vk/image: Add an explicit DestroyImage function
[mesa.git] / src / mesa / main / macros.h
1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 *
9 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice shall be included
19 * in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
22 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
25 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
26 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "util/macros.h"
35 #include "util/u_math.h"
36 #include "imports.h"
37
38
39 /**
40 * \name Integer / float conversion for colors, normals, etc.
41 */
42 /*@{*/
43
44 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
45 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
46 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
47
48 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
49 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
50
51
52 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
53 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
54
55 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
56 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
57
58
59 /** Convert GLbyte to GLfloat while preserving zero */
60 #define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
61
62
63 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
64 #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
65
66 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
67 #define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 )
68
69 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
70 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
71
72 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
73 #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
74
75
76 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
77 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
78
79 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
80 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
81
82 /** Convert GLshort to GLfloat while preserving zero */
83 #define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
84
85
86 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
87 #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
88
89 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
90 #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
91
92
93 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
94 #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0)))
95
96 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
97 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
98
99
100 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
101 #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
102
103 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
104 /* causes overflow:
105 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
106 */
107 /* a close approximation: */
108 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
109
110 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
111 #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
112
113
114 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
115 #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
116
117 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
118 #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
119
120
121 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
122 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
123 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
124 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
125 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
126
127
128 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
129 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
130 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
131 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
132 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
133 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
134 us = ( (GLushort) F_TO_I( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
135 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
136 us = ( (GLushort) F_TO_I( (f) * 65535.0F) )
137
138 #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \
139 s = ( (GLshort) F_TO_I( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
140
141 /***
142 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
143 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
144 ***/
145 #ifndef DEBUG
146 /* This function/macro is sensitive to precision. Test very carefully
147 * if you change it!
148 */
149 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT) \
150 do { \
151 fi_type __tmp; \
152 __tmp.f = (FLT); \
153 if (__tmp.i < 0) \
154 UB = (GLubyte) 0; \
155 else if (__tmp.i >= IEEE_ONE) \
156 UB = (GLubyte) 255; \
157 else { \
158 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
159 UB = (GLubyte) __tmp.i; \
160 } \
161 } while (0)
162 #define CLAMPED_FLOAT_TO_UBYTE(UB, FLT) \
163 do { \
164 fi_type __tmp; \
165 __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F; \
166 UB = (GLubyte) __tmp.i; \
167 } while (0)
168 #else
169 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
170 ub = ((GLubyte) F_TO_I(CLAMP((f), 0.0F, 1.0F) * 255.0F))
171 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
172 ub = ((GLubyte) F_TO_I((f) * 255.0F))
173 #endif
174
175 static fi_type UINT_AS_UNION(GLuint u)
176 {
177 fi_type tmp;
178 tmp.u = u;
179 return tmp;
180 }
181
182 static inline fi_type INT_AS_UNION(GLint i)
183 {
184 fi_type tmp;
185 tmp.i = i;
186 return tmp;
187 }
188
189 static inline fi_type FLOAT_AS_UNION(GLfloat f)
190 {
191 fi_type tmp;
192 tmp.f = f;
193 return tmp;
194 }
195
196 /**
197 * Convert a floating point value to an unsigned fixed point value.
198 *
199 * \param frac_bits The number of bits used to store the fractional part.
200 */
201 static inline uint32_t
202 U_FIXED(float value, uint32_t frac_bits)
203 {
204 value *= (1 << frac_bits);
205 return value < 0.0f ? 0 : (uint32_t) value;
206 }
207
208 /**
209 * Convert a floating point value to an signed fixed point value.
210 *
211 * \param frac_bits The number of bits used to store the fractional part.
