Remove useless checks for NULL before freeing
[mesa.git] / src / mesa / main / hash.c
1 /**
2 * \file hash.c
3 * Generic hash table.
4 *
5 * Used for display lists, texture objects, vertex/fragment programs,
6 * buffer objects, etc. The hash functions are thread-safe.
7 *
8 * \note key=0 is illegal.
9 *
10 * \author Brian Paul
11 */
12
13 /*
14 * Mesa 3-D graphics library
15 *
16 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
17 *
18 * Permission is hereby granted, free of charge, to any person obtaining a
19 * copy of this software and associated documentation files (the "Software"),
20 * to deal in the Software without restriction, including without limitation
21 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
22 * and/or sell copies of the Software, and to permit persons to whom the
23 * Software is furnished to do so, subject to the following conditions:
24 *
25 * The above copyright notice and this permission notice shall be included
26 * in all copies or substantial portions of the Software.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
29 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
30 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
31 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
32 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
33 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
34 * OTHER DEALINGS IN THE SOFTWARE.
35 */
36
37 #include "glheader.h"
38 #include "imports.h"
39 #include "hash.h"
40 #include "util/hash_table.h"
41
42 /**
43 * Magic GLuint object name that gets stored outside of the struct hash_table.
44 *
45 * The hash table needs a particular pointer to be the marker for a key that
46 * was deleted from the table, along with NULL for the "never allocated in the
47 * table" marker. Legacy GL allows any GLuint to be used as a GL object name,
48 * and we use a 1:1 mapping from GLuints to key pointers, so we need to be
49 * able to track a GLuint that happens to match the deleted key outside of
50 * struct hash_table. We tell the hash table to use "1" as the deleted key
51 * value, so that we test the deleted-key-in-the-table path as best we can.
52 */
53 #define DELETED_KEY_VALUE 1
54
55 /**
56 * The hash table data structure.
57 */
58 struct _mesa_HashTable {
59 struct hash_table *ht;
60 GLuint MaxKey; /**< highest key inserted so far */
61 mtx_t Mutex; /**< mutual exclusion lock */
62 mtx_t WalkMutex; /**< for _mesa_HashWalk() */
63 GLboolean InDeleteAll; /**< Debug check */
64 /** Value that would be in the table for DELETED_KEY_VALUE. */
65 void *deleted_key_data;
66 };
67
68 /** @{
69 * Mapping from our use of GLuint as both the key and the hash value to the
70 * hash_table.h API
71 *
72 * There exist many integer hash functions, designed to avoid collisions when
73 * the integers are spread across key space with some patterns. In GL, the
74 * pattern (in the case of glGen*()ed object IDs) is that the keys are unique
75 * contiguous integers starting from 1. Because of that, we just use the key
76 * as the hash value, to minimize the cost of the hash function. If objects
77 * are never deleted, we will never see a collision in the table, because the
78 * table resizes itself when it approaches full, and thus key % table_size ==
79 * key.
80 *
81 * The case where we could have collisions for genned objects would be
82 * something like: glGenBuffers(&a, 100); glDeleteBuffers(&a + 50, 50);
83 * glGenBuffers(&b, 100), because objects 1-50 and 101-200 are allocated at
84 * the end of that sequence, instead of 1-150. So far it doesn't appear to be
85 * a problem.
86 */
87 static bool
88 uint_key_compare(const void *a, const void *b)
89 {
90 return a == b;
91 }
92
93 static uint32_t
94 uint_hash(GLuint id)
95 {
96 return id;
97 }
98
99 static void *
100 uint_key(GLuint id)
101 {
102 return (void *)(uintptr_t) id;
103 }
104 /** @} */
105
106 /**
107 * Create a new hash table.
108 *
109 * \return pointer to a new, empty hash table.
110 */
111 struct _mesa_HashTable *
112 _mesa_NewHashTable(void)
113 {
114 struct _mesa_HashTable *table = CALLOC_STRUCT(_mesa_HashTable);
115
116 if (table) {
117 table->ht = _mesa_hash_table_create(NULL, uint_key_compare);
118 if (table->ht == NULL) {
119 free(table);
120 _mesa_error_no_memory(__func__);
121 return NULL;
122 }
123
124 _mesa_hash_table_set_deleted_key(table->ht, uint_key(DELETED_KEY_VALUE));
125 mtx_init(&table->Mutex, mtx_plain);
126 mtx_init(&table->WalkMutex, mtx_plain);
127 }
128 else {
129 _mesa_error_no_memory(__func__);
130 }
131
132 return table;
133 }
134
135
136
137 /**
138 * Delete a hash table.
