vertex program check-in
[mesa.git] / src / mesa / main / light.c
1 /* $Id: light.c,v 1.47 2001/12/14 02:50:02 brianp Exp $ */
2
3 /*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 #ifdef PC_HEADER
29 #include "all.h"
30 #else
31 #include "glheader.h"
32 #include "colormac.h"
33 #include "context.h"
34 #include "enums.h"
35 #include "light.h"
36 #include "macros.h"
37 #include "mem.h"
38 #include "mmath.h"
39 #include "simple_list.h"
40 #include "mtypes.h"
41
42 #include "math/m_xform.h"
43 #include "math/m_matrix.h"
44 #endif
45
46
47 /* XXX this is a bit of a hack needed for compilation within XFree86 */
48 #ifndef FLT_MIN
49 #define FLT_MIN 1e-37
50 #endif
51
52
53 void
54 _mesa_ShadeModel( GLenum mode )
55 {
56 GET_CURRENT_CONTEXT(ctx);
57 ASSERT_OUTSIDE_BEGIN_END(ctx);
58
59 if (MESA_VERBOSE & VERBOSE_API)
60 fprintf(stderr, "glShadeModel %s\n", _mesa_lookup_enum_by_nr(mode));
61
62 if (mode != GL_FLAT && mode != GL_SMOOTH) {
63 _mesa_error( ctx, GL_INVALID_ENUM, "glShadeModel" );
64 return;
65 }
66
67 if (ctx->Light.ShadeModel == mode)
68 return;
69
70 FLUSH_VERTICES(ctx, _NEW_LIGHT);
71 ctx->Light.ShadeModel = mode;
72 ctx->_TriangleCaps ^= DD_FLATSHADE;
73 if (ctx->Driver.ShadeModel)
74 (*ctx->Driver.ShadeModel)( ctx, mode );
75 }
76
77
78
79 void
80 _mesa_Lightf( GLenum light, GLenum pname, GLfloat param )
81 {
82 _mesa_Lightfv( light, pname, &param );
83 }
84
85
86 void
87 _mesa_Lightfv( GLenum light, GLenum pname, const GLfloat *params )
88 {
89 GET_CURRENT_CONTEXT(ctx);
90 GLint i = (GLint) (light - GL_LIGHT0);
91 struct gl_light *l = &ctx->Light.Light[i];
92
93 if (i < 0 || i >= (GLint) ctx->Const.MaxLights) {
94 _mesa_error( ctx, GL_INVALID_ENUM, "glLight" );
95 return;
96 }
97
98 switch (pname) {
99 case GL_AMBIENT:
100 if (TEST_EQ_4V(l->Ambient, params))
101 return;
102 FLUSH_VERTICES(ctx, _NEW_LIGHT);
103 COPY_4V( l->Ambient, params );
104 break;
105 case GL_DIFFUSE:
106 if (TEST_EQ_4V(l->Diffuse, params))
107 return;
108 FLUSH_VERTICES(ctx, _NEW_LIGHT);
109 COPY_4V( l->Diffuse, params );
110 break;
111 case GL_SPECULAR:
112 if (TEST_EQ_4V(l->Specular, params))
113 return;
114 FLUSH_VERTICES(ctx, _NEW_LIGHT);
115 COPY_4V( l->Specular, params );
116 break;
117 case GL_POSITION: {
118 GLfloat tmp[4];
119 /* transform position by ModelView matrix */
120 TRANSFORM_POINT( tmp, ctx->ModelView.m, params );
121 if (TEST_EQ_4V(l->EyePosition, tmp))
122 return;
123 FLUSH_VERTICES(ctx, _NEW_LIGHT);
124 COPY_4V(l->EyePosition, tmp);
125 if (l->EyePosition[3] != 0.0F)
126 l->_Flags |= LIGHT_POSITIONAL;
127 else
128 l->_Flags &= ~LIGHT_POSITIONAL;
129 break;
130 }
131 case GL_SPOT_DIRECTION: {
132 GLfloat tmp[4];
133 /* transform direction by inverse modelview */
134 if (ctx->ModelView.flags & MAT_DIRTY_INVERSE) {
135 _math_matrix_analyse( &ctx->ModelView );
136 }
137 TRANSFORM_NORMAL( tmp, params, ctx->ModelView.inv );
138 if (TEST_EQ_3V(l->EyeDirection, tmp))
139 return;
140 FLUSH_VERTICES(ctx, _NEW_LIGHT);
141 COPY_3V(l->EyeDirection, tmp);
142 break;
143 }
144 case GL_SPOT_EXPONENT:
145 if (params[0]<0.0 || params[0]>128.0) {
146 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
147 return;
148 }
149 if (l->SpotExponent == params[0])
150 return;
151 FLUSH_VERTICES(ctx, _NEW_LIGHT);
152 l->SpotExponent = params[0];
153 _mesa_invalidate_spot_exp_table( l );
154 break;
155 case GL_SPOT_CUTOFF:
156 if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) {
157 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
158 return;
159 }
160 if (l->SpotCutoff == params[0])
161 return;
162 FLUSH_VERTICES(ctx, _NEW_LIGHT);
163 l->SpotCutoff = params[0];
164 l->_CosCutoff = (GLfloat) cos(params[0]*DEG2RAD);
165 if (l->_CosCutoff < 0)
166 l->_CosCutoff = 0;
167 if (l->SpotCutoff != 180.0F)
168 l->_Flags |= LIGHT_SPOT;
169 else
170 l->_Flags &= ~LIGHT_SPOT;
171 break;
172 case GL_CONSTANT_ATTENUATION:
173 if (params[0]<0.0) {
174 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
175 return;
176 }
177 if (l->ConstantAttenuation == params[0])
178 return;
179 FLUSH_VERTICES(ctx, _NEW_LIGHT);
180 l->ConstantAttenuation = params[0];
181 break;
182 case GL_LINEAR_ATTENUATION:
183 if (params[0]<0.0) {
184 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
185 return;
186 }
187 if (l->LinearAttenuation == params[0])
188 return;
189 FLUSH_VERTICES(ctx, _NEW_LIGHT);
190 l->LinearAttenuation = params[0];
191 break;
192 case GL_QUADRATIC_ATTENUATION:
193 if (params[0]<0.0) {
194 _mesa_error( ctx, GL_INVALID_VALUE, "glLight" );
195 return;
196 }
197 if (l->QuadraticAttenuation == params[0])
198 return;
199 FLUSH_VERTICES(ctx, _NEW_LIGHT);
200 l->QuadraticAttenuation = params[0];
201 break;
202 default:
203 _mesa_error( ctx, GL_INVALID_ENUM, "glLight" );
204 return;
205 }
206