212 */
213 static inline int32_t
214 S_FIXED(float value, uint32_t frac_bits)
215 {
216 return (int32_t) (value * (1 << frac_bits));
217 }
218 /*@}*/
219
220
221 /** Stepping a GLfloat pointer by a byte stride */
222 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
223 /** Stepping a GLuint pointer by a byte stride */
224 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
225 /** Stepping a GLubyte[4] pointer by a byte stride */
226 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
227 /** Stepping a GLfloat[4] pointer by a byte stride */
228 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
229 /** Stepping a \p t pointer by a byte stride */
230 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
231
232
233 /**********************************************************************/
234 /** \name 4-element vector operations */
235 /*@{*/
236
237 /** Zero */
238 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
239
240 /** Test for equality */
241 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
242 (a)[1] == (b)[1] && \
243 (a)[2] == (b)[2] && \
244 (a)[3] == (b)[3])
245
246 /** Test for equality (unsigned bytes) */
247 static inline GLboolean
248 TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
249 {
250 #if defined(__i386__)
251 return *((const GLuint *) a) == *((const GLuint *) b);
252 #else
253 return TEST_EQ_4V(a, b);
254 #endif
255 }
256
257
258 /** Copy a 4-element vector */
259 #define COPY_4V( DST, SRC ) \
260 do { \
261 (DST)[0] = (SRC)[0]; \
262 (DST)[1] = (SRC)[1]; \
263 (DST)[2] = (SRC)[2]; \
264 (DST)[3] = (SRC)[3]; \
265 } while (0)
266
267 /** Copy a 4-element unsigned byte vector */
268 static inline void
269 COPY_4UBV(GLubyte dst[4], const GLubyte src[4])
270 {
271 #if defined(__i386__)
272 *((GLuint *) dst) = *((GLuint *) src);
273 #else
274 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
275 COPY_4V(dst, src);
276 #endif
277 }
278
279 /** Copy \p SZ elements into a 4-element vector */
280 #define COPY_SZ_4V(DST, SZ, SRC) \
281 do { \
282 switch (SZ) { \
283 case 4: (DST)[3] = (SRC)[3]; \
284 case 3: (DST)[2] = (SRC)[2]; \
285 case 2: (DST)[1] = (SRC)[1]; \
286 case 1: (DST)[0] = (SRC)[0]; \
287 } \
288 } while(0)
289
290 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
291 * default values to the remaining */
292 #define COPY_CLEAN_4V(DST, SZ, SRC) \
293 do { \
294 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
295 COPY_SZ_4V( DST, SZ, SRC ); \
296 } while (0)
297
298 /** Subtraction */
299 #define SUB_4V( DST, SRCA, SRCB ) \
300 do { \
301 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
302 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
303 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
304 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
305 } while (0)
306
307 /** Addition */
308 #define ADD_4V( DST, SRCA, SRCB ) \
309 do { \
310 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
311 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
312 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
313 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
314 } while (0)
315
316 /** Element-wise multiplication */
317 #define SCALE_4V( DST, SRCA, SRCB ) \
318 do { \
319 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
320 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
321 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
322 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
323 } while (0)
324
325 /** In-place addition */
326 #define ACC_4V( DST, SRC ) \
327 do { \
328 (DST)[0] += (SRC)[0]; \
329 (DST)[1] += (SRC)[1]; \
330 (DST)[2] += (SRC)[2]; \
331 (DST)[3] += (SRC)[3]; \
332 } while (0)
333
334 /** Element-wise multiplication and addition */
335 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
336 do { \
337 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
338 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
339 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
340 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
341 } while (0)
342
343 /** In-place scalar multiplication and addition */
344 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
345 do { \
346 (DST)[0] += S * (SRCB)[0]; \
347 (DST)[1] += S * (SRCB)[1]; \
348 (DST)[2] += S * (SRCB)[2]; \
349 (DST)[3] += S * (SRCB)[3]; \
350 } while (0)
351
352 /** Scalar multiplication */
353 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
354 do { \
