Use signbit() in IS_NEGATIVE and DIFFERENT_SIGNS
[mesa.git] / src / mesa / main / macros.h
1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 * Version: 6.5.2
9 *
10 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
11 *
12 * Permission is hereby granted, free of charge, to any person obtaining a
13 * copy of this software and associated documentation files (the "Software"),
14 * to deal in the Software without restriction, including without limitation
15 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
16 * and/or sell copies of the Software, and to permit persons to whom the
17 * Software is furnished to do so, subject to the following conditions:
18 *
19 * The above copyright notice and this permission notice shall be included
20 * in all copies or substantial portions of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
25 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
26 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "imports.h"
35
36
37 /**
38 * \name Integer / float conversion for colors, normals, etc.
39 */
40 /*@{*/
41
42 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
43 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
44 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
45
46 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
47 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
48
49
50 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
51 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
52
53 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
54 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
55
56
57 /** Convert GLbyte to GLfloat while preserving zero */
58 #define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
59
60
61 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
62 #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
63
64 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
65 #define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 )
66
67 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
68 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
69
70 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
71 #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
72
73
74 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
75 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
76
77 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
78 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
79
80 /** Convert GLshort to GLfloat while preserving zero */
81 #define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
82
83
84 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
85 #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
86
87 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
88 #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
89
90
91 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
92 #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0)))
93
94 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
95 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
96
97
98 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
99 #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
100
101 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
102 /* causes overflow:
103 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
104 */
105 /* a close approximation: */
106 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
107
108 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
109 #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
110
111
112 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
113 #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
114
115 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
116 #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
117
118
119 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
120 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
121 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
122 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
123 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
124
125
126 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
127 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
128 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
129 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
130 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
131 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
132 us = ( (GLushort) F_TO_I( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
133 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
134 us = ( (GLushort) F_TO_I( (f) * 65535.0F) )
135
136 #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \
137 s = ( (GLshort) F_TO_I( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
138
139 /***
140 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
141 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
142 ***/
143 #if defined(USE_IEEE) && !defined(DEBUG)
144 #define IEEE_0996 0x3f7f0000 /* 0.996 or so */
145 /* This function/macro is sensitive to precision. Test very carefully
146 * if you change it!
147 */
148 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
149 do { \
150 fi_type __tmp; \
151 __tmp.f = (F); \
152 if (__tmp.i < 0) \
153 UB = (GLubyte) 0; \
154 else if (__tmp.i >= IEEE_0996) \
155 UB = (GLubyte) 255; \
156 else { \
157 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
158 UB = (GLubyte) __tmp.i; \
159 } \
160 } while (0)
161 #define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
162 do { \
163 fi_type __tmp; \
164 __tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