207 if (ctx->Driver.Lightfv)
208 ctx->Driver.Lightfv( ctx, light, pname, params );
209 }
210
211
212 void
213 _mesa_Lighti( GLenum light, GLenum pname, GLint param )
214 {
215 _mesa_Lightiv( light, pname, &param );
216 }
217
218
219 void
220 _mesa_Lightiv( GLenum light, GLenum pname, const GLint *params )
221 {
222 GLfloat fparam[4];
223
224 switch (pname) {
225 case GL_AMBIENT:
226 case GL_DIFFUSE:
227 case GL_SPECULAR:
228 fparam[0] = INT_TO_FLOAT( params[0] );
229 fparam[1] = INT_TO_FLOAT( params[1] );
230 fparam[2] = INT_TO_FLOAT( params[2] );
231 fparam[3] = INT_TO_FLOAT( params[3] );
232 break;
233 case GL_POSITION:
234 fparam[0] = (GLfloat) params[0];
235 fparam[1] = (GLfloat) params[1];
236 fparam[2] = (GLfloat) params[2];
237 fparam[3] = (GLfloat) params[3];
238 break;
239 case GL_SPOT_DIRECTION:
240 fparam[0] = (GLfloat) params[0];
241 fparam[1] = (GLfloat) params[1];
242 fparam[2] = (GLfloat) params[2];
243 break;
244 case GL_SPOT_EXPONENT:
245 case GL_SPOT_CUTOFF:
246 case GL_CONSTANT_ATTENUATION:
247 case GL_LINEAR_ATTENUATION:
248 case GL_QUADRATIC_ATTENUATION:
249 fparam[0] = (GLfloat) params[0];
250 break;
251 default:
252 /* error will be caught later in gl_Lightfv */
253 ;
254 }
255
256 _mesa_Lightfv( light, pname, fparam );
257 }
258
259
260
261 void
262 _mesa_GetLightfv( GLenum light, GLenum pname, GLfloat *params )
263 {
264 GET_CURRENT_CONTEXT(ctx);
265 GLint l = (GLint) (light - GL_LIGHT0);
266 ASSERT_OUTSIDE_BEGIN_END(ctx);
267
268 if (l < 0 || l >= (GLint) ctx->Const.MaxLights) {
269 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
270 return;
271 }
272
273 switch (pname) {
274 case GL_AMBIENT:
275 COPY_4V( params, ctx->Light.Light[l].Ambient );
276 break;
277 case GL_DIFFUSE:
278 COPY_4V( params, ctx->Light.Light[l].Diffuse );
279 break;
280 case GL_SPECULAR:
281 COPY_4V( params, ctx->Light.Light[l].Specular );
282 break;
283 case GL_POSITION:
284 COPY_4V( params, ctx->Light.Light[l].EyePosition );
285 break;
286 case GL_SPOT_DIRECTION:
287 COPY_3V( params, ctx->Light.Light[l].EyeDirection );
288 break;
289 case GL_SPOT_EXPONENT:
290 params[0] = ctx->Light.Light[l].SpotExponent;
291 break;
292 case GL_SPOT_CUTOFF:
293 params[0] = ctx->Light.Light[l].SpotCutoff;
294 break;
295 case GL_CONSTANT_ATTENUATION:
296 params[0] = ctx->Light.Light[l].ConstantAttenuation;
297 break;
298 case GL_LINEAR_ATTENUATION:
299 params[0] = ctx->Light.Light[l].LinearAttenuation;
300 break;
301 case GL_QUADRATIC_ATTENUATION:
302 params[0] = ctx->Light.Light[l].QuadraticAttenuation;
303 break;
304 default:
305 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
306 break;
307 }
308 }
309
310
311
312 void
313 _mesa_GetLightiv( GLenum light, GLenum pname, GLint *params )
314 {
315 GET_CURRENT_CONTEXT(ctx);
316 GLint l = (GLint) (light - GL_LIGHT0);
317 ASSERT_OUTSIDE_BEGIN_END(ctx);
318
319 if (l < 0 || l >= (GLint) ctx->Const.MaxLights) {
320 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
321 return;
322 }
323
324 switch (pname) {
325 case GL_AMBIENT:
326 params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]);
327 params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]);
328 params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]);
329 params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]);
330 break;
331 case GL_DIFFUSE:
332 params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]);
333 params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]);
334 params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]);
335 params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]);
336 break;
337 case GL_SPECULAR:
338 params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]);
339 params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]);
340 params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]);
341 params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]);
342 break;
343 case GL_POSITION:
344 params[0] = (GLint) ctx->Light.Light[l].EyePosition[0];
345 params[1] = (GLint) ctx->Light.Light[l].EyePosition[1];
346 params[2] = (GLint) ctx->Light.Light[l].EyePosition[2];
347 params[3] = (GLint) ctx->Light.Light[l].EyePosition[3];
348 break;
349 case GL_SPOT_DIRECTION:
350 params[0] = (GLint) ctx->Light.Light[l].EyeDirection[0];
351 params[1] = (GLint) ctx->Light.Light[l].EyeDirection[1];
352 params[2] = (GLint) ctx->Light.Light[l].EyeDirection[2];
353 break;
354 case GL_SPOT_EXPONENT:
355 params[0] = (GLint) ctx->Light.Light[l].SpotExponent;
356 break;
357 case GL_SPOT_CUTOFF:
358 params[0] = (GLint) ctx->Light.Light[l].SpotCutoff;
359 break;
360 case GL_CONSTANT_ATTENUATION:
361 params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation;
362 break;
363 case GL_LINEAR_ATTENUATION:
364 params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation;
