105c7114f9e26ce27dd15792716226b233acfc1f
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include "compiler.h"
40 #include "glheader.h"
41 #include "errors.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51
52 /** Allocate a structure of type \p T */
53 #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T))
54 /** Allocate and zero a structure of type \p T */
55 #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T))
56
57 /*@}*/
58
59
60 /*
61 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
62 * as offsets into buffer stores. Since the vertex array pointer and
63 * buffer store pointer are both pointers and we need to add them, we use
64 * this macro.
65 * Both pointers/offsets are expressed in bytes.
66 */
67 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
68
69
70 /**
71 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
72 * as a int (thereby using integer registers instead of FP registers) is
73 * a performance win. Typically, this can be done with ordinary casts.
74 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
75 * these casts generate warnings.
76 * The following union typedef is used to solve that.
77 */
78 typedef union { GLfloat f; GLint i; GLuint u; } fi_type;
79
80
81
82 /**********************************************************************
83 * Math macros
84 */
85
86 #define MAX_GLUSHORT 0xffff
87 #define MAX_GLUINT 0xffffffff
88
89 /* Degrees to radians conversion: */
90 #define DEG2RAD (M_PI/180.0)
91
92
93 /**
94 * \name Work-arounds for platforms that lack C99 math functions
95 */
96 /*@{*/
97 #if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
98 && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
99 && (!defined(_MSC_VER) || (_MSC_VER < 1400))
100 #define ceilf(f) ((float) ceil(f))
101 #define expf(f) ((float) exp(f))
102 #define exp2f(f) ((float) exp2(f))
103 #define floorf(f) ((float) floor(f))
104 #define logf(f) ((float) log(f))
105
106 #ifdef ANDROID
107 #define log2f(f) (logf(f) * (float) (1.0 / M_LN2))
108 #else
109 #define log2f(f) ((float) log2(f))
110 #endif
111
112 #define powf(x,y) ((float) pow(x,y))
113 #define sqrtf(f) ((float) sqrt(f))
114 #endif
115
116 #if defined(_MSC_VER)
117 #if _MSC_VER < 1800 /* Not req'd on VS2013 and above */
118 static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); }
119 static inline float exp2f(float x) { return powf(2.0f, x); }
120 static inline float log2f(float x) { return logf(x) * 1.442695041f; }
121 static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; }
122 #define strtoll(p, e, b) _strtoi64(p, e, b)
123 #endif /* _MSC_VER < 1800 */
124 #define strcasecmp(s1, s2) _stricmp(s1, s2)
125 #endif
126 /*@}*/
127
128
129 /*
130 * signbit() is a macro on Linux. Not available on Windows.
131 */
132 #ifndef signbit
133 #define signbit(x) ((x) < 0.0f)
134 #endif
135
136
137 /** single-precision inverse square root */
138 static inline float
139 INV_SQRTF(float x)
140 {
141 /* XXX we could try Quake's fast inverse square root function here */
142 return 1.0F / sqrtf(x);
143 }
144
145
146 /***
147 *** LOG2: Log base 2 of float
148 ***/
149 static inline GLfloat LOG2(GLfloat x)
150 {
151 #if 0
152 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
153 * Based on code from http://www.stereopsis.com/log2.html
154 */
155 const GLfloat y = x * x * x * x;
156 const GLuint ix = *((GLuint *) &y);
157 const GLuint exp = (ix >> 23) & 0xFF;
158 const GLint log2 = ((GLint) exp) - 127;
159 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
160 #endif
161 /* Pretty fast, and accurate.
162 * Based on code from http://www.flipcode.com/totd/
163 */
164 fi_type num;
165 GLint log_2;
166 num.f = x;
167 log_2 = ((num.i >> 23) & 255) - 128;
168 num.i &= ~(255 << 23);
169 num.i += 127 << 23;
170 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
171 return num.f + log_2;
172 }
173
174
175
176 /***
177 *** IS_INF_OR_NAN: test if float is infinite or NaN
178 ***/
179 #if defined(isfinite)
180 #define IS_INF_OR_NAN(x) (!isfinite(x))
181 #elif defined(finite)
182 #define IS_INF_OR_NAN(x) (!finite(x))
183 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
184 #define IS_INF_OR_NAN(x) (!isfinite(x))
185 #else
186 #define IS_INF_OR_NAN(x) (!finite(x))
187 #endif
188
189
190 /**
191 * Convert float to int by rounding to nearest integer, away from zero.
