c4e28df0513c4a56ad5bbf47e7e22f0a8e88a815
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include "compiler.h"
40 #include "glheader.h"
41
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES) _mesa_malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES) _mesa_calloc(BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T) (struct T *) _mesa_malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T) (struct T *) _mesa_calloc(sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR) _mesa_free(PTR)
62
63 /** Allocate \p BYTES aligned at \p N bytes */
64 #define ALIGN_MALLOC(BYTES, N) _mesa_align_malloc(BYTES, N)
65 /** Allocate and zero \p BYTES bytes aligned at \p N bytes */
66 #define ALIGN_CALLOC(BYTES, N) _mesa_align_calloc(BYTES, N)
67 /** Allocate a structure of type \p T aligned at \p N bytes */
68 #define ALIGN_MALLOC_STRUCT(T, N) (struct T *) _mesa_align_malloc(sizeof(struct T), N)
69 /** Allocate and zero a structure of type \p T aligned at \p N bytes */
70 #define ALIGN_CALLOC_STRUCT(T, N) (struct T *) _mesa_align_calloc(sizeof(struct T), N)
71 /** Free aligned memory */
72 #define ALIGN_FREE(PTR) _mesa_align_free(PTR)
73
74 /** Set \p N bytes in \p DST to \p VAL */
75 #define MEMSET( DST, VAL, N ) memset(DST, VAL, N)
76
77 /*@}*/
78
79
80 /*
81 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
82 * as offsets into buffer stores. Since the vertex array pointer and
83 * buffer store pointer are both pointers and we need to add them, we use
84 * this macro.
85 * Both pointers/offsets are expressed in bytes.
86 */
87 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
88
89
90 /**
91 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
92 * as a int (thereby using integer registers instead of FP registers) is
93 * a performance win. Typically, this can be done with ordinary casts.
94 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
95 * these casts generate warnings.
96 * The following union typedef is used to solve that.
97 */
98 typedef union { GLfloat f; GLint i; } fi_type;
99
100
101
102 /**********************************************************************
103 * Math macros
104 */
105
106 #define MAX_GLUSHORT 0xffff
107 #define MAX_GLUINT 0xffffffff
108
109 /* Degrees to radians conversion: */
110 #define DEG2RAD (M_PI/180.0)
111
112
113 /***
114 *** SQRTF: single-precision square root
115 ***/
116 #if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
117 # define SQRTF(X) _mesa_sqrtf(X)
118 #else
119 # define SQRTF(X) (float) sqrt((float) (X))
120 #endif
121
122
123 /***
124 *** INV_SQRTF: single-precision inverse square root
125 ***/
126 #if 0
127 #define INV_SQRTF(X) _mesa_inv_sqrt(X)
128 #else
129 #define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
130 #endif
131
132
133 /***
134 *** LOG2: Log base 2 of float
135 ***/
136 #ifdef USE_IEEE
137 #if 0
138 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
139 * Based on code from http://www.stereopsis.com/log2.html
140 */
141 static INLINE GLfloat LOG2(GLfloat x)
142 {
143 const GLfloat y = x * x * x * x;
144 const GLuint ix = *((GLuint *) &y);
145 const GLuint exp = (ix >> 23) & 0xFF;
146 const GLint log2 = ((GLint) exp) - 127;
147 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
148 }
149 #endif
150 /* Pretty fast, and accurate.
151 * Based on code from http://www.flipcode.com/totd/
152 */
153 static INLINE GLfloat LOG2(GLfloat val)
154 {
155 fi_type num;
156 GLint log_2;
157 num.f = val;
158 log_2 = ((num.i >> 23) & 255) - 128;
159 num.i &= ~(255 << 23);
160 num.i += 127 << 23;
161 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
162 return num.f + log_2;
163 }
164 #else
165 /*
166 * NOTE: log_base_2(x) = log(x) / log(2)
167 * NOTE: 1.442695 = 1/log(2).