365 break;
366 case GL_QUADRATIC_ATTENUATION:
367 params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation;
368 break;
369 default:
370 _mesa_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
371 break;
372 }
373 }
374
375
376
377 /**********************************************************************/
378 /*** Light Model ***/
379 /**********************************************************************/
380
381
382 void
383 _mesa_LightModelfv( GLenum pname, const GLfloat *params )
384 {
385 GLenum newenum;
386 GLboolean newbool;
387 GET_CURRENT_CONTEXT(ctx);
388 ASSERT_OUTSIDE_BEGIN_END(ctx);
389
390 switch (pname) {
391 case GL_LIGHT_MODEL_AMBIENT:
392 if (TEST_EQ_4V( ctx->Light.Model.Ambient, params ))
393 return;
394 FLUSH_VERTICES(ctx, _NEW_LIGHT);
395 COPY_4V( ctx->Light.Model.Ambient, params );
396 break;
397 case GL_LIGHT_MODEL_LOCAL_VIEWER:
398 newbool = (params[0]!=0.0);
399 if (ctx->Light.Model.LocalViewer == newbool)
400 return;
401 FLUSH_VERTICES(ctx, _NEW_LIGHT);
402 ctx->Light.Model.LocalViewer = newbool;
403 break;
404 case GL_LIGHT_MODEL_TWO_SIDE:
405 newbool = (params[0]!=0.0);
406 if (ctx->Light.Model.TwoSide == newbool)
407 return;
408 FLUSH_VERTICES(ctx, _NEW_LIGHT);
409 ctx->Light.Model.TwoSide = newbool;
410 break;
411 case GL_LIGHT_MODEL_COLOR_CONTROL:
412 if (params[0] == (GLfloat) GL_SINGLE_COLOR)
413 newenum = GL_SINGLE_COLOR;
414 else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR)
415 newenum = GL_SEPARATE_SPECULAR_COLOR;
416 else {
417 _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel(param)" );
418 return;
419 }
420 if (ctx->Light.Model.ColorControl == newenum)
421 return;
422 FLUSH_VERTICES(ctx, _NEW_LIGHT);
423 ctx->Light.Model.ColorControl = newenum;
424
425 if ((ctx->Light.Enabled &&
426 ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR)
427 || ctx->Fog.ColorSumEnabled)
428 ctx->_TriangleCaps |= DD_SEPARATE_SPECULAR;
429 else
430 ctx->_TriangleCaps &= ~DD_SEPARATE_SPECULAR;
431
432 break;
433 default:
434 _mesa_error( ctx, GL_INVALID_ENUM, "glLightModel" );
435 break;
436 }
437
438 if (ctx->Driver.LightModelfv)
439 ctx->Driver.LightModelfv( ctx, pname, params );
440 }
441
442
443 void
444 _mesa_LightModeliv( GLenum pname, const GLint *params )
445 {
446 GLfloat fparam[4];
447
448 switch (pname) {
449 case GL_LIGHT_MODEL_AMBIENT:
450 fparam[0] = INT_TO_FLOAT( params[0] );
451 fparam[1] = INT_TO_FLOAT( params[1] );
452 fparam[2] = INT_TO_FLOAT( params[2] );
453 fparam[3] = INT_TO_FLOAT( params[3] );
454 break;
455 case GL_LIGHT_MODEL_LOCAL_VIEWER:
456 case GL_LIGHT_MODEL_TWO_SIDE:
457 case GL_LIGHT_MODEL_COLOR_CONTROL:
458 fparam[0] = (GLfloat) params[0];
459 break;
460 default:
461 /* Error will be caught later in gl_LightModelfv */
462 ;
463 }
464 _mesa_LightModelfv( pname, fparam );
465 }
466
467
468 void
469 _mesa_LightModeli( GLenum pname, GLint param )
470 {
471 _mesa_LightModeliv( pname, &param );
472 }
473
474
475 void
476 _mesa_LightModelf( GLenum pname, GLfloat param )
477 {
478 _mesa_LightModelfv( pname, &param );
479 }
480
481
482
483 /********** MATERIAL **********/
484
485
486 /*
487 * Given a face and pname value (ala glColorMaterial), compute a bitmask
488 * of the targeted material values.
489 */
490 GLuint
491 _mesa_material_bitmask( GLcontext *ctx, GLenum face, GLenum pname,
492 GLuint legal, const char *where )
493 {
494 GLuint bitmask = 0;
495
496 /* Make a bitmask indicating what material attribute(s) we're updating */
497 switch (pname) {
498 case GL_EMISSION:
499 bitmask |= FRONT_EMISSION_BIT | BACK_EMISSION_BIT;
500 break;
501 case GL_AMBIENT:
502 bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT;
503 break;
504 case GL_DIFFUSE:
505 bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT;
506 break;
507 case GL_SPECULAR:
508 bitmask |= FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT;
509 break;
510 case GL_SHININESS:
511 bitmask |= FRONT_SHININESS_BIT | BACK_SHININESS_BIT;
512 break;
513 case GL_AMBIENT_AND_DIFFUSE:
514 bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT;
515 bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT;
516 break;
517 case GL_COLOR_INDEXES:
518 bitmask |= FRONT_INDEXES_BIT | BACK_INDEXES_BIT;
519 break;
520 default:
521 _mesa_error( ctx, GL_INVALID_ENUM, where );
522 return 0;
523 }
524
525 if (face==GL_FRONT) {
526 bitmask &= FRONT_MATERIAL_BITS;
527 }
528 else if (face==GL_BACK) {
529 bitmask &= BACK_MATERIAL_BITS;
530 }
531 else if (face != GL_FRONT_AND_BACK) {
532 _mesa_error( ctx, GL_INVALID_ENUM, where );
533 return 0;
534 }
535
536 if (bitmask & ~legal) {
537 _mesa_error( ctx, GL_INVALID_ENUM, where );
538 return 0;
539 }
540
541 return bitmask;
542 }
543
544
545 /* Perform a straight copy between pairs of materials.
