Minor tweaks to help out at a driver level.
[mesa.git] / src / mesa / main / light.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 5.1
4 *
5 * Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #include "glheader.h"
27 #include "imports.h"
28 #include "context.h"
29 #include "enums.h"
30 #include "light.h"
31 #include "macros.h"
32 #include "simple_list.h"
33 #include "mtypes.h"
34 #include "math/m_matrix.h"
35
36
37 void GLAPIENTRY
38 _mesa_ShadeModel( GLenum mode )
39 {
40 GET_CURRENT_CONTEXT(ctx);
41 ASSERT_OUTSIDE_BEGIN_END(ctx);
42
43 if (MESA_VERBOSE & VERBOSE_API)
44 _mesa_debug(ctx, "glShadeModel %s\n", _mesa_lookup_enum_by_nr(mode));
45
46 if (mode != GL_FLAT && mode != GL_SMOOTH) {
47 _mesa_error( ctx, GL_INVALID_ENUM, "glShadeModel" );
48 return;
49 }
50
51 if (ctx->Light.ShadeModel == mode)
52 return;
53
54 FLUSH_VERTICES(ctx, _NEW_LIGHT);
55 ctx->Light.ShadeModel = mode;
56 ctx->_TriangleCaps ^= DD_FLATSHADE;
57 if (ctx->Driver.ShadeModel)
58 (*ctx->Driver.ShadeModel)( ctx, mode );
59 }
60
61
62 void GLAPIENTRY
63 _mesa_Lightf( GLenum light, GLenum pname, GLfloat param )
64 {
65 _mesa_Lightfv( light, pname, &param );
66 }
67
68
69 void GLAPIENTRY
70 _mesa_Lightfv( GLenum light, GLenum pname, const GLfloat *params )
71 {
72 GET_CURRENT_CONTEXT(ctx);
73 GLint i = (GLint) (light - GL_LIGHT0);
74 struct gl_light *l = &ctx->Light.Light[i];
75
76 if (i < 0 || i >= (GLint) ctx->Const.MaxLights) {
77 _mesa_error( ctx, GL_INVALID_ENUM, "glLight(light=0x%x)", light );
78 return;
79 }
80
81 switch (pname) {
82 case GL_AMBIENT:
83 if (TEST_EQ_4V(l->Ambient, params))
84 return;
85 FLUSH_VERTICES(ctx, _NEW_LIGHT);
86 COPY_4V( l->Ambient, params );
87 break;
88 case GL_DIFFUSE:
89 if (TEST_EQ_4V(l->Diffuse, params))
90 return;
91 FLUSH_VERTICES(ctx, _NEW_LIGHT);
92 COPY_4V( l->Diffuse, params );
93 break;
94 case GL_SPECULAR:
95 if (TEST_EQ_4V(l->Specular, params))
96 return;
97 FLUSH_VERTICES(ctx, _NEW_LIGHT);
98 COPY_4V( l->Specular, params );
99 break;
100 case GL_POSITION: {
101 GLfloat tmp[4];
102 /* transform position by ModelView matrix */
103 TRANSFORM_POINT( tmp, ctx->ModelviewMatrixStack.Top->m, params );
104 if (TEST_EQ_4V(l->EyePosition, tmp))
105 return;
106 FLUSH_VERTICES(ctx, _NEW_LIGHT);
107 COPY_4V(l->EyePosition, tmp);
108 if (l->EyePosition[3] != 0.0F)
109 l->_Flags |= LIGHT_POSITIONAL;
110 else
111 l->_Flags &= ~LIGHT_POSITIONAL;
112 break;
113 }
114 case GL_SPOT_DIRECTION: {
115 GLfloat tmp[4];
116 /* transform direction by inverse modelview */
117 if (ctx->ModelviewMatrixStack.Top->flags & MAT_DIRTY_INVERSE) {
118 _math_matrix_analyse( ctx->ModelviewMatrixStack.Top );
119 }
120 TRANSFORM_NORMAL( tmp, params, ctx->ModelviewMatrixStack.Top->inv );
121 if (TEST_EQ_3V(l->EyeDirection, tmp))
122 return;
123 FLUSH_VERTICES(ctx, _NEW_LIGHT);
124 COPY_3V(l->EyeDirection, tmp);
125 break;
126 }
127 case GL_SPOT_EXPONENT:
128 if (params[0]<0.0 || params[0]>ctx->Const.MaxSpotExponent) {
129 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
130 return;
131 }
132 if (l->SpotExponent == params[0])
133 return;
134 FLUSH_VERTICES(ctx, _NEW_LIGHT);
135 l->SpotExponent = params[0];
136 _mesa_invalidate_spot_exp_table( l );
137 break;
138 case GL_SPOT_CUTOFF:
139 if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) {
140 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
141 return;
142 }
143 if (l->SpotCutoff == params[0])
144 return;
145 FLUSH_VERTICES(ctx, _NEW_LIGHT);
146 l->SpotCutoff = params[0];
147 l->_CosCutoff = (GLfloat) _mesa_cos(params[0]*DEG2RAD);
148 if (l->_CosCutoff < 0)
149 l->_CosCutoff = 0;
150 if (l->SpotCutoff != 180.0F)
151 l->_Flags |= LIGHT_SPOT;
152 else
153 l->_Flags &= ~LIGHT_SPOT;
154 break;
155 case GL_CONSTANT_ATTENUATION:
156 if (params[0]<0.0) {
157 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
158 return;
159 }
160 if (l->ConstantAttenuation == params[0])
161 return;
162 FLUSH_VERTICES(ctx, _NEW_LIGHT);
163 l->ConstantAttenuation = params[0];
164 break;
165 case GL_LINEAR_ATTENUATION:
166 if (params[0]<0.0) {
167 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
168 return;
169 }
170 if (l->LinearAttenuation == params[0])
171 return;
172 FLUSH_VERTICES(ctx, _NEW_LIGHT);
173 l->LinearAttenuation = params[0];
174 break;
175 case GL_QUADRATIC_ATTENUATION:
176 if (params[0]<0.0) {
177 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
178 return;
179 }
180 if (l->QuadraticAttenuation == params[0])
181 return;
182 FLUSH_VERTICES(ctx, _NEW_LIGHT);
183 l->QuadraticAttenuation = params[0];
184 break;
185 default:
186 _mesa_error( ctx, GL_INVALID_ENUM, "glLight(pname=0x%x)", pname );
187 return;
188 }
189
190 if (ctx->Driver.Lightfv)
191 ctx->Driver.Lightfv( ctx, light, pname, params );
192 }
193
194
195 void GLAPIENTRY
196 _mesa_Lighti( GLenum light, GLenum pname, GLint param )
197 {