168 */
169 #define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
170 #endif
171
172
173 /***
174 *** IS_INF_OR_NAN: test if float is infinite or NaN
175 ***/
176 #ifdef USE_IEEE
177 static INLINE int IS_INF_OR_NAN( float x )
178 {
179 fi_type tmp;
180 tmp.f = x;
181 return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
182 }
183 #elif defined(isfinite)
184 #define IS_INF_OR_NAN(x) (!isfinite(x))
185 #elif defined(finite)
186 #define IS_INF_OR_NAN(x) (!finite(x))
187 #elif defined(__VMS)
188 #define IS_INF_OR_NAN(x) (!finite(x))
189 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
190 #define IS_INF_OR_NAN(x) (!isfinite(x))
191 #else
192 #define IS_INF_OR_NAN(x) (!finite(x))
193 #endif
194
195
196 /***
197 *** IS_NEGATIVE: test if float is negative
198 ***/
199 #if defined(USE_IEEE)
200 static INLINE int GET_FLOAT_BITS( float x )
201 {
202 fi_type fi;
203 fi.f = x;
204 return fi.i;
205 }
206 #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
207 #else
208 #define IS_NEGATIVE(x) (x < 0.0F)
209 #endif
210
211
212 /***
213 *** DIFFERENT_SIGNS: test if two floats have opposite signs
214 ***/
215 #if defined(USE_IEEE)
216 #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
217 #else
218 /* Could just use (x*y<0) except for the flatshading requirements.
219 * Maybe there's a better way?
220 */
221 #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
222 #endif
223
224
225 /***
226 *** CEILF: ceiling of float
227 *** FLOORF: floor of float
228 *** FABSF: absolute value of float
229 *** LOGF: the natural logarithm (base e) of the value
230 *** EXPF: raise e to the value
231 *** LDEXPF: multiply value by an integral power of two
232 *** FREXPF: extract mantissa and exponent from value
233 ***/
234 #if defined(__gnu_linux__)
235 /* C99 functions */
236 #define CEILF(x) ceilf(x)
237 #define FLOORF(x) floorf(x)
238 #define FABSF(x) fabsf(x)
239 #define LOGF(x) logf(x)
240 #define EXPF(x) expf(x)
241 #define LDEXPF(x,y) ldexpf(x,y)
242 #define FREXPF(x,y) frexpf(x,y)
243 #else
244 #define CEILF(x) ((GLfloat) ceil(x))
245 #define FLOORF(x) ((GLfloat) floor(x))
246 #define FABSF(x) ((GLfloat) fabs(x))
247 #define LOGF(x) ((GLfloat) log(x))
248 #define EXPF(x) ((GLfloat) exp(x))
249 #define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
250 #define FREXPF(x,y) ((GLfloat) frexp(x,y))
251 #endif
252
253
254 /***
255 *** IROUND: return (as an integer) float rounded to nearest integer
256 ***/
257 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) && \
258 (!(defined(__BEOS__) || defined(__HAIKU__)) || \
259 (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)))
260 static INLINE int iround(float f)
261 {
262 int r;
263 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
264 return r;
265 }
266 #define IROUND(x) iround(x)
267 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
268 static INLINE int iround(float f)
269 {
270 int r;
271 _asm {
272 fld f
273 fistp r
274 }
275 return r;
276 }
277 #define IROUND(x) iround(x)
278 #elif defined(__WATCOMC__) && defined(__386__)
279 long iround(float f);
280 #pragma aux iround = \
281 "push eax" \
282 "fistp dword ptr [esp]" \
283 "pop eax" \
284 parm [8087] \
285 value [eax] \
286 modify exact [eax];
287 #define IROUND(x) iround(x)
288 #else
289 #define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
290 #endif
291
292 #define IROUND64(f) ((GLint64) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
293
294 /***
295 *** IROUND_POS: return (as an integer) positive float rounded to nearest int
296 ***/
297 #ifdef DEBUG
298 #define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
299 #else
300 #define IROUND_POS(f) (IROUND(f))
301 #endif
302
303
304 /***
305 *** IFLOOR: return (as an integer) floor of float
306 ***/
307 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
308 /*
309 * IEEE floor for computers that round to nearest or even.
310 * 'f' must be between -4194304 and 4194303.
311 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
312 * but uses some IEEE specific tricks for better speed.