546 */
547 void _mesa_copy_material_pairs( struct gl_material dst[2],
548 const struct gl_material src[2],
549 GLuint bitmask )
550 {
551 if (bitmask & FRONT_EMISSION_BIT) {
552 COPY_4FV( dst[0].Emission, src[0].Emission );
553 }
554 if (bitmask & BACK_EMISSION_BIT) {
555 COPY_4FV( dst[1].Emission, src[1].Emission );
556 }
557 if (bitmask & FRONT_AMBIENT_BIT) {
558 COPY_4FV( dst[0].Ambient, src[0].Ambient );
559 }
560 if (bitmask & BACK_AMBIENT_BIT) {
561 COPY_4FV( dst[1].Ambient, src[1].Ambient );
562 }
563 if (bitmask & FRONT_DIFFUSE_BIT) {
564 COPY_4FV( dst[0].Diffuse, src[0].Diffuse );
565 }
566 if (bitmask & BACK_DIFFUSE_BIT) {
567 COPY_4FV( dst[1].Diffuse, src[1].Diffuse );
568 }
569 if (bitmask & FRONT_SPECULAR_BIT) {
570 COPY_4FV( dst[0].Specular, src[0].Specular );
571 }
572 if (bitmask & BACK_SPECULAR_BIT) {
573 COPY_4FV( dst[1].Specular, src[1].Specular );
574 }
575 if (bitmask & FRONT_SHININESS_BIT) {
576 dst[0].Shininess = src[0].Shininess;
577 }
578 if (bitmask & BACK_SHININESS_BIT) {
579 dst[1].Shininess = src[1].Shininess;
580 }
581 if (bitmask & FRONT_INDEXES_BIT) {
582 dst[0].AmbientIndex = src[0].AmbientIndex;
583 dst[0].DiffuseIndex = src[0].DiffuseIndex;
584 dst[0].SpecularIndex = src[0].SpecularIndex;
585 }
586 if (bitmask & BACK_INDEXES_BIT) {
587 dst[1].AmbientIndex = src[1].AmbientIndex;
588 dst[1].DiffuseIndex = src[1].DiffuseIndex;
589 dst[1].SpecularIndex = src[1].SpecularIndex;
590 }
591 }
592
593
594 /*
595 * Check if the global material has to be updated with info that was
596 * associated with a vertex via glMaterial.
597 * This function is used when any material values get changed between
598 * glBegin/glEnd either by calling glMaterial() or by calling glColor()
599 * when GL_COLOR_MATERIAL is enabled.
600 *
601 * src[0] is front material, src[1] is back material
602 *
603 * Additionally keeps the precomputed lighting state uptodate.
604 */
605 void _mesa_update_material( GLcontext *ctx,
606 const struct gl_material src[2],
607 GLuint bitmask )
608 {
609 struct gl_light *light, *list = &ctx->Light.EnabledList;
610
611 if (ctx->Light.ColorMaterialEnabled)
612 bitmask &= ~ctx->Light.ColorMaterialBitmask;
613
614 if (MESA_VERBOSE&VERBOSE_IMMEDIATE)
615 fprintf(stderr, "_mesa_update_material, mask 0x%x\n", bitmask);
616
617 if (!bitmask)
618 return;
619
620 /* update material emission */
621 if (bitmask & FRONT_EMISSION_BIT) {
622 struct gl_material *mat = &ctx->Light.Material[0];
623 COPY_4FV( mat->Emission, src[0].Emission );
624 }
625 if (bitmask & BACK_EMISSION_BIT) {
626 struct gl_material *mat = &ctx->Light.Material[1];
627 COPY_4FV( mat->Emission, src[1].Emission );
628 }
629
630 /* update material ambience */
631 if (bitmask & FRONT_AMBIENT_BIT) {
632 struct gl_material *mat = &ctx->Light.Material[0];
633 COPY_4FV( mat->Ambient, src[0].Ambient );
634 foreach (light, list) {
635 SCALE_3V( light->_MatAmbient[0], light->Ambient, src[0].Ambient);
636 }
637 }
638 if (bitmask & BACK_AMBIENT_BIT) {
639 struct gl_material *mat = &ctx->Light.Material[1];
640 COPY_4FV( mat->Ambient, src[1].Ambient );
641 foreach (light, list) {
642 SCALE_3V( light->_MatAmbient[1], light->Ambient, src[1].Ambient);
643 }
644 }
645
646 /* update BaseColor = emission + scene's ambience * material's ambience */
647 if (bitmask & (FRONT_EMISSION_BIT | FRONT_AMBIENT_BIT)) {
648 struct gl_material *mat = &ctx->Light.Material[0];
649 COPY_3V( ctx->Light._BaseColor[0], mat->Emission );
650 ACC_SCALE_3V( ctx->Light._BaseColor[0], mat->Ambient,
651 ctx->Light.Model.Ambient );
652 }
653 if (bitmask & (BACK_EMISSION_BIT | BACK_AMBIENT_BIT)) {
654 struct gl_material *mat = &ctx->Light.Material[1];
655 COPY_3V( ctx->Light._BaseColor[1], mat->Emission );
656 ACC_SCALE_3V( ctx->Light._BaseColor[1], mat->Ambient,
657 ctx->Light.Model.Ambient );
658 }
659
660 /* update material diffuse values */
661 if (bitmask & FRONT_DIFFUSE_BIT) {
662 struct gl_material *mat = &ctx->Light.Material[0];
663 COPY_4FV( mat->Diffuse, src[0].Diffuse );
664 foreach (light, list) {
665 SCALE_3V( light->_MatDiffuse[0], light->Diffuse, mat->Diffuse );
666 }
667 }
668 if (bitmask & BACK_DIFFUSE_BIT) {
669 struct gl_material *mat = &ctx->Light.Material[1];
670 COPY_4FV( mat->Diffuse, src[1].Diffuse );
671 foreach (light, list) {
672 SCALE_3V( light->_MatDiffuse[1], light->Diffuse, mat->Diffuse );
673 }
674 }
675
676 /* update material specular values */
677 if (bitmask & FRONT_SPECULAR_BIT) {
678 struct gl_material *mat = &ctx->Light.Material[0];
679 COPY_4FV( mat->Specular, src[0].Specular );
680 foreach (light, list) {
681 SCALE_3V( light->_MatSpecular[0], light->Specular, mat->Specular);
682 }
683 }
684 if (bitmask & BACK_SPECULAR_BIT) {
685 struct gl_material *mat = &ctx->Light.Material[1];
686 COPY_4FV( mat->Specular, src[1].Specular );
687 foreach (light, list) {
688 SCALE_3V( light->_MatSpecular[1], light->Specular, mat->Specular);
689 }
690 }
691
692 if (bitmask & FRONT_SHININESS_BIT) {
