Add GLAPIENTRY function decorations for correct operation on Windows.
[mesa.git] / src / mesa / main / light.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 5.1
4 *
5 * Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #include "glheader.h"
27 #include "imports.h"
28 #include "context.h"
29 #include "enums.h"
30 #include "light.h"
31 #include "macros.h"
32 #include "simple_list.h"
33 #include "mtypes.h"
34 #include "math/m_matrix.h"
35
36
37 void GLAPIENTRY
38 _mesa_ShadeModel( GLenum mode )
39 {
40 GET_CURRENT_CONTEXT(ctx);
41 ASSERT_OUTSIDE_BEGIN_END(ctx);
42
43 if (MESA_VERBOSE & VERBOSE_API)
44 _mesa_debug(ctx, "glShadeModel %s\n", _mesa_lookup_enum_by_nr(mode));
45
46 if (mode != GL_FLAT && mode != GL_SMOOTH) {
47 _mesa_error( ctx, GL_INVALID_ENUM, "glShadeModel" );
48 return;
49 }
50
51 if (ctx->Light.ShadeModel == mode)
52 return;
53
54 FLUSH_VERTICES(ctx, _NEW_LIGHT);
55 ctx->Light.ShadeModel = mode;
56 ctx->_TriangleCaps ^= DD_FLATSHADE;
57 if (ctx->Driver.ShadeModel)
58 (*ctx->Driver.ShadeModel)( ctx, mode );
59 }
60
61
62 void GLAPIENTRY
63 _mesa_Lightf( GLenum light, GLenum pname, GLfloat param )
64 {
65 _mesa_Lightfv( light, pname, &param );
66 }
67
68
69 void GLAPIENTRY
70 _mesa_Lightfv( GLenum light, GLenum pname, const GLfloat *params )
71 {
72 GET_CURRENT_CONTEXT(ctx);
73 GLint i = (GLint) (light - GL_LIGHT0);
74 struct gl_light *l = &ctx->Light.Light[i];
75
76 if (i < 0 || i >= (GLint) ctx->Const.MaxLights) {
77 _mesa_error( ctx, GL_INVALID_ENUM, "glLight(light=0x%x)", light );
78 return;
79 }
80
81 switch (pname) {
82 case GL_AMBIENT:
83 if (TEST_EQ_4V(l->Ambient, params))
84 return;
85 FLUSH_VERTICES(ctx, _NEW_LIGHT);
86 COPY_4V( l->Ambient, params );
87 break;
88 case GL_DIFFUSE:
89 if (TEST_EQ_4V(l->Diffuse, params))
90 return;
91 FLUSH_VERTICES(ctx, _NEW_LIGHT);
92 COPY_4V( l->Diffuse, params );
93 break;
94 case GL_SPECULAR:
95 if (TEST_EQ_4V(l->Specular, params))
96 return;
97 FLUSH_VERTICES(ctx, _NEW_LIGHT);
98 COPY_4V( l->Specular, params );
99 break;
100 case GL_POSITION: {
101 GLfloat tmp[4];
102 /* transform position by ModelView matrix */
103 TRANSFORM_POINT( tmp, ctx->ModelviewMatrixStack.Top->m, params );
104 if (TEST_EQ_4V(l->EyePosition, tmp))
105 return;
106 FLUSH_VERTICES(ctx, _NEW_LIGHT);
107 COPY_4V(l->EyePosition, tmp);
108 if (l->EyePosition[3] != 0.0F)
109 l->_Flags |= LIGHT_POSITIONAL;
110 else
111 l->_Flags &= ~LIGHT_POSITIONAL;
112 break;
113 }
114 case GL_SPOT_DIRECTION: {
115 GLfloat tmp[4];
116 /* transform direction by inverse modelview */
117 if (ctx->ModelviewMatrixStack.Top->flags & MAT_DIRTY_INVERSE) {
118 _math_matrix_analyse( ctx->ModelviewMatrixStack.Top );
119 }
120 TRANSFORM_NORMAL( tmp, params, ctx->ModelviewMatrixStack.Top->inv );
121 if (TEST_EQ_3V(l->EyeDirection, tmp))
122 return;
123 FLUSH_VERTICES(ctx, _NEW_LIGHT);
124 COPY_3V(l->EyeDirection, tmp);
125 break;
126 }
127 case GL_SPOT_EXPONENT:
128 if (params[0]<0.0 || params[0]>ctx->Const.MaxSpotExponent) {
129 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
130 return;
131 }
132 if (l->SpotExponent == params[0])
133 return;
134 FLUSH_VERTICES(ctx, _NEW_LIGHT);
135 l->SpotExponent = params[0];
136 _mesa_invalidate_spot_exp_table( l );
137 break;
138 case GL_SPOT_CUTOFF:
139 if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) {
140 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
141 return;
142 }
143 if (l->SpotCutoff == params[0])
144 return;
145 FLUSH_VERTICES(ctx, _NEW_LIGHT);
146 l->SpotCutoff = params[0];
147 l->_CosCutoff = (GLfloat) _mesa_cos(params[0]*DEG2RAD);
148 if (l->_CosCutoff < 0)
149 l->_CosCutoff = 0;
150 if (l->SpotCutoff != 180.0F)
151 l->_Flags |= LIGHT_SPOT;
152 else
153 l->_Flags &= ~LIGHT_SPOT;
154 break;
155 case GL_CONSTANT_ATTENUATION:
156 if (params[0]<0.0) {
157 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
158 return;
159 }
160 if (l->ConstantAttenuation == params[0])
161 return;
162 FLUSH_VERTICES(ctx, _NEW_LIGHT);
163 l->ConstantAttenuation = params[0];
164 break;
165 case GL_LINEAR_ATTENUATION:
166 if (params[0]<0.0) {
167 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
168 return;
169 }
170 if (l->LinearAttenuation == params[0])
171 return;
172 FLUSH_VERTICES(ctx, _NEW_LIGHT);
173 l->LinearAttenuation = params[0];
174 break;
175 case GL_QUADRATIC_ATTENUATION:
176 if (params[0]<0.0) {
177 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
178 return;
179 }
180 if (l->QuadraticAttenuation == params[0])
181 return;
182 FLUSH_VERTICES(ctx, _NEW_LIGHT);
183 l->QuadraticAttenuation = params[0];
184 break;
185 default:
186 _mesa_error( ctx, GL_INVALID_ENUM, "glLight(pname=0x%x)", pname );
187 return;
188 }
189
190 if (ctx->Driver.Lightfv)
191 ctx->Driver.Lightfv( ctx, light, pname, params );
192 }
193
194