198 _mesa_Lightiv( light, pname, &param );
199 }
200
201
202 void GLAPIENTRY
203 _mesa_Lightiv( GLenum light, GLenum pname, const GLint *params )
204 {
205 GLfloat fparam[4];
206
207 switch (pname) {
208 case GL_AMBIENT:
209 case GL_DIFFUSE:
210 case GL_SPECULAR:
211 fparam[0] = INT_TO_FLOAT( params[0] );
212 fparam[1] = INT_TO_FLOAT( params[1] );
213 fparam[2] = INT_TO_FLOAT( params[2] );
214 fparam[3] = INT_TO_FLOAT( params[3] );
215 break;
216 case GL_POSITION:
217 fparam[0] = (GLfloat) params[0];
218 fparam[1] = (GLfloat) params[1];
219 fparam[2] = (GLfloat) params[2];
220 fparam[3] = (GLfloat) params[3];
221 break;
222 case GL_SPOT_DIRECTION:
223 fparam[0] = (GLfloat) params[0];
224 fparam[1] = (GLfloat) params[1];
225 fparam[2] = (GLfloat) params[2];
226 break;
227 case GL_SPOT_EXPONENT:
228 case GL_SPOT_CUTOFF:
229 case GL_CONSTANT_ATTENUATION:
230 case GL_LINEAR_ATTENUATION:
231 case GL_QUADRATIC_ATTENUATION:
232 fparam[0] = (GLfloat) params[0];
233 break;
234 default:
235 /* error will be caught later in gl_Lightfv */
236 ;
237 }
238
239 _mesa_Lightfv( light, pname, fparam );
240 }
241
242
243
244 void GLAPIENTRY
245 _mesa_GetLightfv( GLenum light, GLenum pname, GLfloat *params )
246 {
247 GET_CURRENT_CONTEXT(ctx);
248 GLint l = (GLint) (light - GL_LIGHT0);
249 ASSERT_OUTSIDE_BEGIN_END(ctx);
250
251 if (l < 0 || l >= (GLint) ctx->Const.MaxLights) {
252 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
253 return;
254 }
255
256 switch (pname) {
257 case GL_AMBIENT:
258 COPY_4V( params, ctx->Light.Light[l].Ambient );
259 break;
260 case GL_DIFFUSE:
261 COPY_4V( params, ctx->Light.Light[l].Diffuse );
262 break;
263 case GL_SPECULAR:
264 COPY_4V( params, ctx->Light.Light[l].Specular );
265 break;
266 case GL_POSITION:
267 COPY_4V( params, ctx->Light.Light[l].EyePosition );
268 break;
269 case GL_SPOT_DIRECTION:
270 COPY_3V( params, ctx->Light.Light[l].EyeDirection );
271 break;
272 case GL_SPOT_EXPONENT:
273 params[0] = ctx->Light.Light[l].SpotExponent;
274 break;
275 case GL_SPOT_CUTOFF:
276 params[0] = ctx->Light.Light[l].SpotCutoff;
277 break;
278 case GL_CONSTANT_ATTENUATION:
279 params[0] = ctx->Light.Light[l].ConstantAttenuation;
280 break;
281 case GL_LINEAR_ATTENUATION:
282 params[0] = ctx->Light.Light[l].LinearAttenuation;
283 break;
284 case GL_QUADRATIC_ATTENUATION:
285 params[0] = ctx->Light.Light[l].QuadraticAttenuation;
286 break;
287 default:
288 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
289 break;
290 }
291 }
292
293
294 void GLAPIENTRY
295 _mesa_GetLightiv( GLenum light, GLenum pname, GLint *params )
296 {
297 GET_CURRENT_CONTEXT(ctx);
298 GLint l = (GLint) (light - GL_LIGHT0);
299 ASSERT_OUTSIDE_BEGIN_END(ctx);
300
301 if (l < 0 || l >= (GLint) ctx->Const.MaxLights) {
302 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
303 return;
304 }
305
306 switch (pname) {
307 case GL_AMBIENT:
308 params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]);
309 params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]);
310 params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]);
311 params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]);
312 break;
313 case GL_DIFFUSE:
314 params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]);
315 params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]);
316 params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]);
317 params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]);
318 break;
319 case GL_SPECULAR:
320 params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]);
321 params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]);
322 params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]);
323 params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]);
324 break;
325 case GL_POSITION:
326 params[0] = (GLint) ctx->Light.Light[l].EyePosition[0];
327 params[1] = (GLint) ctx->Light.Light[l].EyePosition[1];
328 params[2] = (GLint) ctx->Light.Light[l].EyePosition[2];
329 params[3] = (GLint) ctx->Light.Light[l].EyePosition[3];
330 break;
331 case GL_SPOT_DIRECTION:
332 params[0] = (GLint) ctx->Light.Light[l].EyeDirection[0];
333 params[1] = (GLint) ctx->Light.Light[l].EyeDirection[1];
334 params[2] = (GLint) ctx->Light.Light[l].EyeDirection[2];
335 break;
336 case GL_SPOT_EXPONENT:
337 params[0] = (GLint) ctx->Light.Light[l].SpotExponent;
338 break;
339 case GL_SPOT_CUTOFF:
340 params[0] = (GLint) ctx->Light.Light[l].SpotCutoff;
341 break;
342 case GL_CONSTANT_ATTENUATION:
343 params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation;
344 break;
345 case GL_LINEAR_ATTENUATION:
346 params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation;
347 break;
348 case GL_QUADRATIC_ATTENUATION:
349 params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation;
350 break;
351 default:
352 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
353 break;