693 ctx->Light.Material[0].Shininess = src[0].Shininess;
694 _mesa_invalidate_shine_table( ctx, 0 );
695 }
696 if (bitmask & BACK_SHININESS_BIT) {
697 ctx->Light.Material[1].Shininess = src[1].Shininess;
698 _mesa_invalidate_shine_table( ctx, 1 );
699 }
700
701 if (bitmask & FRONT_INDEXES_BIT) {
702 ctx->Light.Material[0].AmbientIndex = src[0].AmbientIndex;
703 ctx->Light.Material[0].DiffuseIndex = src[0].DiffuseIndex;
704 ctx->Light.Material[0].SpecularIndex = src[0].SpecularIndex;
705 }
706 if (bitmask & BACK_INDEXES_BIT) {
707 ctx->Light.Material[1].AmbientIndex = src[1].AmbientIndex;
708 ctx->Light.Material[1].DiffuseIndex = src[1].DiffuseIndex;
709 ctx->Light.Material[1].SpecularIndex = src[1].SpecularIndex;
710 }
711
712 if (0)
713 {
714 struct gl_material *mat = &ctx->Light.Material[0];
715 fprintf(stderr, "update_mat emission : %f %f %f\n",
716 mat->Emission[0],
717 mat->Emission[1],
718 mat->Emission[2]);
719 fprintf(stderr, "update_mat specular : %f %f %f\n",
720 mat->Specular[0],
721 mat->Specular[1],
722 mat->Specular[2]);
723 fprintf(stderr, "update_mat diffuse : %f %f %f\n",
724 mat->Diffuse[0],
725 mat->Diffuse[1],
726 mat->Diffuse[2]);
727 fprintf(stderr, "update_mat ambient : %f %f %f\n",
728 mat->Ambient[0],
729 mat->Ambient[1],
730 mat->Ambient[2]);
731 }
732 }
733
734
735
736
737
738
739
740 /*
741 * Update the current materials from the given rgba color
742 * according to the bitmask in ColorMaterialBitmask, which is
743 * set by glColorMaterial().
744 */
745 void _mesa_update_color_material( GLcontext *ctx,
746 const GLfloat color[4] )
747 {
748 struct gl_light *light, *list = &ctx->Light.EnabledList;
749 GLuint bitmask = ctx->Light.ColorMaterialBitmask;
750
751 if (MESA_VERBOSE&VERBOSE_IMMEDIATE)
752 fprintf(stderr, "_mesa_update_color_material, mask 0x%x\n", bitmask);
753
754 /* update emissive colors */
755 if (bitmask & FRONT_EMISSION_BIT) {
756 struct gl_material *mat = &ctx->Light.Material[0];
757 COPY_4FV( mat->Emission, color );
758 }
759
760 if (bitmask & BACK_EMISSION_BIT) {
761 struct gl_material *mat = &ctx->Light.Material[1];
762 COPY_4FV( mat->Emission, color );
763 }
764
765 /* update light->_MatAmbient = light's ambient * material's ambient */
766 if (bitmask & FRONT_AMBIENT_BIT) {
767 struct gl_material *mat = &ctx->Light.Material[0];
768 foreach (light, list) {
769 SCALE_3V( light->_MatAmbient[0], light->Ambient, color);
770 }
771 COPY_4FV( mat->Ambient, color );
772 }
773
774 if (bitmask & BACK_AMBIENT_BIT) {
775 struct gl_material *mat = &ctx->Light.Material[1];
776 foreach (light, list) {
777 SCALE_3V( light->_MatAmbient[1], light->Ambient, color);
778 }
779 COPY_4FV( mat->Ambient, color );
780 }
781
782 /* update BaseColor = emission + scene's ambience * material's ambience */
783 if (bitmask & (FRONT_EMISSION_BIT | FRONT_AMBIENT_BIT)) {
784 struct gl_material *mat = &ctx->Light.Material[0];
785 COPY_3V( ctx->Light._BaseColor[0], mat->Emission );
786 ACC_SCALE_3V( ctx->Light._BaseColor[0], mat->Ambient, ctx->Light.Model.Ambient );
787 }
788
789 if (bitmask & (BACK_EMISSION_BIT | BACK_AMBIENT_BIT)) {
790 struct gl_material *mat = &ctx->Light.Material[1];
791 COPY_3V( ctx->Light._BaseColor[1], mat->Emission );
792 ACC_SCALE_3V( ctx->Light._BaseColor[1], mat->Ambient, ctx->Light.Model.Ambient );
793 }
794
795 /* update light->_MatDiffuse = light's diffuse * material's diffuse */
796 if (bitmask & FRONT_DIFFUSE_BIT) {
797 struct gl_material *mat = &ctx->Light.Material[0];
798 COPY_4FV( mat->Diffuse, color );
799 foreach (light, list) {
800 SCALE_3V( light->_MatDiffuse[0], light->Diffuse, mat->Diffuse );
801 }
802 }
803
804 if (bitmask & BACK_DIFFUSE_BIT) {
805 struct gl_material *mat = &ctx->Light.Material[1];
806 COPY_4FV( mat->Diffuse, color );
807 foreach (light, list) {
808 SCALE_3V( light->_MatDiffuse[1], light->Diffuse, mat->Diffuse );
809 }
810 }
811
812 /* update light->_MatSpecular = light's specular * material's specular */
813 if (bitmask & FRONT_SPECULAR_BIT) {
814 struct gl_material *mat = &ctx->Light.Material[0];
815 COPY_4FV( mat->Specular, color );
816 foreach (light, list) {
817 ACC_SCALE_3V( light->_MatSpecular[0], light->Specular, mat->Specular);
818 }
819 }
820
821 if (bitmask & BACK_SPECULAR_BIT) {
822 struct gl_material *mat = &ctx->Light.Material[1];
823 COPY_4FV( mat->Specular, color );
824 foreach (light, list) {
825 ACC_SCALE_3V( light->_MatSpecular[1], light->Specular, mat->Specular);
826 }
827 }
828
829 if (0)
830 {
831 struct gl_material *mat = &ctx->Light.Material[0];
832 fprintf(stderr, "update_color_mat emission : %f %f %f\n",
833 mat->Emission[0],
834 mat->Emission[1],
835 mat->Emission[2]);
836 fprintf(stderr, "update_color_mat specular : %f %f %f\n",
837 mat->Specular[0],
838 mat->Specular[1],
839 mat->Specular[2]);
840 fprintf(stderr, "update_color_mat diffuse : %f %f %f\n",
841 mat->Diffuse[0],
842 mat->Diffuse[1],
843 mat->Diffuse[2]);
844 fprintf(stderr, "update_color_mat ambient : %f %f %f\n",
