2d592a68ecb81cd28156d9c0b1e7cc9d2c4797ec
[mesa.git] / src / mesa / main / imports.c
1 /**
2 * \file imports.c
3 * Standard C library function wrappers.
4 *
5 * Imports are services which the device driver or window system or
6 * operating system provides to the core renderer. The core renderer (Mesa)
7 * will call these functions in order to do memory allocation, simple I/O,
8 * etc.
9 *
10 * Some drivers will want to override/replace this file with something
11 * specialized, but that'll be rare.
12 *
13 * Eventually, I want to move roll the glheader.h file into this.
14 *
15 * \todo Functions still needed:
16 * - scanf
17 * - qsort
18 * - rand and RAND_MAX
19 */
20
21 /*
22 * Mesa 3-D graphics library
23 * Version: 7.1
24 *
25 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
26 *
27 * Permission is hereby granted, free of charge, to any person obtaining a
28 * copy of this software and associated documentation files (the "Software"),
29 * to deal in the Software without restriction, including without limitation
30 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
31 * and/or sell copies of the Software, and to permit persons to whom the
32 * Software is furnished to do so, subject to the following conditions:
33 *
34 * The above copyright notice and this permission notice shall be included
35 * in all copies or substantial portions of the Software.
36 *
37 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
38 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
39 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
40 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
41 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
42 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
43 */
44
45
46
47 #include "imports.h"
48 #include "context.h"
49 #include "mtypes.h"
50 #include "version.h"
51
52 #ifdef _GNU_SOURCE
53 #include <locale.h>
54 #ifdef __APPLE__
55 #include <xlocale.h>
56 #endif
57 #endif
58
59
60 #ifdef WIN32
61 #define vsnprintf _vsnprintf
62 #elif defined(__IBMC__) || defined(__IBMCPP__) || ( defined(__VMS) && __CRTL_VER < 70312000 )
63 extern int vsnprintf(char *str, size_t count, const char *fmt, va_list arg);
64 #ifdef __VMS
65 #include "vsnprintf.c"
66 #endif
67 #endif
68
69 /**********************************************************************/
70 /** \name Memory */
71 /*@{*/
72
73 /**
74 * Allocate aligned memory.
75 *
76 * \param bytes number of bytes to allocate.
77 * \param alignment alignment (must be greater than zero).
78 *
79 * Allocates extra memory to accommodate rounding up the address for
80 * alignment and to record the real malloc address.
81 *
82 * \sa _mesa_align_free().
83 */
84 void *
85 _mesa_align_malloc(size_t bytes, unsigned long alignment)
86 {
87 #if defined(HAVE_POSIX_MEMALIGN)
88 void *mem;
89 int err = posix_memalign(& mem, alignment, bytes);
90 if (err)
91 return NULL;
92 return mem;
93 #elif defined(_WIN32) && defined(_MSC_VER)
94 return _aligned_malloc(bytes, alignment);
95 #else
96 uintptr_t ptr, buf;
97
98 ASSERT( alignment > 0 );
99
100 ptr = (uintptr_t) malloc(bytes + alignment + sizeof(void *));
101 if (!ptr)
102 return NULL;
103
104 buf = (ptr + alignment + sizeof(void *)) & ~(uintptr_t)(alignment - 1);
105 *(uintptr_t *)(buf - sizeof(void *)) = ptr;
106
107 #ifdef DEBUG
108 /* mark the non-aligned area */
109 while ( ptr < buf - sizeof(void *) ) {
110 *(unsigned long *)ptr = 0xcdcdcdcd;
111 ptr += sizeof(unsigned long);
112 }
113 #endif
114
115 return (void *) buf;
116 #endif /* defined(HAVE_POSIX_MEMALIGN) */
