Remove _mesa_strcpy in favor of plain strcpy.
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include "compiler.h"
40 #include "glheader.h"
41
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES) _mesa_malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES) _mesa_calloc(BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T) (struct T *) _mesa_malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T) (struct T *) _mesa_calloc(sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR) _mesa_free(PTR)
62
63 /** Allocate \p BYTES aligned at \p N bytes */
64 #define ALIGN_MALLOC(BYTES, N) _mesa_align_malloc(BYTES, N)
65 /** Allocate and zero \p BYTES bytes aligned at \p N bytes */
66 #define ALIGN_CALLOC(BYTES, N) _mesa_align_calloc(BYTES, N)
67 /** Allocate a structure of type \p T aligned at \p N bytes */
68 #define ALIGN_MALLOC_STRUCT(T, N) (struct T *) _mesa_align_malloc(sizeof(struct T), N)
69 /** Allocate and zero a structure of type \p T aligned at \p N bytes */
70 #define ALIGN_CALLOC_STRUCT(T, N) (struct T *) _mesa_align_calloc(sizeof(struct T), N)
71 /** Free aligned memory */
72 #define ALIGN_FREE(PTR) _mesa_align_free(PTR)
73
74 /** Copy \p BYTES bytes from \p SRC into \p DST */
75 #define MEMCPY( DST, SRC, BYTES) _mesa_memcpy(DST, SRC, BYTES)
76 /** Set \p N bytes in \p DST to \p VAL */
77 #define MEMSET( DST, VAL, N ) _mesa_memset(DST, VAL, N)
78
79 /*@}*/
80
81
82 /*
83 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
84 * as offsets into buffer stores. Since the vertex array pointer and
85 * buffer store pointer are both pointers and we need to add them, we use
86 * this macro.
87 * Both pointers/offsets are expressed in bytes.
88 */
89 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
90
91
92 /**
93 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
94 * as a int (thereby using integer registers instead of FP registers) is
95 * a performance win. Typically, this can be done with ordinary casts.
96 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
97 * these casts generate warnings.
98 * The following union typedef is used to solve that.
99 */
100 typedef union { GLfloat f; GLint i; } fi_type;
101
102
103
104 /**********************************************************************
105 * Math macros
106 */
107
108 #define MAX_GLUSHORT 0xffff
109 #define MAX_GLUINT 0xffffffff
110
111 /* Degrees to radians conversion: */
112 #define DEG2RAD (M_PI/180.0)
113
114
115 /***
116 *** SQRTF: single-precision square root
117 ***/
118 #if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
119 # define SQRTF(X) _mesa_sqrtf(X)
120 #else
121 # define SQRTF(X) (float) sqrt((float) (X))
122 #endif
123
124
125 /***
126 *** INV_SQRTF: single-precision inverse square root
127 ***/
128 #if 0
129 #define INV_SQRTF(X) _mesa_inv_sqrt(X)
130 #else
131 #define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
132 #endif
133
134
135 /***
136 *** LOG2: Log base 2 of float
137 ***/
138 #ifdef USE_IEEE
139 #if 0
140 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
141 * Based on code from http://www.stereopsis.com/log2.html
142 */
143 static INLINE GLfloat LOG2(GLfloat x)
144 {
145 const GLfloat y = x * x * x * x;
146 const GLuint ix = *((GLuint *) &y);
147 const GLuint exp = (ix >> 23) & 0xFF;
148 const GLint log2 = ((GLint) exp) - 127;
149 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
150 }
151 #endif
152 /* Pretty fast, and accurate.
153 * Based on code from http://www.flipcode.com/totd/
154 */
155 static INLINE GLfloat LOG2(GLfloat val)
156 {
157 fi_type num;
158 GLint log_2;
159 num.f = val;
160 log_2 = ((num.i >> 23) & 255) - 128;
161 num.i &= ~(255 << 23);
162 num.i += 127 << 23;
163 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
164 return num.f + log_2;
165 }
166 #else
167 /*
168 * NOTE: log_base_2(x) = log(x) / log(2)
169 * NOTE: 1.442695 = 1/log(2).
