ad7af5c1d8cba5103676b82a70de26ea05a7e28a
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include <stdlib.h>
40 #include <stdarg.h>
41 #include <string.h>
42 #include "compiler.h"
43 #include "glheader.h"
44 #include "errors.h"
45
46 #ifdef __cplusplus
47 extern "C" {
48 #endif
49
50
51 /**********************************************************************/
52 /** Memory macros */
53 /*@{*/
54
55 /** Allocate a structure of type \p T */
56 #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T))
57 /** Allocate and zero a structure of type \p T */
58 #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T))
59
60 /*@}*/
61
62
63 /*
64 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
65 * as offsets into buffer stores. Since the vertex array pointer and
66 * buffer store pointer are both pointers and we need to add them, we use
67 * this macro.
68 * Both pointers/offsets are expressed in bytes.
69 */
70 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
71
72
73 /**
74 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
75 * as a int (thereby using integer registers instead of FP registers) is
76 * a performance win. Typically, this can be done with ordinary casts.
77 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
78 * these casts generate warnings.
79 * The following union typedef is used to solve that.
80 */
81 typedef union { GLfloat f; GLint i; GLuint u; } fi_type;
82
83
84
85 #if defined(_MSC_VER)
86 #if _MSC_VER < 1800 /* Not req'd on VS2013 and above */
87 #define strtoll(p, e, b) _strtoi64(p, e, b)
88 #endif /* _MSC_VER < 1800 */
89 #define strcasecmp(s1, s2) _stricmp(s1, s2)
90 #endif
91 /*@}*/
92
93
94 /***
95 *** LOG2: Log base 2 of float
96 ***/
97 static inline GLfloat LOG2(GLfloat x)
98 {
99 #if 0
100 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
101 * Based on code from http://www.stereopsis.com/log2.html
102 */
103 const GLfloat y = x * x * x * x;
104 const GLuint ix = *((GLuint *) &y);
105 const GLuint exp = (ix >> 23) & 0xFF;
106 const GLint log2 = ((GLint) exp) - 127;
107 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
108 #endif
109 /* Pretty fast, and accurate.
110 * Based on code from http://www.flipcode.com/totd/
111 */
112 fi_type num;
113 GLint log_2;
114 num.f = x;
115 log_2 = ((num.i >> 23) & 255) - 128;
116 num.i &= ~(255 << 23);
117 num.i += 127 << 23;
118 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
119 return num.f + log_2;
120 }
121
122
123
124 /**
125 * finite macro.
126 */
127 #if defined(_MSC_VER)
128 # define finite _finite
129 #endif
130
131
132 /***
133 *** IS_INF_OR_NAN: test if float is infinite or NaN
134 ***/
135 #if defined(isfinite)
136 #define IS_INF_OR_NAN(x) (!isfinite(x))
137 #elif defined(finite)
138 #define IS_INF_OR_NAN(x) (!finite(x))
139 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
140 #define IS_INF_OR_NAN(x) (!isfinite(x))
141 #else
142 #define IS_INF_OR_NAN(x) (!finite(x))
143 #endif
144
145
146 /**
147 * Convert float to int by rounding to nearest integer, away from zero.
148 */
149 static inline int IROUND(float f)
150 {
151 return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
152 }
153
154 /**
155 * Convert double to int by rounding to nearest integer, away from zero.
156 */
157 static inline int IROUNDD(double d)
158 {
159 return (int) ((d >= 0.0) ? (d + 0.5) : (d - 0.5));
160 }
161
162 /**
163 * Convert float to int64 by rounding to nearest integer.
164 */
165 static inline GLint64 IROUND64(float f)
166 {
167 return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
168 }
169
170
171 /**
172 * Convert positive float to int by rounding to nearest integer.
173 */
174 static inline int IROUND_POS(float f)
175 {
176 assert(f >= 0.0F);
177 return (int) (f + 0.5F);
178 }
179
180 /** Return (as an integer) floor of float */
181 static inline int IFLOOR(float f)
182 {
183 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
184 /*
185 * IEEE floor for computers that round to nearest or even.
186 * 'f' must be between -4194304 and 4194303.
187 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
188 * but uses some IEEE specific tricks for better speed.
189 * Contributed by Josh Vanderhoof
190 */
191 int ai, bi;
192 double af, bf;
193 af = (3 << 22) + 0.5 + (double)f;
194 bf = (3 << 22) + 0.5 - (double)f;
195 /* GCC generates an extra fstp/fld without this. */
196 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
197 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
198 return (ai - bi) >> 1;
199 #else
200 int ai, bi;
201 double af, bf;
202 fi_type u;
203 af = (3 << 22) + 0.5 + (double)f;
204 bf = (3 << 22) + 0.5 - (double)f;
205 u.f = (float) af; ai = u.i;
206 u.f = (float) bf; bi = u.i;
207 return (ai - bi) >> 1;
208 #endif
209 }
210
211
212 /**
213 * Is x a power of two?
214 */
215 static inline int
216 _mesa_is_pow_two(int x)
217 {
218 return !(x & (x - 1));
219 }
220
221 /**
222 * Round given integer to next higer power of two
223 * If X is zero result is undefined.
224 *
225 * Source for the fallback implementation is
226 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
227 * http://graphics.stanford.edu/~seander/bithacks.html
228 *
229 * When using builtin function have to do some work
230 * for case when passed values 1 to prevent hiting
231 * undefined result from __builtin_clz. Undefined
232 * results would be different depending on optimization
233 * level used for build.