192 */
193 static inline int IROUND(float f)
194 {
195 return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
196 }
197
198
199 /**
200 * Convert float to int64 by rounding to nearest integer.
201 */
202 static inline GLint64 IROUND64(float f)
203 {
204 return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
205 }
206
207
208 /**
209 * Convert positive float to int by rounding to nearest integer.
210 */
211 static inline int IROUND_POS(float f)
212 {
213 assert(f >= 0.0F);
214 return (int) (f + 0.5F);
215 }
216
217 #ifdef __x86_64__
218 # include <xmmintrin.h>
219 #endif
220
221 /**
222 * Convert float to int using a fast method. The rounding mode may vary.
223 */
224 static inline int F_TO_I(float f)
225 {
226 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
227 int r;
228 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
229 return r;
230 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
231 int r;
232 _asm {
233 fld f
234 fistp r
235 }
236 return r;
237 #elif defined(__x86_64__)
238 return _mm_cvt_ss2si(_mm_load_ss(&f));
239 #else
240 return IROUND(f);
241 #endif
242 }
243
244
245 /** Return (as an integer) floor of float */
246 static inline int IFLOOR(float f)
247 {
248 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
249 /*
250 * IEEE floor for computers that round to nearest or even.
251 * 'f' must be between -4194304 and 4194303.
252 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
253 * but uses some IEEE specific tricks for better speed.
254 * Contributed by Josh Vanderhoof
255 */
256 int ai, bi;
257 double af, bf;
258 af = (3 << 22) + 0.5 + (double)f;
259 bf = (3 << 22) + 0.5 - (double)f;
260 /* GCC generates an extra fstp/fld without this. */
261 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
262 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
263 return (ai - bi) >> 1;
264 #else
265 int ai, bi;
266 double af, bf;
267 fi_type u;
268 af = (3 << 22) + 0.5 + (double)f;
269 bf = (3 << 22) + 0.5 - (double)f;
270 u.f = (float) af; ai = u.i;
271 u.f = (float) bf; bi = u.i;
272 return (ai - bi) >> 1;
273 #endif
274 }
275
276
277 /** Return (as an integer) ceiling of float */
278 static inline int ICEIL(float f)
279 {
280 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
281 /*
282 * IEEE ceil for computers that round to nearest or even.
283 * 'f' must be between -4194304 and 4194303.
284 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
285 * but uses some IEEE specific tricks for better speed.
286 * Contributed by Josh Vanderhoof
287 */
288 int ai, bi;
289 double af, bf;
290 af = (3 << 22) + 0.5 + (double)f;
291 bf = (3 << 22) + 0.5 - (double)f;
292 /* GCC generates an extra fstp/fld without this. */
293 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
294 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
295 return (ai - bi + 1) >> 1;
296 #else
297 int ai, bi;
298 double af, bf;
299 fi_type u;
300 af = (3 << 22) + 0.5 + (double)f;
301 bf = (3 << 22) + 0.5 - (double)f;
302 u.f = (float) af; ai = u.i;
303 u.f = (float) bf; bi = u.i;
304 return (ai - bi + 1) >> 1;
305 #endif
306 }
307
308
309 /**
310 * Is x a power of two?
311 */
312 static inline int
313 _mesa_is_pow_two(int x)
314 {
315 return !(x & (x - 1));
316 }
317
318 /**
319 * Round given integer to next higer power of two
320 * If X is zero result is undefined.
321 *
322 * Source for the fallback implementation is
323 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
324 * http://graphics.stanford.edu/~seander/bithacks.html
325 *
326 * When using builtin function have to do some work
327 * for case when passed values 1 to prevent hiting
328 * undefined result from __builtin_clz. Undefined
329 * results would be different depending on optimization
330 * level used for build.
331 */
332 static inline int32_t
333 _mesa_next_pow_two_32(uint32_t x)
334 {
335 #ifdef HAVE___BUILTIN_CLZ
336 uint32_t y = (x != 1);
337 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
338 #else
339 x--;
340 x |= x >> 1;
341 x |= x >> 2;
342 x |= x >> 4;
343 x |= x >> 8;
344 x |= x >> 16;
345 x++;
346 return x;
347 #endif
348 }
349
350 static inline int64_t
351 _mesa_next_pow_two_64(uint64_t x)
352 {
353 #ifdef HAVE___BUILTIN_CLZLL
354 uint64_t y = (x != 1);
355 STATIC_ASSERT(sizeof(x) == sizeof(long long));
356 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
357 #else
358 x--;
359 x |= x >> 1;
360 x |= x >> 2;
361 x |= x >> 4;
362 x |= x >> 8;
363 x |= x >> 16;
364 x |= x >> 32;
365 x++;
366 return x;
367 #endif
368 }
369
370
371 /*
372 * Returns the floor form of binary logarithm for a 32-bit integer.