170 */
171 #define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
172 #endif
173
174
175 /***
176 *** IS_INF_OR_NAN: test if float is infinite or NaN
177 ***/
178 #ifdef USE_IEEE
179 static INLINE int IS_INF_OR_NAN( float x )
180 {
181 fi_type tmp;
182 tmp.f = x;
183 return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
184 }
185 #elif defined(isfinite)
186 #define IS_INF_OR_NAN(x) (!isfinite(x))
187 #elif defined(finite)
188 #define IS_INF_OR_NAN(x) (!finite(x))
189 #elif defined(__VMS)
190 #define IS_INF_OR_NAN(x) (!finite(x))
191 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
192 #define IS_INF_OR_NAN(x) (!isfinite(x))
193 #else
194 #define IS_INF_OR_NAN(x) (!finite(x))
195 #endif
196
197
198 /***
199 *** IS_NEGATIVE: test if float is negative
200 ***/
201 #if defined(USE_IEEE)
202 static INLINE int GET_FLOAT_BITS( float x )
203 {
204 fi_type fi;
205 fi.f = x;
206 return fi.i;
207 }
208 #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
209 #else
210 #define IS_NEGATIVE(x) (x < 0.0F)
211 #endif
212
213
214 /***
215 *** DIFFERENT_SIGNS: test if two floats have opposite signs
216 ***/
217 #if defined(USE_IEEE)
218 #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
219 #else
220 /* Could just use (x*y<0) except for the flatshading requirements.
221 * Maybe there's a better way?
222 */
223 #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
224 #endif
225
226
227 /***
228 *** CEILF: ceiling of float
229 *** FLOORF: floor of float
230 *** FABSF: absolute value of float
231 *** LOGF: the natural logarithm (base e) of the value
232 *** EXPF: raise e to the value
233 *** LDEXPF: multiply value by an integral power of two
234 *** FREXPF: extract mantissa and exponent from value
235 ***/
236 #if defined(__gnu_linux__)
237 /* C99 functions */
238 #define CEILF(x) ceilf(x)
239 #define FLOORF(x) floorf(x)
240 #define FABSF(x) fabsf(x)
241 #define LOGF(x) logf(x)
242 #define EXPF(x) expf(x)
243 #define LDEXPF(x,y) ldexpf(x,y)
244 #define FREXPF(x,y) frexpf(x,y)
245 #else
246 #define CEILF(x) ((GLfloat) ceil(x))
247 #define FLOORF(x) ((GLfloat) floor(x))
248 #define FABSF(x) ((GLfloat) fabs(x))
249 #define LOGF(x) ((GLfloat) log(x))
250 #define EXPF(x) ((GLfloat) exp(x))
251 #define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
252 #define FREXPF(x,y) ((GLfloat) frexp(x,y))
253 #endif
254
255
256 /***
257 *** IROUND: return (as an integer) float rounded to nearest integer
258 ***/
259 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) && \
260 (!(defined(__BEOS__) || defined(__HAIKU__)) || \
261 (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)))
262 static INLINE int iround(float f)
263 {
264 int r;
265 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
266 return r;
267 }
268 #define IROUND(x) iround(x)
269 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
270 static INLINE int iround(float f)
271 {
272 int r;
273 _asm {
274 fld f
275 fistp r
276 }
277 return r;
278 }
279 #define IROUND(x) iround(x)
280 #elif defined(__WATCOMC__) && defined(__386__)
281 long iround(float f);
282 #pragma aux iround = \
283 "push eax" \
284 "fistp dword ptr [esp]" \
285 "pop eax" \
286 parm [8087] \
287 value [eax] \
288 modify exact [eax];
289 #define IROUND(x) iround(x)
290 #else
291 #define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
292 #endif
293
294 #define IROUND64(f) ((GLint64) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
295
296 /***
297 *** IROUND_POS: return (as an integer) positive float rounded to nearest int
298 ***/
299 #ifdef DEBUG
300 #define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
301 #else
302 #define IROUND_POS(f) (IROUND(f))
303 #endif
304
305
306 /***
307 *** IFLOOR: return (as an integer) floor of float
308 ***/
309 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
310 /*
311 * IEEE floor for computers that round to nearest or even.
312 * 'f' must be between -4194304 and 4194303.
313 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
314 * but uses some IEEE specific tricks for better speed.
