
920
921 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
922 MAT_BIT_FRONT_AMBIENT | \
923 MAT_BIT_FRONT_DIFFUSE) << (side))
924
925 /* Either return a precalculated constant value or emit code to
926 * calculate these values dynamically in the case where material calls
927 * are present between begin/end pairs.
928 *
929 * Probably want to shift this to the program compilation phase - if
930 * we always emitted the calculation here, a smart compiler could
931 * detect that it was constant (given a certain set of inputs), and
932 * lift it out of the main loop. That way the programs created here
933 * would be independent of the vertex_buffer details.
934 */
935 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
936 {
937 if (p->materials & SCENE_COLOR_BITS(side)) {
938 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
939 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
940 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
941 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
942 struct ureg tmp = make_temp(p, material_diffuse);
943 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
944 material_ambient, material_emission);
945 return tmp;
946 }
947 else
948 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
949 }
950
951
952 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
953 GLuint side, GLuint property )
954 {
955 GLuint attrib = material_attrib(side, property);
956 if (p->materials & (1<<attrib)) {
957 struct ureg light_value =
958 register_param3(p, STATE_LIGHT, light, property);
959 struct ureg material_value = get_material(p, side, property);
960 struct ureg tmp = get_temp(p);
961 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
962 return tmp;
963 }
964 else
965 return register_param4(p, STATE_LIGHTPROD, light, side, property);
966 }
967
968 static struct ureg calculate_light_attenuation( struct tnl_program *p,
969 GLuint i,
970 struct ureg VPpli,
971 struct ureg dist )
972 {
973 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
974 STATE_ATTENUATION);
975 struct ureg att = get_temp(p);
976
977 /* Calculate spot attenuation:
978 */
979 if (!p->state->unit[i].light_spotcutoff_is_180) {
980 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
981 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
982 struct ureg spot = get_temp(p);
983 struct ureg slt = get_temp(p);
984
985 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
986 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
987 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
988 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
989
990 release_temp(p, spot);
991 release_temp(p, slt);
992 }
993
994 /* Calculate distance attenuation:
995 */
996 if (p->state->unit[i].light_attenuated) {
997
998 /* 1/d,d,d,1/d */
999 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
1000 /* 1,d,d*d,1/d */
1001 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
1002 /* 1/dist-atten */
1003 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
1004
1005 if (!p->state->unit[i].light_spotcutoff_is_180) {
1006 /* dist-atten */
1007 emit_op1(p, OPCODE_RCP, dist, 0, dist);
1008 /* spot-atten * dist-atten */
1009 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
1010 } else {
1011 /* dist-atten */
1012 emit_op1(p, OPCODE_RCP, att, 0, dist);
1013 }
1014 }
1015
1016 return att;
1017 }
1018
1019
1020 /**
1021 * Compute:
1022 * lit.y = MAX(0, dots.x)
1023 * lit.z = SLT(0, dots.x)
1024 */
1025 static void emit_degenerate_lit( struct tnl_program *p,
1026 struct ureg lit,
1027 struct ureg dots )
1028 {
1029 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
1030
1031 /* Note that lit.x & lit.w will not be examined. Note also that
1032 * dots.xyzw == dots.xxxx.
1033 */
1034
1035 /* MAX lit, id, dots;
1036 */
1037 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1038
1039 /* result[2] = (in > 0 ? 1 : 0)
1040 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
1041 */
1042 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1043 }
1044
1045
1046 /* Need to add some addtional parameters to allow lighting in object
1047 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1048 * space lighting.
