Merge remote branch 'origin/nvc0'
[mesa.git] / src / mesa / main / macros.h
1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 * Version: 6.5.2
9 *
10 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
11 *
12 * Permission is hereby granted, free of charge, to any person obtaining a
13 * copy of this software and associated documentation files (the "Software"),
14 * to deal in the Software without restriction, including without limitation
15 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
16 * and/or sell copies of the Software, and to permit persons to whom the
17 * Software is furnished to do so, subject to the following conditions:
18 *
19 * The above copyright notice and this permission notice shall be included
20 * in all copies or substantial portions of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
25 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
26 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "imports.h"
35
36
37 /**
38 * \name Integer / float conversion for colors, normals, etc.
39 */
40 /*@{*/
41
42 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
43 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
44 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
45
46 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
47 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
48
49
50 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
51 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
52
53 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
54 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
55
56
57 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
58 #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
59
60 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
61 #define FLOAT_TO_BYTE_TEX(X) ( (GLint) (127.0F * (X)) )
62
63
64 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
65 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
66
67 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
68 #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
69
70
71 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
72 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
73
74 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
75 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
76
77
78 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
79 #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
80
81 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
82 #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
83
84
85 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
86 #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0)))
87
88 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
89 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
90
91
92 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
93 #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
94
95 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
96 /* causes overflow:
97 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
98 */
99 /* a close approximation: */
100 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
101
102 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
103 #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
104
105
106 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
107 #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
108
109 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
110 #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
111
112
113 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
114 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
115 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
116 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
117 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
118
119
120 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
121 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
122 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
123 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
124 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
125 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
126 us = ( (GLushort) IROUND( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
127 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
128 us = ( (GLushort) IROUND( (f) * 65535.0F) )
129
130 #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \
131 s = ( (GLshort) IROUND( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
132
133 /***
134 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
135 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
136 ***/
137 #if defined(USE_IEEE) && !defined(DEBUG)
138 #define IEEE_0996 0x3f7f0000 /* 0.996 or so */
139 /* This function/macro is sensitive to precision. Test very carefully
140 * if you change it!
141 */
142 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
143 do { \
144 fi_type __tmp; \
145 __tmp.f = (F); \
146 if (__tmp.i < 0) \
147 UB = (GLubyte) 0; \
148 else if (__tmp.i >= IEEE_0996) \
149 UB = (GLubyte) 255; \
150 else { \
151 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
152 UB = (GLubyte) __tmp.i; \
153 } \
154 } while (0)
155 #define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
156 do { \
157 fi_type __tmp; \
158 __tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
159 UB = (GLubyte) __tmp.i; \
160 } while (0)
161 #else
162 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
163 ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F))
164 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
165 ub = ((GLubyte) IROUND((f) * 255.0F))
166 #endif
167
168 /*@}*/
169
170
171 /** Stepping a GLfloat pointer by a byte stride */
172 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
173 /** Stepping a GLuint pointer by a byte stride */