315 * Contributed by Josh Vanderhoof
316 */
317 static INLINE int ifloor(float f)
318 {
319 int ai, bi;
320 double af, bf;
321 af = (3 << 22) + 0.5 + (double)f;
322 bf = (3 << 22) + 0.5 - (double)f;
323 /* GCC generates an extra fstp/fld without this. */
324 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
325 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
326 return (ai - bi) >> 1;
327 }
328 #define IFLOOR(x) ifloor(x)
329 #elif defined(USE_IEEE)
330 static INLINE int ifloor(float f)
331 {
332 int ai, bi;
333 double af, bf;
334 fi_type u;
335
336 af = (3 << 22) + 0.5 + (double)f;
337 bf = (3 << 22) + 0.5 - (double)f;
338 u.f = (float) af; ai = u.i;
339 u.f = (float) bf; bi = u.i;
340 return (ai - bi) >> 1;
341 }
342 #define IFLOOR(x) ifloor(x)
343 #else
344 static INLINE int ifloor(float f)
345 {
346 int i = IROUND(f);
347 return (i > f) ? i - 1 : i;
348 }
349 #define IFLOOR(x) ifloor(x)
350 #endif
351
352
353 /***
354 *** ICEIL: return (as an integer) ceiling of float
355 ***/
356 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
357 /*
358 * IEEE ceil for computers that round to nearest or even.
359 * 'f' must be between -4194304 and 4194303.
360 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
361 * but uses some IEEE specific tricks for better speed.
362 * Contributed by Josh Vanderhoof
363 */
364 static INLINE int iceil(float f)
365 {
366 int ai, bi;
367 double af, bf;
368 af = (3 << 22) + 0.5 + (double)f;
369 bf = (3 << 22) + 0.5 - (double)f;
370 /* GCC generates an extra fstp/fld without this. */
371 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
372 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
373 return (ai - bi + 1) >> 1;
374 }
375 #define ICEIL(x) iceil(x)
376 #elif defined(USE_IEEE)
377 static INLINE int iceil(float f)
378 {
379 int ai, bi;
380 double af, bf;
381 fi_type u;
382 af = (3 << 22) + 0.5 + (double)f;
383 bf = (3 << 22) + 0.5 - (double)f;
384 u.f = (float) af; ai = u.i;
385 u.f = (float) bf; bi = u.i;
386 return (ai - bi + 1) >> 1;
387 }
388 #define ICEIL(x) iceil(x)
389 #else
390 static INLINE int iceil(float f)
391 {
392 int i = IROUND(f);
393 return (i < f) ? i + 1 : i;
394 }
395 #define ICEIL(x) iceil(x)
396 #endif
397
398
399 /**
400 * Is x a power of two?
401 */
402 static INLINE int
403 _mesa_is_pow_two(int x)
404 {
405 return !(x & (x - 1));
406 }
407
408 /**
409 * Round given integer to next higer power of two
410 * If X is zero result is undefined.
411 *
412 * Source for the fallback implementation is
413 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
414 * http://graphics.stanford.edu/~seander/bithacks.html
415 *
416 * When using builtin function have to do some work
417 * for case when passed values 1 to prevent hiting
418 * undefined result from __builtin_clz. Undefined
419 * results would be different depending on optimization
420 * level used for build.
421 */
422 static INLINE int32_t
423 _mesa_next_pow_two_32(uint32_t x)
424 {
425 #ifdef __GNUC__
426 uint32_t y = (x != 1);
427 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
428 #else
429 x--;
430 x |= x >> 1;
431 x |= x >> 2;
432 x |= x >> 4;
433 x |= x >> 8;
434 x |= x >> 16;
435 x++;
436 return x;
437 #endif
438 }
439
440 static INLINE int64_t
441 _mesa_next_pow_two_64(uint64_t x)
442 {
443 #ifdef __GNUC__
444 uint64_t y = (x != 1);
445 if (sizeof(x) == sizeof(long))
446 return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
447 else
448 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
449 #else
450 x--;
451 x |= x >> 1;
452 x |= x >> 2;
453 x |= x >> 4;
454 x |= x >> 8;
455 x |= x >> 16;
456 x |= x >> 32;
457 x++;
458 return x;
459 #endif
460 }
461
462
463 /***
464 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
465 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
466 ***/
467 #if defined(USE_IEEE) && !defined(DEBUG)
468 #define IEEE_0996 0x3f7f0000 /* 0.996 or so */
469 /* This function/macro is sensitive to precision. Test very carefully
470 * if you change it!
471 */
472 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
473 do { \
474 fi_type __tmp; \
475 __tmp.f = (F); \
476 if (__tmp.i < 0) \
477 UB = (GLubyte) 0; \
478 else if (__tmp.i >= IEEE_0996) \
479 UB = (GLubyte) 255; \
480 else { \
481 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
482 UB = (GLubyte) __tmp.i; \
483 } \
484 } while (0)
485 #define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
486 do { \
487 fi_type __tmp; \
488 __tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
489 UB = (GLubyte) __tmp.i; \
490 } while (0)
491 #else
492 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
493 ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F))
494 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
495 ub = ((GLubyte) IROUND((f) * 255.0F))
496 #endif
497
498
499 /**
500 * Return 1 if this is a little endian machine, 0 if big endian.