117 }
118
119 /**
120 * Same as _mesa_align_malloc(), but using calloc(1, ) instead of
121 * malloc()
122 */
123 void *
124 _mesa_align_calloc(size_t bytes, unsigned long alignment)
125 {
126 #if defined(HAVE_POSIX_MEMALIGN)
127 void *mem;
128
129 mem = _mesa_align_malloc(bytes, alignment);
130 if (mem != NULL) {
131 (void) memset(mem, 0, bytes);
132 }
133
134 return mem;
135 #elif defined(_WIN32) && defined(_MSC_VER)
136 void *mem;
137
138 mem = _aligned_malloc(bytes, alignment);
139 if (mem != NULL) {
140 (void) memset(mem, 0, bytes);
141 }
142
143 return mem;
144 #else
145 uintptr_t ptr, buf;
146
147 ASSERT( alignment > 0 );
148
149 ptr = (uintptr_t) calloc(1, bytes + alignment + sizeof(void *));
150 if (!ptr)
151 return NULL;
152
153 buf = (ptr + alignment + sizeof(void *)) & ~(uintptr_t)(alignment - 1);
154 *(uintptr_t *)(buf - sizeof(void *)) = ptr;
155
156 #ifdef DEBUG
157 /* mark the non-aligned area */
158 while ( ptr < buf - sizeof(void *) ) {
159 *(unsigned long *)ptr = 0xcdcdcdcd;
160 ptr += sizeof(unsigned long);
161 }
162 #endif
163
164 return (void *)buf;
165 #endif /* defined(HAVE_POSIX_MEMALIGN) */
166 }
167
168 /**
169 * Free memory which was allocated with either _mesa_align_malloc()
170 * or _mesa_align_calloc().
171 * \param ptr pointer to the memory to be freed.
172 * The actual address to free is stored in the word immediately before the
173 * address the client sees.
174 */
175 void
176 _mesa_align_free(void *ptr)
177 {
178 #if defined(HAVE_POSIX_MEMALIGN)
179 free(ptr);
180 #elif defined(_WIN32) && defined(_MSC_VER)
181 _aligned_free(ptr);
182 #else
183 void **cubbyHole = (void **) ((char *) ptr - sizeof(void *));
184 void *realAddr = *cubbyHole;
185 free(realAddr);
186 #endif /* defined(HAVE_POSIX_MEMALIGN) */
187 }
188
189 /**
190 * Reallocate memory, with alignment.
191 */
192 void *
193 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
194 unsigned long alignment)
195 {
196 #if defined(_WIN32) && defined(_MSC_VER)
197 (void) oldSize;
198 return _aligned_realloc(oldBuffer, newSize, alignment);
199 #else
200 const size_t copySize = (oldSize < newSize) ? oldSize : newSize;
201 void *newBuf = _mesa_align_malloc(newSize, alignment);
202 if (newBuf && oldBuffer && copySize > 0) {
203 memcpy(newBuf, oldBuffer, copySize);
204 }
205 if (oldBuffer)
206 _mesa_align_free(oldBuffer);
207 return newBuf;
208 #endif
209 }
210
211
212
213 /** Reallocate memory */
214 void *
215 _mesa_realloc(void *oldBuffer, size_t oldSize, size_t newSize)
216 {
217 const size_t copySize = (oldSize < newSize) ? oldSize : newSize;
218 void *newBuffer = malloc(newSize);
219 if (newBuffer && oldBuffer && copySize > 0)
220 memcpy(newBuffer, oldBuffer, copySize);
221 if (oldBuffer)
222 free(oldBuffer);
223 return newBuffer;
224 }
225
226 /**
227 * Fill memory with a constant 16bit word.
228 * \param dst destination pointer.
229 * \param val value.
230 * \param n number of words.
231 */
232 void
233 _mesa_memset16( unsigned short *dst, unsigned short val, size_t n )
234 {
235 while (n-- > 0)
236 *dst++ = val;
237 }
238
239 /*@}*/
240
241
242 /**********************************************************************/
243 /** \name Math */
244 /*@{*/
245
246 /** Wrapper around sqrt() */
247 double
248 _mesa_sqrtd(double x)
249 {
250 return sqrt(x);
251 }
252
253
254 /*
255 * A High Speed, Low Precision Square Root
256 * by Paul Lalonde and Robert Dawson
257 * from "Graphics Gems", Academic Press, 1990
258 *
259 * SPARC implementation of a fast square root by table
260 * lookup.