354 }
355 }
356
357
358
359 /**********************************************************************/
360 /*** Light Model ***/
361 /**********************************************************************/
362
363
364 void GLAPIENTRY
365 _mesa_LightModelfv( GLenum pname, const GLfloat *params )
366 {
367 GLenum newenum;
368 GLboolean newbool;
369 GET_CURRENT_CONTEXT(ctx);
370 ASSERT_OUTSIDE_BEGIN_END(ctx);
371
372 switch (pname) {
373 case GL_LIGHT_MODEL_AMBIENT:
374 if (TEST_EQ_4V( ctx->Light.Model.Ambient, params ))
375 return;
376 FLUSH_VERTICES(ctx, _NEW_LIGHT);
377 COPY_4V( ctx->Light.Model.Ambient, params );
378 break;
379 case GL_LIGHT_MODEL_LOCAL_VIEWER:
380 newbool = (params[0]!=0.0);
381 if (ctx->Light.Model.LocalViewer == newbool)
382 return;
383 FLUSH_VERTICES(ctx, _NEW_LIGHT);
384 ctx->Light.Model.LocalViewer = newbool;
385 break;
386 case GL_LIGHT_MODEL_TWO_SIDE:
387 newbool = (params[0]!=0.0);
388 if (ctx->Light.Model.TwoSide == newbool)
389 return;
390 FLUSH_VERTICES(ctx, _NEW_LIGHT);
391 ctx->Light.Model.TwoSide = newbool;
392
393 if (ctx->Light.Enabled && ctx->Light.Model.TwoSide)
394 ctx->_TriangleCaps |= DD_TRI_LIGHT_TWOSIDE;
395 else
396 ctx->_TriangleCaps &= ~DD_TRI_LIGHT_TWOSIDE;
397 break;
398 case GL_LIGHT_MODEL_COLOR_CONTROL:
399 if (params[0] == (GLfloat) GL_SINGLE_COLOR)
400 newenum = GL_SINGLE_COLOR;
401 else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR)
402 newenum = GL_SEPARATE_SPECULAR_COLOR;
403 else {
404 _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(param=0x0%x)",
405 (GLint) params[0] );
406 return;
407 }
408 if (ctx->Light.Model.ColorControl == newenum)
409 return;
410 FLUSH_VERTICES(ctx, _NEW_LIGHT);
411 ctx->Light.Model.ColorControl = newenum;
412
413 if ((ctx->Light.Enabled &&
414 ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR)
415 || ctx->Fog.ColorSumEnabled)
416 ctx->_TriangleCaps |= DD_SEPARATE_SPECULAR;
417 else
418 ctx->_TriangleCaps &= ~DD_SEPARATE_SPECULAR;
419
420 break;
421 default:
422 _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(pname=0x%x)", pname );
423 break;
424 }
425
426 if (ctx->Driver.LightModelfv)
427 ctx->Driver.LightModelfv( ctx, pname, params );
428 }
429
430
431 void GLAPIENTRY
432 _mesa_LightModeliv( GLenum pname, const GLint *params )
433 {
434 GLfloat fparam[4];
435
436 switch (pname) {
437 case GL_LIGHT_MODEL_AMBIENT:
438 fparam[0] = INT_TO_FLOAT( params[0] );
439 fparam[1] = INT_TO_FLOAT( params[1] );
440 fparam[2] = INT_TO_FLOAT( params[2] );
441 fparam[3] = INT_TO_FLOAT( params[3] );
442 break;
443 case GL_LIGHT_MODEL_LOCAL_VIEWER:
444 case GL_LIGHT_MODEL_TWO_SIDE:
445 case GL_LIGHT_MODEL_COLOR_CONTROL:
446 fparam[0] = (GLfloat) params[0];
447 break;
448 default:
449 /* Error will be caught later in gl_LightModelfv */
450 ;
451 }
452 _mesa_LightModelfv( pname, fparam );
453 }
454
455
456 void GLAPIENTRY
457 _mesa_LightModeli( GLenum pname, GLint param )
458 {
459 _mesa_LightModeliv( pname, &param );
460 }
461
462
463 void GLAPIENTRY
464 _mesa_LightModelf( GLenum pname, GLfloat param )
465 {
466 _mesa_LightModelfv( pname, &param );
467 }
468
469
470
471 /********** MATERIAL **********/
472
473
474 /*
475 * Given a face and pname value (ala glColorMaterial), compute a bitmask
476 * of the targeted material values.
477 */
478 GLuint
479 _mesa_material_bitmask( GLcontext *ctx, GLenum face, GLenum pname,
480 GLuint legal, const char *where )
481 {
482 GLuint bitmask = 0;
483
484 /* Make a bitmask indicating what material attribute(s) we're updating */
485 switch (pname) {
486 case GL_EMISSION:
487 bitmask |= MAT_BIT_FRONT_EMISSION | MAT_BIT_BACK_EMISSION;
488 break;
489 case GL_AMBIENT:
490 bitmask |= MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT;
491 break;
492 case GL_DIFFUSE:
493 bitmask |= MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE;
494 break;
495 case GL_SPECULAR:
496 bitmask |= MAT_BIT_FRONT_SPECULAR | MAT_BIT_BACK_SPECULAR;
497 break;
498 case GL_SHININESS:
499 bitmask |= MAT_BIT_FRONT_SHININESS | MAT_BIT_BACK_SHININESS;
500 break;
501 case GL_AMBIENT_AND_DIFFUSE:
502 bitmask |= MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT;
503 bitmask |= MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE;
504 break;
505 case GL_COLOR_INDEXES:
506 bitmask |= MAT_BIT_FRONT_INDEXES | MAT_BIT_BACK_INDEXES;
507 break;
508 default:
509 _mesa_error( ctx, GL_INVALID_ENUM, where );
510 return 0;
511 }
512
513 if (face==GL_FRONT) {
514 bitmask &= FRONT_MATERIAL_BITS;
515 }
516 else if (face==GL_BACK) {
517 bitmask &= BACK_MATERIAL_BITS;
518 }
519 else if (face != GL_FRONT_AND_BACK) {
520 _mesa_error( ctx, GL_INVALID_ENUM, where );
521 return 0;
522 }
523
524 if (bitmask & ~legal) {
525 _mesa_error( ctx, GL_INVALID_ENUM, where );
526 return 0;
527 }
528
529 return bitmask;
530 }
531
532
533
534 /* Perform a straight copy between materials.