1049 */
1050 static void build_lighting( struct tnl_program *p )
1051 {
1052 const GLboolean twoside = p->state->light_twoside;
1053 const GLboolean separate = p->state->separate_specular;
1054 GLuint nr_lights = 0, count = 0;
1055 struct ureg normal = get_transformed_normal(p);
1056 struct ureg lit = get_temp(p);
1057 struct ureg dots = get_temp(p);
1058 struct ureg _col0 = undef, _col1 = undef;
1059 struct ureg _bfc0 = undef, _bfc1 = undef;
1060 GLuint i;
1061
1062 /*
1063 * NOTE:
1064 * dot.x = dot(normal, VPpli)
1065 * dot.y = dot(normal, halfAngle)
1066 * dot.z = back.shininess
1067 * dot.w = front.shininess
1068 */
1069
1070 for (i = 0; i < MAX_LIGHTS; i++)
1071 if (p->state->unit[i].light_enabled)
1072 nr_lights++;
1073
1074 set_material_flags(p);
1075
1076 {
1077 if (!p->state->material_shininess_is_zero) {
1078 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1079 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1080 release_temp(p, shininess);
1081 }
1082
1083 _col0 = make_temp(p, get_scenecolor(p, 0));
1084 if (separate)
1085 _col1 = make_temp(p, get_identity_param(p));
1086 else
1087 _col1 = _col0;
1088
1089 }
1090
1091 if (twoside) {
1092 if (!p->state->material_shininess_is_zero) {
1093 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1094 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1095 negate(swizzle1(shininess,X)));
1096 release_temp(p, shininess);
1097 }
1098
1099 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1100 if (separate)
1101 _bfc1 = make_temp(p, get_identity_param(p));
1102 else
1103 _bfc1 = _bfc0;
1104 }
1105
1106 /* If no lights, still need to emit the scenecolor.
1107 */
1108 {
1109 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1110 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1111 }
1112
1113 if (separate) {
1114 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1115 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1116 }
1117
1118 if (twoside) {
1119 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1120 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1121 }
1122
1123 if (twoside && separate) {
1124 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1125 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1126 }
1127
1128 if (nr_lights == 0) {
1129 release_temps(p);
1130 return;
1131 }
1132
1133 for (i = 0; i < MAX_LIGHTS; i++) {
1134 if (p->state->unit[i].light_enabled) {
1135 struct ureg half = undef;
1136 struct ureg att = undef, VPpli = undef;
1137
1138 count++;
1139
1140 if (p->state->unit[i].light_eyepos3_is_zero) {
1141 /* Can used precomputed constants in this case.
1142 * Attenuation never applies to infinite lights.
1143 */
1144 VPpli = register_param3(p, STATE_INTERNAL,
1145 STATE_LIGHT_POSITION_NORMALIZED, i);
1146
1147 if (!p->state->material_shininess_is_zero) {
1148 if (p->state->light_local_viewer) {
1149 struct ureg eye_hat = get_eye_position_normalized(p);
1150 half = get_temp(p);
1151 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1152 emit_normalize_vec3(p, half, half);
1153 } else {
1154 half = register_param3(p, STATE_INTERNAL,
1155 STATE_LIGHT_HALF_VECTOR, i);
1156 }
1157 }
1158 }
1159 else {
1160 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1161 STATE_LIGHT_POSITION, i);
1162 struct ureg V = get_eye_position(p);
1163 struct ureg dist = get_temp(p);
1164
1165 VPpli = get_temp(p);
1166
1167 /* Calculate VPpli vector
1168 */
1169 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1170
1171 /* Normalize VPpli. The dist value also used in
1172 * attenuation below.