195 void GLAPIENTRY
196 _mesa_Lighti( GLenum light, GLenum pname, GLint param )
197 {
198 _mesa_Lightiv( light, pname, &param );
199 }
200
201
202 void GLAPIENTRY
203 _mesa_Lightiv( GLenum light, GLenum pname, const GLint *params )
204 {
205 GLfloat fparam[4];
206
207 switch (pname) {
208 case GL_AMBIENT:
209 case GL_DIFFUSE:
210 case GL_SPECULAR:
211 fparam[0] = INT_TO_FLOAT( params[0] );
212 fparam[1] = INT_TO_FLOAT( params[1] );
213 fparam[2] = INT_TO_FLOAT( params[2] );
214 fparam[3] = INT_TO_FLOAT( params[3] );
215 break;
216 case GL_POSITION:
217 fparam[0] = (GLfloat) params[0];
218 fparam[1] = (GLfloat) params[1];
219 fparam[2] = (GLfloat) params[2];
220 fparam[3] = (GLfloat) params[3];
221 break;
222 case GL_SPOT_DIRECTION:
223 fparam[0] = (GLfloat) params[0];
224 fparam[1] = (GLfloat) params[1];
225 fparam[2] = (GLfloat) params[2];
226 break;
227 case GL_SPOT_EXPONENT:
228 case GL_SPOT_CUTOFF:
229 case GL_CONSTANT_ATTENUATION:
230 case GL_LINEAR_ATTENUATION:
231 case GL_QUADRATIC_ATTENUATION:
232 fparam[0] = (GLfloat) params[0];
233 break;
234 default:
235 /* error will be caught later in gl_Lightfv */
236 ;
237 }
238
239 _mesa_Lightfv( light, pname, fparam );
240 }
241
242
243
244 void GLAPIENTRY
245 _mesa_GetLightfv( GLenum light, GLenum pname, GLfloat *params )
246 {
247 GET_CURRENT_CONTEXT(ctx);
248 GLint l = (GLint) (light - GL_LIGHT0);
249 ASSERT_OUTSIDE_BEGIN_END(ctx);
250
251 if (l < 0 || l >= (GLint) ctx->Const.MaxLights) {
252 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
253 return;
254 }
255
256 switch (pname) {
257 case GL_AMBIENT:
258 COPY_4V( params, ctx->Light.Light[l].Ambient );
259 break;
260 case GL_DIFFUSE:
261 COPY_4V( params, ctx->Light.Light[l].Diffuse );
262 break;
263 case GL_SPECULAR:
264 COPY_4V( params, ctx->Light.Light[l].Specular );
265 break;
266 case GL_POSITION:
267 COPY_4V( params, ctx->Light.Light[l].EyePosition );
268 break;
269 case GL_SPOT_DIRECTION:
270 COPY_3V( params, ctx->Light.Light[l].EyeDirection );
271 break;
272 case GL_SPOT_EXPONENT:
273 params[0] = ctx->Light.Light[l].SpotExponent;
274 break;
275 case GL_SPOT_CUTOFF:
276 params[0] = ctx->Light.Light[l].SpotCutoff;
277 break;
278 case GL_CONSTANT_ATTENUATION:
279 params[0] = ctx->Light.Light[l].ConstantAttenuation;
280 break;
281 case GL_LINEAR_ATTENUATION:
282 params[0] = ctx->Light.Light[l].LinearAttenuation;
283 break;
284 case GL_QUADRATIC_ATTENUATION:
285 params[0] = ctx->Light.Light[l].QuadraticAttenuation;
286 break;
287 default:
288 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
289 break;
290 }
291 }
292
293
294 void GLAPIENTRY
295 _mesa_GetLightiv( GLenum light, GLenum pname, GLint *params )
296 {
297 GET_CURRENT_CONTEXT(ctx);
298 GLint l = (GLint) (light - GL_LIGHT0);
299 ASSERT_OUTSIDE_BEGIN_END(ctx);
300
301 if (l < 0 || l >= (GLint) ctx->Const.MaxLights) {
302 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
303 return;
304 }
305
306 switch (pname) {
307 case GL_AMBIENT:
308 params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]);
309 params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]);
310 params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]);
311 params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]);
312 break;
313 case GL_DIFFUSE:
314 params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]);
315 params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]);
316 params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]);
317 params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]);
318 break;
319 case GL_SPECULAR:
320 params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]);
321 params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]);
322 params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]);
323 params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]);
324 break;
325 case GL_POSITION:
326 params[0] = (GLint) ctx->Light.Light[l].EyePosition[0];
327 params[1] = (GLint) ctx->Light.Light[l].EyePosition[1];
328 params[2] = (GLint) ctx->Light.Light[l].EyePosition[2];
329 params[3] = (GLint) ctx->Light.Light[l].EyePosition[3];
330 break;
331 case GL_SPOT_DIRECTION:
332 params[0] = (GLint) ctx->Light.Light[l].EyeDirection[0];
333 params[1] = (GLint) ctx->Light.Light[l].EyeDirection[1];
334 params[2] = (GLint) ctx->Light.Light[l].EyeDirection[2];
335 break;
336 case GL_SPOT_EXPONENT:
337 params[0] = (GLint) ctx->Light.Light[l].SpotExponent;
338 break;
339 case GL_SPOT_CUTOFF:
340 params[0] = (GLint) ctx->Light.Light[l].SpotCutoff;
341 break;
342 case GL_CONSTANT_ATTENUATION:
343 params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation;
344 break;
345 case GL_LINEAR_ATTENUATION:
346 params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation;
347 break;
348 case GL_QUADRATIC_ATTENUATION:
349 params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation;
350 break;
351 default:
352 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
353 break;
354 }
355 }
356
357
358
359 /**********************************************************************/
360 /*** Light Model ***/
361 /**********************************************************************/
362
363
364 void GLAPIENTRY
365 _mesa_LightModelfv( GLenum pname, const GLfloat *params )
366 {
367 GLenum newenum;
368 GLboolean newbool;
369 GET_CURRENT_CONTEXT(ctx);
370 ASSERT_OUTSIDE_BEGIN_END(ctx);
371
372 switch (pname) {
373 case GL_LIGHT_MODEL_AMBIENT:
374 if (TEST_EQ_4V( ctx->Light.Model.Ambient, params ))
375 return;
376 FLUSH_VERTICES(ctx, _NEW_LIGHT);
377 COPY_4V( ctx->Light.Model.Ambient, params );
378 break;
379 case GL_LIGHT_MODEL_LOCAL_VIEWER:
380 newbool = (params[0]!=0.0);
381 if (ctx->Light.Model.LocalViewer == newbool)
382 return;
383 FLUSH_VERTICES(ctx, _NEW_LIGHT);
384 ctx->Light.Model.LocalViewer = newbool;
385 break;
386 case GL_LIGHT_MODEL_TWO_SIDE:
387 newbool = (params[0]!=0.0);
388 if (ctx->Light.Model.TwoSide == newbool)
389 return;
390 FLUSH_VERTICES(ctx, _NEW_LIGHT);
391 ctx->Light.Model.TwoSide = newbool;
392
393 if (ctx->Light.Enabled && ctx->Light.Model.TwoSide)
394 ctx->_TriangleCaps |= DD_TRI_LIGHT_TWOSIDE;
395 else
396 ctx->_TriangleCaps &= ~DD_TRI_LIGHT_TWOSIDE;
397 break;
398 case GL_LIGHT_MODEL_COLOR_CONTROL:
399 if (params[0] == (GLfloat) GL_SINGLE_COLOR)
400 newenum = GL_SINGLE_COLOR;
401 else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR)
402 newenum = GL_SEPARATE_SPECULAR_COLOR;
403 else {
404 _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(param=0x0%x)",
405 (GLint) params[0] );
406 return;
407 }
408 if (ctx->Light.Model.ColorControl == newenum)
409 return;
410 FLUSH_VERTICES(ctx, _NEW_LIGHT);
411 ctx->Light.Model.ColorControl = newenum;
412 break;
413 default:
414 _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(pname=0x%x)", pname );
415 break;
416 }
417
418 if (ctx->Driver.LightModelfv)
419 ctx->Driver.LightModelfv( ctx, pname, params );
420 }
421
422
423 void GLAPIENTRY
424 _mesa_LightModeliv( GLenum pname, const GLint *params )
425 {
426 GLfloat fparam[4];
427
428 switch (pname) {
429 case GL_LIGHT_MODEL_AMBIENT:
430 fparam[0] = INT_TO_FLOAT( params[0] );
431 fparam[1] = INT_TO_FLOAT( params[1] );
432 fparam[2] = INT_TO_FLOAT( params[2] );
433 fparam[3] = INT_TO_FLOAT( params[3] );
434 break;
435 case GL_LIGHT_MODEL_LOCAL_VIEWER:
436 case GL_LIGHT_MODEL_TWO_SIDE:
437 case GL_LIGHT_MODEL_COLOR_CONTROL:
438 fparam[0] = (GLfloat) params[0];
439 break;
440 default:
441 /* Error will be caught later in gl_LightModelfv */
442 ;
443 }
444 _mesa_LightModelfv( pname, fparam );
445 }
446
447
448 void GLAPIENTRY
449 _mesa_LightModeli( GLenum pname, GLint param )
450 {
451 _mesa_LightModeliv( pname, &param );
452 }
453
454
455 void GLAPIENTRY
456 _mesa_LightModelf( GLenum pname, GLfloat param )
457 {
458 _mesa_LightModelfv( pname, &param );
459 }
460
461
462
463 /********** MATERIAL **********/
464
465
466 /*
467 * Given a face and pname value (ala glColorMaterial), compute a bitmask
468 * of the targeted material values.
469 */
470 GLuint
471 _mesa_material_bitmask( GLcontext *ctx, GLenum face, GLenum pname,
472 GLuint legal, const char *where )
473 {
474 GLuint bitmask = 0;
475
476 /* Make a bitmask indicating what material attribute(s) we're updating */
477 switch (pname) {
478 case GL_EMISSION:
479 bitmask |= MAT_BIT_FRONT_EMISSION | MAT_BIT_BACK_EMISSION;
480 break;
481 case GL_AMBIENT:
482 bitmask |= MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT;
483 break;
484 case GL_DIFFUSE:
485 bitmask |= MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE;
486 break;
487 case GL_SPECULAR:
488 bitmask |= MAT_BIT_FRONT_SPECULAR | MAT_BIT_BACK_SPECULAR;
489 break;
490 case GL_SHININESS:
491 bitmask |= MAT_BIT_FRONT_SHININESS | MAT_BIT_BACK_SHININESS;
492 break;
493 case GL_AMBIENT_AND_DIFFUSE:
494 bitmask |= MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT;
495 bitmask |= MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE;
496 break;
497 case GL_COLOR_INDEXES:
498 bitmask |= MAT_BIT_FRONT_INDEXES | MAT_BIT_BACK_INDEXES;
499 break;
500 default:
501 _mesa_error( ctx, GL_INVALID_ENUM, where );
502 return 0;
503 }
504
505 if (face==GL_FRONT) {
506 bitmask &= FRONT_MATERIAL_BITS;
507 }
508 else if (face==GL_BACK) {
509 bitmask &= BACK_MATERIAL_BITS;
510 }
511 else if (face != GL_FRONT_AND_BACK) {
512 _mesa_error( ctx, GL_INVALID_ENUM, where );
513 return 0;
514 }
515
516 if (bitmask & ~legal) {
517 _mesa_error( ctx, GL_INVALID_ENUM, where );
518 return 0;
519 }
520
521 return bitmask;
522 }
523
524
525
526 /* Perform a straight copy between materials.