139 * Frees each entry on the hash table and then the hash table structure itself.
140 * Note that the caller should have already traversed the table and deleted
141 * the objects in the table (i.e. We don't free the entries' data pointer).
142 *
143 * \param table the hash table to delete.
144 */
145 void
146 _mesa_DeleteHashTable(struct _mesa_HashTable *table)
147 {
148 assert(table);
149
150 if (_mesa_hash_table_next_entry(table->ht, NULL) != NULL) {
151 _mesa_problem(NULL, "In _mesa_DeleteHashTable, found non-freed data");
152 }
153
154 _mesa_hash_table_destroy(table->ht, NULL);
155
156 mtx_destroy(&table->Mutex);
157 mtx_destroy(&table->WalkMutex);
158 free(table);
159 }
160
161
162
163 /**
164 * Lookup an entry in the hash table, without locking.
165 * \sa _mesa_HashLookup
166 */
167 static inline void *
168 _mesa_HashLookup_unlocked(struct _mesa_HashTable *table, GLuint key)
169 {
170 const struct hash_entry *entry;
171
172 assert(table);
173 assert(key);
174
175 if (key == DELETED_KEY_VALUE)
176 return table->deleted_key_data;
177
178 entry = _mesa_hash_table_search(table->ht, uint_hash(key), uint_key(key));
179 if (!entry)
180 return NULL;
181
182 return entry->data;
183 }
184
185
186 /**
187 * Lookup an entry in the hash table.
188 *
189 * \param table the hash table.
190 * \param key the key.
191 *
192 * \return pointer to user's data or NULL if key not in table
193 */
194 void *
195 _mesa_HashLookup(struct _mesa_HashTable *table, GLuint key)
196 {
197 void *res;
198 assert(table);
199 mtx_lock(&table->Mutex);
200 res = _mesa_HashLookup_unlocked(table, key);
201 mtx_unlock(&table->Mutex);
202 return res;
203 }
204
205
206 /**
207 * Lookup an entry in the hash table without locking the mutex.
208 *
209 * The hash table mutex must be locked manually by calling
210 * _mesa_HashLockMutex() before calling this function.
211 *
212 * \param table the hash table.
213 * \param key the key.
214 *
215 * \return pointer to user's data or NULL if key not in table
216 */
217 void *
218 _mesa_HashLookupLocked(struct _mesa_HashTable *table, GLuint key)
219 {
220 return _mesa_HashLookup_unlocked(table, key);
221 }
222
223
224 /**
225 * Lock the hash table mutex.
226 *
227 * This function should be used when multiple objects need
228 * to be looked up in the hash table, to avoid having to lock
229 * and unlock the mutex each time.
230 *
231 * \param table the hash table.
232 */
233 void
234 _mesa_HashLockMutex(struct _mesa_HashTable *table)
235 {
236 assert(table);
237 mtx_lock(&table->Mutex);
238 }
239
240
241 /**
242 * Unlock the hash table mutex.
243 *
244 * \param table the hash table.
245 */
246 void
247 _mesa_HashUnlockMutex(struct _mesa_HashTable *table)
248 {
249 assert(table);
250 mtx_unlock(&table->Mutex);
251 }
252
253
254 static inline void
255 _mesa_HashInsert_unlocked(struct _mesa_HashTable *table, GLuint key, void *data)
256 {
257 uint32_t hash = uint_hash(key);
258 struct hash_entry *entry;
259
260 assert(table);
261 assert(key);
262
263 if (key > table->MaxKey)
264 table->MaxKey = key;
265
266 if (key == DELETED_KEY_VALUE) {
267 table->deleted_key_data = data;
268 } else {
269 entry = _mesa_hash_table_search(table->ht, hash, uint_key(key));
270 if (entry) {
271 entry->data = data;
272 } else {
273 _mesa_hash_table_insert(table->ht, hash, uint_key(key), data);
274 }
275 }
276 }
277
278
279 /**
280 * Insert a key/pointer pair into the hash table without locking the mutex.