261 * SPARC floating point format is as follows:
262 *
263 * BIT 31 30 23 22 0
264 * sign exponent mantissa
265 */
266 static short sqrttab[0x100]; /* declare table of square roots */
267
268 void
269 _mesa_init_sqrt_table(void)
270 {
271 #if defined(USE_IEEE) && !defined(DEBUG)
272 unsigned short i;
273 fi_type fi; /* to access the bits of a float in C quickly */
274 /* we use a union defined in glheader.h */
275
276 for(i=0; i<= 0x7f; i++) {
277 fi.i = 0;
278
279 /*
280 * Build a float with the bit pattern i as mantissa
281 * and an exponent of 0, stored as 127
282 */
283
284 fi.i = (i << 16) | (127 << 23);
285 fi.f = _mesa_sqrtd(fi.f);
286
287 /*
288 * Take the square root then strip the first 7 bits of
289 * the mantissa into the table
290 */
291
292 sqrttab[i] = (fi.i & 0x7fffff) >> 16;
293
294 /*
295 * Repeat the process, this time with an exponent of
296 * 1, stored as 128
297 */
298
299 fi.i = 0;
300 fi.i = (i << 16) | (128 << 23);
301 fi.f = sqrt(fi.f);
302 sqrttab[i+0x80] = (fi.i & 0x7fffff) >> 16;
303 }
304 #else
305 (void) sqrttab; /* silence compiler warnings */
306 #endif /*HAVE_FAST_MATH*/
307 }
308
309
310 /**
311 * Single precision square root.
312 */
313 float
314 _mesa_sqrtf( float x )
315 {
316 #if defined(USE_IEEE) && !defined(DEBUG)
317 fi_type num;
318 /* to access the bits of a float in C
319 * we use a union from glheader.h */
320
321 short e; /* the exponent */
322 if (x == 0.0F) return 0.0F; /* check for square root of 0 */
323 num.f = x;
324 e = (num.i >> 23) - 127; /* get the exponent - on a SPARC the */
325 /* exponent is stored with 127 added */
326 num.i &= 0x7fffff; /* leave only the mantissa */
327 if (e & 0x01) num.i |= 0x800000;
328 /* the exponent is odd so we have to */
329 /* look it up in the second half of */
330 /* the lookup table, so we set the */
331 /* high bit */
332 e >>= 1; /* divide the exponent by two */
333 /* note that in C the shift */
334 /* operators are sign preserving */
335 /* for signed operands */
336 /* Do the table lookup, based on the quaternary mantissa,
337 * then reconstruct the result back into a float
338 */
339 num.i = ((sqrttab[num.i >> 16]) << 16) | ((e + 127) << 23);
340
341 return num.f;
342 #else
343 return (float) _mesa_sqrtd((double) x);
344 #endif
345 }
346
347
348 /**
349 inv_sqrt - A single precision 1/sqrt routine for IEEE format floats.
350 written by Josh Vanderhoof, based on newsgroup posts by James Van Buskirk
351 and Vesa Karvonen.
352 */
353 float
354 _mesa_inv_sqrtf(float n)
355 {
356 #if defined(USE_IEEE) && !defined(DEBUG)
357 float r0, x0, y0;
358 float r1, x1, y1;
359 float r2, x2, y2;
360 #if 0 /* not used, see below -BP */
361 float r3, x3, y3;
362 #endif
363 fi_type u;
364 unsigned int magic;
365
366 /*
367 Exponent part of the magic number -
368
369 We want to:
370 1. subtract the bias from the exponent,
371 2. negate it
372 3. divide by two (rounding towards -inf)
373 4. add the bias back
374
375 Which is the same as subtracting the exponent from 381 and dividing
376 by 2.
377
378 floor(-(x - 127) / 2) + 127 = floor((381 - x) / 2)
379 */
380
381 magic = 381 << 23;
382
383 /*
384 Significand part of magic number -
385
386 With the current magic number, "(magic - u.i) >> 1" will give you:
387
388 for 1 <= u.f <= 2: 1.25 - u.f / 4
389 for 2 <= u.f <= 4: 1.00 - u.f / 8
390
391 This isn't a bad approximation of 1/sqrt. The maximum difference from
392 1/sqrt will be around .06. After three Newton-Raphson iterations, the
393 maximum difference is less than 4.5e-8. (Which is actually close
394 enough to make the following bias academic...)