527 */
528 void
529 _mesa_copy_materials( struct gl_material *dst,
530 const struct gl_material *src,
531 GLuint bitmask )
532 {
533 int i;
534
535 for (i = 0 ; i < MAT_ATTRIB_MAX ; i++)
536 if (bitmask & (1<<i))
537 COPY_4FV( dst->Attrib[i], src->Attrib[i] );
538 }
539
540
541
542 /* Update derived values following a change in ctx->Light.Material
543 */
544 void
545 _mesa_update_material( GLcontext *ctx, GLuint bitmask )
546 {
547 struct gl_light *light, *list = &ctx->Light.EnabledList;
548 GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
549
550 if (MESA_VERBOSE&VERBOSE_IMMEDIATE)
551 _mesa_debug(ctx, "_mesa_update_material, mask 0x%x\n", bitmask);
552
553 if (!bitmask)
554 return;
555
556 /* update material ambience */
557 if (bitmask & MAT_BIT_FRONT_AMBIENT) {
558 foreach (light, list) {
559 SCALE_3V( light->_MatAmbient[0], light->Ambient,
560 mat[MAT_ATTRIB_FRONT_AMBIENT]);
561 }
562 }
563
564 if (bitmask & MAT_BIT_BACK_AMBIENT) {
565 foreach (light, list) {
566 SCALE_3V( light->_MatAmbient[1], light->Ambient,
567 mat[MAT_ATTRIB_BACK_AMBIENT]);
568 }
569 }
570
571 /* update BaseColor = emission + scene's ambience * material's ambience */
572 if (bitmask & (MAT_BIT_FRONT_EMISSION | MAT_BIT_FRONT_AMBIENT)) {
573 COPY_3V( ctx->Light._BaseColor[0], mat[MAT_ATTRIB_FRONT_EMISSION] );
574 ACC_SCALE_3V( ctx->Light._BaseColor[0], mat[MAT_ATTRIB_FRONT_AMBIENT],
575 ctx->Light.Model.Ambient );
576 }
577
578 if (bitmask & (MAT_BIT_BACK_EMISSION | MAT_BIT_BACK_AMBIENT)) {
579 COPY_3V( ctx->Light._BaseColor[1], mat[MAT_ATTRIB_BACK_EMISSION] );
580 ACC_SCALE_3V( ctx->Light._BaseColor[1], mat[MAT_ATTRIB_BACK_AMBIENT],
581 ctx->Light.Model.Ambient );
582 }
583
584 /* update material diffuse values */
585 if (bitmask & MAT_BIT_FRONT_DIFFUSE) {
586 foreach (light, list) {
587 SCALE_3V( light->_MatDiffuse[0], light->Diffuse,
588 mat[MAT_ATTRIB_FRONT_DIFFUSE] );
589 }
590 }
591
592 if (bitmask & MAT_BIT_BACK_DIFFUSE) {
593 foreach (light, list) {
594 SCALE_3V( light->_MatDiffuse[1], light->Diffuse,
595 mat[MAT_ATTRIB_BACK_DIFFUSE] );
596 }
597 }
598
599 /* update material specular values */
600 if (bitmask & MAT_BIT_FRONT_SPECULAR) {
601 foreach (light, list) {
602 SCALE_3V( light->_MatSpecular[0], light->Specular,
603 mat[MAT_ATTRIB_FRONT_SPECULAR]);
604 }
605 }
606
607 if (bitmask & MAT_BIT_BACK_SPECULAR) {
608 foreach (light, list) {
609 SCALE_3V( light->_MatSpecular[1], light->Specular,
610 mat[MAT_ATTRIB_BACK_SPECULAR]);
611 }
612 }
613
614 if (bitmask & MAT_BIT_FRONT_SHININESS) {
615 _mesa_invalidate_shine_table( ctx, 0 );
616 }
617
618 if (bitmask & MAT_BIT_BACK_SHININESS) {
619 _mesa_invalidate_shine_table( ctx, 1 );
620 }
621 }
622
623
624 /*
625 * Update the current materials from the given rgba color
626 * according to the bitmask in ColorMaterialBitmask, which is
627 * set by glColorMaterial().
