mesa: Check that _XOPEN_SOURCE is defined before using it.
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include "compiler.h"
40 #include "glheader.h"
41
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES) malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES) calloc(1, BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR) free(PTR)
62
63 /*@}*/
64
65
66 /*
67 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
68 * as offsets into buffer stores. Since the vertex array pointer and
69 * buffer store pointer are both pointers and we need to add them, we use
70 * this macro.
71 * Both pointers/offsets are expressed in bytes.
72 */
73 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
74
75
76 /**
77 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
78 * as a int (thereby using integer registers instead of FP registers) is
79 * a performance win. Typically, this can be done with ordinary casts.
80 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
81 * these casts generate warnings.
82 * The following union typedef is used to solve that.
83 */
84 typedef union { GLfloat f; GLint i; } fi_type;
85
86
87
88 /**********************************************************************
89 * Math macros
90 */
91
92 #define MAX_GLUSHORT 0xffff
93 #define MAX_GLUINT 0xffffffff
94
95 /* Degrees to radians conversion: */
96 #define DEG2RAD (M_PI/180.0)
97
98
99 /***
100 *** SQRTF: single-precision square root
101 ***/
102 #if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
103 # define SQRTF(X) _mesa_sqrtf(X)
104 #else
105 # define SQRTF(X) (float) sqrt((float) (X))
106 #endif
107
108
109 /***
110 *** INV_SQRTF: single-precision inverse square root
111 ***/
112 #if 0
113 #define INV_SQRTF(X) _mesa_inv_sqrt(X)
114 #else
115 #define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
116 #endif
117
118
119 /**
120 * \name Work-arounds for platforms that lack C99 math functions
121 */
122 /*@{*/
123 #if (defined(_XOPEN_SOURCE) && (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
124 && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
125 && (!defined(_MSC_VER) || (_MSC_VER < 1400))
126 #define acosf(f) ((float) acos(f))
127 #define asinf(f) ((float) asin(f))
128 #define atan2f(x,y) ((float) atan2(x,y))
129 #define atanf(f) ((float) atan(f))
130 #define cielf(f) ((float) ciel(f))
131 #define cosf(f) ((float) cos(f))
132 #define coshf(f) ((float) cosh(f))
133 #define expf(f) ((float) exp(f))
134 #define exp2f(f) ((float) exp2(f))
135 #define floorf(f) ((float) floor(f))
136 #define logf(f) ((float) log(f))
137 #define log2f(f) ((float) log2(f))
138 #define powf(x,y) ((float) pow(x,y))
139 #define sinf(f) ((float) sin(f))
140 #define sinhf(f) ((float) sinh(f))
141 #define sqrtf(f) ((float) sqrt(f))
142 #define tanf(f) ((float) tan(f))
143 #define tanhf(f) ((float) tanh(f))
144 #define truncf(f) ((float) trunc(f))
145 #endif
146 /*@}*/
147
148 /***
149 *** LOG2: Log base 2 of float
150 ***/
151 #ifdef USE_IEEE
152 #if 0
153 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
154 * Based on code from http://www.stereopsis.com/log2.html
155 */
156 static INLINE GLfloat LOG2(GLfloat x)
157 {
158 const GLfloat y = x * x * x * x;
159 const GLuint ix = *((GLuint *) &y);
160 const GLuint exp = (ix >> 23) & 0xFF;
161 const GLint log2 = ((GLint) exp) - 127;
162 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
163 }
164 #endif
165 /* Pretty fast, and accurate.
166 * Based on code from http://www.flipcode.com/totd/
167 */
168 static INLINE GLfloat LOG2(GLfloat val)
169 {
170 fi_type num;
171 GLint log_2;
172 num.f = val;
173 log_2 = ((num.i >> 23) & 255) - 128;
174 num.i &= ~(255 << 23);
175 num.i += 127 << 23;
176 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
177 return num.f + log_2;
178 }
179 #else
180 /*
181 * NOTE: log_base_2(x) = log(x) / log(2)
182 * NOTE: 1.442695 = 1/log(2).
183 */
184 #define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
185 #endif
186
187
188 /***
189 *** IS_INF_OR_NAN: test if float is infinite or NaN
190 ***/
191 #ifdef USE_IEEE
192 static INLINE int IS_INF_OR_NAN( float x )
193 {
194 fi_type tmp;
195 tmp.f = x;
196 return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
197 }
198 #elif defined(isfinite)
199 #define IS_INF_OR_NAN(x) (!isfinite(x))
200 #elif defined(finite)
201 #define IS_INF_OR_NAN(x) (!finite(x))
202 #elif defined(__VMS)
203 #define IS_INF_OR_NAN(x) (!finite(x))
204 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
205 #define IS_INF_OR_NAN(x) (!isfinite(x))
206 #else
207 #define IS_INF_OR_NAN(x) (!finite(x))
208 #endif
209
210
211 /***
212 *** IS_NEGATIVE: test if float is negative
213 ***/
214 #if defined(USE_IEEE)
215 static INLINE int GET_FLOAT_BITS( float x )
216 {
217 fi_type fi;
218 fi.f = x;
219 return fi.i;
220 }
221 #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
222 #else
223 #define IS_NEGATIVE(x) (x < 0.0F)
224 #endif
225
226
227 /***
228 *** DIFFERENT_SIGNS: test if two floats have opposite signs
229 ***/
230 #if defined(USE_IEEE)
231 #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
232 #else
233 /* Could just use (x*y<0) except for the flatshading requirements.
