Replace the _mesa_*printf() wrappers with the plain libc versions
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include "compiler.h"
40 #include "glheader.h"
41
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES) malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES) calloc(1, BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR) free(PTR)
62
63 /** Allocate \p BYTES aligned at \p N bytes */
64 #define ALIGN_MALLOC(BYTES, N) _mesa_align_malloc(BYTES, N)
65 /** Allocate and zero \p BYTES bytes aligned at \p N bytes */
66 #define ALIGN_CALLOC(BYTES, N) _mesa_align_calloc(BYTES, N)
67 /** Allocate a structure of type \p T aligned at \p N bytes */
68 #define ALIGN_MALLOC_STRUCT(T, N) (struct T *) _mesa_align_malloc(sizeof(struct T), N)
69 /** Allocate and zero a structure of type \p T aligned at \p N bytes */
70 #define ALIGN_CALLOC_STRUCT(T, N) (struct T *) _mesa_align_calloc(sizeof(struct T), N)
71 /** Free aligned memory */
72 #define ALIGN_FREE(PTR) _mesa_align_free(PTR)
73
74 /*@}*/
75
76
77 /*
78 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
79 * as offsets into buffer stores. Since the vertex array pointer and
80 * buffer store pointer are both pointers and we need to add them, we use
81 * this macro.
82 * Both pointers/offsets are expressed in bytes.
83 */
84 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
85
86
87 /**
88 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
89 * as a int (thereby using integer registers instead of FP registers) is
90 * a performance win. Typically, this can be done with ordinary casts.
91 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
92 * these casts generate warnings.
93 * The following union typedef is used to solve that.
94 */
95 typedef union { GLfloat f; GLint i; } fi_type;
96
97
98
99 /**********************************************************************
100 * Math macros
101 */
102
103 #define MAX_GLUSHORT 0xffff
104 #define MAX_GLUINT 0xffffffff
105
106 /* Degrees to radians conversion: */
107 #define DEG2RAD (M_PI/180.0)
108
109
110 /***
111 *** SQRTF: single-precision square root
112 ***/
113 #if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
114 # define SQRTF(X) _mesa_sqrtf(X)
115 #else
116 # define SQRTF(X) (float) sqrt((float) (X))
117 #endif
118
119
120 /***
121 *** INV_SQRTF: single-precision inverse square root
122 ***/
123 #if 0
124 #define INV_SQRTF(X) _mesa_inv_sqrt(X)
125 #else
126 #define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
127 #endif
128
129
130 /***
131 *** LOG2: Log base 2 of float
132 ***/
133 #ifdef USE_IEEE
134 #if 0
135 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
136 * Based on code from http://www.stereopsis.com/log2.html
137 */
138 static INLINE GLfloat LOG2(GLfloat x)
139 {
140 const GLfloat y = x * x * x * x;
141 const GLuint ix = *((GLuint *) &y);
142 const GLuint exp = (ix >> 23) & 0xFF;
143 const GLint log2 = ((GLint) exp) - 127;
144 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
145 }
146 #endif
147 /* Pretty fast, and accurate.
148 * Based on code from http://www.flipcode.com/totd/
149 */
150 static INLINE GLfloat LOG2(GLfloat val)
151 {
152 fi_type num;
153 GLint log_2;
154 num.f = val;
155 log_2 = ((num.i >> 23) & 255) - 128;
156 num.i &= ~(255 << 23);
157 num.i += 127 << 23;
158 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
159 return num.f + log_2;
160 }
161 #else
162 /*
163 * NOTE: log_base_2(x) = log(x) / log(2)
164 * NOTE: 1.442695 = 1/log(2).