313 * Contributed by Josh Vanderhoof
314 */
315 static INLINE int ifloor(float f)
316 {
317 int ai, bi;
318 double af, bf;
319 af = (3 << 22) + 0.5 + (double)f;
320 bf = (3 << 22) + 0.5 - (double)f;
321 /* GCC generates an extra fstp/fld without this. */
322 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
323 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
324 return (ai - bi) >> 1;
325 }
326 #define IFLOOR(x) ifloor(x)
327 #elif defined(USE_IEEE)
328 static INLINE int ifloor(float f)
329 {
330 int ai, bi;
331 double af, bf;
332 fi_type u;
333
334 af = (3 << 22) + 0.5 + (double)f;
335 bf = (3 << 22) + 0.5 - (double)f;
336 u.f = (float) af; ai = u.i;
337 u.f = (float) bf; bi = u.i;
338 return (ai - bi) >> 1;
339 }
340 #define IFLOOR(x) ifloor(x)
341 #else
342 static INLINE int ifloor(float f)
343 {
344 int i = IROUND(f);
345 return (i > f) ? i - 1 : i;
346 }
347 #define IFLOOR(x) ifloor(x)
348 #endif
349
350
351 /***
352 *** ICEIL: return (as an integer) ceiling of float
353 ***/
354 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
355 /*
356 * IEEE ceil for computers that round to nearest or even.
357 * 'f' must be between -4194304 and 4194303.
358 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
359 * but uses some IEEE specific tricks for better speed.
360 * Contributed by Josh Vanderhoof
361 */
362 static INLINE int iceil(float f)
363 {
364 int ai, bi;
365 double af, bf;
366 af = (3 << 22) + 0.5 + (double)f;
367 bf = (3 << 22) + 0.5 - (double)f;
368 /* GCC generates an extra fstp/fld without this. */
369 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
370 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
371 return (ai - bi + 1) >> 1;
372 }
373 #define ICEIL(x) iceil(x)
374 #elif defined(USE_IEEE)
375 static INLINE int iceil(float f)
376 {
377 int ai, bi;
378 double af, bf;
379 fi_type u;
380 af = (3 << 22) + 0.5 + (double)f;
381 bf = (3 << 22) + 0.5 - (double)f;
382 u.f = (float) af; ai = u.i;
383 u.f = (float) bf; bi = u.i;
384 return (ai - bi + 1) >> 1;
385 }
386 #define ICEIL(x) iceil(x)
387 #else
388 static INLINE int iceil(float f)
389 {
390 int i = IROUND(f);
391 return (i < f) ? i + 1 : i;
392 }
393 #define ICEIL(x) iceil(x)
394 #endif
395
396
397 /**
398 * Is x a power of two?
399 */
400 static INLINE int
401 _mesa_is_pow_two(int x)
402 {
403 return !(x & (x - 1));
404 }
405
406 /**
407 * Round given integer to next higer power of two
408 * If X is zero result is undefined.
409 *
410 * Source for the fallback implementation is
411 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
412 * http://graphics.stanford.edu/~seander/bithacks.html
413 *
414 * When using builtin function have to do some work
415 * for case when passed values 1 to prevent hiting
416 * undefined result from __builtin_clz. Undefined
417 * results would be different depending on optimization
418 * level used for build.
419 */
420 static INLINE int32_t
421 _mesa_next_pow_two_32(uint32_t x)
422 {
423 #ifdef __GNUC__
424 uint32_t y = (x != 1);
425 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
426 #else
427 x--;
428 x |= x >> 1;
429 x |= x >> 2;
430 x |= x >> 4;
431 x |= x >> 8;
432 x |= x >> 16;
433 x++;
434 return x;
435 #endif
436 }
437
438 static INLINE int64_t
439 _mesa_next_pow_two_64(uint64_t x)
440 {
441 #ifdef __GNUC__
442 uint64_t y = (x != 1);
443 if (sizeof(x) == sizeof(long))
444 return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
445 else
446 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
447 #else
448 x--;
449 x |= x >> 1;
450 x |= x >> 2;
451 x |= x >> 4;
452 x |= x >> 8;
453 x |= x >> 16;
454 x |= x >> 32;
455 x++;
456 return x;
457 #endif
458 }
459
460
461 /***
462 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
463 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
464 ***/
465 #if defined(USE_IEEE) && !defined(DEBUG)
466 #define IEEE_0996 0x3f7f0000 /* 0.996 or so */
467 /* This function/macro is sensitive to precision. Test very carefully
468 * if you change it!