234 * Maybe there's a better way?
235 */
236 #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
237 #endif
238
239
240 /***
241 *** CEILF: ceiling of float
242 *** FLOORF: floor of float
243 *** FABSF: absolute value of float
244 *** LOGF: the natural logarithm (base e) of the value
245 *** EXPF: raise e to the value
246 *** LDEXPF: multiply value by an integral power of two
247 *** FREXPF: extract mantissa and exponent from value
248 ***/
249 #if defined(__gnu_linux__)
250 /* C99 functions */
251 #define CEILF(x) ceilf(x)
252 #define FLOORF(x) floorf(x)
253 #define FABSF(x) fabsf(x)
254 #define LOGF(x) logf(x)
255 #define EXPF(x) expf(x)
256 #define LDEXPF(x,y) ldexpf(x,y)
257 #define FREXPF(x,y) frexpf(x,y)
258 #else
259 #define CEILF(x) ((GLfloat) ceil(x))
260 #define FLOORF(x) ((GLfloat) floor(x))
261 #define FABSF(x) ((GLfloat) fabs(x))
262 #define LOGF(x) ((GLfloat) log(x))
263 #define EXPF(x) ((GLfloat) exp(x))
264 #define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
265 #define FREXPF(x,y) ((GLfloat) frexp(x,y))
266 #endif
267
268
269 /***
270 *** IROUND: return (as an integer) float rounded to nearest integer
271 ***/
272 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
273 static INLINE int iround(float f)
274 {
275 int r;
276 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
277 return r;
278 }
279 #define IROUND(x) iround(x)
280 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
281 static INLINE int iround(float f)
282 {
283 int r;
284 _asm {
285 fld f
286 fistp r
287 }
288 return r;
289 }
290 #define IROUND(x) iround(x)
291 #elif defined(__WATCOMC__) && defined(__386__)
292 long iround(float f);
293 #pragma aux iround = \
294 "push eax" \
295 "fistp dword ptr [esp]" \
296 "pop eax" \
297 parm [8087] \
298 value [eax] \
299 modify exact [eax];
300 #define IROUND(x) iround(x)
301 #else
302 #define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
303 #endif
304
305 #define IROUND64(f) ((GLint64) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
306
307 /***
308 *** IROUND_POS: return (as an integer) positive float rounded to nearest int
309 ***/
310 #ifdef DEBUG
311 #define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
312 #else
313 #define IROUND_POS(f) (IROUND(f))
314 #endif
315
316
317 /***
318 *** IFLOOR: return (as an integer) floor of float
319 ***/
320 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
321 /*
322 * IEEE floor for computers that round to nearest or even.
323 * 'f' must be between -4194304 and 4194303.
324 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
325 * but uses some IEEE specific tricks for better speed.
326 * Contributed by Josh Vanderhoof
327 */
328 static INLINE int ifloor(float f)
329 {
330 int ai, bi;
331 double af, bf;
332 af = (3 << 22) + 0.5 + (double)f;
333 bf = (3 << 22) + 0.5 - (double)f;
334 /* GCC generates an extra fstp/fld without this. */
335 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
336 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
337 return (ai - bi) >> 1;
338 }
339 #define IFLOOR(x) ifloor(x)
340 #elif defined(USE_IEEE)
341 static INLINE int ifloor(float f)
342 {
343 int ai, bi;
344 double af, bf;
345 fi_type u;
346
347 af = (3 << 22) + 0.5 + (double)f;
348 bf = (3 << 22) + 0.5 - (double)f;
349 u.f = (float) af; ai = u.i;
350 u.f = (float) bf; bi = u.i;
351 return (ai - bi) >> 1;
352 }
353 #define IFLOOR(x) ifloor(x)
354 #else
355 static INLINE int ifloor(float f)
356 {
357 int i = IROUND(f);
358 return (i > f) ? i - 1 : i;
359 }
360 #define IFLOOR(x) ifloor(x)
361 #endif
362
363
364 /***
365 *** ICEIL: return (as an integer) ceiling of float
366 ***/
367 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
368 /*
369 * IEEE ceil for computers that round to nearest or even.
370 * 'f' must be between -4194304 and 4194303.
371 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
372 * but uses some IEEE specific tricks for better speed.