165 */
166 #define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
167 #endif
168
169
170 /***
171 *** IS_INF_OR_NAN: test if float is infinite or NaN
172 ***/
173 #ifdef USE_IEEE
174 static INLINE int IS_INF_OR_NAN( float x )
175 {
176 fi_type tmp;
177 tmp.f = x;
178 return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
179 }
180 #elif defined(isfinite)
181 #define IS_INF_OR_NAN(x) (!isfinite(x))
182 #elif defined(finite)
183 #define IS_INF_OR_NAN(x) (!finite(x))
184 #elif defined(__VMS)
185 #define IS_INF_OR_NAN(x) (!finite(x))
186 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
187 #define IS_INF_OR_NAN(x) (!isfinite(x))
188 #else
189 #define IS_INF_OR_NAN(x) (!finite(x))
190 #endif
191
192
193 /***
194 *** IS_NEGATIVE: test if float is negative
195 ***/
196 #if defined(USE_IEEE)
197 static INLINE int GET_FLOAT_BITS( float x )
198 {
199 fi_type fi;
200 fi.f = x;
201 return fi.i;
202 }
203 #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
204 #else
205 #define IS_NEGATIVE(x) (x < 0.0F)
206 #endif
207
208
209 /***
210 *** DIFFERENT_SIGNS: test if two floats have opposite signs
211 ***/
212 #if defined(USE_IEEE)
213 #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
214 #else
215 /* Could just use (x*y<0) except for the flatshading requirements.
216 * Maybe there's a better way?
217 */
218 #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
219 #endif
220
221
222 /***
223 *** CEILF: ceiling of float
224 *** FLOORF: floor of float
225 *** FABSF: absolute value of float
226 *** LOGF: the natural logarithm (base e) of the value
227 *** EXPF: raise e to the value
228 *** LDEXPF: multiply value by an integral power of two
229 *** FREXPF: extract mantissa and exponent from value
230 ***/
231 #if defined(__gnu_linux__)
232 /* C99 functions */
233 #define CEILF(x) ceilf(x)
234 #define FLOORF(x) floorf(x)
235 #define FABSF(x) fabsf(x)
236 #define LOGF(x) logf(x)
237 #define EXPF(x) expf(x)
238 #define LDEXPF(x,y) ldexpf(x,y)
239 #define FREXPF(x,y) frexpf(x,y)
240 #else
241 #define CEILF(x) ((GLfloat) ceil(x))
242 #define FLOORF(x) ((GLfloat) floor(x))
243 #define FABSF(x) ((GLfloat) fabs(x))
244 #define LOGF(x) ((GLfloat) log(x))
245 #define EXPF(x) ((GLfloat) exp(x))
246 #define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
247 #define FREXPF(x,y) ((GLfloat) frexp(x,y))
248 #endif
249
250
251 /***
252 *** IROUND: return (as an integer) float rounded to nearest integer
253 ***/
254 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) && \
255 (!(defined(__BEOS__) || defined(__HAIKU__)) || \
256 (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 95)))
257 static INLINE int iround(float f)
258 {
259 int r;
260 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
261 return r;
262 }
263 #define IROUND(x) iround(x)
264 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
265 static INLINE int iround(float f)
266 {
267 int r;
268 _asm {
269 fld f
270 fistp r
271 }
272 return r;
273 }
274 #define IROUND(x) iround(x)
275 #elif defined(__WATCOMC__) && defined(__386__)
276 long iround(float f);
277 #pragma aux iround = \
278 "push eax" \
279 "fistp dword ptr [esp]" \
280 "pop eax" \
281 parm [8087] \
282 value [eax] \
283 modify exact [eax];
284 #define IROUND(x) iround(x)
285 #else
286 #define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
287 #endif
288
289 #define IROUND64(f) ((GLint64) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
290
291 /***
292 *** IROUND_POS: return (as an integer) positive float rounded to nearest int
293 ***/
294 #ifdef DEBUG
295 #define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
296 #else
297 #define IROUND_POS(f) (IROUND(f))
298 #endif
299
300
301 /***
302 *** IFLOOR: return (as an integer) floor of float
303 ***/
304 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
305 /*
306 * IEEE floor for computers that round to nearest or even.
307 * 'f' must be between -4194304 and 4194303.
308 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
309 * but uses some IEEE specific tricks for better speed.