355 (DST)[0] = S * (SRCB)[0]; \
356 (DST)[1] = S * (SRCB)[1]; \
357 (DST)[2] = S * (SRCB)[2]; \
358 (DST)[3] = S * (SRCB)[3]; \
359 } while (0)
360
361 /** In-place scalar multiplication */
362 #define SELF_SCALE_SCALAR_4V( DST, S ) \
363 do { \
364 (DST)[0] *= S; \
365 (DST)[1] *= S; \
366 (DST)[2] *= S; \
367 (DST)[3] *= S; \
368 } while (0)
369
370 /*@}*/
371
372
373 /**********************************************************************/
374 /** \name 3-element vector operations*/
375 /*@{*/
376
377 /** Zero */
378 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
379
380 /** Test for equality */
381 #define TEST_EQ_3V(a,b) \
382 ((a)[0] == (b)[0] && \
383 (a)[1] == (b)[1] && \
384 (a)[2] == (b)[2])
385
386 /** Copy a 3-element vector */
387 #define COPY_3V( DST, SRC ) \
388 do { \
389 (DST)[0] = (SRC)[0]; \
390 (DST)[1] = (SRC)[1]; \
391 (DST)[2] = (SRC)[2]; \
392 } while (0)
393
394 /** Copy a 3-element vector with cast */
395 #define COPY_3V_CAST( DST, SRC, CAST ) \
396 do { \
397 (DST)[0] = (CAST)(SRC)[0]; \
398 (DST)[1] = (CAST)(SRC)[1]; \
399 (DST)[2] = (CAST)(SRC)[2]; \
400 } while (0)
401
402 /** Copy a 3-element float vector */
403 #define COPY_3FV( DST, SRC ) \
404 do { \
405 const GLfloat *_tmp = (SRC); \
406 (DST)[0] = _tmp[0]; \
407 (DST)[1] = _tmp[1]; \
408 (DST)[2] = _tmp[2]; \
409 } while (0)
410
411 /** Subtraction */
412 #define SUB_3V( DST, SRCA, SRCB ) \
413 do { \
414 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
415 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
416 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
417 } while (0)
418
419 /** Addition */
420 #define ADD_3V( DST, SRCA, SRCB ) \
421 do { \
422 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
423 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
424 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
425 } while (0)
426
427 /** In-place scalar multiplication */
428 #define SCALE_3V( DST, SRCA, SRCB ) \
429 do { \
430 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
431 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
432 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
433 } while (0)
434
435 /** In-place element-wise multiplication */
436 #define SELF_SCALE_3V( DST, SRC ) \
437 do { \
438 (DST)[0] *= (SRC)[0]; \
439 (DST)[1] *= (SRC)[1]; \
440 (DST)[2] *= (SRC)[2]; \
441 } while (0)
442
443 /** In-place addition */
444 #define ACC_3V( DST, SRC ) \
445 do { \
446 (DST)[0] += (SRC)[0]; \
447 (DST)[1] += (SRC)[1]; \
448 (DST)[2] += (SRC)[2]; \
449 } while (0)
450
451 /** Element-wise multiplication and addition */
452 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
453 do { \
454 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
455 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
456 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
457 } while (0)
458
459 /** Scalar multiplication */
460 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
461 do { \
462 (DST)[0] = S * (SRCB)[0]; \
463 (DST)[1] = S * (SRCB)[1]; \
464 (DST)[2] = S * (SRCB)[2]; \
465 } while (0)
466
467 /** In-place scalar multiplication and addition */
468 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
469 do { \
470 (DST)[0] += S * (SRCB)[0]; \
471 (DST)[1] += S * (SRCB)[1]; \
472 (DST)[2] += S * (SRCB)[2]; \
473 } while (0)
474
475 /** In-place scalar multiplication */
476 #define SELF_SCALE_SCALAR_3V( DST, S ) \
477 do { \
478 (DST)[0] *= S; \
479 (DST)[1] *= S; \
480 (DST)[2] *= S; \
481 } while (0)
482
483 /** In-place scalar addition */
484 #define ACC_SCALAR_3V( DST, S ) \
485 do { \
486 (DST)[0] += S; \
487 (DST)[1] += S; \
488 (DST)[2] += S; \
489 } while (0)
490
491 /** Assignment */
492 #define ASSIGN_3V( V, V0, V1, V2 ) \
493 do { \
494 V[0] = V0; \
495 V[1] = V1; \
496 V[2] = V2; \
497 } while(0)
498
499 /*@}*/
500
501
502 /**********************************************************************/
503 /** \name 2-element vector operations*/
504 /*@{*/
505
506 /** Zero */
507 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
508
509 /** Copy a 2-element vector */
510 #define COPY_2V( DST, SRC ) \
511 do { \
512 (DST)[0] = (SRC)[0]; \
513 (DST)[1] = (SRC)[1]; \
514 } while (0)
515
516 /** Copy a 2-element vector with cast */
517 #define COPY_2V_CAST( DST, SRC, CAST ) \
518 do { \
519 (DST)[0] = (CAST)(SRC)[0]; \
520 (DST)[1] = (CAST)(SRC)[1]; \
521 } while (0)
522
523 /** Copy a 2-element float vector */
