mesa: atan2f and powf need two args.
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include "compiler.h"
40 #include "glheader.h"
41
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES) malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES) calloc(1, BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR) free(PTR)
62
63 /*@}*/
64
65
66 /*
67 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
68 * as offsets into buffer stores. Since the vertex array pointer and
69 * buffer store pointer are both pointers and we need to add them, we use
70 * this macro.
71 * Both pointers/offsets are expressed in bytes.
72 */
73 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
74
75
76 /**
77 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
78 * as a int (thereby using integer registers instead of FP registers) is
79 * a performance win. Typically, this can be done with ordinary casts.
80 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
81 * these casts generate warnings.
82 * The following union typedef is used to solve that.
83 */
84 typedef union { GLfloat f; GLint i; } fi_type;
85
86
87
88 /**********************************************************************
89 * Math macros
90 */
91
92 #define MAX_GLUSHORT 0xffff
93 #define MAX_GLUINT 0xffffffff
94
95 /* Degrees to radians conversion: */
96 #define DEG2RAD (M_PI/180.0)
97
98
99 /***
100 *** SQRTF: single-precision square root
101 ***/
102 #if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
103 # define SQRTF(X) _mesa_sqrtf(X)
104 #else
105 # define SQRTF(X) (float) sqrt((float) (X))
106 #endif
107
108
109 /***
110 *** INV_SQRTF: single-precision inverse square root
111 ***/
112 #if 0
113 #define INV_SQRTF(X) _mesa_inv_sqrt(X)
114 #else
115 #define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
116 #endif
117
118
119 /**
120 * \name Work-arounds for platforms that lack C99 math functions
121 */
122 /*@{*/
123 #if (_XOPEN_SOURCE < 600) && !defined(_ISOC99_SOURCE) \
124 && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L))
125 #define acosf(f) ((float) acos(f))
126 #define asinf(f) ((float) asin(f))
127 #define atan2f(x,y) ((float) atan2(x,y))
128 #define atanf(f) ((float) atan(f))
129 #define cielf(f) ((float) ciel(f))
130 #define cosf(f) ((float) cos(f))
131 #define coshf(f) ((float) cosh(f))
132 #define expf(f) ((float) exp(f))
133 #define exp2f(f) ((float) exp2(f))
134 #define floorf(f) ((float) floor(f))
135 #define logf(f) ((float) log(f))
136 #define log2f(f) ((float) log2(f))
137 #define powf(x,y) ((float) pow(x,y))
138 #define sinf(f) ((float) sin(f))
139 #define sinhf(f) ((float) sinh(f))
140 #define sqrtf(f) ((float) sqrt(f))
141 #define tanf(f) ((float) tan(f))
142 #define tanhf(f) ((float) tanh(f))
143 #define truncf(f) ((float) trunc(f))
144 #endif
145 /*@}*/
146
147 /***
148 *** LOG2: Log base 2 of float
149 ***/
150 #ifdef USE_IEEE
151 #if 0
152 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
153 * Based on code from http://www.stereopsis.com/log2.html
154 */
155 static INLINE GLfloat LOG2(GLfloat x)
156 {
157 const GLfloat y = x * x * x * x;
158 const GLuint ix = *((GLuint *) &y);
159 const GLuint exp = (ix >> 23) & 0xFF;
160 const GLint log2 = ((GLint) exp) - 127;
161 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
162 }
163 #endif
164 /* Pretty fast, and accurate.
165 * Based on code from http://www.flipcode.com/totd/
166 */
167 static INLINE GLfloat LOG2(GLfloat val)
168 {
169 fi_type num;
170 GLint log_2;
171 num.f = val;
172 log_2 = ((num.i >> 23) & 255) - 128;
173 num.i &= ~(255 << 23);
174 num.i += 127 << 23;
175 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
176 return num.f + log_2;
177 }
178 #else
179 /*
180 * NOTE: log_base_2(x) = log(x) / log(2)
181 * NOTE: 1.442695 = 1/log(2).
182 */
183 #define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
184 #endif
185
186
187 /***
188 *** IS_INF_OR_NAN: test if float is infinite or NaN
189 ***/
190 #ifdef USE_IEEE
191 static INLINE int IS_INF_OR_NAN( float x )
192 {
193 fi_type tmp;
194 tmp.f = x;
195 return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
196 }
197 #elif defined(isfinite)
198 #define IS_INF_OR_NAN(x) (!isfinite(x))
199 #elif defined(finite)
200 #define IS_INF_OR_NAN(x) (!finite(x))
201 #elif defined(__VMS)
202 #define IS_INF_OR_NAN(x) (!finite(x))
203 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
204 #define IS_INF_OR_NAN(x) (!isfinite(x))
205 #else
206 #define IS_INF_OR_NAN(x) (!finite(x))
207 #endif
208
209
210 /***
211 *** IS_NEGATIVE: test if float is negative
212 ***/
213 #if defined(USE_IEEE)
214 static INLINE int GET_FLOAT_BITS( float x )
215 {
216 fi_type fi;
217 fi.f = x;
218 return fi.i;
219 }
220 #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
221 #else
222 #define IS_NEGATIVE(x) (x < 0.0F)
223 #endif
224
225
226 /***
227 *** DIFFERENT_SIGNS: test if two floats have opposite signs
228 ***/
229 #if defined(USE_IEEE)
230 #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
231 #else
232 /* Could just use (x*y<0) except for the flatshading requirements.