535 */
536 void
537 _mesa_copy_materials( struct gl_material *dst,
538 const struct gl_material *src,
539 GLuint bitmask )
540 {
541 int i;
542
543 for (i = 0 ; i < MAT_ATTRIB_MAX ; i++)
544 if (bitmask & (1<<i))
545 COPY_4FV( dst->Attrib[i], src->Attrib[i] );
546 }
547
548
549
550 /* Update derived values following a change in ctx->Light.Material
551 */
552 void
553 _mesa_update_material( GLcontext *ctx, GLuint bitmask )
554 {
555 struct gl_light *light, *list = &ctx->Light.EnabledList;
556 GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
557
558 if (MESA_VERBOSE&VERBOSE_IMMEDIATE)
559 _mesa_debug(ctx, "_mesa_update_material, mask 0x%x\n", bitmask);
560
561 if (!bitmask)
562 return;
563
564 /* update material ambience */
565 if (bitmask & MAT_BIT_FRONT_AMBIENT) {
566 foreach (light, list) {
567 SCALE_3V( light->_MatAmbient[0], light->Ambient,
568 mat[MAT_ATTRIB_FRONT_AMBIENT]);
569 }
570 }
571
572 if (bitmask & MAT_BIT_BACK_AMBIENT) {
573 foreach (light, list) {
574 SCALE_3V( light->_MatAmbient[1], light->Ambient,
575 mat[MAT_ATTRIB_BACK_AMBIENT]);
576 }
577 }
578
579 /* update BaseColor = emission + scene's ambience * material's ambience */
580 if (bitmask & (MAT_BIT_FRONT_EMISSION | MAT_BIT_FRONT_AMBIENT)) {
581 COPY_3V( ctx->Light._BaseColor[0], mat[MAT_ATTRIB_FRONT_EMISSION] );
582 ACC_SCALE_3V( ctx->Light._BaseColor[0], mat[MAT_ATTRIB_FRONT_AMBIENT],
583 ctx->Light.Model.Ambient );
584 }
585
586 if (bitmask & (MAT_BIT_BACK_EMISSION | MAT_BIT_BACK_AMBIENT)) {
587 COPY_3V( ctx->Light._BaseColor[1], mat[MAT_ATTRIB_BACK_EMISSION] );
588 ACC_SCALE_3V( ctx->Light._BaseColor[1], mat[MAT_ATTRIB_BACK_AMBIENT],
589 ctx->Light.Model.Ambient );
590 }
591
592 /* update material diffuse values */
593 if (bitmask & MAT_BIT_FRONT_DIFFUSE) {
594 foreach (light, list) {
595 SCALE_3V( light->_MatDiffuse[0], light->Diffuse,
596 mat[MAT_ATTRIB_FRONT_DIFFUSE] );
597 }
598 }
599
600 if (bitmask & MAT_BIT_BACK_DIFFUSE) {
601 foreach (light, list) {
602 SCALE_3V( light->_MatDiffuse[1], light->Diffuse,
603 mat[MAT_ATTRIB_BACK_DIFFUSE] );
604 }
605 }
606
607 /* update material specular values */
608 if (bitmask & MAT_BIT_FRONT_SPECULAR) {
609 foreach (light, list) {
610 SCALE_3V( light->_MatSpecular[0], light->Specular,
611 mat[MAT_ATTRIB_FRONT_SPECULAR]);
612 }
613 }
614
615 if (bitmask & MAT_BIT_BACK_SPECULAR) {
616 foreach (light, list) {
617 SCALE_3V( light->_MatSpecular[1], light->Specular,
618 mat[MAT_ATTRIB_BACK_SPECULAR]);
619 }
620 }
621
622 if (bitmask & MAT_BIT_FRONT_SHININESS) {
623 _mesa_invalidate_shine_table( ctx, 0 );
624 }
625
626 if (bitmask & MAT_BIT_BACK_SHININESS) {
627 _mesa_invalidate_shine_table( ctx, 1 );
628 }
629 }
630
631
632 /*
633 * Update the current materials from the given rgba color
634 * according to the bitmask in ColorMaterialBitmask, which is
635 * set by glColorMaterial().