628 */
629 void
630 _mesa_update_color_material( GLcontext *ctx, const GLfloat color[4] )
631 {
632 GLuint bitmask = ctx->Light.ColorMaterialBitmask;
633 struct gl_material *mat = &ctx->Light.Material;
634 int i;
635
636 for (i = 0 ; i < MAT_ATTRIB_MAX ; i++)
637 if (bitmask & (1<<i))
638 COPY_4FV( mat->Attrib[i], color );
639
640 _mesa_update_material( ctx, bitmask );
641 }
642
643
644 void GLAPIENTRY
645 _mesa_ColorMaterial( GLenum face, GLenum mode )
646 {
647 GET_CURRENT_CONTEXT(ctx);
648 GLuint bitmask;
649 GLuint legal = (MAT_BIT_FRONT_EMISSION | MAT_BIT_BACK_EMISSION |
650 MAT_BIT_FRONT_SPECULAR | MAT_BIT_BACK_SPECULAR |
651 MAT_BIT_FRONT_DIFFUSE | MAT_BIT_BACK_DIFFUSE |
652 MAT_BIT_FRONT_AMBIENT | MAT_BIT_BACK_AMBIENT);
653 ASSERT_OUTSIDE_BEGIN_END(ctx);
654
655 if (MESA_VERBOSE&VERBOSE_API)
656 _mesa_debug(ctx, "glColorMaterial %s %s\n",
657 _mesa_lookup_enum_by_nr(face),
658 _mesa_lookup_enum_by_nr(mode));
659
660 bitmask = _mesa_material_bitmask(ctx, face, mode, legal, "glColorMaterial");
661
662 if (ctx->Light.ColorMaterialBitmask == bitmask &&
663 ctx->Light.ColorMaterialFace == face &&
664 ctx->Light.ColorMaterialMode == mode)
665 return;
666
667 FLUSH_VERTICES(ctx, _NEW_LIGHT);
668 ctx->Light.ColorMaterialBitmask = bitmask;
669 ctx->Light.ColorMaterialFace = face;
670 ctx->Light.ColorMaterialMode = mode;
671
672 if (ctx->Light.ColorMaterialEnabled) {
673 FLUSH_CURRENT( ctx, 0 );
674 _mesa_update_color_material(ctx,ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
675 }
676
677 if (ctx->Driver.ColorMaterial)
678 (*ctx->Driver.ColorMaterial)( ctx, face, mode );
679 }
680
681
682 void GLAPIENTRY
683 _mesa_GetMaterialfv( GLenum face, GLenum pname, GLfloat *params )
684 {
685 GET_CURRENT_CONTEXT(ctx);
686 GLuint f;
687 GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
688 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */
689
690 if (face==GL_FRONT) {
691 f = 0;
692 }
693 else if (face==GL_BACK) {
694 f = 1;
695 }
696 else {
697 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" );
698 return;
699 }
700
701 switch (pname) {
702 case GL_AMBIENT:
703 COPY_4FV( params, mat[MAT_ATTRIB_AMBIENT(f)] );
704 break;
705 case GL_DIFFUSE:
706 COPY_4FV( params, mat[MAT_ATTRIB_DIFFUSE(f)] );
707 break;
708 case GL_SPECULAR:
709 COPY_4FV( params, mat[MAT_ATTRIB_SPECULAR(f)] );
710 break;
711 case GL_EMISSION:
712 COPY_4FV( params, mat[MAT_ATTRIB_EMISSION(f)] );
713 break;
714 case GL_SHININESS:
715 *params = mat[MAT_ATTRIB_SHININESS(f)][0];
716 break;
717 case GL_COLOR_INDEXES:
718 params[0] = mat[MAT_ATTRIB_INDEXES(f)][0];
719 params[1] = mat[MAT_ATTRIB_INDEXES(f)][1];
720 params[2] = mat[MAT_ATTRIB_INDEXES(f)][2];
721 break;
722 default:
723 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
724 }
725 }
726
727
728 void GLAPIENTRY
729 _mesa_GetMaterialiv( GLenum face, GLenum pname, GLint *params )
730 {
731 GET_CURRENT_CONTEXT(ctx);
732 GLuint f;
733 GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
734 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */
735
736 if (face==GL_FRONT) {
737 f = 0;
738 }
739 else if (face==GL_BACK) {
740 f = 1;
741 }
742 else {
743 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" );
744 return;
745 }
746 switch (pname) {
747 case GL_AMBIENT:
748 params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][0] );
749 params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][1] );
750 params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][2] );
751 params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_AMBIENT(f)][3] );
752 break;
753 case GL_DIFFUSE:
754 params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][0] );
755 params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][1] );
756 params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][2] );
757 params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_DIFFUSE(f)][3] );
758 break;
759 case GL_SPECULAR:
760 params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][0] );
761 params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][1] );
762 params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][2] );
763 params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_SPECULAR(f)][3] );
764 break;
765 case GL_EMISSION:
766 params[0] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][0] );
767 params[1] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][1] );
768 params[2] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][2] );
769 params[3] = FLOAT_TO_INT( mat[MAT_ATTRIB_EMISSION(f)][3] );
770 break;
771 case GL_SHININESS:
772 *params = IROUND( mat[MAT_ATTRIB_SHININESS(f)][0] );
773 break;
774 case GL_COLOR_INDEXES:
775 params[0] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][0] );
776 params[1] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][1] );
777 params[2] = IROUND( mat[MAT_ATTRIB_INDEXES(f)][2] );
778 break;
779 default:
780 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
781 }
782 }
783
784
785
786 /**********************************************************************/
787 /***** Lighting computation *****/
788 /**********************************************************************/
789
790
791 /*
792 * Notes:
793 * When two-sided lighting is enabled we compute the color (or index)
794 * for both the front and back side of the primitive. Then, when the
795 * orientation of the facet is later learned, we can determine which
796 * color (or index) to use for rendering.
797 *
798 * KW: We now know orientation in advance and only shade for
799 * the side or sides which are actually required.
800 *
801 * Variables:
802 * n = normal vector
803 * V = vertex position
804 * P = light source position
805 * Pe = (0,0,0,1)
806 *
807 * Precomputed:
808 * IF P[3]==0 THEN
809 * // light at infinity
810 * IF local_viewer THEN
811 * _VP_inf_norm = unit vector from V to P // Precompute
812 * ELSE
813 * // eye at infinity
814 * _h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute
815 * ENDIF
816 * ENDIF
817 *
818 * Functions:
819 * Normalize( v ) = normalized vector v
820 * Magnitude( v ) = length of vector v
821 */
822
823
824
825 /*
826 * Whenever the spotlight exponent for a light changes we must call
827 * this function to recompute the exponent lookup table.
828 */
829 void
830 _mesa_invalidate_spot_exp_table( struct gl_light *l )
831 {
832 l->_SpotExpTable[0][0] = -1;
833 }
834
835
836 static void
837 validate_spot_exp_table( struct gl_light *l )
838 {
839 GLint i;
840 GLdouble exponent = l->SpotExponent;
841 GLdouble tmp = 0;
842 GLint clamp = 0;
843
844 l->_SpotExpTable[0][0] = 0.0;
845
846 for (i = EXP_TABLE_SIZE - 1; i > 0 ;i--) {
847 if (clamp == 0) {
848 tmp = _mesa_pow(i / (GLdouble) (EXP_TABLE_SIZE - 1), exponent);
849 if (tmp < FLT_MIN * 100.0) {
850 tmp = 0.0;
851 clamp = 1;
852 }
853 }
854 l->_SpotExpTable[i][0] = (GLfloat) tmp;
855 }
856 for (i = 0; i < EXP_TABLE_SIZE - 1; i++) {
857 l->_SpotExpTable[i][1] = (l->_SpotExpTable[i+1][0] -
858 l->_SpotExpTable[i][0]);
859 }
860 l->_SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0;
861 }
862
863
864
865 /* Calculate a new shine table. Doing this here saves a branch in
866 * lighting, and the cost of doing it early may be partially offset
867 * by keeping a MRU cache of shine tables for various shine values.