395
396 To get a better approximation you can add a bias to the magic
397 number. For example, if you subtract 1/2 of the maximum difference in
398 the first approximation (.03), you will get the following function:
399
400 for 1 <= u.f <= 2: 1.22 - u.f / 4
401 for 2 <= u.f <= 3.76: 0.97 - u.f / 8
402 for 3.76 <= u.f <= 4: 0.72 - u.f / 16
403 (The 3.76 to 4 range is where the result is < .5.)
404
405 This is the closest possible initial approximation, but with a maximum
406 error of 8e-11 after three NR iterations, it is still not perfect. If
407 you subtract 0.0332281 instead of .03, the maximum error will be
408 2.5e-11 after three NR iterations, which should be about as close as
409 is possible.
410
411 for 1 <= u.f <= 2: 1.2167719 - u.f / 4
412 for 2 <= u.f <= 3.73: 0.9667719 - u.f / 8
413 for 3.73 <= u.f <= 4: 0.7167719 - u.f / 16
414
415 */
416
417 magic -= (int)(0.0332281 * (1 << 25));
418
419 u.f = n;
420 u.i = (magic - u.i) >> 1;
421
422 /*
423 Instead of Newton-Raphson, we use Goldschmidt's algorithm, which
424 allows more parallelism. From what I understand, the parallelism
425 comes at the cost of less precision, because it lets error
426 accumulate across iterations.
427 */
428 x0 = 1.0f;
429 y0 = 0.5f * n;
430 r0 = u.f;
431
432 x1 = x0 * r0;
433 y1 = y0 * r0 * r0;
434 r1 = 1.5f - y1;
435
436 x2 = x1 * r1;
437 y2 = y1 * r1 * r1;
438 r2 = 1.5f - y2;
439
440 #if 1
441 return x2 * r2; /* we can stop here, and be conformant -BP */
442 #else
443 x3 = x2 * r2;
444 y3 = y2 * r2 * r2;
445 r3 = 1.5f - y3;
446
447 return x3 * r3;
448 #endif
449 #else
450 return (float) (1.0 / sqrt(n));
451 #endif
452 }
453
454 #ifndef __GNUC__
455 /**
456 * Find the first bit set in a word.
457 */
458 int
459 ffs(int i)
460 {
461 register int bit = 0;
462 if (i != 0) {
463 if ((i & 0xffff) == 0) {
464 bit += 16;
465 i >>= 16;
466 }
467 if ((i & 0xff) == 0) {
468 bit += 8;
469 i >>= 8;
470 }
471 if ((i & 0xf) == 0) {
472 bit += 4;
473 i >>= 4;
474 }
475 while ((i & 1) == 0) {
476 bit++;
477 i >>= 1;
478 }
479 bit++;
480 }
481 return bit;
482 }
483
484
485 /**
486 * Find position of first bit set in given value.
487 * XXX Warning: this function can only be used on 64-bit systems!
488 * \return position of least-significant bit set, starting at 1, return zero
489 * if no bits set.
490 */
491 int
492 ffsll(long long int val)
493 {
494 int bit;
495
496 assert(sizeof(val) == 8);
497
498 bit = ffs((int) val);
499 if (bit != 0)
500 return bit;
501
502 bit = ffs((int) (val >> 32));
503 if (bit != 0)
504 return 32 + bit;
505
506 return 0;
507 }
508 #endif /* __GNUC__ */
509
510
511 #if !defined(__GNUC__) ||\
512 ((__GNUC__ * 100 + __GNUC_MINOR__) < 304) /* Not gcc 3.4 or later */
513 /**
514 * Return number of bits set in given GLuint.
515 */
516 unsigned int
517 _mesa_bitcount(unsigned int n)
518 {
519 unsigned int bits;
520 for (bits = 0; n > 0; n = n >> 1) {
521 bits += (n & 1);
522 }
523 return bits;
524 }
525
526 /**
527 * Return number of bits set in given 64-bit uint.