845 mat->Ambient[0],
846 mat->Ambient[1],
847 mat->Ambient[2]);
848 }
849 }
850
851
852
853
854 void
855 _mesa_ColorMaterial( GLenum face, GLenum mode )
856 {
857 GET_CURRENT_CONTEXT(ctx);
858 GLuint bitmask;
859 GLuint legal = (FRONT_EMISSION_BIT | BACK_EMISSION_BIT |
860 FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT |
861 FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT |
862 FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT);
863 ASSERT_OUTSIDE_BEGIN_END(ctx);
864
865 if (MESA_VERBOSE&VERBOSE_API)
866 fprintf(stderr, "glColorMaterial %s %s\n",
867 _mesa_lookup_enum_by_nr(face),
868 _mesa_lookup_enum_by_nr(mode));
869
870 bitmask = _mesa_material_bitmask(ctx, face, mode, legal, "glColorMaterial");
871
872 if (ctx->Light.ColorMaterialBitmask == bitmask &&
873 ctx->Light.ColorMaterialFace == face &&
874 ctx->Light.ColorMaterialMode == mode)
875 return;
876
877 FLUSH_VERTICES(ctx, _NEW_LIGHT);
878 ctx->Light.ColorMaterialBitmask = bitmask;
879 ctx->Light.ColorMaterialFace = face;
880 ctx->Light.ColorMaterialMode = mode;
881
882 if (ctx->Light.ColorMaterialEnabled) {
883 FLUSH_CURRENT( ctx, 0 );
884 _mesa_update_color_material(ctx,ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
885 }
886 }
887
888
889
890
891
892 void
893 _mesa_GetMaterialfv( GLenum face, GLenum pname, GLfloat *params )
894 {
895 GET_CURRENT_CONTEXT(ctx);
896 GLuint f;
897 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */
898
899 if (face==GL_FRONT) {
900 f = 0;
901 }
902 else if (face==GL_BACK) {
903 f = 1;
904 }
905 else {
906 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" );
907 return;
908 }
909 switch (pname) {
910 case GL_AMBIENT:
911 COPY_4FV( params, ctx->Light.Material[f].Ambient );
912 break;
913 case GL_DIFFUSE:
914 COPY_4FV( params, ctx->Light.Material[f].Diffuse );
915 break;
916 case GL_SPECULAR:
917 COPY_4FV( params, ctx->Light.Material[f].Specular );
918 break;
919 case GL_EMISSION:
920 COPY_4FV( params, ctx->Light.Material[f].Emission );
921 break;
922 case GL_SHININESS:
923 *params = ctx->Light.Material[f].Shininess;
924 break;
925 case GL_COLOR_INDEXES:
926 params[0] = ctx->Light.Material[f].AmbientIndex;
927 params[1] = ctx->Light.Material[f].DiffuseIndex;
928 params[2] = ctx->Light.Material[f].SpecularIndex;
929 break;
930 default:
931 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
932 }
933 }
934
935
936
937 void
938 _mesa_GetMaterialiv( GLenum face, GLenum pname, GLint *params )
939 {
940 GET_CURRENT_CONTEXT(ctx);
941 GLuint f;
942 ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); /* update materials */
943
944 if (face==GL_FRONT) {
945 f = 0;
946 }
947 else if (face==GL_BACK) {
948 f = 1;
949 }
950 else {
951 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" );
952 return;
953 }
954 switch (pname) {
955 case GL_AMBIENT:
956 params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[0] );
957 params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[1] );
958 params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[2] );
959 params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[3] );
960 break;
961 case GL_DIFFUSE:
962 params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[0] );
963 params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[1] );
964 params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[2] );
965 params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[3] );
966 break;
967 case GL_SPECULAR:
968 params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[0] );
969 params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[1] );
970 params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[2] );
971 params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[3] );
972 break;
973 case GL_EMISSION:
974 params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[0] );
975 params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[1] );
976 params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[2] );
977 params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[3] );
978 break;
979 case GL_SHININESS:
980 *params = ROUNDF( ctx->Light.Material[f].Shininess );
981 break;
982 case GL_COLOR_INDEXES:
983 params[0] = ROUNDF( ctx->Light.Material[f].AmbientIndex );
984 params[1] = ROUNDF( ctx->Light.Material[f].DiffuseIndex );
985 params[2] = ROUNDF( ctx->Light.Material[f].SpecularIndex );
986 break;
987 default:
988 _mesa_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
989 }
990 }
991
992
993
994
995 /**********************************************************************/
996 /***** Lighting computation *****/
997 /**********************************************************************/
998
999
1000 /*
1001 * Notes:
1002 * When two-sided lighting is enabled we compute the color (or index)
1003 * for both the front and back side of the primitive. Then, when the
1004 * orientation of the facet is later learned, we can determine which
1005 * color (or index) to use for rendering.