1173 */
1174 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1175 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1176 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1177
1178 /* Calculate attenuation:
1179 */
1180 if (!p->state->unit[i].light_spotcutoff_is_180 ||
1181 p->state->unit[i].light_attenuated) {
1182 att = calculate_light_attenuation(p, i, VPpli, dist);
1183 }
1184
1185 /* Calculate viewer direction, or use infinite viewer:
1186 */
1187 if (!p->state->material_shininess_is_zero) {
1188 half = get_temp(p);
1189
1190 if (p->state->light_local_viewer) {
1191 struct ureg eye_hat = get_eye_position_normalized(p);
1192 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1193 }
1194 else {
1195 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1196 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1197 }
1198
1199 emit_normalize_vec3(p, half, half);
1200 }
1201
1202 release_temp(p, dist);
1203 }
1204
1205 /* Calculate dot products:
1206 */
1207 if (p->state->material_shininess_is_zero) {
1208 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1209 }
1210 else {
1211 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1212 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1213 }
1214
1215 /* Front face lighting:
1216 */
1217 {
1218 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1219 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1220 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1221 struct ureg res0, res1;
1222 GLuint mask0, mask1;
1223
1224
1225 if (count == nr_lights) {
1226 if (separate) {
1227 mask0 = WRITEMASK_XYZ;
1228 mask1 = WRITEMASK_XYZ;
1229 res0 = register_output( p, VERT_RESULT_COL0 );
1230 res1 = register_output( p, VERT_RESULT_COL1 );
1231 }
1232 else {
1233 mask0 = 0;
1234 mask1 = WRITEMASK_XYZ;
1235 res0 = _col0;
1236 res1 = register_output( p, VERT_RESULT_COL0 );
1237 }
1238 } else {
1239 mask0 = 0;
1240 mask1 = 0;
1241 res0 = _col0;
1242 res1 = _col1;
1243 }
1244
1245
1246 if (!is_undef(att)) {
1247 /* light is attenuated by distance */
1248 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1249 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1250 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1251 }
1252 else if (!p->state->material_shininess_is_zero) {
1253 /* there's a non-zero specular term */
1254 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1255 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1256 }
1257 else {
1258 /* no attenutation, no specular */
1259 emit_degenerate_lit(p, lit, dots);
1260 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1261 }
1262
1263 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1264 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1265
1266 release_temp(p, ambient);
1267 release_temp(p, diffuse);
1268 release_temp(p, specular);
1269 }
1270
1271 /* Back face lighting:
1272 */
1273 if (twoside) {
1274 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1275 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1276 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1277 struct ureg res0, res1;
1278 GLuint mask0, mask1;
1279
1280 if (count == nr_lights) {
1281 if (separate) {
1282 mask0 = WRITEMASK_XYZ;
1283 mask1 = WRITEMASK_XYZ;
1284 res0 = register_output( p, VERT_RESULT_BFC0 );
1285 res1 = register_output( p, VERT_RESULT_BFC1 );
1286 }
1287 else {
1288 mask0 = 0;
1289 mask1 = WRITEMASK_XYZ;
1290 res0 = _bfc0;
1291 res1 = register_output( p, VERT_RESULT_BFC0 );
1292 }
1293 } else {
1294 res0 = _bfc0;
1295 res1 = _bfc1;
1296 mask0 = 0;
1297 mask1 = 0;
1298 }
1299
1300 dots = negate(swizzle(dots,X,Y,W,Z));
1301
1302 if (!is_undef(att)) {
1303 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1304 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1305 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1306 }
1307 else if (!p->state->material_shininess_is_zero) {
1308 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1309 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1310 }
1311 else {
1312 emit_degenerate_lit(p, lit, dots);
1313 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1314 }
1315
1316 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1317 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1318 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1319
1320 release_temp(p, ambient);
1321 release_temp(p, diffuse);
1322 release_temp(p, specular);
1323 }
1324
1325 release_temp(p, half);
1326 release_temp(p, VPpli);
1327 release_temp(p, att);
1328 }
1329 }
1330
1331 release_temps( p );
1332 }
1333
1334
1335 static void build_fog( struct tnl_program *p )
1336 {
1337 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1338 struct ureg input;
1339
1340 if (p->state->fog_source_is_depth) {
1341 input = get_eye_position_z(p);
1342 }
1343 else {
1344 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1345 }
1346
1347 if (p->state->fog_mode && p->state->tnl_do_vertex_fog) {
1348 struct ureg params = register_param2(p, STATE_INTERNAL,
1349 STATE_FOG_PARAMS_OPTIMIZED);
1350 struct ureg tmp = get_temp(p);
1351 GLboolean useabs = (p->state->fog_mode != FOG_EXP2);
1352
1353 if (useabs) {
1354 emit_op1(p, OPCODE_ABS, tmp, 0, input);
1355 }
1356
1357 switch (p->state->fog_mode) {
1358 case FOG_LINEAR: {
1359 struct ureg id = get_identity_param(p);
1360 emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input,
1361 swizzle1(params,X), swizzle1(params,Y));
1362 emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */
1363 emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W));
1364 break;
1365 }
1366 case FOG_EXP:
1367 emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input,
1368 swizzle1(params,Z));
1369 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1370 break;
1371 case FOG_EXP2:
1372 emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W));
1373 emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp);
1374 emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp));
1375 break;
1376 }
1377
1378 release_temp(p, tmp);
1379 }
1380 else {
1381 /* results = incoming fog coords (compute fog per-fragment later)
1382 *
1383 * KW: Is it really necessary to do anything in this case?