174 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
175 /** Stepping a GLubyte[4] pointer by a byte stride */
176 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
177 /** Stepping a GLfloat[4] pointer by a byte stride */
178 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
179 /** Stepping a GLchan[4] pointer by a byte stride */
180 #define STRIDE_4CHAN(p, i) (p = (GLchan (*)[4])((GLubyte *)p + i))
181 /** Stepping a GLchan pointer by a byte stride */
182 #define STRIDE_CHAN(p, i) (p = (GLchan *)((GLubyte *)p + i))
183 /** Stepping a \p t pointer by a byte stride */
184 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
185
186
187 /**********************************************************************/
188 /** \name 4-element vector operations */
189 /*@{*/
190
191 /** Zero */
192 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
193
194 /** Test for equality */
195 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
196 (a)[1] == (b)[1] && \
197 (a)[2] == (b)[2] && \
198 (a)[3] == (b)[3])
199
200 /** Test for equality (unsigned bytes) */
201 #if defined(__i386__)
202 #define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC))
203 #else
204 #define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC)
205 #endif
206
207 /** Copy a 4-element vector */
208 #define COPY_4V( DST, SRC ) \
209 do { \
210 (DST)[0] = (SRC)[0]; \
211 (DST)[1] = (SRC)[1]; \
212 (DST)[2] = (SRC)[2]; \
213 (DST)[3] = (SRC)[3]; \
214 } while (0)
215
216 /** Copy a 4-element vector with cast */
217 #define COPY_4V_CAST( DST, SRC, CAST ) \
218 do { \
219 (DST)[0] = (CAST)(SRC)[0]; \
220 (DST)[1] = (CAST)(SRC)[1]; \
221 (DST)[2] = (CAST)(SRC)[2]; \
222 (DST)[3] = (CAST)(SRC)[3]; \
223 } while (0)
224
225 /** Copy a 4-element unsigned byte vector */
226 #if defined(__i386__)
227 #define COPY_4UBV(DST, SRC) \
228 do { \
229 *((GLuint*)(DST)) = *((GLuint*)(SRC)); \
230 } while (0)
231 #else
232 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
233 #define COPY_4UBV(DST, SRC) \
234 do { \
235 (DST)[0] = (SRC)[0]; \
236 (DST)[1] = (SRC)[1]; \
237 (DST)[2] = (SRC)[2]; \
238 (DST)[3] = (SRC)[3]; \
239 } while (0)
240 #endif
241
242 /**
243 * Copy a 4-element float vector
244 * memcpy seems to be most efficient
245 */
246 #define COPY_4FV( DST, SRC ) \
247 do { \
248 memcpy(DST, SRC, sizeof(GLfloat) * 4); \
249 } while (0)
250
251 /** Copy \p SZ elements into a 4-element vector */
252 #define COPY_SZ_4V(DST, SZ, SRC) \
253 do { \
254 switch (SZ) { \
255 case 4: (DST)[3] = (SRC)[3]; \
256 case 3: (DST)[2] = (SRC)[2]; \
257 case 2: (DST)[1] = (SRC)[1]; \
258 case 1: (DST)[0] = (SRC)[0]; \
259 } \
260 } while(0)
261
262 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
263 * default values to the remaining */
264 #define COPY_CLEAN_4V(DST, SZ, SRC) \
265 do { \
266 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
267 COPY_SZ_4V( DST, SZ, SRC ); \
268 } while (0)
269
270 /** Subtraction */
271 #define SUB_4V( DST, SRCA, SRCB ) \
272 do { \
273 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
274 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
275 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
276 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
277 } while (0)
278
279 /** Addition */
280 #define ADD_4V( DST, SRCA, SRCB ) \
281 do { \
282 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
283 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
284 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
285 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
286 } while (0)
287
288 /** Element-wise multiplication */
289 #define SCALE_4V( DST, SRCA, SRCB ) \
290 do { \
291 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
292 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
293 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
294 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
295 } while (0)
296
297 /** In-place addition */
298 #define ACC_4V( DST, SRC ) \
299 do { \
300 (DST)[0] += (SRC)[0]; \
301 (DST)[1] += (SRC)[1]; \
302 (DST)[2] += (SRC)[2]; \
303 (DST)[3] += (SRC)[3]; \
304 } while (0)
305
306 /** Element-wise multiplication and addition */
307 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
308 do { \
309 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
310 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
311 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
312 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
313 } while (0)
314
315 /** In-place scalar multiplication and addition */
316 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
317 do { \
318 (DST)[0] += S * (SRCB)[0]; \
319 (DST)[1] += S * (SRCB)[1]; \
320 (DST)[2] += S * (SRCB)[2]; \
321 (DST)[3] += S * (SRCB)[3]; \
322 } while (0)
323
324 /** Scalar multiplication */
325 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
326 do { \
327 (DST)[0] = S * (SRCB)[0]; \
328 (DST)[1] = S * (SRCB)[1]; \
329 (DST)[2] = S * (SRCB)[2]; \
330 (DST)[3] = S * (SRCB)[3]; \
331 } while (0)
332
333 /** In-place scalar multiplication */
334 #define SELF_SCALE_SCALAR_4V( DST, S ) \
335 do { \
336 (DST)[0] *= S; \
337 (DST)[1] *= S; \
338 (DST)[2] *= S; \
339 (DST)[3] *= S; \
340 } while (0)
341
342 /** Assignment */
343 #define ASSIGN_4V( V, V0, V1, V2, V3 ) \
344 do { \
345 V[0] = V0; \
346 V[1] = V1; \
347 V[2] = V2; \
348 V[3] = V3; \
349 } while(0)
350
351 /*@}*/
352
353
354 /**********************************************************************/
355 /** \name 3-element vector operations*/
356 /*@{*/
357
358 /** Zero */
359 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
360
361 /** Test for equality */
362 #define TEST_EQ_3V(a,b) \
363 ((a)[0] == (b)[0] && \
364 (a)[1] == (b)[1] && \
365 (a)[2] == (b)[2])
366
367 /** Copy a 3-element vector */
368 #define COPY_3V( DST, SRC ) \
369 do { \
370 (DST)[0] = (SRC)[0]; \