868 */
869 void
870 _mesa_invalidate_shine_table( GLcontext *ctx, GLuint side )
871 {
872 ASSERT(side < 2);
873 if (ctx->_ShineTable[side])
874 ctx->_ShineTable[side]->refcount--;
875 ctx->_ShineTable[side] = 0;
876 }
877
878
879 static void
880 validate_shine_table( GLcontext *ctx, GLuint side, GLfloat shininess )
881 {
882 struct gl_shine_tab *list = ctx->_ShineTabList;
883 struct gl_shine_tab *s;
884
885 ASSERT(side < 2);
886
887 foreach(s, list)
888 if ( s->shininess == shininess )
889 break;
890
891 if (s == list) {
892 GLint j;
893 GLfloat *m;
894
895 foreach(s, list)
896 if (s->refcount == 0)
897 break;
898
899 m = s->tab;
900 m[0] = 0.0;
901 if (shininess == 0.0) {
902 for (j = 1 ; j <= SHINE_TABLE_SIZE ; j++)
903 m[j] = 1.0;
904 }
905 else {
906 for (j = 1 ; j < SHINE_TABLE_SIZE ; j++) {
907 GLdouble t, x = j / (GLfloat) (SHINE_TABLE_SIZE - 1);
908 if (x < 0.005) /* underflow check */
909 x = 0.005;
910 t = _mesa_pow(x, shininess);
911 if (t > 1e-20)
912 m[j] = (GLfloat) t;
913 else
914 m[j] = 0.0;
915 }
916 m[SHINE_TABLE_SIZE] = 1.0;
917 }
918
919 s->shininess = shininess;
920 }
921
922 if (ctx->_ShineTable[side])
923 ctx->_ShineTable[side]->refcount--;
924
925 ctx->_ShineTable[side] = s;
926 move_to_tail( list, s );
927 s->refcount++;
928 }
929
930
931 void
932 _mesa_validate_all_lighting_tables( GLcontext *ctx )
933 {
934 GLuint i;
935 GLfloat shininess;
936
937 shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
938 if (!ctx->_ShineTable[0] || ctx->_ShineTable[0]->shininess != shininess)
939 validate_shine_table( ctx, 0, shininess );
940
941 shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_SHININESS][0];
942 if (!ctx->_ShineTable[1] || ctx->_ShineTable[1]->shininess != shininess)
943 validate_shine_table( ctx, 1, shininess );
944
945 for (i = 0 ; i < MAX_LIGHTS ; i++)
946 if (ctx->Light.Light[i]._SpotExpTable[0][0] == -1)
947 validate_spot_exp_table( &ctx->Light.Light[i] );
948 }
949
950
951
952 /*
953 * Examine current lighting parameters to determine if the optimized lighting
954 * function can be used.
955 * Also, precompute some lighting values such as the products of light
956 * source and material ambient, diffuse and specular coefficients.
957 */
958 void
959 _mesa_update_lighting( GLcontext *ctx )
960 {
961 struct gl_light *light;
962 ctx->Light._NeedEyeCoords = 0;
963 ctx->Light._Flags = 0;
964
965 if (!ctx->Light.Enabled)
966 return;
967
968 foreach(light, &ctx->Light.EnabledList) {
969 ctx->Light._Flags |= light->_Flags;
970 }
971
972 ctx->Light._NeedVertices =
973 ((ctx->Light._Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) ||
974 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR ||
975 ctx->Light.Model.LocalViewer);
976
977 ctx->Light._NeedEyeCoords = ((ctx->Light._Flags & LIGHT_POSITIONAL) ||
978 ctx->Light.Model.LocalViewer);
979
980
981
982 /* XXX: This test is overkill & needs to be fixed both for software and
983 * hardware t&l drivers. The above should be sufficient & should
984 * be tested to verify this.
985 */
986 if (ctx->Light._NeedVertices)
987 ctx->Light._NeedEyeCoords = GL_TRUE;
988
989
990 /* Precompute some shading values. Although we reference
991 * Light.Material here, we can get away without flushing
992 * FLUSH_UPDATE_CURRENT, as when any outstanding material changes
993 * are flushed, they will update the derived state at that time.
994 */
995 if (ctx->Visual.rgbMode) {
996 if (ctx->Light.Model.TwoSide)
997 _mesa_update_material( ctx,
998 MAT_BIT_FRONT_EMISSION |
999 MAT_BIT_FRONT_AMBIENT |
1000 MAT_BIT_FRONT_DIFFUSE |
1001 MAT_BIT_FRONT_SPECULAR |
1002 MAT_BIT_BACK_EMISSION |
1003 MAT_BIT_BACK_AMBIENT |
1004 MAT_BIT_BACK_DIFFUSE |
1005 MAT_BIT_BACK_SPECULAR);
1006 else
1007 _mesa_update_material( ctx,
1008 MAT_BIT_FRONT_EMISSION |
1009 MAT_BIT_FRONT_AMBIENT |
1010 MAT_BIT_FRONT_DIFFUSE |
1011 MAT_BIT_FRONT_SPECULAR);
1012 }
1013 else {
1014 static const GLfloat ci[3] = { .30F, .59F, .11F };
1015 foreach(light, &ctx->Light.EnabledList) {
1016 light->_dli = DOT3(ci, light->Diffuse);
1017 light->_sli = DOT3(ci, light->Specular);
1018 }
1019 }
1020 }
1021
1022
1023 /* _NEW_MODELVIEW
1024 * _NEW_LIGHT
1025 * _TNL_NEW_NEED_EYE_COORDS
1026 *
1027 * Update on (_NEW_MODELVIEW | _NEW_LIGHT) when lighting is enabled.
1028 * Also update on lighting space changes.