524 #define COPY_2FV( DST, SRC ) \
525 do { \
526 const GLfloat *_tmp = (SRC); \
527 (DST)[0] = _tmp[0]; \
528 (DST)[1] = _tmp[1]; \
529 } while (0)
530
531 /** Subtraction */
532 #define SUB_2V( DST, SRCA, SRCB ) \
533 do { \
534 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
535 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
536 } while (0)
537
538 /** Addition */
539 #define ADD_2V( DST, SRCA, SRCB ) \
540 do { \
541 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
542 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
543 } while (0)
544
545 /** In-place scalar multiplication */
546 #define SCALE_2V( DST, SRCA, SRCB ) \
547 do { \
548 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
549 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
550 } while (0)
551
552 /** In-place addition */
553 #define ACC_2V( DST, SRC ) \
554 do { \
555 (DST)[0] += (SRC)[0]; \
556 (DST)[1] += (SRC)[1]; \
557 } while (0)
558
559 /** Element-wise multiplication and addition */
560 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
561 do { \
562 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
563 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
564 } while (0)
565
566 /** Scalar multiplication */
567 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
568 do { \
569 (DST)[0] = S * (SRCB)[0]; \
570 (DST)[1] = S * (SRCB)[1]; \
571 } while (0)
572
573 /** In-place scalar multiplication and addition */
574 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
575 do { \
576 (DST)[0] += S * (SRCB)[0]; \
577 (DST)[1] += S * (SRCB)[1]; \
578 } while (0)
579
580 /** In-place scalar multiplication */
581 #define SELF_SCALE_SCALAR_2V( DST, S ) \
582 do { \
583 (DST)[0] *= S; \
584 (DST)[1] *= S; \
585 } while (0)
586
587 /** In-place scalar addition */
588 #define ACC_SCALAR_2V( DST, S ) \
589 do { \
590 (DST)[0] += S; \
591 (DST)[1] += S; \
592 } while (0)
593
594 /** Assign scalers to short vectors */
595 #define ASSIGN_2V( V, V0, V1 ) \
596 do { \
597 V[0] = V0; \
598 V[1] = V1; \
599 } while(0)
600
601 /*@}*/
602
603 /** Copy \p sz elements into a homegeneous (4-element) vector, giving
604 * default values to the remaining components.
605 * The default values are chosen based on \p type.
606 */
607 static inline void
608 COPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4], int sz, const fi_type src[4],
609 GLenum type)
610 {
611 switch (type) {
612 case GL_FLOAT:
613 ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
614 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1));
615 break;
616 case GL_INT:
617 ASSIGN_4V(dst, INT_AS_UNION(0), INT_AS_UNION(0),
618 INT_AS_UNION(0), INT_AS_UNION(1));
619 break;
620 case GL_UNSIGNED_INT:
621 ASSIGN_4V(dst, UINT_AS_UNION(0), UINT_AS_UNION(0),
622 UINT_AS_UNION(0), UINT_AS_UNION(1));
623 break;
624 default:
625 ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
626 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); /* silence warnings */
627 assert(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_UNION macro");
628 }
629 COPY_SZ_4V(dst, sz, src);
630 }
631
632 /** \name Linear interpolation functions */
633 /*@{*/
634
635 static inline GLfloat
636 LINTERP(GLfloat t, GLfloat out, GLfloat in)
637 {
638 return out + t * (in - out);
639 }
640
641 static inline void
642 INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
643 {
644 dst[0] = LINTERP( t, out[0], in[0] );
645 dst[1] = LINTERP( t, out[1], in[1] );
646 dst[2] = LINTERP( t, out[2], in[2] );
647 }
648
649 static inline void
650 INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
651 {
652 dst[0] = LINTERP( t, out[0], in[0] );
653 dst[1] = LINTERP( t, out[1], in[1] );
654 dst[2] = LINTERP( t, out[2], in[2] );
655 dst[3] = LINTERP( t, out[3], in[3] );
656 }
657
658 /*@}*/
659
660
661
662 /** Clamp X to [MIN,MAX] */
663 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
664
665 /** Minimum of two values: */
666 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
667
668 /** Maximum of two values: */
669 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
670
671 /** Minimum and maximum of three values: */
672 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
673 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
674
675 static inline unsigned
676 minify(unsigned value, unsigned levels)
677 {
678 return MAX2(1, value >> levels);
679 }
680
681 /**
682 * Return true if the given value is a power of two.