371 (DST)[1] = (SRC)[1]; \
372 (DST)[2] = (SRC)[2]; \
373 } while (0)
374
375 /** Copy a 3-element vector with cast */
376 #define COPY_3V_CAST( DST, SRC, CAST ) \
377 do { \
378 (DST)[0] = (CAST)(SRC)[0]; \
379 (DST)[1] = (CAST)(SRC)[1]; \
380 (DST)[2] = (CAST)(SRC)[2]; \
381 } while (0)
382
383 /** Copy a 3-element float vector */
384 #define COPY_3FV( DST, SRC ) \
385 do { \
386 const GLfloat *_tmp = (SRC); \
387 (DST)[0] = _tmp[0]; \
388 (DST)[1] = _tmp[1]; \
389 (DST)[2] = _tmp[2]; \
390 } while (0)
391
392 /** Subtraction */
393 #define SUB_3V( DST, SRCA, SRCB ) \
394 do { \
395 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
396 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
397 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
398 } while (0)
399
400 /** Addition */
401 #define ADD_3V( DST, SRCA, SRCB ) \
402 do { \
403 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
404 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
405 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
406 } while (0)
407
408 /** In-place scalar multiplication */
409 #define SCALE_3V( DST, SRCA, SRCB ) \
410 do { \
411 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
412 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
413 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
414 } while (0)
415
416 /** In-place element-wise multiplication */
417 #define SELF_SCALE_3V( DST, SRC ) \
418 do { \
419 (DST)[0] *= (SRC)[0]; \
420 (DST)[1] *= (SRC)[1]; \
421 (DST)[2] *= (SRC)[2]; \
422 } while (0)
423
424 /** In-place addition */
425 #define ACC_3V( DST, SRC ) \
426 do { \
427 (DST)[0] += (SRC)[0]; \
428 (DST)[1] += (SRC)[1]; \
429 (DST)[2] += (SRC)[2]; \
430 } while (0)
431
432 /** Element-wise multiplication and addition */
433 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
434 do { \
435 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
436 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
437 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
438 } while (0)
439
440 /** Scalar multiplication */
441 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
442 do { \
443 (DST)[0] = S * (SRCB)[0]; \
444 (DST)[1] = S * (SRCB)[1]; \
445 (DST)[2] = S * (SRCB)[2]; \
446 } while (0)
447
448 /** In-place scalar multiplication and addition */
449 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
450 do { \
451 (DST)[0] += S * (SRCB)[0]; \
452 (DST)[1] += S * (SRCB)[1]; \
453 (DST)[2] += S * (SRCB)[2]; \
454 } while (0)
455
456 /** In-place scalar multiplication */
457 #define SELF_SCALE_SCALAR_3V( DST, S ) \
458 do { \
459 (DST)[0] *= S; \
460 (DST)[1] *= S; \
461 (DST)[2] *= S; \
462 } while (0)
463
464 /** In-place scalar addition */
465 #define ACC_SCALAR_3V( DST, S ) \
466 do { \
467 (DST)[0] += S; \
468 (DST)[1] += S; \
469 (DST)[2] += S; \
470 } while (0)
471
472 /** Assignment */
473 #define ASSIGN_3V( V, V0, V1, V2 ) \
474 do { \
475 V[0] = V0; \
476 V[1] = V1; \
477 V[2] = V2; \
478 } while(0)
479
480 /*@}*/
481
482
483 /**********************************************************************/
484 /** \name 2-element vector operations*/
485 /*@{*/
486
487 /** Zero */
488 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
489
490 /** Copy a 2-element vector */
491 #define COPY_2V( DST, SRC ) \
492 do { \
493 (DST)[0] = (SRC)[0]; \
494 (DST)[1] = (SRC)[1]; \
495 } while (0)
496
497 /** Copy a 2-element vector with cast */
498 #define COPY_2V_CAST( DST, SRC, CAST ) \
499 do { \
500 (DST)[0] = (CAST)(SRC)[0]; \
501 (DST)[1] = (CAST)(SRC)[1]; \
502 } while (0)
503
504 /** Copy a 2-element float vector */
505 #define COPY_2FV( DST, SRC ) \
506 do { \
507 const GLfloat *_tmp = (SRC); \
508 (DST)[0] = _tmp[0]; \
509 (DST)[1] = _tmp[1]; \
510 } while (0)
511
512 /** Subtraction */
513 #define SUB_2V( DST, SRCA, SRCB ) \
514 do { \
515 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
516 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
517 } while (0)
518
519 /** Addition */
520 #define ADD_2V( DST, SRCA, SRCB ) \
521 do { \
522 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
523 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
524 } while (0)
525
526 /** In-place scalar multiplication */
527 #define SCALE_2V( DST, SRCA, SRCB ) \
528 do { \
529 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
530 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
531 } while (0)
532
533 /** In-place addition */
534 #define ACC_2V( DST, SRC ) \
535 do { \
536 (DST)[0] += (SRC)[0]; \
537 (DST)[1] += (SRC)[1]; \
538 } while (0)
539
540 /** Element-wise multiplication and addition */
541 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
542 do { \
543 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
544 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
545 } while (0)
546
547 /** Scalar multiplication */
548 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
549 do { \
550 (DST)[0] = S * (SRCB)[0]; \
551 (DST)[1] = S * (SRCB)[1]; \
552 } while (0)
553
554 /** In-place scalar multiplication and addition */
555 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
556 do { \
557 (DST)[0] += S * (SRCB)[0]; \
558 (DST)[1] += S * (SRCB)[1]; \
559 } while (0)
560
561 /** In-place scalar multiplication */
562 #define SELF_SCALE_SCALAR_2V( DST, S ) \
563 do { \
564 (DST)[0] *= S; \
565 (DST)[1] *= S; \
566 } while (0)
567
568 /** In-place scalar addition */
569 #define ACC_SCALAR_2V( DST, S ) \
570 do { \
571 (DST)[0] += S; \
572 (DST)[1] += S; \
573 } while (0)
574
575 /** Assign scalers to short vectors */
576 #define ASSIGN_2V( V, V0, V1 ) \
577 do { \
578 V[0] = V0; \
579 V[1] = V1; \
580 } while(0)
581
582 /*@}*/
583
584
585 /** \name Linear interpolation macros */
586 /*@{*/
587
588 /**
589 * Linear interpolation
590 *
591 * \note \p OUT argument is evaluated twice!