233 * Maybe there's a better way?
234 */
235 #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
236 #endif
237
238
239 /***
240 *** CEILF: ceiling of float
241 *** FLOORF: floor of float
242 *** FABSF: absolute value of float
243 *** LOGF: the natural logarithm (base e) of the value
244 *** EXPF: raise e to the value
245 *** LDEXPF: multiply value by an integral power of two
246 *** FREXPF: extract mantissa and exponent from value
247 ***/
248 #if defined(__gnu_linux__)
249 /* C99 functions */
250 #define CEILF(x) ceilf(x)
251 #define FLOORF(x) floorf(x)
252 #define FABSF(x) fabsf(x)
253 #define LOGF(x) logf(x)
254 #define EXPF(x) expf(x)
255 #define LDEXPF(x,y) ldexpf(x,y)
256 #define FREXPF(x,y) frexpf(x,y)
257 #else
258 #define CEILF(x) ((GLfloat) ceil(x))
259 #define FLOORF(x) ((GLfloat) floor(x))
260 #define FABSF(x) ((GLfloat) fabs(x))
261 #define LOGF(x) ((GLfloat) log(x))
262 #define EXPF(x) ((GLfloat) exp(x))
263 #define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
264 #define FREXPF(x,y) ((GLfloat) frexp(x,y))
265 #endif
266
267
268 /***
269 *** IROUND: return (as an integer) float rounded to nearest integer
270 ***/
271 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
272 static INLINE int iround(float f)
273 {
274 int r;
275 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
276 return r;
277 }
278 #define IROUND(x) iround(x)
279 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
280 static INLINE int iround(float f)
281 {
282 int r;
283 _asm {
284 fld f
285 fistp r
286 }
287 return r;
288 }
289 #define IROUND(x) iround(x)
290 #elif defined(__WATCOMC__) && defined(__386__)
291 long iround(float f);
292 #pragma aux iround = \
293 "push eax" \
294 "fistp dword ptr [esp]" \
295 "pop eax" \
296 parm [8087] \
297 value [eax] \
298 modify exact [eax];
299 #define IROUND(x) iround(x)
300 #else
301 #define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
302 #endif
303
304 #define IROUND64(f) ((GLint64) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
305
306 /***
307 *** IROUND_POS: return (as an integer) positive float rounded to nearest int
308 ***/
309 #ifdef DEBUG
310 #define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
311 #else
312 #define IROUND_POS(f) (IROUND(f))
313 #endif
314
315
316 /***
317 *** IFLOOR: return (as an integer) floor of float
318 ***/
319 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
320 /*
321 * IEEE floor for computers that round to nearest or even.
322 * 'f' must be between -4194304 and 4194303.
323 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
324 * but uses some IEEE specific tricks for better speed.
325 * Contributed by Josh Vanderhoof
326 */
327 static INLINE int ifloor(float f)
328 {
329 int ai, bi;
330 double af, bf;
331 af = (3 << 22) + 0.5 + (double)f;
332 bf = (3 << 22) + 0.5 - (double)f;
333 /* GCC generates an extra fstp/fld without this. */
334 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
335 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
336 return (ai - bi) >> 1;
337 }
338 #define IFLOOR(x) ifloor(x)
339 #elif defined(USE_IEEE)
340 static INLINE int ifloor(float f)
341 {
342 int ai, bi;
343 double af, bf;
344 fi_type u;
345
346 af = (3 << 22) + 0.5 + (double)f;
347 bf = (3 << 22) + 0.5 - (double)f;
348 u.f = (float) af; ai = u.i;
349 u.f = (float) bf; bi = u.i;
350 return (ai - bi) >> 1;
351 }
352 #define IFLOOR(x) ifloor(x)
353 #else
354 static INLINE int ifloor(float f)
355 {
356 int i = IROUND(f);
357 return (i > f) ? i - 1 : i;
358 }
359 #define IFLOOR(x) ifloor(x)
360 #endif
361
362
363 /***
364 *** ICEIL: return (as an integer) ceiling of float
365 ***/
366 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
367 /*
368 * IEEE ceil for computers that round to nearest or even.
369 * 'f' must be between -4194304 and 4194303.
370 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
371 * but uses some IEEE specific tricks for better speed.