1006 *
1007 * KW: We now know orientation in advance and only shade for
1008 * the side or sides which are actually required.
1009 *
1010 * Variables:
1011 * n = normal vector
1012 * V = vertex position
1013 * P = light source position
1014 * Pe = (0,0,0,1)
1015 *
1016 * Precomputed:
1017 * IF P[3]==0 THEN
1018 * // light at infinity
1019 * IF local_viewer THEN
1020 * _VP_inf_norm = unit vector from V to P // Precompute
1021 * ELSE
1022 * // eye at infinity
1023 * _h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute
1024 * ENDIF
1025 * ENDIF
1026 *
1027 * Functions:
1028 * Normalize( v ) = normalized vector v
1029 * Magnitude( v ) = length of vector v
1030 */
1031
1032
1033
1034 /*
1035 * Whenever the spotlight exponent for a light changes we must call
1036 * this function to recompute the exponent lookup table.
1037 */
1038 void
1039 _mesa_invalidate_spot_exp_table( struct gl_light *l )
1040 {
1041 l->_SpotExpTable[0][0] = -1;
1042 }
1043
1044 static void validate_spot_exp_table( struct gl_light *l )
1045 {
1046 GLint i;
1047 GLdouble exponent = l->SpotExponent;
1048 GLdouble tmp = 0;
1049 GLint clamp = 0;
1050
1051 l->_SpotExpTable[0][0] = 0.0;
1052
1053 for (i = EXP_TABLE_SIZE - 1; i > 0 ;i--) {
1054 if (clamp == 0) {
1055 tmp = pow(i / (GLdouble) (EXP_TABLE_SIZE - 1), exponent);
1056 if (tmp < FLT_MIN * 100.0) {
1057 tmp = 0.0;
1058 clamp = 1;
1059 }
1060 }
1061 l->_SpotExpTable[i][0] = (GLfloat) tmp;
1062 }
1063 for (i = 0; i < EXP_TABLE_SIZE - 1; i++) {
1064 l->_SpotExpTable[i][1] = (l->_SpotExpTable[i+1][0] -
1065 l->_SpotExpTable[i][0]);
1066 }
1067 l->_SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0;
1068 }
1069
1070
1071
1072
1073 /* Calculate a new shine table. Doing this here saves a branch in
1074 * lighting, and the cost of doing it early may be partially offset
1075 * by keeping a MRU cache of shine tables for various shine values.
1076 */
1077 void
1078 _mesa_invalidate_shine_table( GLcontext *ctx, GLuint i )
1079 {
1080 if (ctx->_ShineTable[i])
1081 ctx->_ShineTable[i]->refcount--;
1082 ctx->_ShineTable[i] = 0;
1083 }
1084
1085 static void validate_shine_table( GLcontext *ctx, GLuint i, GLfloat shininess )
1086 {
1087 struct gl_shine_tab *list = ctx->_ShineTabList;
1088 struct gl_shine_tab *s;
1089
1090 foreach(s, list)
1091 if ( s->shininess == shininess )
1092 break;
1093
1094 if (s == list) {
1095 GLint j;
1096 GLfloat *m;
1097
1098 foreach(s, list)
1099 if (s->refcount == 0)
1100 break;
1101
1102 m = s->tab;
1103 m[0] = 0.0;
1104 if (shininess == 0.0) {
1105 for (j = 1 ; j <= SHINE_TABLE_SIZE ; j++)
1106 m[j] = 1.0;
1107 }
1108 else {
1109 for (j = 1 ; j < SHINE_TABLE_SIZE ; j++) {
1110 GLdouble t, x = j / (GLfloat) (SHINE_TABLE_SIZE - 1);
1111 if (x < 0.005) /* underflow check */
1112 x = 0.005;
1113 t = pow(x, shininess);
1114 if (t > 1e-20)
1115 m[j] = (GLfloat) t;
1116 else
1117 m[j] = 0.0;
1118 }
1119 m[SHINE_TABLE_SIZE] = 1.0;
1120 }
1121
1122 s->shininess = shininess;
1123 }
1124
1125 if (ctx->_ShineTable[i])
1126 ctx->_ShineTable[i]->refcount--;
1127
1128 ctx->_ShineTable[i] = s;
1129 move_to_tail( list, s );
1130 s->refcount++;
1131 }
1132
1133 void
1134 _mesa_validate_all_lighting_tables( GLcontext *ctx )
1135 {
1136 GLint i;
1137 GLfloat shininess;
1138
1139 shininess = ctx->Light.Material[0].Shininess;
1140 if (!ctx->_ShineTable[0] || ctx->_ShineTable[0]->shininess != shininess)
1141 validate_shine_table( ctx, 0, shininess );
1142
1143 shininess = ctx->Light.Material[1].Shininess;
1144 if (!ctx->_ShineTable[1] || ctx->_ShineTable[1]->shininess != shininess)
1145 validate_shine_table( ctx, 1, shininess );
1146
1147 for (i = 0 ; i < MAX_LIGHTS ; i++)
1148 if (ctx->Light.Light[i]._SpotExpTable[0][0] == -1)
1149 validate_spot_exp_table( &ctx->Light.Light[i] );
1150 }
1151
1152
1153
1154
1155 /*
1156 * Examine current lighting parameters to determine if the optimized lighting
1157 * function can be used.
1158 * Also, precompute some lighting values such as the products of light
1159 * source and material ambient, diffuse and specular coefficients.