592 * \note Be wary of using *coord++ as an argument to any of these macros!
593 */
594 #define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
595
596 /* Can do better with integer math
597 */
598 #define INTERP_UB( t, dstub, outub, inub ) \
599 do { \
600 GLfloat inf = UBYTE_TO_FLOAT( inub ); \
601 GLfloat outf = UBYTE_TO_FLOAT( outub ); \
602 GLfloat dstf = LINTERP( t, outf, inf ); \
603 UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \
604 } while (0)
605
606 #define INTERP_CHAN( t, dstc, outc, inc ) \
607 do { \
608 GLfloat inf = CHAN_TO_FLOAT( inc ); \
609 GLfloat outf = CHAN_TO_FLOAT( outc ); \
610 GLfloat dstf = LINTERP( t, outf, inf ); \
611 UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf ); \
612 } while (0)
613
614 #define INTERP_UI( t, dstui, outui, inui ) \
615 dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) )
616
617 #define INTERP_F( t, dstf, outf, inf ) \
618 dstf = LINTERP( t, outf, inf )
619
620 #define INTERP_4F( t, dst, out, in ) \
621 do { \
622 dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
623 dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
624 dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
625 dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \
626 } while (0)
627
628 #define INTERP_3F( t, dst, out, in ) \
629 do { \
630 dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
631 dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
632 dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
633 } while (0)
634
635 #define INTERP_4CHAN( t, dst, out, in ) \
636 do { \
637 INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
638 INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
639 INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
640 INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \
641 } while (0)
642
643 #define INTERP_3CHAN( t, dst, out, in ) \
644 do { \
645 INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
646 INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
647 INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
648 } while (0)
649
650 #define INTERP_SZ( t, vec, to, out, in, sz ) \
651 do { \
652 switch (sz) { \
653 case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] ); \
654 case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] ); \
655 case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] ); \
656 case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] ); \
657 } \
658 } while(0)
659
660 /*@}*/
661
662
663
664 /** Clamp X to [MIN,MAX] */
665 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
666
667 /** Minimum of two values: */
668 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
669
670 /** Maximum of two values: */
671 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
672
673 /** Dot product of two 2-element vectors */
674 #define DOT2( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )
675
676 /** Dot product of two 3-element vectors */
677 #define DOT3( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )
678
679 /** Dot product of two 4-element vectors */
680 #define DOT4( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
681 (a)[2]*(b)[2] + (a)[3]*(b)[3] )
682
683 /** Dot product of two 4-element vectors */
684 #define DOT4V(v,a,b,c,d) (v[0]*(a) + v[1]*(b) + v[2]*(c) + v[3]*(d))
685
686
687 /** Cross product of two 3-element vectors */
688 #define CROSS3(n, u, v) \
689 do { \
690 (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \
691 (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \
692 (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]; \
693 } while (0)
694
695
696 /* Normalize a 3-element vector to unit length. */
697 #define NORMALIZE_3FV( V ) \
698 do { \
699 GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \
700 if (len) { \
701 len = INV_SQRTF(len); \
702 (V)[0] = (GLfloat) ((V)[0] * len); \
703 (V)[1] = (GLfloat) ((V)[1] * len); \
704 (V)[2] = (GLfloat) ((V)[2] * len); \
705 } \
706 } while(0)
707
708 #define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]))
709 #define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]))
710
711 #define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
712 #define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1])
713
714
715 /** casts to silence warnings with some compilers */
716 #define ENUM_TO_INT(E) ((GLint)(E))
717 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
718 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
719 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
720
721
722 #endif