372 * Contributed by Josh Vanderhoof
373 */
374 static INLINE int iceil(float f)
375 {
376 int ai, bi;
377 double af, bf;
378 af = (3 << 22) + 0.5 + (double)f;
379 bf = (3 << 22) + 0.5 - (double)f;
380 /* GCC generates an extra fstp/fld without this. */
381 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
382 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
383 return (ai - bi + 1) >> 1;
384 }
385 #define ICEIL(x) iceil(x)
386 #elif defined(USE_IEEE)
387 static INLINE int iceil(float f)
388 {
389 int ai, bi;
390 double af, bf;
391 fi_type u;
392 af = (3 << 22) + 0.5 + (double)f;
393 bf = (3 << 22) + 0.5 - (double)f;
394 u.f = (float) af; ai = u.i;
395 u.f = (float) bf; bi = u.i;
396 return (ai - bi + 1) >> 1;
397 }
398 #define ICEIL(x) iceil(x)
399 #else
400 static INLINE int iceil(float f)
401 {
402 int i = IROUND(f);
403 return (i < f) ? i + 1 : i;
404 }
405 #define ICEIL(x) iceil(x)
406 #endif
407
408
409 /**
410 * Is x a power of two?
411 */
412 static INLINE int
413 _mesa_is_pow_two(int x)
414 {
415 return !(x & (x - 1));
416 }
417
418 /**
419 * Round given integer to next higer power of two
420 * If X is zero result is undefined.
421 *
422 * Source for the fallback implementation is
423 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
424 * http://graphics.stanford.edu/~seander/bithacks.html
425 *
426 * When using builtin function have to do some work
427 * for case when passed values 1 to prevent hiting
428 * undefined result from __builtin_clz. Undefined
429 * results would be different depending on optimization
430 * level used for build.
431 */
432 static INLINE int32_t
433 _mesa_next_pow_two_32(uint32_t x)
434 {
435 #if defined(__GNUC__) && \
436 ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
437 uint32_t y = (x != 1);
438 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
439 #else
440 x--;
441 x |= x >> 1;
442 x |= x >> 2;
443 x |= x >> 4;
444 x |= x >> 8;
445 x |= x >> 16;
446 x++;
447 return x;
448 #endif
449 }
450
451 static INLINE int64_t
452 _mesa_next_pow_two_64(uint64_t x)
453 {
454 #if defined(__GNUC__) && \
455 ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
456 uint64_t y = (x != 1);
457 if (sizeof(x) == sizeof(long))
458 return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
459 else
460 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
461 #else
462 x--;
463 x |= x >> 1;
464 x |= x >> 2;
465 x |= x >> 4;
466 x |= x >> 8;
467 x |= x >> 16;
468 x |= x >> 32;
469 x++;
470 return x;
471 #endif
472 }
473
474
475 /**
476 * Return 1 if this is a little endian machine, 0 if big endian.
477 */
478 static INLINE GLboolean
479 _mesa_little_endian(void)
480 {
481 const GLuint ui = 1; /* intentionally not static */
482 return *((const GLubyte *) &ui);
483 }
484
485
486
487 /**********************************************************************
488 * Functions
489 */
490
491 extern void *
492 _mesa_align_malloc( size_t bytes, unsigned long alignment );
493
494 extern void *
495 _mesa_align_calloc( size_t bytes, unsigned long alignment );
496
497 extern void
498 _mesa_align_free( void *ptr );
499
500 extern void *
501 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
502 unsigned long alignment);
503
504 extern void *
505 _mesa_exec_malloc( GLuint size );
506
507 extern void
508 _mesa_exec_free( void *addr );
509
510 extern void *
511 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
512
513 extern void
514 _mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
515
516 extern double
517 _mesa_sqrtd(double x);
518
519 extern float
520 _mesa_sqrtf(float x);
521
522 extern float
523 _mesa_inv_sqrtf(float x);
524
525 extern void
526 _mesa_init_sqrt_table(void);
527
528 extern int
529 _mesa_ffs(int32_t i);
530
531 extern int
532 _mesa_ffsll(int64_t i);
533
534 extern unsigned int
535 _mesa_bitcount(unsigned int n);
536
537 extern GLhalfARB
538 _mesa_float_to_half(float f);
539
540 extern float
541 _mesa_half_to_float(GLhalfARB h);
542
543
544 extern void *
545 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
546 int (*compar)(const void *, const void *) );
547
548 extern char *
549 _mesa_getenv( const char *var );
550
551 extern char *
552 _mesa_strdup( const char *s );
553
554 extern float
555 _mesa_strtof( const char *s, char **end );
556
557 extern unsigned int
558 _mesa_str_checksum(const char *str);
559
560 extern int
561 _mesa_snprintf( char *str, size_t size, const char *fmt, ... );
562
563 extern void
564 _mesa_warning( __GLcontext *gc, const char *fmtString, ... );
565
566 extern void
567 _mesa_problem( const __GLcontext *ctx, const char *fmtString, ... );
568
569 extern void
570 _mesa_error( __GLcontext *ctx, GLenum error, const char *fmtString, ... );
571
572 extern void
573 _mesa_debug( const __GLcontext *ctx, const char *fmtString, ... );
574
575 #ifdef __cplusplus
576 }
577 #endif
578
579
580 #endif /* IMPORTS_H */