373 * Contributed by Josh Vanderhoof
374 */
375 static INLINE int iceil(float f)
376 {
377 int ai, bi;
378 double af, bf;
379 af = (3 << 22) + 0.5 + (double)f;
380 bf = (3 << 22) + 0.5 - (double)f;
381 /* GCC generates an extra fstp/fld without this. */
382 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
383 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
384 return (ai - bi + 1) >> 1;
385 }
386 #define ICEIL(x) iceil(x)
387 #elif defined(USE_IEEE)
388 static INLINE int iceil(float f)
389 {
390 int ai, bi;
391 double af, bf;
392 fi_type u;
393 af = (3 << 22) + 0.5 + (double)f;
394 bf = (3 << 22) + 0.5 - (double)f;
395 u.f = (float) af; ai = u.i;
396 u.f = (float) bf; bi = u.i;
397 return (ai - bi + 1) >> 1;
398 }
399 #define ICEIL(x) iceil(x)
400 #else
401 static INLINE int iceil(float f)
402 {
403 int i = IROUND(f);
404 return (i < f) ? i + 1 : i;
405 }
406 #define ICEIL(x) iceil(x)
407 #endif
408
409
410 /**
411 * Is x a power of two?
412 */
413 static INLINE int
414 _mesa_is_pow_two(int x)
415 {
416 return !(x & (x - 1));
417 }
418
419 /**
420 * Round given integer to next higer power of two
421 * If X is zero result is undefined.
422 *
423 * Source for the fallback implementation is
424 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
425 * http://graphics.stanford.edu/~seander/bithacks.html
426 *
427 * When using builtin function have to do some work
428 * for case when passed values 1 to prevent hiting
429 * undefined result from __builtin_clz. Undefined
430 * results would be different depending on optimization
431 * level used for build.
432 */
433 static INLINE int32_t
434 _mesa_next_pow_two_32(uint32_t x)
435 {
436 #if defined(__GNUC__) && \
437 ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
438 uint32_t y = (x != 1);
439 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
440 #else
441 x--;
442 x |= x >> 1;
443 x |= x >> 2;
444 x |= x >> 4;
445 x |= x >> 8;
446 x |= x >> 16;
447 x++;
448 return x;
449 #endif
450 }
451
452 static INLINE int64_t
453 _mesa_next_pow_two_64(uint64_t x)
454 {
455 #if defined(__GNUC__) && \
456 ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4)
457 uint64_t y = (x != 1);
458 if (sizeof(x) == sizeof(long))
459 return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
460 else
461 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
462 #else
463 x--;
464 x |= x >> 1;
465 x |= x >> 2;
466 x |= x >> 4;
467 x |= x >> 8;
468 x |= x >> 16;
469 x |= x >> 32;
470 x++;
471 return x;
472 #endif
473 }
474
475
476 /**
477 * Return 1 if this is a little endian machine, 0 if big endian.
478 */
479 static INLINE GLboolean
480 _mesa_little_endian(void)
481 {
482 const GLuint ui = 1; /* intentionally not static */
483 return *((const GLubyte *) &ui);
484 }
485
486
487
488 /**********************************************************************
489 * Functions
490 */
491
492 extern void *
493 _mesa_align_malloc( size_t bytes, unsigned long alignment );
494
495 extern void *
496 _mesa_align_calloc( size_t bytes, unsigned long alignment );
497
498 extern void
499 _mesa_align_free( void *ptr );
500
501 extern void *
502 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
503 unsigned long alignment);
504
505 extern void *
506 _mesa_exec_malloc( GLuint size );
507
508 extern void
509 _mesa_exec_free( void *addr );
510
511 extern void *
512 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
513
514 extern void
515 _mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
516
517 extern double
518 _mesa_sqrtd(double x);
519
520 extern float
521 _mesa_sqrtf(float x);
522
523 extern float
524 _mesa_inv_sqrtf(float x);
525
526 extern void
527 _mesa_init_sqrt_table(void);
528
529 extern int
530 _mesa_ffs(int32_t i);
531
532 extern int
533 _mesa_ffsll(int64_t i);
534
535 extern unsigned int
536 _mesa_bitcount(unsigned int n);
537
538 extern GLhalfARB
539 _mesa_float_to_half(float f);
540
541 extern float
542 _mesa_half_to_float(GLhalfARB h);
543
544
545 extern void *
546 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
547 int (*compar)(const void *, const void *) );
548
549 extern char *
550 _mesa_getenv( const char *var );
551
552 extern char *
553 _mesa_strdup( const char *s );
554
555 extern float
556 _mesa_strtof( const char *s, char **end );
557
558 extern unsigned int
559 _mesa_str_checksum(const char *str);
560
561 extern int
562 _mesa_snprintf( char *str, size_t size, const char *fmt, ... );
563
564 extern void
565 _mesa_warning( __GLcontext *gc, const char *fmtString, ... );
566
567 extern void
568 _mesa_problem( const __GLcontext *ctx, const char *fmtString, ... );
569
570 extern void
571 _mesa_error( __GLcontext *ctx, GLenum error, const char *fmtString, ... );
572
573 extern void
574 _mesa_debug( const __GLcontext *ctx, const char *fmtString, ... );
575
576 #ifdef __cplusplus
577 }
578 #endif
579
580
581 #endif /* IMPORTS_H */