636 */
637 void
638 _mesa_update_color_material( GLcontext *ctx, const GLfloat color[4] )
639 {
640 GLuint bitmask = ctx->Light.ColorMaterialBitmask;
641 struct gl_material *mat = &ctx->Light.Material;
642 int i;
643
644 for (i = 0 ; i < MAT_ATTRIB_MAX ; i++)
645 if (bitmask & (1<<i))
646 COPY_4FV( mat->Attrib[i], color );
647
648 _mesa_update_material( ctx, bitmask );
649 }
650
651
652 void GLAPIENTRY
653 _mesa_ColorMaterial( GLenum face, GLenum mode )
654 {
655 GET_CURRENT_CONTEXT(ctx);
656 GLuint bitmask;
657 GLuint legal = (MAT_BIT_FRONT_EMISSION | MAT_BIT_BACK_EMISSION |
658 MAT_BIT_FRONT_SPECULAR | MAT_BIT_BACK_SPECULAR |
659 MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE |
660 MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT);
661 ASSERT_OUTSIDE_BEGIN_END(ctx);
662
663 if (MESA_VERBOSE&VERBOSE_API)
664 _mesa_debug(ctx, "glColorMaterial %s %s\n",
665 _mesa_lookup_enum_by_nr(face),
666 _mesa_lookup_enum_by_nr(mode));
667
668 bitmask = _mesa_material_bitmask(ctx, face, mode, legal, "glColorMaterial");
669
670 if (ctx->Light.ColorMaterialBitmask == bitmask &&
671 ctx->Light.ColorMaterialFace == face &&
672 ctx->Light.ColorMaterialMode == mode)
673 return;
674
675 FLUSH_VERTICES(ctx, _NEW_LIGHT);
676 ctx->Light.ColorMaterialBitmask = bitmask;
677 ctx->Light.ColorMaterialFace = face;
678 ctx->Light.ColorMaterialMode = mode;
679
680 if (ctx->Light.ColorMaterialEnabled) {
681 FLUSH_CURRENT( ctx, 0 );
682 _mesa_update_color_material(ctx,ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
683 }
684
685 if (ctx->Driver.ColorMaterial)
686 (*ctx->Driver.ColorMaterial)( ctx, face, mode );
687 }
688
689
690 void GLAPIENTRY
691 _mesa_GetMaterialfv( GLenum face, GLenum pname, GLfloat *params )
692 {
693 GET_CURRENT_CONTEXT(ctx);
694 GLuint f;
695 GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
696 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */
697
698 if (face==GL_FRONT) {
699 f = 0;
700 }
701 else if (face==GL_BACK) {
702 f = 1;
703 }
704 else {
705 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" );
706 return;
707 }
708
709 switch (pname) {
710 case GL_AMBIENT:
711 COPY_4FV( params, mat[MAT_ATTRIB_AMBIENT(f)] );
712 break;
713 case GL_DIFFUSE:
714 COPY_4FV( params, mat[MAT_ATTRIB_DIFFUSE(f)] );
715 break;
716 case GL_SPECULAR:
717 COPY_4FV( params, mat[MAT_ATTRIB_SPECULAR(f)] );
718 break;
719 case GL_EMISSION:
720 COPY_4FV( params, mat[MAT_ATTRIB_EMISSION(f)] );
721 break;
722 case GL_SHININESS:
723 *params = mat[MAT_ATTRIB_SHININESS(f)][0];
724 break;
725 case GL_COLOR_INDEXES:
726 params[0] = mat[MAT_ATTRIB_INDEXES(f)][0];
727 params[1] = mat[MAT_ATTRIB_INDEXES(f)][1];
728 params[2] = mat[MAT_ATTRIB_INDEXES(f)][2];
729 break;
730 default:
731 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
732 }
733 }
734
735
736 void GLAPIENTRY
737 _mesa_GetMaterialiv( GLenum face, GLenum pname, GLint *params )
738 {
739 GET_CURRENT_CONTEXT(ctx);
740 GLuint f;
741 GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
742 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */
743
744 if (face==GL_FRONT) {
745 f = 0;
746 }
747 else if (face==GL_BACK) {
748 f = 1;
749 }
750 else {
751 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" );
752 return;
753 }
754 switch (pname) {
755 case GL_AMBIENT:
756 params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][0] );
757 params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][1] );
758 params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][2] );
759 params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][3] );
760 break;
761 case GL_DIFFUSE:
762 params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][0] );
763 params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][1] );
764 params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][2] );
765 params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][3] );
766 break;
767 case GL_SPECULAR:
768 params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][0] );
769 params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][1] );
770 params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][2] );
771 params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][3] );
772 break;
773 case GL_EMISSION:
774 params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][0] );
775 params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][1] );
776 params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][2] );
777 params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][3] );
778 break;
779 case GL_SHININESS:
780 *params = IROUND( mat[MAT_ATTRIB_SHININESS(f)][0] );
781 break;
782 case GL_COLOR_INDEXES:
783 params[0] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][0] );
784 params[1] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][1] );
785 params[2] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][2] );
786 break;
787 default:
788 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
789 }
790 }
791
792
793
794 /**********************************************************************/
795 /***** Lighting computation *****/
796 /**********************************************************************/
797
798
799 /*
800 * Notes:
801 * When two-sided lighting is enabled we compute the color (or index)
802 * for both the front and back side of the primitive. Then, when the
803 * orientation of the facet is later learned, we can determine which
804 * color (or index) to use for rendering.
805 *
806 * KW: We now know orientation in advance and only shade for
807 * the side or sides which are actually required.
808 *
809 * Variables:
810 * n = normal vector
811 * V = vertex position
812 * P = light source position
813 * Pe = (0,0,0,1)
814 *
815 * Precomputed:
816 * IF P[3]==0 THEN
817 * // light at infinity
818 * IF local_viewer THEN
819 * _VP_inf_norm = unit vector from V to P // Precompute
820 * ELSE
821 * // eye at infinity
822 * _h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute
823 * ENDIF
824 * ENDIF
825 *
826 * Functions:
827 * Normalize( v ) = normalized vector v
828 * Magnitude( v ) = length of vector v
829 */
830
831
832
833 /*
834 * Whenever the spotlight exponent for a light changes we must call
835 * this function to recompute the exponent lookup table.
836 */
837 void
838 _mesa_invalidate_spot_exp_table( struct gl_light *l )
839 {
840 l->_SpotExpTable[0][0] = -1;
841 }
842
843
844 static void
845 validate_spot_exp_table( struct gl_light *l )
846 {
847 GLint i;
848 GLdouble exponent = l->SpotExponent;
849 GLdouble tmp = 0;
850 GLint clamp = 0;
851
852 l->_SpotExpTable[0][0] = 0.0;
853
854 for (i = EXP_TABLE_SIZE - 1; i > 0 ;i--) {
855 if (clamp == 0) {
856 tmp = _mesa_pow(i / (GLdouble) (EXP_TABLE_SIZE - 1), exponent);
857 if (tmp < FLT_MIN * 100.0) {
858 tmp = 0.0;
859 clamp = 1;
860 }
861 }
862 l->_SpotExpTable[i][0] = (GLfloat) tmp;
863 }
864 for (i = 0; i < EXP_TABLE_SIZE - 1; i++) {
865 l->_SpotExpTable[i][1] = (l->_SpotExpTable[i+1][0] -
866 l->_SpotExpTable[i][0]);
867 }
868 l->_SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0;
869 }
870
871
872
873 /* Calculate a new shine table. Doing this here saves a branch in
874 * lighting, and the cost of doing it early may be partially offset
875 * by keeping a MRU cache of shine tables for various shine values.