373 */
374 static inline GLuint
375 _mesa_logbase2(GLuint n)
376 {
377 #ifdef HAVE___BUILTIN_CLZ
378 return (31 - __builtin_clz(n | 1));
379 #else
380 GLuint pos = 0;
381 if (n >= 1<<16) { n >>= 16; pos += 16; }
382 if (n >= 1<< 8) { n >>= 8; pos += 8; }
383 if (n >= 1<< 4) { n >>= 4; pos += 4; }
384 if (n >= 1<< 2) { n >>= 2; pos += 2; }
385 if (n >= 1<< 1) { pos += 1; }
386 return pos;
387 #endif
388 }
389
390
391 /**
392 * Return 1 if this is a little endian machine, 0 if big endian.
393 */
394 static inline GLboolean
395 _mesa_little_endian(void)
396 {
397 const GLuint ui = 1; /* intentionally not static */
398 return *((const GLubyte *) &ui);
399 }
400
401
402
403 /**********************************************************************
404 * Functions
405 */
406
407 extern void *
408 _mesa_align_malloc( size_t bytes, unsigned long alignment );
409
410 extern void *
411 _mesa_align_calloc( size_t bytes, unsigned long alignment );
412
413 extern void
414 _mesa_align_free( void *ptr );
415
416 extern void *
417 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
418 unsigned long alignment);
419
420 extern void *
421 _mesa_exec_malloc( GLuint size );
422
423 extern void
424 _mesa_exec_free( void *addr );
425
426
427 #ifndef FFS_DEFINED
428 #define FFS_DEFINED 1
429 #ifdef HAVE___BUILTIN_FFS
430 #define ffs __builtin_ffs
431 #else
432 extern int ffs(int i);
433 #endif
434
435 #ifdef HAVE___BUILTIN_FFSLL
436 #define ffsll __builtin_ffsll
437 #else
438 extern int ffsll(long long int i);
439 #endif
440 #endif /* FFS_DEFINED */
441
442
443 #ifdef HAVE___BUILTIN_POPCOUNT
444 #define _mesa_bitcount(i) __builtin_popcount(i)
445 #else
446 extern unsigned int
447 _mesa_bitcount(unsigned int n);
448 #endif
449
450 #ifdef HAVE___BUILTIN_POPCOUNTLL
451 #define _mesa_bitcount_64(i) __builtin_popcountll(i)
452 #else
453 extern unsigned int
454 _mesa_bitcount_64(uint64_t n);
455 #endif
456
457 /**
458 * Find the last (most significant) bit set in a word.
459 *
460 * Essentially ffs() in the reverse direction.
461 */
462 static inline unsigned int
463 _mesa_fls(unsigned int n)
464 {
465 #ifdef HAVE___BUILTIN_CLZ
466 return n == 0 ? 0 : 32 - __builtin_clz(n);
467 #else
468 unsigned int v = 1;
469
470 if (n == 0)
471 return 0;
472
473 while (n >>= 1)
474 v++;
475
476 return v;
477 #endif
478 }
479
480 extern int
481 _mesa_round_to_even(float val);
482
483 extern GLhalfARB
484 _mesa_float_to_half(float f);
485
486 extern float
487 _mesa_half_to_float(GLhalfARB h);
488
489 static inline bool
490 _mesa_half_is_negative(GLhalfARB h)
491 {
492 return h & 0x8000;
493 }
494
495 extern char *
496 _mesa_strdup( const char *s );
497
498 extern unsigned int
499 _mesa_str_checksum(const char *str);
500
501 extern int
502 _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
503
504 extern int
505 _mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg);
506
507
508 #if defined(_MSC_VER) && !defined(snprintf)
509 #define snprintf _snprintf
510 #endif
511
512
513 #ifdef __cplusplus
514 }
515 #endif
516
517
518 #endif /* IMPORTS_H */