281 * If an entry with this key already exists we'll replace the existing entry.
282 *
283 * The hash table mutex must be locked manually by calling
284 * _mesa_HashLockMutex() before calling this function.
285 *
286 * \param table the hash table.
287 * \param key the key (not zero).
288 * \param data pointer to user data.
289 */
290 void
291 _mesa_HashInsertLocked(struct _mesa_HashTable *table, GLuint key, void *data)
292 {
293 _mesa_HashInsert_unlocked(table, key, data);
294 }
295
296
297 /**
298 * Insert a key/pointer pair into the hash table.
299 * If an entry with this key already exists we'll replace the existing entry.
300 *
301 * \param table the hash table.
302 * \param key the key (not zero).
303 * \param data pointer to user data.
304 */
305 void
306 _mesa_HashInsert(struct _mesa_HashTable *table, GLuint key, void *data)
307 {
308 assert(table);
309 mtx_lock(&table->Mutex);
310 _mesa_HashInsert_unlocked(table, key, data);
311 mtx_unlock(&table->Mutex);
312 }
313
314
315 /**
316 * Remove an entry from the hash table.
317 *
318 * \param table the hash table.
319 * \param key key of entry to remove.
320 *
321 * While holding the hash table's lock, searches the entry with the matching
322 * key and unlinks it.
323 */
324 void
325 _mesa_HashRemove(struct _mesa_HashTable *table, GLuint key)
326 {
327 struct hash_entry *entry;
328
329 assert(table);
330 assert(key);
331
332 /* have to check this outside of mutex lock */
333 if (table->InDeleteAll) {
334 _mesa_problem(NULL, "_mesa_HashRemove illegally called from "
335 "_mesa_HashDeleteAll callback function");
336 return;
337 }
338
339 mtx_lock(&table->Mutex);
340 if (key == DELETED_KEY_VALUE) {
341 table->deleted_key_data = NULL;
342 } else {
343 entry = _mesa_hash_table_search(table->ht, uint_hash(key), uint_key(key));
344 _mesa_hash_table_remove(table->ht, entry);
345 }
346 mtx_unlock(&table->Mutex);
347 }
348
349
350
351 /**
352 * Delete all entries in a hash table, but don't delete the table itself.
353 * Invoke the given callback function for each table entry.
354 *
355 * \param table the hash table to delete
356 * \param callback the callback function
357 * \param userData arbitrary pointer to pass along to the callback
358 * (this is typically a struct gl_context pointer)
359 */
360 void
361 _mesa_HashDeleteAll(struct _mesa_HashTable *table,
362 void (*callback)(GLuint key, void *data, void *userData),
363 void *userData)
364 {
365 struct hash_entry *entry;
366
367 ASSERT(table);
368 ASSERT(callback);
369 mtx_lock(&table->Mutex);
370 table->InDeleteAll = GL_TRUE;
371 hash_table_foreach(table->ht, entry) {
372 callback((uintptr_t)entry->key, entry->data, userData);
373 _mesa_hash_table_remove(table->ht, entry);
374 }
375 if (table->deleted_key_data) {
376 callback(DELETED_KEY_VALUE, table->deleted_key_data, userData);
377 table->deleted_key_data = NULL;
378 }
379 table->InDeleteAll = GL_FALSE;
380 mtx_unlock(&table->Mutex);
381 }
382
383
384 /**
385 * Clone all entries in a hash table, into a new table.
386 *
387 * \param table the hash table to clone
388 */
389 struct _mesa_HashTable *
390 _mesa_HashClone(const struct _mesa_HashTable *table)
391 {
392 /* cast-away const */
393 struct _mesa_HashTable *table2 = (struct _mesa_HashTable *) table;
394 struct hash_entry *entry;
395 struct _mesa_HashTable *clonetable;
396
397 ASSERT(table);
398 mtx_lock(&table2->Mutex);
399
400 clonetable = _mesa_NewHashTable();
401 assert(clonetable);
402 hash_table_foreach(table->ht, entry) {
403 _mesa_HashInsert(clonetable, (GLint)(uintptr_t)entry->key, entry->data);
404 }
405
406 mtx_unlock(&table2->Mutex);
407
408 return clonetable;
409 }
410
411
412 /**
413 * Walk over all entries in a hash table, calling callback function for each.