1384 * BP: Yes, we always need to compute the absolute value, unless
1385 * we want to push that down into the fragment program...
1386 */
1387 GLboolean useabs = GL_TRUE;
1388 emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input);
1389 }
1390 }
1391
1392 static void build_reflect_texgen( struct tnl_program *p,
1393 struct ureg dest,
1394 GLuint writemask )
1395 {
1396 struct ureg normal = get_transformed_normal(p);
1397 struct ureg eye_hat = get_eye_position_normalized(p);
1398 struct ureg tmp = get_temp(p);
1399
1400 /* n.u */
1401 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1402 /* 2n.u */
1403 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1404 /* (-2n.u)n + u */
1405 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1406
1407 release_temp(p, tmp);
1408 }
1409
1410 static void build_sphere_texgen( struct tnl_program *p,
1411 struct ureg dest,
1412 GLuint writemask )
1413 {
1414 struct ureg normal = get_transformed_normal(p);
1415 struct ureg eye_hat = get_eye_position_normalized(p);
1416 struct ureg tmp = get_temp(p);
1417 struct ureg half = register_scalar_const(p, .5);
1418 struct ureg r = get_temp(p);
1419 struct ureg inv_m = get_temp(p);
1420 struct ureg id = get_identity_param(p);
1421
1422 /* Could share the above calculations, but it would be
1423 * a fairly odd state for someone to set (both sphere and
1424 * reflection active for different texture coordinate
1425 * components. Of course - if two texture units enable
1426 * reflect and/or sphere, things start to tilt in favour
1427 * of seperating this out:
1428 */
1429
1430 /* n.u */
1431 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1432 /* 2n.u */
1433 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1434 /* (-2n.u)n + u */
1435 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1436 /* r + 0,0,1 */
1437 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1438 /* rx^2 + ry^2 + (rz+1)^2 */
1439 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1440 /* 2/m */
1441 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1442 /* 1/m */
1443 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1444 /* r/m + 1/2 */
1445 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1446
1447 release_temp(p, tmp);
1448 release_temp(p, r);
1449 release_temp(p, inv_m);
1450 }
1451
1452
1453 static void build_texture_transform( struct tnl_program *p )
1454 {
1455 GLuint i, j;
1456
1457 for (i = 0; i < MAX_TEXTURE_UNITS; i++) {
1458
1459 if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1460 continue;
1461
1462 if (p->state->unit[i].texgen_enabled ||
1463 p->state->unit[i].texmat_enabled) {
1464
1465 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1466 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1467 struct ureg out_texgen = undef;
1468
1469 if (p->state->unit[i].texgen_enabled) {
1470 GLuint copy_mask = 0;
1471 GLuint sphere_mask = 0;
1472 GLuint reflect_mask = 0;
1473 GLuint normal_mask = 0;
1474 GLuint modes[4];
1475
1476 if (texmat_enabled)
1477 out_texgen = get_temp(p);
1478 else
1479 out_texgen = out;
1480
1481 modes[0] = p->state->unit[i].texgen_mode0;
1482 modes[1] = p->state->unit[i].texgen_mode1;
1483 modes[2] = p->state->unit[i].texgen_mode2;
1484 modes[3] = p->state->unit[i].texgen_mode3;
1485
1486 for (j = 0; j < 4; j++) {
1487 switch (modes[j]) {
1488 case TXG_OBJ_LINEAR: {
1489 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1490 struct ureg plane =
1491 register_param3(p, STATE_TEXGEN, i,
1492 STATE_TEXGEN_OBJECT_S + j);
1493