876 */
877 void
878 _mesa_invalidate_shine_table( GLcontext *ctx, GLuint side )
879 {
880 ASSERT(side < 2);
881 if (ctx->_ShineTable[side])
882 ctx->_ShineTable[side]->refcount--;
883 ctx->_ShineTable[side] = 0;
884 }
885
886
887 static void
888 validate_shine_table( GLcontext *ctx, GLuint side, GLfloat shininess )
889 {
890 struct gl_shine_tab *list = ctx->_ShineTabList;
891 struct gl_shine_tab *s;
892
893 ASSERT(side < 2);
894
895 foreach(s, list)
896 if ( s->shininess == shininess )
897 break;
898
899 if (s == list) {
900 GLint j;
901 GLfloat *m;
902
903 foreach(s, list)
904 if (s->refcount == 0)
905 break;
906
907 m = s->tab;
908 m[0] = 0.0;
909 if (shininess == 0.0) {
910 for (j = 1 ; j <= SHINE_TABLE_SIZE ; j++)
911 m[j] = 1.0;
912 }
913 else {
914 for (j = 1 ; j < SHINE_TABLE_SIZE ; j++) {
915 GLdouble t, x = j / (GLfloat) (SHINE_TABLE_SIZE - 1);
916 if (x < 0.005) /* underflow check */
917 x = 0.005;
918 t = _mesa_pow(x, shininess);
919 if (t > 1e-20)
920 m[j] = (GLfloat) t;
921 else
922 m[j] = 0.0;
923 }
924 m[SHINE_TABLE_SIZE] = 1.0;
925 }
926
927 s->shininess = shininess;
928 }
929
930 if (ctx->_ShineTable[side])
931 ctx->_ShineTable[side]->refcount--;
932
933 ctx->_ShineTable[side] = s;
934 move_to_tail( list, s );
935 s->refcount++;
936 }
937
938
939 void
940 _mesa_validate_all_lighting_tables( GLcontext *ctx )
941 {
942 GLuint i;
943 GLfloat shininess;
944
945 shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
946 if (!ctx->_ShineTable[0] || ctx->_ShineTable[0]->shininess != shininess)
947 validate_shine_table( ctx, 0, shininess );
948
949 shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_SHININESS][0];
950 if (!ctx->_ShineTable[1] || ctx->_ShineTable[1]->shininess != shininess)
951 validate_shine_table( ctx, 1, shininess );
952
953 for (i = 0 ; i < MAX_LIGHTS ; i++)
954 if (ctx->Light.Light[i]._SpotExpTable[0][0] == -1)
955 validate_spot_exp_table( &ctx->Light.Light[i] );
956 }
957
958
959
960 /*
961 * Examine current lighting parameters to determine if the optimized lighting
962 * function can be used.
963 * Also, precompute some lighting values such as the products of light
964 * source and material ambient, diffuse and specular coefficients.
965 */
966 void
967 _mesa_update_lighting( GLcontext *ctx )
968 {
969 struct gl_light *light;
970 ctx->Light._NeedEyeCoords = 0;
971 ctx->Light._Flags = 0;
972
973 if (!ctx->Light.Enabled)
974 return;
975
976 foreach(light, &ctx->Light.EnabledList) {
977 ctx->Light._Flags |= light->_Flags;
978 }
979
980 ctx->Light._NeedVertices =
981 ((ctx->Light._Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) ||
982 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR ||
983 ctx->Light.Model.LocalViewer);
984
985 ctx->Light._NeedEyeCoords = ((ctx->Light._Flags & LIGHT_POSITIONAL) ||
986 ctx->Light.Model.LocalViewer);
987
988
989
990 /* XXX: This test is overkill & needs to be fixed both for software and
991 * hardware t&l drivers. The above should be sufficient & should
992 * be tested to verify this.
993 */
994 if (ctx->Light._NeedVertices)
995 ctx->Light._NeedEyeCoords = GL_TRUE;
996
997
998 /* Precompute some shading values. Although we reference
999 * Light.Material here, we can get away without flushing
1000 * FLUSH_UPDATE_CURRENT, as when any outstanding material changes
1001 * are flushed, they will update the derived state at that time.
1002 */
1003 if (ctx->Visual.rgbMode) {
1004 if (ctx->Light.Model.TwoSide)
1005 _mesa_update_material( ctx,
1006 MAT_BIT_FRONT_EMISSION |
1007 MAT_BIT_FRONT_AMBIENT |
1008 MAT_BIT_FRONT_DIFFUSE |
1009 MAT_BIT_FRONT_SPECULAR |
1010 MAT_BIT_BACK_EMISSION |
1011 MAT_BIT_BACK_AMBIENT |
1012 MAT_BIT_BACK_DIFFUSE |
1013 MAT_BIT_BACK_SPECULAR);
1014 else
1015 _mesa_update_material( ctx,
1016 MAT_BIT_FRONT_EMISSION |
1017 MAT_BIT_FRONT_AMBIENT |
1018 MAT_BIT_FRONT_DIFFUSE |
1019 MAT_BIT_FRONT_SPECULAR);
1020 }
1021 else {
1022 static const GLfloat ci[3] = { .30F, .59F, .11F };
1023 foreach(light, &ctx->Light.EnabledList) {
1024 light->_dli = DOT3(ci, light->Diffuse);
1025 light->_sli = DOT3(ci, light->Specular);
1026 }
1027 }
1028 }
1029
1030
1031 /* _NEW_MODELVIEW
1032 * _NEW_LIGHT
1033 * _TNL_NEW_NEED_EYE_COORDS
1034 *
1035 * Update on (_NEW_MODELVIEW | _NEW_LIGHT) when lighting is enabled.
1036 * Also update on lighting space changes.