528 */
529 unsigned int
530 _mesa_bitcount_64(uint64_t n)
531 {
532 unsigned int bits;
533 for (bits = 0; n > 0; n = n >> 1) {
534 bits += (n & 1);
535 }
536 return bits;
537 }
538 #endif
539
540
541 /**
542 * Convert a 4-byte float to a 2-byte half float.
543 * Based on code from:
544 * http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html
545 */
546 GLhalfARB
547 _mesa_float_to_half(float val)
548 {
549 const fi_type fi = {val};
550 const int flt_m = fi.i & 0x7fffff;
551 const int flt_e = (fi.i >> 23) & 0xff;
552 const int flt_s = (fi.i >> 31) & 0x1;
553 int s, e, m = 0;
554 GLhalfARB result;
555
556 /* sign bit */
557 s = flt_s;
558
559 /* handle special cases */
560 if ((flt_e == 0) && (flt_m == 0)) {
561 /* zero */
562 /* m = 0; - already set */
563 e = 0;
564 }
565 else if ((flt_e == 0) && (flt_m != 0)) {
566 /* denorm -- denorm float maps to 0 half */
567 /* m = 0; - already set */
568 e = 0;
569 }
570 else if ((flt_e == 0xff) && (flt_m == 0)) {
571 /* infinity */
572 /* m = 0; - already set */
573 e = 31;
574 }
575 else if ((flt_e == 0xff) && (flt_m != 0)) {
576 /* NaN */
577 m = 1;
578 e = 31;
579 }
580 else {
581 /* regular number */
582 const int new_exp = flt_e - 127;
583 if (new_exp < -24) {
584 /* this maps to 0 */
585 /* m = 0; - already set */
586 e = 0;
587 }
588 else if (new_exp < -14) {
589 /* this maps to a denorm */
590 unsigned int exp_val = (unsigned int) (-14 - new_exp); /* 2^-exp_val*/
591 e = 0;
592 switch (exp_val) {
593 case 0:
594 _mesa_warning(NULL,
595 "float_to_half: logical error in denorm creation!\n");
596 /* m = 0; - already set */
597 break;
598 case 1: m = 512 + (flt_m >> 14); break;
599 case 2: m = 256 + (flt_m >> 15); break;
600 case 3: m = 128 + (flt_m >> 16); break;
601 case 4: m = 64 + (flt_m >> 17); break;
602 case 5: m = 32 + (flt_m >> 18); break;
603 case 6: m = 16 + (flt_m >> 19); break;
604 case 7: m = 8 + (flt_m >> 20); break;
605 case 8: m = 4 + (flt_m >> 21); break;
606 case 9: m = 2 + (flt_m >> 22); break;
607 case 10: m = 1; break;
608 }
609 }
610 else if (new_exp > 15) {
611 /* map this value to infinity */
612 /* m = 0; - already set */
613 e = 31;
614 }
615 else {
616 /* regular */
617 e = new_exp + 15;
618 m = flt_m >> 13;
619 }
620 }
621
622 result = (s << 15) | (e << 10) | m;
623 return result;
624 }
625
626
627 /**
628 * Convert a 2-byte half float to a 4-byte float.