501 */
502 static INLINE GLboolean
503 _mesa_little_endian(void)
504 {
505 const GLuint ui = 1; /* intentionally not static */
506 return *((const GLubyte *) &ui);
507 }
508
509
510
511 /**********************************************************************
512 * Functions
513 */
514
515 extern void *
516 _mesa_malloc( size_t bytes );
517
518 extern void *
519 _mesa_calloc( size_t bytes );
520
521 extern void
522 _mesa_free( void *ptr );
523
524 extern void *
525 _mesa_align_malloc( size_t bytes, unsigned long alignment );
526
527 extern void *
528 _mesa_align_calloc( size_t bytes, unsigned long alignment );
529
530 extern void
531 _mesa_align_free( void *ptr );
532
533 extern void *
534 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
535 unsigned long alignment);
536
537 extern void *
538 _mesa_exec_malloc( GLuint size );
539
540 extern void
541 _mesa_exec_free( void *addr );
542
543 extern void *
544 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
545
546 extern void *
547 _mesa_memcpy( void *dest, const void *src, size_t n );
548
549 extern void
550 _mesa_memset( void *dst, int val, size_t n );
551
552 extern void
553 _mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
554
555 extern void
556 _mesa_bzero( void *dst, size_t n );
557
558 extern int
559 _mesa_memcmp( const void *s1, const void *s2, size_t n );
560
561 extern double
562 _mesa_sin(double a);
563
564 extern float
565 _mesa_sinf(float a);
566
567 extern double
568 _mesa_cos(double a);
569
570 extern float
571 _mesa_asinf(float x);
572
573 extern float
574 _mesa_atanf(float x);
575
576 extern double
577 _mesa_sqrtd(double x);
578
579 extern float
580 _mesa_sqrtf(float x);
581
582 extern float
583 _mesa_inv_sqrtf(float x);
584
585 extern void
586 _mesa_init_sqrt_table(void);
587
588 extern double
589 _mesa_pow(double x, double y);
590
591 extern int
592 _mesa_ffs(int32_t i);
593
594 extern int
595 _mesa_ffsll(int64_t i);
596
597 extern unsigned int
598 _mesa_bitcount(unsigned int n);
599
600 extern GLhalfARB
601 _mesa_float_to_half(float f);
602
603 extern float
604 _mesa_half_to_float(GLhalfARB h);
605
606
607 extern void *
608 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
609 int (*compar)(const void *, const void *) );
610
611 extern char *
612 _mesa_getenv( const char *var );
613
614 extern char *
615 _mesa_strncpy( char *dest, const char *src, size_t n );
616
617 extern size_t
618 _mesa_strlen( const char *s );
619
620 extern int
621 _mesa_strcmp( const char *s1, const char *s2 );
622
623 extern int
624 _mesa_strncmp( const char *s1, const char *s2, size_t n );
625
626 extern char *
627 _mesa_strdup( const char *s );
628
629 extern int
630 _mesa_atoi( const char *s );
631
632 extern double
633 _mesa_strtod( const char *s, char **end );
634
635 extern unsigned int
636 _mesa_str_checksum(const char *str);
637
638 extern int
639 _mesa_sprintf( char *str, const char *fmt, ... );
640
641 extern int
642 _mesa_snprintf( char *str, size_t size, const char *fmt, ... );
643
644 extern void
645 _mesa_printf( const char *fmtString, ... );
646
647 extern void
648 _mesa_fprintf( FILE *f, const char *fmtString, ... );
649
650 extern int
651 _mesa_vsprintf( char *str, const char *fmt, va_list args );
652
653
654 extern void
655 _mesa_warning( __GLcontext *gc, const char *fmtString, ... );
656
657 extern void
658 _mesa_problem( const __GLcontext *ctx, const char *fmtString, ... );
659
660 extern void
661 _mesa_error( __GLcontext *ctx, GLenum error, const char *fmtString, ... );
662
663 extern void
664 _mesa_debug( const __GLcontext *ctx, const char *fmtString, ... );
665
666 #ifdef __cplusplus
667 }
668 #endif
669
670
671 #endif /* IMPORTS_H */