469 */
470 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
471 do { \
472 fi_type __tmp; \
473 __tmp.f = (F); \
474 if (__tmp.i < 0) \
475 UB = (GLubyte) 0; \
476 else if (__tmp.i >= IEEE_0996) \
477 UB = (GLubyte) 255; \
478 else { \
479 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
480 UB = (GLubyte) __tmp.i; \
481 } \
482 } while (0)
483 #define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
484 do { \
485 fi_type __tmp; \
486 __tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
487 UB = (GLubyte) __tmp.i; \
488 } while (0)
489 #else
490 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
491 ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F))
492 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
493 ub = ((GLubyte) IROUND((f) * 255.0F))
494 #endif
495
496
497 /**
498 * Return 1 if this is a little endian machine, 0 if big endian.
499 */
500 static INLINE GLboolean
501 _mesa_little_endian(void)
502 {
503 const GLuint ui = 1; /* intentionally not static */
504 return *((const GLubyte *) &ui);
505 }
506
507
508
509 /**********************************************************************
510 * Functions
511 */
512
513 extern void *
514 _mesa_malloc( size_t bytes );
515
516 extern void *
517 _mesa_calloc( size_t bytes );
518
519 extern void
520 _mesa_free( void *ptr );
521
522 extern void *
523 _mesa_align_malloc( size_t bytes, unsigned long alignment );
524
525 extern void *
526 _mesa_align_calloc( size_t bytes, unsigned long alignment );
527
528 extern void
529 _mesa_align_free( void *ptr );
530
531 extern void *
532 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
533 unsigned long alignment);
534
535 extern void *
536 _mesa_exec_malloc( GLuint size );
537
538 extern void
539 _mesa_exec_free( void *addr );
540
541 extern void *
542 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
543
544 extern void
545 _mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
546
547 extern void
548 _mesa_bzero( void *dst, size_t n );
549
550 extern double
551 _mesa_sin(double a);
552
553 extern float
554 _mesa_sinf(float a);
555
556 extern double
557 _mesa_cos(double a);
558
559 extern float
560 _mesa_asinf(float x);
561
562 extern float
563 _mesa_atanf(float x);
564
565 extern double
566 _mesa_sqrtd(double x);
567
568 extern float
569 _mesa_sqrtf(float x);
570
571 extern float
572 _mesa_inv_sqrtf(float x);
573
574 extern void
575 _mesa_init_sqrt_table(void);
576
577 extern double
578 _mesa_pow(double x, double y);
579
580 extern int
581 _mesa_ffs(int32_t i);
582
583 extern int
584 _mesa_ffsll(int64_t i);
585
586 extern unsigned int
587 _mesa_bitcount(unsigned int n);
588
589 extern GLhalfARB
590 _mesa_float_to_half(float f);
591
592 extern float
593 _mesa_half_to_float(GLhalfARB h);
594
595
596 extern void *
597 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
598 int (*compar)(const void *, const void *) );
599
600 extern char *
601 _mesa_getenv( const char *var );
602
603 extern char *
604 _mesa_strdup( const char *s );
605
606 extern double
607 _mesa_strtod( const char *s, char **end );
608
609 extern unsigned int
610 _mesa_str_checksum(const char *str);
611
612 extern int
613 _mesa_sprintf( char *str, const char *fmt, ... );
614
615 extern int
616 _mesa_snprintf( char *str, size_t size, const char *fmt, ... );
617
618 extern void
619 _mesa_printf( const char *fmtString, ... );
620
621 extern void
622 _mesa_fprintf( FILE *f, const char *fmtString, ... );
623
624 extern int
625 _mesa_vsprintf( char *str, const char *fmt, va_list args );
626
627
628 extern void
629 _mesa_warning( __GLcontext *gc, const char *fmtString, ... );
630
631 extern void
632 _mesa_problem( const __GLcontext *ctx, const char *fmtString, ... );
633
634 extern void
635 _mesa_error( __GLcontext *ctx, GLenum error, const char *fmtString, ... );
636
637 extern void
638 _mesa_debug( const __GLcontext *ctx, const char *fmtString, ... );
639
640 #ifdef __cplusplus
641 }
642 #endif
643
644
645 #endif /* IMPORTS_H */