1029 */
1030 static void
1031 compute_light_positions( GLcontext *ctx )
1032 {
1033 struct gl_light *light;
1034 static const GLfloat eye_z[3] = { 0, 0, 1 };
1035
1036 if (!ctx->Light.Enabled)
1037 return;
1038
1039 if (ctx->_NeedEyeCoords) {
1040 COPY_3V( ctx->_EyeZDir, eye_z );
1041 }
1042 else {
1043 TRANSFORM_NORMAL( ctx->_EyeZDir, eye_z, ctx->ModelviewMatrixStack.Top->m );
1044 }
1045
1046 foreach (light, &ctx->Light.EnabledList) {
1047
1048 if (ctx->_NeedEyeCoords) {
1049 COPY_4FV( light->_Position, light->EyePosition );
1050 }
1051 else {
1052 TRANSFORM_POINT( light->_Position, ctx->ModelviewMatrixStack.Top->inv,
1053 light->EyePosition );
1054 }
1055
1056 if (!(light->_Flags & LIGHT_POSITIONAL)) {
1057 /* VP (VP) = Normalize( Position ) */
1058 COPY_3V( light->_VP_inf_norm, light->_Position );
1059 NORMALIZE_3FV( light->_VP_inf_norm );
1060
1061 if (!ctx->Light.Model.LocalViewer) {
1062 /* _h_inf_norm = Normalize( V_to_P + <0,0,1> ) */
1063 ADD_3V( light->_h_inf_norm, light->_VP_inf_norm, ctx->_EyeZDir);
1064 NORMALIZE_3FV( light->_h_inf_norm );
1065 }
1066 light->_VP_inf_spot_attenuation = 1.0;
1067 }
1068
1069 if (light->_Flags & LIGHT_SPOT) {
1070 if (ctx->_NeedEyeCoords) {
1071 COPY_3V( light->_NormDirection, light->EyeDirection );
1072 }
1073 else {
1074 TRANSFORM_NORMAL( light->_NormDirection,
1075 light->EyeDirection,
1076 ctx->ModelviewMatrixStack.Top->m);
1077 }
1078
1079 NORMALIZE_3FV( light->_NormDirection );
1080
1081 if (!(light->_Flags & LIGHT_POSITIONAL)) {
1082 GLfloat PV_dot_dir = - DOT3(light->_VP_inf_norm,
1083 light->_NormDirection);
1084
1085 if (PV_dot_dir > light->_CosCutoff) {
1086 double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
1087 int k = (int) x;
1088 light->_VP_inf_spot_attenuation =
1089 (GLfloat) (light->_SpotExpTable[k][0] +
1090 (x-k)*light->_SpotExpTable[k][1]);
1091 }
1092 else {
1093 light->_VP_inf_spot_attenuation = 0;
1094 }
1095 }
1096 }
1097 }
1098 }
1099
1100
1101
1102 static void
1103 update_modelview_scale( GLcontext *ctx )
1104 {
1105 ctx->_ModelViewInvScale = 1.0F;
1106 if (ctx->ModelviewMatrixStack.Top->flags & (MAT_FLAG_UNIFORM_SCALE |
1107 MAT_FLAG_GENERAL_SCALE |
1108 MAT_FLAG_GENERAL_3D |
1109 MAT_FLAG_GENERAL) ) {
1110 const GLfloat *m = ctx->ModelviewMatrixStack.Top->inv;
1111 GLfloat f = m[2] * m[2] + m[6] * m[6] + m[10] * m[10];
1112 if (f < 1e-12) f = 1.0;
1113 if (ctx->_NeedEyeCoords)
1114 ctx->_ModelViewInvScale = (GLfloat) INV_SQRTF(f);
1115 else
1116 ctx->_ModelViewInvScale = (GLfloat) SQRTF(f);
1117 }
1118 }
1119
1120
1121 /* Bring uptodate any state that relies on _NeedEyeCoords.
1122 */
1123 void
1124 _mesa_update_tnl_spaces( GLcontext *ctx, GLuint new_state )
1125 {
1126 const GLuint oldneedeyecoords = ctx->_NeedEyeCoords;
1127
1128 ctx->_NeedEyeCoords = 0;
1129
1130 if (ctx->_ForceEyeCoords ||
1131 (ctx->Texture._GenFlags & TEXGEN_NEED_EYE_COORD) ||
1132 ctx->Point._Attenuated ||
1133 ctx->Light._NeedEyeCoords)
1134 ctx->_NeedEyeCoords = 1;
1135
1136 if (ctx->Light.Enabled &&
1137 !TEST_MAT_FLAGS( ctx->ModelviewMatrixStack.Top,
1138 MAT_FLAGS_LENGTH_PRESERVING))
1139 ctx->_NeedEyeCoords = 1;
1140
1141
1142 /* Check if the truth-value interpretations of the bitfields have
1143 * changed:
1144 */
1145 if (oldneedeyecoords != ctx->_NeedEyeCoords) {
1146 /* Recalculate all state that depends on _NeedEyeCoords.
1147 */
1148 update_modelview_scale(ctx);
1149 compute_light_positions( ctx );
1150
1151 if (ctx->Driver.LightingSpaceChange)
1152 ctx->Driver.LightingSpaceChange( ctx );
1153 }
1154 else {
1155 GLuint new_state = ctx->NewState;
1156
1157 /* Recalculate that same state only if it has been invalidated
1158 * by other statechanges.
1159 */
1160 if (new_state & _NEW_MODELVIEW)
1161 update_modelview_scale(ctx);
1162
1163 if (new_state & (_NEW_LIGHT|_NEW_MODELVIEW))
1164 compute_light_positions( ctx );
1165 }
1166 }
1167
1168
1169 /* Drivers may need this if the hardware tnl unit doesn't support the
1170 * light-in-modelspace optimization. It's also useful for debugging.
1171 */
1172 void
1173 _mesa_allow_light_in_model( GLcontext *ctx, GLboolean flag )
1174 {
1175 ctx->_ForceEyeCoords = !flag;
1176 ctx->NewState |= _NEW_POINT; /* one of the bits from
1177 * _MESA_NEW_NEED_EYE_COORDS.