1160 */
1161 void
1162 _mesa_update_lighting( GLcontext *ctx )
1163 {
1164 struct gl_light *light;
1165 ctx->_TriangleCaps &= ~DD_TRI_LIGHT_TWOSIDE;
1166 ctx->_NeedEyeCoords &= ~NEED_EYE_LIGHT;
1167 ctx->_NeedNormals &= ~NEED_NORMALS_LIGHT;
1168 ctx->Light._Flags = 0;
1169
1170 if (!ctx->Light.Enabled)
1171 return;
1172
1173 ctx->_NeedNormals |= NEED_NORMALS_LIGHT;
1174
1175 if (ctx->Light.Model.TwoSide)
1176 ctx->_TriangleCaps |= DD_TRI_LIGHT_TWOSIDE;
1177
1178 foreach(light, &ctx->Light.EnabledList) {
1179 ctx->Light._Flags |= light->_Flags;
1180 }
1181
1182 ctx->Light._NeedVertices =
1183 ((ctx->Light._Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) ||
1184 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR ||
1185 ctx->Light.Model.LocalViewer);
1186
1187 if ((ctx->Light._Flags & LIGHT_POSITIONAL) ||
1188 ctx->Light.Model.LocalViewer)
1189 ctx->_NeedEyeCoords |= NEED_EYE_LIGHT;
1190
1191
1192 /* XXX: This test is overkill & needs to be fixed both for software and
1193 * hardware t&l drivers. The above should be sufficient & should
1194 * be tested to verify this.
1195 */
1196 if (ctx->Light._NeedVertices)
1197 ctx->_NeedEyeCoords |= NEED_EYE_LIGHT;
1198
1199
1200 /* Precompute some shading values. Although we reference
1201 * Light.Material here, we can get away without flushing
1202 * FLUSH_UPDATE_CURRENT, as when any outstanding material changes
1203 * are flushed, they will update the derived state at that time.
1204 */
1205 if (ctx->Visual.rgbMode) {
1206 GLuint sides = ctx->Light.Model.TwoSide ? 2 : 1;
1207 GLuint side;
1208 for (side=0; side < sides; side++) {
1209 struct gl_material *mat = &ctx->Light.Material[side];
1210
1211 COPY_3V(ctx->Light._BaseColor[side], mat->Emission);
1212 ACC_SCALE_3V(ctx->Light._BaseColor[side],
1213 ctx->Light.Model.Ambient,
1214 mat->Ambient);
1215 }
1216
1217 foreach (light, &ctx->Light.EnabledList) {
1218 for (side=0; side< sides; side++) {
1219 const struct gl_material *mat = &ctx->Light.Material[side];
1220 SCALE_3V( light->_MatDiffuse[side], light->Diffuse, mat->Diffuse );
1221 SCALE_3V( light->_MatAmbient[side], light->Ambient, mat->Ambient );
1222 SCALE_3V( light->_MatSpecular[side], light->Specular,
1223 mat->Specular);
1224 }
1225 }
1226 }
1227 else {
1228 static const GLfloat ci[3] = { .30F, .59F, .11F };
1229 foreach(light, &ctx->Light.EnabledList) {
1230 light->_dli = DOT3(ci, light->Diffuse);
1231 light->_sli = DOT3(ci, light->Specular);
1232 }
1233 }
1234 }
1235
1236
1237 /* _NEW_MODELVIEW
1238 * _NEW_LIGHT
1239 * _TNL_NEW_NEED_EYE_COORDS
1240 *
1241 * Update on (_NEW_MODELVIEW | _NEW_LIGHT) when lighting is enabled.
1242 * Also update on lighting space changes.
1243 */
1244 void
1245 _mesa_compute_light_positions( GLcontext *ctx )
1246 {
1247 struct gl_light *light;
1248 static const GLfloat eye_z[3] = { 0, 0, 1 };
1249
1250 if (!ctx->Light.Enabled)
1251 return;
1252
1253 if (ctx->_NeedEyeCoords) {
1254 COPY_3V( ctx->_EyeZDir, eye_z );
1255 }
1256 else {
1257 TRANSFORM_NORMAL( ctx->_EyeZDir, eye_z, ctx->ModelView.m );
1258 }
1259
1260 foreach (light, &ctx->Light.EnabledList) {
1261
1262 if (ctx->_NeedEyeCoords) {
1263 COPY_4FV( light->_Position, light->EyePosition );
1264 }
1265 else {
1266 TRANSFORM_POINT( light->_Position, ctx->ModelView.inv,
1267 light->EyePosition );
1268 }
1269
1270 if (!(light->_Flags & LIGHT_POSITIONAL)) {
1271 /* VP (VP) = Normalize( Position ) */
1272 COPY_3V( light->_VP_inf_norm, light->_Position );
1273 NORMALIZE_3FV( light->_VP_inf_norm );
1274
1275 if (!ctx->Light.Model.LocalViewer) {
1276 /* _h_inf_norm = Normalize( V_to_P + <0,0,1> ) */
1277 ADD_3V( light->_h_inf_norm, light->_VP_inf_norm, ctx->_EyeZDir);
1278 NORMALIZE_3FV( light->_h_inf_norm );
1279 }
1280 light->_VP_inf_spot_attenuation = 1.0;
1281 }
1282
1283 if (light->_Flags & LIGHT_SPOT) {
1284 if (ctx->_NeedEyeCoords) {
1285 COPY_3V( light->_NormDirection, light->EyeDirection );
1286 }
1287 else {
1288 TRANSFORM_NORMAL( light->_NormDirection,
1289 light->EyeDirection,
1290 ctx->ModelView.m);
1291 }
1292
1293 NORMALIZE_3FV( light->_NormDirection );
1294
1295 if (!(light->_Flags & LIGHT_POSITIONAL)) {
1296 GLfloat PV_dot_dir = - DOT3(light->_VP_inf_norm,
1297 light->_NormDirection);
1298
1299 if (PV_dot_dir > light->_CosCutoff) {
1300 double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
1301 int k = (int) x;
1302 light->_VP_inf_spot_attenuation =
1303 (GLfloat) (light->_SpotExpTable[k][0] +
1304 (x-k)*light->_SpotExpTable[k][1]);
1305 }
1306 else {
1307 light->_VP_inf_spot_attenuation = 0;
1308 }
1309 }
1310 }
1311 }
1312 }