310 * Contributed by Josh Vanderhoof
311 */
312 static INLINE int ifloor(float f)
313 {
314 int ai, bi;
315 double af, bf;
316 af = (3 << 22) + 0.5 + (double)f;
317 bf = (3 << 22) + 0.5 - (double)f;
318 /* GCC generates an extra fstp/fld without this. */
319 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
320 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
321 return (ai - bi) >> 1;
322 }
323 #define IFLOOR(x) ifloor(x)
324 #elif defined(USE_IEEE)
325 static INLINE int ifloor(float f)
326 {
327 int ai, bi;
328 double af, bf;
329 fi_type u;
330
331 af = (3 << 22) + 0.5 + (double)f;
332 bf = (3 << 22) + 0.5 - (double)f;
333 u.f = (float) af; ai = u.i;
334 u.f = (float) bf; bi = u.i;
335 return (ai - bi) >> 1;
336 }
337 #define IFLOOR(x) ifloor(x)
338 #else
339 static INLINE int ifloor(float f)
340 {
341 int i = IROUND(f);
342 return (i > f) ? i - 1 : i;
343 }
344 #define IFLOOR(x) ifloor(x)
345 #endif
346
347
348 /***
349 *** ICEIL: return (as an integer) ceiling of float
350 ***/
351 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
352 /*
353 * IEEE ceil for computers that round to nearest or even.
354 * 'f' must be between -4194304 and 4194303.
355 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
356 * but uses some IEEE specific tricks for better speed.
357 * Contributed by Josh Vanderhoof
358 */
359 static INLINE int iceil(float f)
360 {
361 int ai, bi;
362 double af, bf;
363 af = (3 << 22) + 0.5 + (double)f;
364 bf = (3 << 22) + 0.5 - (double)f;
365 /* GCC generates an extra fstp/fld without this. */
366 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
367 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
368 return (ai - bi + 1) >> 1;
369 }
370 #define ICEIL(x) iceil(x)
371 #elif defined(USE_IEEE)
372 static INLINE int iceil(float f)
373 {
374 int ai, bi;
375 double af, bf;
376 fi_type u;
377 af = (3 << 22) + 0.5 + (double)f;
378 bf = (3 << 22) + 0.5 - (double)f;
379 u.f = (float) af; ai = u.i;
380 u.f = (float) bf; bi = u.i;
381 return (ai - bi + 1) >> 1;
382 }
383 #define ICEIL(x) iceil(x)
384 #else
385 static INLINE int iceil(float f)
386 {
387 int i = IROUND(f);
388 return (i < f) ? i + 1 : i;
389 }
390 #define ICEIL(x) iceil(x)
391 #endif
392
393
394 /**
395 * Is x a power of two?
396 */
397 static INLINE int
398 _mesa_is_pow_two(int x)
399 {
400 return !(x & (x - 1));
401 }
402
403 /**
404 * Round given integer to next higer power of two
405 * If X is zero result is undefined.
406 *
407 * Source for the fallback implementation is
408 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
409 * http://graphics.stanford.edu/~seander/bithacks.html
410 *
411 * When using builtin function have to do some work
412 * for case when passed values 1 to prevent hiting
413 * undefined result from __builtin_clz. Undefined
414 * results would be different depending on optimization
415 * level used for build.
416 */
417 static INLINE int32_t
418 _mesa_next_pow_two_32(uint32_t x)
419 {
420 #ifdef __GNUC__
421 uint32_t y = (x != 1);
422 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
423 #else
424 x--;
425 x |= x >> 1;
426 x |= x >> 2;
427 x |= x >> 4;
428 x |= x >> 8;
429 x |= x >> 16;
430 x++;
431 return x;
432 #endif
433 }
434
435 static INLINE int64_t
436 _mesa_next_pow_two_64(uint64_t x)
437 {
438 #ifdef __GNUC__
439 uint64_t y = (x != 1);
440 if (sizeof(x) == sizeof(long))
441 return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
442 else
443 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
444 #else
445 x--;
446 x |= x >> 1;
447 x |= x >> 2;
448 x |= x >> 4;
449 x |= x >> 8;
450 x |= x >> 16;
451 x |= x >> 32;
452 x++;
453 return x;
454 #endif
455 }
456
457
458 /***
459 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
460 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
461 ***/
462 #if defined(USE_IEEE) && !defined(DEBUG)
463 #define IEEE_0996 0x3f7f0000 /* 0.996 or so */
464 /* This function/macro is sensitive to precision. Test very carefully
465 * if you change it!