234 */
235 static inline int32_t
236 _mesa_next_pow_two_32(uint32_t x)
237 {
238 #ifdef HAVE___BUILTIN_CLZ
239 uint32_t y = (x != 1);
240 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
241 #else
242 x--;
243 x |= x >> 1;
244 x |= x >> 2;
245 x |= x >> 4;
246 x |= x >> 8;
247 x |= x >> 16;
248 x++;
249 return x;
250 #endif
251 }
252
253 static inline int64_t
254 _mesa_next_pow_two_64(uint64_t x)
255 {
256 #ifdef HAVE___BUILTIN_CLZLL
257 uint64_t y = (x != 1);
258 STATIC_ASSERT(sizeof(x) == sizeof(long long));
259 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
260 #else
261 x--;
262 x |= x >> 1;
263 x |= x >> 2;
264 x |= x >> 4;
265 x |= x >> 8;
266 x |= x >> 16;
267 x |= x >> 32;
268 x++;
269 return x;
270 #endif
271 }
272
273
274 /*
275 * Returns the floor form of binary logarithm for a 32-bit integer.
276 */
277 static inline GLuint
278 _mesa_logbase2(GLuint n)
279 {
280 #ifdef HAVE___BUILTIN_CLZ
281 return (31 - __builtin_clz(n | 1));
282 #else
283 GLuint pos = 0;
284 if (n >= 1<<16) { n >>= 16; pos += 16; }
285 if (n >= 1<< 8) { n >>= 8; pos += 8; }
286 if (n >= 1<< 4) { n >>= 4; pos += 4; }
287 if (n >= 1<< 2) { n >>= 2; pos += 2; }
288 if (n >= 1<< 1) { pos += 1; }
289 return pos;
290 #endif
291 }
292
293
294 /**
295 * Return 1 if this is a little endian machine, 0 if big endian.
296 */
297 static inline GLboolean
298 _mesa_little_endian(void)
299 {
300 const GLuint ui = 1; /* intentionally not static */
301 return *((const GLubyte *) &ui);
302 }
303
304
305
306 /**********************************************************************
307 * Functions
308 */
309
310 extern void *
311 _mesa_align_malloc( size_t bytes, unsigned long alignment );
312
313 extern void *
314 _mesa_align_calloc( size_t bytes, unsigned long alignment );
315
316 extern void
317 _mesa_align_free( void *ptr );
318
319 extern void *
320 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
321 unsigned long alignment);
322
323 extern void *
324 _mesa_exec_malloc( GLuint size );
325
326 extern void
327 _mesa_exec_free( void *addr );
328
329
330 #ifndef FFS_DEFINED
331 #define FFS_DEFINED 1
332 #ifdef HAVE___BUILTIN_FFS
333 #define ffs __builtin_ffs
334 #else
335 extern int ffs(int i);
336 #endif
337
338 #ifdef HAVE___BUILTIN_FFSLL
339 #define ffsll __builtin_ffsll
340 #else
341 extern int ffsll(long long int i);
342 #endif
343 #endif /* FFS_DEFINED */
344
345
346 #ifdef HAVE___BUILTIN_POPCOUNT
347 #define _mesa_bitcount(i) __builtin_popcount(i)
348 #else
349 extern unsigned int
350 _mesa_bitcount(unsigned int n);
351 #endif
352
353 #ifdef HAVE___BUILTIN_POPCOUNTLL
354 #define _mesa_bitcount_64(i) __builtin_popcountll(i)
355 #else
356 extern unsigned int
357 _mesa_bitcount_64(uint64_t n);
358 #endif
359
360 /**
361 * Find the last (most significant) bit set in a word.
362 *
363 * Essentially ffs() in the reverse direction.
364 */
365 static inline unsigned int
366 _mesa_fls(unsigned int n)
367 {
368 #ifdef HAVE___BUILTIN_CLZ
369 return n == 0 ? 0 : 32 - __builtin_clz(n);
370 #else
371 unsigned int v = 1;
372
373 if (n == 0)
374 return 0;
375
376 while (n >>= 1)
377 v++;
378
379 return v;
380 #endif
381 }
382
383 /**
384 * Find the last (most significant) bit set in a uint64_t value.
385 *
386 * Essentially ffsll() in the reverse direction.
387 */
388 static inline unsigned int
389 _mesa_flsll(uint64_t n)
390 {
391 #ifdef HAVE___BUILTIN_CLZLL
392 return n == 0 ? 0 : 64 - __builtin_clzll(n);
393 #else
394 unsigned int v = 1;
395
396 if (n == 0)
397 return 0;
398
399 while (n >>= 1)
400 v++;
401
402 return v;
403 #endif
404 }
405
406 static inline bool
407 _mesa_half_is_negative(GLhalfARB h)
408 {
409 return h & 0x8000;
410 }
411
412 extern unsigned int
413 _mesa_str_checksum(const char *str);
414
415 extern int
416 _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
417
418 extern int
419 _mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg);
420
421
422 #if defined(_MSC_VER) && !defined(snprintf)
423 #define snprintf _snprintf
424 #endif
425
426 #if defined(_WIN32) && !defined(strtok_r)
427 #define strtok_r strtok_s
428 #endif
429
430 #ifdef __cplusplus
431 }
432 #endif
433
434
435 #endif /* IMPORTS_H */