414 * Note: we use a separate mutex in this function to avoid a recursive
415 * locking deadlock (in case the callback calls _mesa_HashRemove()) and to
416 * prevent multiple threads/contexts from getting tangled up.
417 * A lock-less version of this function could be used when the table will
418 * not be modified.
419 * \param table the hash table to walk
420 * \param callback the callback function
421 * \param userData arbitrary pointer to pass along to the callback
422 * (this is typically a struct gl_context pointer)
423 */
424 void
425 _mesa_HashWalk(const struct _mesa_HashTable *table,
426 void (*callback)(GLuint key, void *data, void *userData),
427 void *userData)
428 {
429 /* cast-away const */
430 struct _mesa_HashTable *table2 = (struct _mesa_HashTable *) table;
431 struct hash_entry *entry;
432
433 ASSERT(table);
434 ASSERT(callback);
435 mtx_lock(&table2->WalkMutex);
436 hash_table_foreach(table->ht, entry) {
437 callback((uintptr_t)entry->key, entry->data, userData);
438 }
439 if (table->deleted_key_data)
440 callback(DELETED_KEY_VALUE, table->deleted_key_data, userData);
441 mtx_unlock(&table2->WalkMutex);
442 }
443
444 static void
445 debug_print_entry(GLuint key, void *data, void *userData)
446 {
447 _mesa_debug(NULL, "%u %p\n", key, data);
448 }
449
450 /**
451 * Dump contents of hash table for debugging.
452 *
453 * \param table the hash table.
454 */
455 void
456 _mesa_HashPrint(const struct _mesa_HashTable *table)
457 {
458 if (table->deleted_key_data)
459 debug_print_entry(DELETED_KEY_VALUE, table->deleted_key_data, NULL);
460 _mesa_HashWalk(table, debug_print_entry, NULL);
461 }
462
463
464 /**
465 * Find a block of adjacent unused hash keys.
466 *
467 * \param table the hash table.
468 * \param numKeys number of keys needed.
469 *
470 * \return Starting key of free block or 0 if failure.
471 *
472 * If there are enough free keys between the maximum key existing in the table
473 * (_mesa_HashTable::MaxKey) and the maximum key possible, then simply return
474 * the adjacent key. Otherwise do a full search for a free key block in the
475 * allowable key range.
476 */
477 GLuint
478 _mesa_HashFindFreeKeyBlock(struct _mesa_HashTable *table, GLuint numKeys)
479 {
480 const GLuint maxKey = ~((GLuint) 0) - 1;
481 mtx_lock(&table->Mutex);
482 if (maxKey - numKeys > table->MaxKey) {
483 /* the quick solution */
484 mtx_unlock(&table->Mutex);
485 return table->MaxKey + 1;
486 }
487 else {
488 /* the slow solution */
489 GLuint freeCount = 0;
490 GLuint freeStart = 1;
491 GLuint key;
492 for (key = 1; key != maxKey; key++) {
493 if (_mesa_HashLookup_unlocked(table, key)) {
494 /* darn, this key is already in use */
495 freeCount = 0;
496 freeStart = key+1;
497 }
498 else {
499 /* this key not in use, check if we've found enough */
500 freeCount++;
501 if (freeCount == numKeys) {
502 mtx_unlock(&table->Mutex);
503 return freeStart;
504 }
505 }
506 }
507 /* cannot allocate a block of numKeys consecutive keys */
508 mtx_unlock(&table->Mutex);
509 return 0;
510 }
511 }
512
513
514 /**
515 * Return the number of entries in the hash table.
516 */
517 GLuint
518 _mesa_HashNumEntries(const struct _mesa_HashTable *table)
519 {
520 struct hash_entry *entry;
521 GLuint count = 0;
522
523 if (table->deleted_key_data)
524 count++;
525
526 hash_table_foreach(table->ht, entry)
527 count++;
528
529 return count;
530 }