1494 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1495 obj, plane );
1496 break;
1497 }
1498 case TXG_EYE_LINEAR: {
1499 struct ureg eye = get_eye_position(p);
1500 struct ureg plane =
1501 register_param3(p, STATE_TEXGEN, i,
1502 STATE_TEXGEN_EYE_S + j);
1503
1504 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1505 eye, plane );
1506 break;
1507 }
1508 case TXG_SPHERE_MAP:
1509 sphere_mask |= WRITEMASK_X << j;
1510 break;
1511 case TXG_REFLECTION_MAP:
1512 reflect_mask |= WRITEMASK_X << j;
1513 break;
1514 case TXG_NORMAL_MAP:
1515 normal_mask |= WRITEMASK_X << j;
1516 break;
1517 case TXG_NONE:
1518 copy_mask |= WRITEMASK_X << j;
1519 }
1520
1521 }
1522
1523
1524 if (sphere_mask) {
1525 build_sphere_texgen(p, out_texgen, sphere_mask);
1526 }
1527
1528 if (reflect_mask) {
1529 build_reflect_texgen(p, out_texgen, reflect_mask);
1530 }
1531
1532 if (normal_mask) {
1533 struct ureg normal = get_transformed_normal(p);
1534 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1535 }
1536
1537 if (copy_mask) {
1538 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1539 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1540 }
1541 }
1542
1543 if (texmat_enabled) {
1544 struct ureg texmat[4];
1545 struct ureg in = (!is_undef(out_texgen) ?
1546 out_texgen :
1547 register_input(p, VERT_ATTRIB_TEX0+i));
1548 if (PREFER_DP4) {
1549 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1550 0, texmat );
1551 emit_matrix_transform_vec4( p, out, texmat, in );
1552 }
1553 else {
1554 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1555 STATE_MATRIX_TRANSPOSE, texmat );
1556 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1557 }
1558 }
1559
1560 release_temps(p);
1561 }
1562 else {
1563 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1564 }
1565 }
1566 }
1567
1568
1569 /**
1570 * Point size attenuation computation.
1571 */
1572 static void build_atten_pointsize( struct tnl_program *p )
1573 {
1574 struct ureg eye = get_eye_position_z(p);
1575 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1576 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1577 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1578 struct ureg ut = get_temp(p);
1579
1580 /* dist = |eyez| */
1581 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1582 /* p1 + dist * (p2 + dist * p3); */
1583 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1584 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1585 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1586 ut, swizzle1(state_attenuation, X));
1587
1588 /* 1 / sqrt(factor) */
1589 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1590
1591 #if 0
1592 /* out = pointSize / sqrt(factor) */
1593 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1594 #else
1595 /* this is a good place to clamp the point size since there's likely
1596 * no hardware registers to clamp point size at rasterization time.
1597 */
1598 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1599 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1600 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1601 #endif
1602
1603 release_temp(p, ut);
1604 }
1605
1606 /**
1607 * Emit constant point size.
1608 */
1609 static void build_constant_pointsize( struct tnl_program *p )
1610 {
1611 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1612 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1613 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, state_size);
1614 }
1615
1616 /**
1617 * Pass-though per-vertex point size, from user's point size array.