629 * Based on code from:
630 * http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html
631 */
632 float
633 _mesa_half_to_float(GLhalfARB val)
634 {
635 /* XXX could also use a 64K-entry lookup table */
636 const int m = val & 0x3ff;
637 const int e = (val >> 10) & 0x1f;
638 const int s = (val >> 15) & 0x1;
639 int flt_m, flt_e, flt_s;
640 fi_type fi;
641 float result;
642
643 /* sign bit */
644 flt_s = s;
645
646 /* handle special cases */
647 if ((e == 0) && (m == 0)) {
648 /* zero */
649 flt_m = 0;
650 flt_e = 0;
651 }
652 else if ((e == 0) && (m != 0)) {
653 /* denorm -- denorm half will fit in non-denorm single */
654 const float half_denorm = 1.0f / 16384.0f; /* 2^-14 */
655 float mantissa = ((float) (m)) / 1024.0f;
656 float sign = s ? -1.0f : 1.0f;
657 return sign * mantissa * half_denorm;
658 }
659 else if ((e == 31) && (m == 0)) {
660 /* infinity */
661 flt_e = 0xff;
662 flt_m = 0;
663 }
664 else if ((e == 31) && (m != 0)) {
665 /* NaN */
666 flt_e = 0xff;
667 flt_m = 1;
668 }
669 else {
670 /* regular */
671 flt_e = e + 112;
672 flt_m = m << 13;
673 }
674
675 fi.i = (flt_s << 31) | (flt_e << 23) | flt_m;
676 result = fi.f;
677 return result;
678 }
679
680 /*@}*/
681
682
683 /**********************************************************************/
684 /** \name Sort & Search */
685 /*@{*/
686
687 /**
688 * Wrapper for bsearch().
689 */
690 void *
691 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
692 int (*compar)(const void *, const void *) )
693 {
694 #if defined(_WIN32_WCE)
695 void *mid;
696 int cmp;
697 while (nmemb) {
698 nmemb >>= 1;
699 mid = (char *)base + nmemb * size;
700 cmp = (*compar)(key, mid);
701 if (cmp == 0)
702 return mid;
703 if (cmp > 0) {
704 base = (char *)mid + size;
705 --nmemb;
706 }
707 }
708 return NULL;
709 #else
710 return bsearch(key, base, nmemb, size, compar);
711 #endif
712 }
713
714 /*@}*/
715
716
717 /**********************************************************************/
718 /** \name Environment vars */
719 /*@{*/
720
721 /**
722 * Wrapper for getenv().
723 */
724 char *
725 _mesa_getenv( const char *var )
726 {
727 #if defined(_XBOX) || defined(_WIN32_WCE)
728 return NULL;
729 #else
730 return getenv(var);
731 #endif
732 }
733
734 /*@}*/
735
736
737 /**********************************************************************/
738 /** \name String */
739 /*@{*/
740
741 /**
742 * Implemented using malloc() and strcpy.
743 * Note that NULL is handled accordingly.
744 */
745 char *
746 _mesa_strdup( const char *s )
747 {
748 if (s) {
749 size_t l = strlen(s);
750 char *s2 = (char *) malloc(l + 1);
751 if (s2)
752 strcpy(s2, s);
753 return s2;
754 }
755 else {
756 return NULL;
757 }
758 }
759
760 /** Wrapper around strtof() */
761 float
762 _mesa_strtof( const char *s, char **end )
763 {
764 #if defined(_GNU_SOURCE) && !defined(__CYGWIN__) && !defined(__FreeBSD__) && \
765 !defined(ANDROID) && !defined(__HAIKU__)
766 static locale_t loc = NULL;
767 if (!loc) {
768 loc = newlocale(LC_CTYPE_MASK, "C", NULL);
769 }
770 return strtof_l(s, end, loc);
771 #elif defined(_ISOC99_SOURCE) || (defined(_XOPEN_SOURCE) && _XOPEN_SOURCE >= 600)
772 return strtof(s, end);
773 #else
774 return (float)strtod(s, end);
775 #endif
776 }
777
778 /** Compute simple checksum/hash for a string */
779 unsigned int
780 _mesa_str_checksum(const char *str)
781 {
782 /* This could probably be much better */
783 unsigned int sum, i;
784 const char *c;
785 sum = i = 1;
786 for (c = str; *c; c++, i++)
787 sum += *c * (i % 100);
788 return sum + i;
789 }
790
791
792 /*@}*/
793
794
795 /** Needed due to #ifdef's, above. */
796 int
797 _mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list args)
798 {
799 return vsnprintf( str, size, fmt, args);
800 }
801
802 /** Wrapper around vsnprintf() */
803 int
804 _mesa_snprintf( char *str, size_t size, const char *fmt, ... )
805 {
806 int r;
807 va_list args;
808 va_start( args, fmt );
809 r = vsnprintf( str, size, fmt, args );
810 va_end( args );
811 return r;
812 }
813
814