1037 */
1038 static void
1039 compute_light_positions( GLcontext *ctx )
1040 {
1041 struct gl_light *light;
1042 static const GLfloat eye_z[3] = { 0, 0, 1 };
1043
1044 if (!ctx->Light.Enabled)
1045 return;
1046
1047 if (ctx->_NeedEyeCoords) {
1048 COPY_3V( ctx->_EyeZDir, eye_z );
1049 }
1050 else {
1051 TRANSFORM_NORMAL( ctx->_EyeZDir, eye_z, ctx->ModelviewMatrixStack.Top->m );
1052 }
1053
1054 foreach (light, &ctx->Light.EnabledList) {
1055
1056 if (ctx->_NeedEyeCoords) {
1057 COPY_4FV( light->_Position, light->EyePosition );
1058 }
1059 else {
1060 TRANSFORM_POINT( light->_Position, ctx->ModelviewMatrixStack.Top->inv,
1061 light->EyePosition );
1062 }
1063
1064 if (!(light->_Flags & LIGHT_POSITIONAL)) {
1065 /* VP (VP) = Normalize( Position ) */
1066 COPY_3V( light->_VP_inf_norm, light->_Position );
1067 NORMALIZE_3FV( light->_VP_inf_norm );
1068
1069 if (!ctx->Light.Model.LocalViewer) {
1070 /* _h_inf_norm = Normalize( V_to_P + <0,0,1> ) */
1071 ADD_3V( light->_h_inf_norm, light->_VP_inf_norm, ctx->_EyeZDir);
1072 NORMALIZE_3FV( light->_h_inf_norm );
1073 }
1074 light->_VP_inf_spot_attenuation = 1.0;
1075 }
1076
1077 if (light->_Flags & LIGHT_SPOT) {
1078 if (ctx->_NeedEyeCoords) {
1079 COPY_3V( light->_NormDirection, light->EyeDirection );
1080 }
1081 else {
1082 TRANSFORM_NORMAL( light->_NormDirection,
1083 light->EyeDirection,
1084 ctx->ModelviewMatrixStack.Top->m);
1085 }
1086
1087 NORMALIZE_3FV( light->_NormDirection );
1088
1089 if (!(light->_Flags & LIGHT_POSITIONAL)) {
1090 GLfloat PV_dot_dir = - DOT3(light->_VP_inf_norm,
1091 light->_NormDirection);
1092
1093 if (PV_dot_dir > light->_CosCutoff) {
1094 double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
1095 int k = (int) x;
1096 light->_VP_inf_spot_attenuation =
1097 (GLfloat) (light->_SpotExpTable[k][0] +
1098 (x-k)*light->_SpotExpTable[k][1]);
1099 }
1100 else {
1101 light->_VP_inf_spot_attenuation = 0;
1102 }
1103 }
1104 }
1105 }
1106 }
1107
1108
1109
1110 static void
1111 update_modelview_scale( GLcontext *ctx )
1112 {
1113 ctx->_ModelViewInvScale = 1.0F;
1114 if (ctx->ModelviewMatrixStack.Top->flags & (MAT_FLAG_UNIFORM_SCALE |
1115 MAT_FLAG_GENERAL_SCALE |
1116 MAT_FLAG_GENERAL_3D |
1117 MAT_FLAG_GENERAL) ) {
1118 const GLfloat *m = ctx->ModelviewMatrixStack.Top->inv;
1119 GLfloat f = m[2] * m[2] + m[6] * m[6] + m[10] * m[10];
1120 if (f < 1e-12) f = 1.0;
1121 if (ctx->_NeedEyeCoords)
1122 ctx->_ModelViewInvScale = (GLfloat) INV_SQRTF(f);
1123 else
1124 ctx->_ModelViewInvScale = (GLfloat) SQRTF(f);
1125 }
1126 }
1127
1128
1129 /* Bring uptodate any state that relies on _NeedEyeCoords.
1130 */
1131 void
1132 _mesa_update_tnl_spaces( GLcontext *ctx, GLuint new_state )
1133 {
1134 const GLuint oldneedeyecoords = ctx->_NeedEyeCoords;
1135
1136 ctx->_NeedEyeCoords = 0;
1137
1138 if (ctx->_ForceEyeCoords ||
1139 (ctx->Texture._GenFlags & TEXGEN_NEED_EYE_COORD) ||
1140 ctx->Point._Attenuated ||
1141 ctx->Light._NeedEyeCoords)
1142 ctx->_NeedEyeCoords = 1;
1143
1144 if (ctx->Light.Enabled &&
1145 !TEST_MAT_FLAGS( ctx->ModelviewMatrixStack.Top,
1146 MAT_FLAGS_LENGTH_PRESERVING))
1147 ctx->_NeedEyeCoords = 1;
1148
1149
1150 /* Check if the truth-value interpretations of the bitfields have
1151 * changed:
1152 */
1153 if (oldneedeyecoords != ctx->_NeedEyeCoords) {
1154 /* Recalculate all state that depends on _NeedEyeCoords.
1155 */
1156 update_modelview_scale(ctx);
1157 compute_light_positions( ctx );
1158
1159 if (ctx->Driver.LightingSpaceChange)
1160 ctx->Driver.LightingSpaceChange( ctx );
1161 }
1162 else {
1163 GLuint new_state = ctx->NewState;
1164
1165 /* Recalculate that same state only if it has been invalidated
1166 * by other statechanges.
1167 */
1168 if (new_state & _NEW_MODELVIEW)
1169 update_modelview_scale(ctx);
1170
1171 if (new_state & (_NEW_LIGHT|_NEW_MODELVIEW))
1172 compute_light_positions( ctx );
1173 }
1174 }
1175
1176
1177 /* Drivers may need this if the hardware tnl unit doesn't support the
1178 * light-in-modelspace optimization. It's also useful for debugging.
1179 */
1180 void
1181 _mesa_allow_light_in_model( GLcontext *ctx, GLboolean flag )
1182 {
1183 ctx->_ForceEyeCoords = !flag;
1184 ctx->NewState |= _NEW_POINT; /* one of the bits from
1185 * _MESA_NEW_NEED_EYE_COORDS.