1178 */
1179 }
1180
1181
1182
1183 /**********************************************************************/
1184 /***** Initialization *****/
1185 /**********************************************************************/
1186
1187 /**
1188 * Initialize the n-th light data structure.
1189 *
1190 * \param l pointer to the gl_light structure to be initialized.
1191 * \param n number of the light.
1192 * \note The defaults for light 0 are different than the other lights.
1193 */
1194 static void
1195 init_light( struct gl_light *l, GLuint n )
1196 {
1197 make_empty_list( l );
1198
1199 ASSIGN_4V( l->Ambient, 0.0, 0.0, 0.0, 1.0 );
1200 if (n==0) {
1201 ASSIGN_4V( l->Diffuse, 1.0, 1.0, 1.0, 1.0 );
1202 ASSIGN_4V( l->Specular, 1.0, 1.0, 1.0, 1.0 );
1203 }
1204 else {
1205 ASSIGN_4V( l->Diffuse, 0.0, 0.0, 0.0, 1.0 );
1206 ASSIGN_4V( l->Specular, 0.0, 0.0, 0.0, 1.0 );
1207 }
1208 ASSIGN_4V( l->EyePosition, 0.0, 0.0, 1.0, 0.0 );
1209 ASSIGN_3V( l->EyeDirection, 0.0, 0.0, -1.0 );
1210 l->SpotExponent = 0.0;
1211 _mesa_invalidate_spot_exp_table( l );
1212 l->SpotCutoff = 180.0;
1213 l->_CosCutoff = 0.0; /* KW: -ve values not admitted */
1214 l->ConstantAttenuation = 1.0;
1215 l->LinearAttenuation = 0.0;
1216 l->QuadraticAttenuation = 0.0;
1217 l->Enabled = GL_FALSE;
1218 }
1219
1220
1221 /**
1222 * Initialize the light model data structure.
1223 *
1224 * \param lm pointer to the gl_lightmodel structure to be initialized.
1225 */
1226 static void
1227 init_lightmodel( struct gl_lightmodel *lm )
1228 {
1229 ASSIGN_4V( lm->Ambient, 0.2F, 0.2F, 0.2F, 1.0F );
1230 lm->LocalViewer = GL_FALSE;
1231 lm->TwoSide = GL_FALSE;
1232 lm->ColorControl = GL_SINGLE_COLOR;
1233 }
1234
1235
1236 /**
1237 * Initialize the material data structure.
1238 *
1239 * \param m pointer to the gl_material structure to be initialized.
1240 */
1241 static void
1242 init_material( struct gl_material *m )
1243 {
1244 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_AMBIENT], 0.2F, 0.2F, 0.2F, 1.0F );
1245 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_DIFFUSE], 0.8F, 0.8F, 0.8F, 1.0F );
1246 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_SPECULAR], 0.0F, 0.0F, 0.0F, 1.0F );
1247 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_EMISSION], 0.0F, 0.0F, 0.0F, 1.0F );
1248 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_SHININESS], 0.0F, 0.0F, 0.0F, 0.0F );
1249 ASSIGN_4V( m->Attrib[MAT_ATTRIB_FRONT_INDEXES], 0.0F, 1.0F, 1.0F, 0.0F );
1250
1251 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_AMBIENT], 0.2F, 0.2F, 0.2F, 1.0F );
1252 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_DIFFUSE], 0.8F, 0.8F, 0.8F, 1.0F );
1253 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_SPECULAR], 0.0F, 0.0F, 0.0F, 1.0F );
1254 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_EMISSION], 0.0F, 0.0F, 0.0F, 1.0F );
1255 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_SHININESS], 0.0F, 0.0F, 0.0F, 0.0F );
1256 ASSIGN_4V( m->Attrib[MAT_ATTRIB_BACK_INDEXES], 0.0F, 1.0F, 1.0F, 0.0F );
1257 }
1258
1259
1260 void
1261 _mesa_init_lighting( GLcontext *ctx )
1262 {
1263 GLuint i;
1264
1265 /* Lighting group */
1266 for (i = 0; i < MAX_LIGHTS; i++) {
1267 init_light( &ctx->Light.Light[i], i );
1268 }
1269 make_empty_list( &ctx->Light.EnabledList );
1270
1271 init_lightmodel( &ctx->Light.Model );
1272 init_material( &ctx->Light.Material );
1273 ctx->Light.ShadeModel = GL_SMOOTH;
1274 ctx->Light.Enabled = GL_FALSE;
1275 ctx->Light.ColorMaterialFace = GL_FRONT_AND_BACK;
1276 ctx->Light.ColorMaterialMode = GL_AMBIENT_AND_DIFFUSE;
1277 ctx->Light.ColorMaterialBitmask = _mesa_material_bitmask( ctx,
1278 GL_FRONT_AND_BACK,
1279 GL_AMBIENT_AND_DIFFUSE, ~0, 0 );
1280
1281 ctx->Light.ColorMaterialEnabled = GL_FALSE;
1282
1283 /* Lighting miscellaneous */
1284 ctx->_ShineTabList = MALLOC_STRUCT( gl_shine_tab );
1285 make_empty_list( ctx->_ShineTabList );
1286 /* Allocate 10 (arbitrary) shininess lookup tables */
1287 for (i = 0 ; i < 10 ; i++) {
1288 struct gl_shine_tab *s = MALLOC_STRUCT( gl_shine_tab );
1289 s->shininess = -1;
1290 s->refcount = 0;
1291 insert_at_tail( ctx->_ShineTabList, s );
1292 }
1293
1294 /* Miscellaneous */
1295 ctx->Light._NeedEyeCoords = 0;
1296 ctx->_NeedEyeCoords = 0;
1297 ctx->_ModelViewInvScale = 1.0;
1298 }
1299
1300
1301 void
1302 _mesa_free_lighting_data( GLcontext *ctx )
1303 {
1304 struct gl_shine_tab *s, *tmps;
1305
1306 /* Free lighting shininess exponentiation table */
1307 foreach_s( s, tmps, ctx->_ShineTabList ) {
1308 FREE( s );
1309 }
1310 FREE( ctx->_ShineTabList );
1311 }