683 *
684 * Note that this considers 0 a power of two.
685 */
686 static inline bool
687 is_power_of_two(unsigned value)
688 {
689 return (value & (value - 1)) == 0;
690 }
691
692 /**
693 * Align a value up to an alignment value
694 *
695 * If \c value is not already aligned to the requested alignment value, it
696 * will be rounded up.
697 *
698 * \param value Value to be rounded
699 * \param alignment Alignment value to be used. This must be a power of two.
700 *
701 * \sa ROUND_DOWN_TO()
702 */
703 #define ALIGN(value, alignment) (((value) + (alignment) - 1) & ~((alignment) - 1))
704
705 /**
706 * Align a value down to an alignment value
707 *
708 * If \c value is not already aligned to the requested alignment value, it
709 * will be rounded down.
710 *
711 * \param value Value to be rounded
712 * \param alignment Alignment value to be used. This must be a power of two.
713 *
714 * \sa ALIGN()
715 */
716 #define ROUND_DOWN_TO(value, alignment) ((value) & ~(alignment - 1))
717
718
719 /** Cross product of two 3-element vectors */
720 static inline void
721 CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
722 {
723 n[0] = u[1] * v[2] - u[2] * v[1];
724 n[1] = u[2] * v[0] - u[0] * v[2];
725 n[2] = u[0] * v[1] - u[1] * v[0];
726 }
727
728
729 /** Dot product of two 2-element vectors */
730 static inline GLfloat
731 DOT2(const GLfloat a[2], const GLfloat b[2])
732 {
733 return a[0] * b[0] + a[1] * b[1];
734 }
735
736 static inline GLfloat
737 DOT3(const GLfloat a[3], const GLfloat b[3])
738 {
739 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
740 }
741
742 static inline GLfloat
743 DOT4(const GLfloat a[4], const GLfloat b[4])
744 {
745 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
746 }
747
748
749 static inline GLfloat
750 LEN_SQUARED_3FV(const GLfloat v[3])
751 {
752 return DOT3(v, v);
753 }
754
755 static inline GLfloat
756 LEN_SQUARED_2FV(const GLfloat v[2])
757 {
758 return DOT2(v, v);
759 }
760
761
762 static inline GLfloat
763 LEN_3FV(const GLfloat v[3])
764 {
765 return sqrtf(LEN_SQUARED_3FV(v));
766 }
767
768 static inline GLfloat
769 LEN_2FV(const GLfloat v[2])
770 {
771 return sqrtf(LEN_SQUARED_2FV(v));
772 }
773
774
775 /* Normalize a 3-element vector to unit length. */
776 static inline void
777 NORMALIZE_3FV(GLfloat v[3])
778 {
779 GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
780 if (len) {
781 len = 1.0f / sqrtf(len);
782 v[0] *= len;
783 v[1] *= len;
784 v[2] *= len;
785 }
786 }
787
788
789 /** Test two floats have opposite signs */
790 static inline GLboolean
791 DIFFERENT_SIGNS(GLfloat x, GLfloat y)
792 {
793 #ifdef _MSC_VER
794 #pragma warning( push )
795 #pragma warning( disable : 6334 ) /* sizeof operator applied to an expression with an operator may yield unexpected results */
796 #endif
797 return signbit(x) != signbit(y);
798 #ifdef _MSC_VER
799 #pragma warning( pop )
800 #endif
801 }
802
803
804 /** casts to silence warnings with some compilers */
805 #define ENUM_TO_INT(E) ((GLint)(E))
806 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
807 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
808 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
809
810
811 /* Stringify */
812 #define STRINGIFY(x) #x
813
814 #endif