1186 */
1187 }
1188
1189
1190
1191 /**********************************************************************/
1192 /***** Initialization *****/
1193 /**********************************************************************/
1194
1195 /**
1196 * Initialize the n-th light data structure.
1197 *
1198 * \param l pointer to the gl_light structure to be initialized.
1199 * \param n number of the light.
1200 * \note The defaults for light 0 are different than the other lights.
1201 */
1202 static void
1203 init_light( struct gl_light *l, GLuint n )
1204 {
1205 make_empty_list( l );
1206
1207 ASSIGN_4V( l->Ambient, 0.0, 0.0, 0.0, 1.0 );
1208 if (n==0) {
1209 ASSIGN_4V( l->Diffuse, 1.0, 1.0, 1.0, 1.0 );
1210 ASSIGN_4V( l->Specular, 1.0, 1.0, 1.0, 1.0 );
1211 }
1212 else {
1213 ASSIGN_4V( l->Diffuse, 0.0, 0.0, 0.0, 1.0 );
1214 ASSIGN_4V( l->Specular, 0.0, 0.0, 0.0, 1.0 );
1215 }
1216 ASSIGN_4V( l->EyePosition, 0.0, 0.0, 1.0, 0.0 );
1217 ASSIGN_3V( l->EyeDirection, 0.0, 0.0, -1.0 );
1218 l->SpotExponent = 0.0;
1219 _mesa_invalidate_spot_exp_table( l );
1220 l->SpotCutoff = 180.0;
1221 l->_CosCutoff = 0.0; /* KW: -ve values not admitted */
1222 l->ConstantAttenuation = 1.0;
1223 l->LinearAttenuation = 0.0;
1224 l->QuadraticAttenuation = 0.0;
1225 l->Enabled = GL_FALSE;
1226 }
1227
1228
1229 /**
1230 * Initialize the light model data structure.
1231 *
1232 * \param lm pointer to the gl_lightmodel structure to be initialized.
1233 */
1234 static void
1235 init_lightmodel( struct gl_lightmodel *lm )
1236 {
1237 ASSIGN_4V( lm->Ambient, 0.2F, 0.2F, 0.2F, 1.0F );
1238 lm->LocalViewer = GL_FALSE;
1239 lm->TwoSide = GL_FALSE;
1240 lm->ColorControl = GL_SINGLE_COLOR;
1241 }
1242
1243
1244 /**
1245 * Initialize the material data structure.
1246 *
1247 * \param m pointer to the gl_material structure to be initialized.
1248 */
1249 static void
1250 init_material( struct gl_material *m )
1251 {
1252 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_AMBIENT], 0.2F, 0.2F, 0.2F, 1.0F );
1253 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_DIFFUSE], 0.8F, 0.8F, 0.8F, 1.0F );
1254 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_SPECULAR], 0.0F, 0.0F, 0.0F, 1.0F );
1255 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_EMISSION], 0.0F, 0.0F, 0.0F, 1.0F );
1256 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_SHININESS], 0.0F, 0.0F, 0.0F, 0.0F );
1257 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_INDEXES], 0.0F, 1.0F, 1.0F, 0.0F );
1258
1259 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_AMBIENT], 0.2F, 0.2F, 0.2F, 1.0F );
1260 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_DIFFUSE], 0.8F, 0.8F, 0.8F, 1.0F );
1261 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_SPECULAR], 0.0F, 0.0F, 0.0F, 1.0F );
1262 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_EMISSION], 0.0F, 0.0F, 0.0F, 1.0F );
1263 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_SHININESS], 0.0F, 0.0F, 0.0F, 0.0F );
1264 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_INDEXES], 0.0F, 1.0F, 1.0F, 0.0F );
1265 }
1266
1267
1268 void
1269 _mesa_init_lighting( GLcontext *ctx )
1270 {
1271 GLuint i;
1272
1273 /* Lighting group */
1274 for (i = 0; i < MAX_LIGHTS; i++) {
1275 init_light( &ctx->Light.Light[i], i );
1276 }
1277 make_empty_list( &ctx->Light.EnabledList );
1278
1279 init_lightmodel( &ctx->Light.Model );
1280 init_material( &ctx->Light.Material );
1281 ctx->Light.ShadeModel = GL_SMOOTH;
1282 ctx->Light.Enabled = GL_FALSE;
1283 ctx->Light.ColorMaterialFace = GL_FRONT_AND_BACK;
1284 ctx->Light.ColorMaterialMode = GL_AMBIENT_AND_DIFFUSE;
1285 ctx->Light.ColorMaterialBitmask = _mesa_material_bitmask( ctx,
1286 GL_FRONT_AND_BACK,
1287 GL_AMBIENT_AND_DIFFUSE, ~0, 0 );
1288
1289 ctx->Light.ColorMaterialEnabled = GL_FALSE;
1290
1291 /* Lighting miscellaneous */
1292 ctx->_ShineTabList = MALLOC_STRUCT( gl_shine_tab );
1293 make_empty_list( ctx->_ShineTabList );
1294 /* Allocate 10 (arbitrary) shininess lookup tables */
1295 for (i = 0 ; i < 10 ; i++) {
1296 struct gl_shine_tab *s = MALLOC_STRUCT( gl_shine_tab );
1297 s->shininess = -1;
1298 s->refcount = 0;
1299 insert_at_tail( ctx->_ShineTabList, s );
1300 }
1301
1302 /* Miscellaneous */
1303 ctx->Light._NeedEyeCoords = 0;
1304 ctx->_NeedEyeCoords = 0;
1305 ctx->_ModelViewInvScale = 1.0;
1306 }
1307
1308
1309 void
1310 _mesa_free_lighting_data( GLcontext *ctx )
1311 {
1312 struct gl_shine_tab *s, *tmps;
1313
1314 /* Free lighting shininess exponentiation table */
1315 foreach_s( s, tmps, ctx->_ShineTabList ) {
1316 FREE( s );
1317 }
1318 FREE( ctx->_ShineTabList );
1319 }