466 */
467 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
468 do { \
469 fi_type __tmp; \
470 __tmp.f = (F); \
471 if (__tmp.i < 0) \
472 UB = (GLubyte) 0; \
473 else if (__tmp.i >= IEEE_0996) \
474 UB = (GLubyte) 255; \
475 else { \
476 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
477 UB = (GLubyte) __tmp.i; \
478 } \
479 } while (0)
480 #define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
481 do { \
482 fi_type __tmp; \
483 __tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
484 UB = (GLubyte) __tmp.i; \
485 } while (0)
486 #else
487 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
488 ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F))
489 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
490 ub = ((GLubyte) IROUND((f) * 255.0F))
491 #endif
492
493
494 /**
495 * Return 1 if this is a little endian machine, 0 if big endian.
496 */
497 static INLINE GLboolean
498 _mesa_little_endian(void)
499 {
500 const GLuint ui = 1; /* intentionally not static */
501 return *((const GLubyte *) &ui);
502 }
503
504
505
506 /**********************************************************************
507 * Functions
508 */
509
510 extern void *
511 _mesa_align_malloc( size_t bytes, unsigned long alignment );
512
513 extern void *
514 _mesa_align_calloc( size_t bytes, unsigned long alignment );
515
516 extern void
517 _mesa_align_free( void *ptr );
518
519 extern void *
520 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
521 unsigned long alignment);
522
523 extern void *
524 _mesa_exec_malloc( GLuint size );
525
526 extern void
527 _mesa_exec_free( void *addr );
528
529 extern void *
530 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
531
532 extern void
533 _mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
534
535 extern double
536 _mesa_sin(double a);
537
538 extern float
539 _mesa_sinf(float a);
540
541 extern double
542 _mesa_cos(double a);
543
544 extern float
545 _mesa_asinf(float x);
546
547 extern float
548 _mesa_atanf(float x);
549
550 extern double
551 _mesa_sqrtd(double x);
552
553 extern float
554 _mesa_sqrtf(float x);
555
556 extern float
557 _mesa_inv_sqrtf(float x);
558
559 extern void
560 _mesa_init_sqrt_table(void);
561
562 extern double
563 _mesa_pow(double x, double y);
564
565 extern int
566 _mesa_ffs(int32_t i);
567
568 extern int
569 _mesa_ffsll(int64_t i);
570
571 extern unsigned int
572 _mesa_bitcount(unsigned int n);
573
574 extern GLhalfARB
575 _mesa_float_to_half(float f);
576
577 extern float
578 _mesa_half_to_float(GLhalfARB h);
579
580
581 extern void *
582 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
583 int (*compar)(const void *, const void *) );
584
585 extern char *
586 _mesa_getenv( const char *var );
587
588 extern char *
589 _mesa_strdup( const char *s );
590
591 extern double
592 _mesa_strtod( const char *s, char **end );
593
594 extern unsigned int
595 _mesa_str_checksum(const char *str);
596
597 extern void
598 _mesa_warning( __GLcontext *gc, const char *fmtString, ... );
599
600 extern void
601 _mesa_problem( const __GLcontext *ctx, const char *fmtString, ... );
602
603 extern void
604 _mesa_error( __GLcontext *ctx, GLenum error, const char *fmtString, ... );
605
606 extern void
607 _mesa_debug( const __GLcontext *ctx, const char *fmtString, ... );
608
609 #ifdef __cplusplus
610 }
611 #endif
612
613
614 #endif /* IMPORTS_H */