1618 */
1619 static void build_array_pointsize( struct tnl_program *p )
1620 {
1621 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1622 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1623 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1624 }
1625
1626
1627 static void build_tnl_program( struct tnl_program *p )
1628 { /* Emit the program, starting with modelviewproject:
1629 */
1630 build_hpos(p);
1631
1632 /* Lighting calculations:
1633 */
1634 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1635 if (p->state->light_global_enabled)
1636 build_lighting(p);
1637 else {
1638 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1639 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1640
1641 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1642 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1643 }
1644 }
1645
1646 if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) ||
1647 p->state->fog_mode != FOG_NONE)
1648 build_fog(p);
1649
1650 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1651 build_texture_transform(p);
1652
1653 if (p->state->point_attenuated)
1654 build_atten_pointsize(p);
1655 else if (p->state->point_array)
1656 build_array_pointsize(p);
1657 #if 0
1658 else
1659 build_constant_pointsize(p);
1660 #else
1661 (void) build_constant_pointsize;
1662 #endif
1663
1664 /* Finish up:
1665 */
1666 emit_op1(p, OPCODE_END, undef, 0, undef);
1667
1668 /* Disassemble:
1669 */
1670 if (DISASSEM) {
1671 _mesa_printf ("\n");
1672 }
1673 }
1674
1675
1676 static void
1677 create_new_program( const struct state_key *key,
1678 struct gl_vertex_program *program,
1679 GLuint max_temps)
1680 {
1681 struct tnl_program p;
1682
1683 _mesa_memset(&p, 0, sizeof(p));
1684 p.state = key;
1685 p.program = program;
1686 p.eye_position = undef;
1687 p.eye_position_z = undef;
1688 p.eye_position_normalized = undef;
1689 p.transformed_normal = undef;
1690 p.identity = undef;
1691 p.temp_in_use = 0;
1692
1693 if (max_temps >= sizeof(int) * 8)
1694 p.temp_reserved = 0;
1695 else
1696 p.temp_reserved = ~((1<<max_temps)-1);
1697
1698 /* Start by allocating 32 instructions.
1699 * If we need more, we'll grow the instruction array as needed.
1700 */
1701 p.max_inst = 32;
1702 p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1703 p.program->Base.String = NULL;
1704 p.program->Base.NumInstructions =
1705 p.program->Base.NumTemporaries =
1706 p.program->Base.NumParameters =
1707 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1708 p.program->Base.Parameters = _mesa_new_parameter_list();
1709 p.program->Base.InputsRead = 0;
1710 p.program->Base.OutputsWritten = 0;
1711
1712 build_tnl_program( &p );
1713 }
1714
1715
1716 /**
1717 * Return a vertex program which implements the current fixed-function
1718 * transform/lighting/texgen operations.
1719 * XXX move this into core mesa (main/)
1720 */
1721 struct gl_vertex_program *
1722 _mesa_get_fixed_func_vertex_program(GLcontext *ctx)
1723 {
1724 struct gl_vertex_program *prog;
1725 struct state_key key;
1726
1727 /* Grab all the relevent state and put it in a single structure:
1728 */
1729 make_state_key(ctx, &key);
1730
1731 /* Look for an already-prepared program for this state:
1732 */
1733 prog = (struct gl_vertex_program *)
1734 _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key));
1735
1736 if (!prog) {
1737 /* OK, we'll have to build a new one */
1738 if (0)
1739 _mesa_printf("Build new TNL program\n");
1740
1741 prog = (struct gl_vertex_program *)
1742 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1743 if (!prog)
1744 return NULL;
1745
1746 create_new_program( &key, prog,
1747 ctx->Const.VertexProgram.MaxTemps );
1748
1749 #if 0
1750 if (ctx->Driver.ProgramStringNotify)
1751 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1752 &prog->Base );
1753 #endif
1754 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1755 &key, sizeof(key), &prog->Base);
1756 }
1757
1758 return prog;
1759 }