165 UB = (GLubyte) __tmp.i; \
166 } while (0)
167 #else
168 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
169 ub = ((GLubyte) F_TO_I(CLAMP((f), 0.0F, 1.0F) * 255.0F))
170 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
171 ub = ((GLubyte) F_TO_I((f) * 255.0F))
172 #endif
173
174 /*@}*/
175
176
177 /** Stepping a GLfloat pointer by a byte stride */
178 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
179 /** Stepping a GLuint pointer by a byte stride */
180 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
181 /** Stepping a GLubyte[4] pointer by a byte stride */
182 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
183 /** Stepping a GLfloat[4] pointer by a byte stride */
184 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
185 /** Stepping a \p t pointer by a byte stride */
186 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
187
188
189 /**********************************************************************/
190 /** \name 4-element vector operations */
191 /*@{*/
192
193 /** Zero */
194 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
195
196 /** Test for equality */
197 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
198 (a)[1] == (b)[1] && \
199 (a)[2] == (b)[2] && \
200 (a)[3] == (b)[3])
201
202 /** Test for equality (unsigned bytes) */
203 static inline GLboolean
204 TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
205 {
206 #if defined(__i386__)
207 return *((const GLuint *) a) == *((const GLuint *) b);
208 #else
209 return TEST_EQ_4V(a, b);
210 #endif
211 }
212
213
214 /** Copy a 4-element vector */
215 #define COPY_4V( DST, SRC ) \
216 do { \
217 (DST)[0] = (SRC)[0]; \
218 (DST)[1] = (SRC)[1]; \
219 (DST)[2] = (SRC)[2]; \
220 (DST)[3] = (SRC)[3]; \
221 } while (0)
222
223 /** Copy a 4-element unsigned byte vector */
224 static inline void
225 COPY_4UBV(GLubyte dst[4], const GLubyte src[4])
226 {
227 #if defined(__i386__)
228 *((GLuint *) dst) = *((GLuint *) src);
229 #else
230 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
231 COPY_4V(dst, src);
232 #endif
233 }
234
235 /** Copy a 4-element float vector */
236 static inline void
237 COPY_4FV(GLfloat dst[4], const GLfloat src[4])
238 {
239 /* memcpy seems to be most efficient */
240 memcpy(dst, src, sizeof(GLfloat) * 4);
241 }
242
243 /** Copy \p SZ elements into a 4-element vector */
244 #define COPY_SZ_4V(DST, SZ, SRC) \
245 do { \
246 switch (SZ) { \
247 case 4: (DST)[3] = (SRC)[3]; \
248 case 3: (DST)[2] = (SRC)[2]; \
249 case 2: (DST)[1] = (SRC)[1]; \
250 case 1: (DST)[0] = (SRC)[0]; \
251 } \
252 } while(0)
253
254 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
255 * default values to the remaining */
256 #define COPY_CLEAN_4V(DST, SZ, SRC) \
257 do { \
258 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
259 COPY_SZ_4V( DST, SZ, SRC ); \
260 } while (0)
261
262 /** Subtraction */
263 #define SUB_4V( DST, SRCA, SRCB ) \
264 do { \
265 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
266 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
267 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
268 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
269 } while (0)
270
271 /** Addition */
272 #define ADD_4V( DST, SRCA, SRCB ) \
273 do { \
274 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
275 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
276 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
277 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
278 } while (0)
279
280 /** Element-wise multiplication */
281 #define SCALE_4V( DST, SRCA, SRCB ) \
282 do { \
283 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
284 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
285 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
286 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
287 } while (0)
288
289 /** In-place addition */
290 #define ACC_4V( DST, SRC ) \
291 do { \
292 (DST)[0] += (SRC)[0]; \
293 (DST)[1] += (SRC)[1]; \
294 (DST)[2] += (SRC)[2]; \
295 (DST)[3] += (SRC)[3]; \
296 } while (0)
297
298 /** Element-wise multiplication and addition */
299 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
300 do { \
301 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
302 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
303 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
304 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
305 } while (0)
306
307 /** In-place scalar multiplication and addition */
308 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
309 do { \
310 (DST)[0] += S * (SRCB)[0]; \
311 (DST)[1] += S * (SRCB)[1]; \
312 (DST)[2] += S * (SRCB)[2]; \
313 (DST)[3] += S * (SRCB)[3]; \
314 } while (0)
315
316 /** Scalar multiplication */
317 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
318 do { \
319 (DST)[0] = S * (SRCB)[0]; \
320 (DST)[1] = S * (SRCB)[1]; \
321 (DST)[2] = S * (SRCB)[2]; \
322 (DST)[3] = S * (SRCB)[3]; \
323 } while (0)
324
325 /** In-place scalar multiplication */
326 #define SELF_SCALE_SCALAR_4V( DST, S ) \
327 do { \
328 (DST)[0] *= S; \
329 (DST)[1] *= S; \
330 (DST)[2] *= S; \
331 (DST)[3] *= S; \
332 } while (0)
333
334 /** Assignment */
335 #define ASSIGN_4V( V, V0, V1, V2, V3 ) \
336 do { \
337 V[0] = V0; \
338 V[1] = V1; \
339 V[2] = V2; \
340 V[3] = V3; \
341 } while(0)
342
343 /*@}*/
344
345
346 /**********************************************************************/
347 /** \name 3-element vector operations*/
348 /*@{*/
349
350 /** Zero */
351 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
352
353 /** Test for equality */
354 #define TEST_EQ_3V(a,b) \
355 ((a)[0] == (b)[0] && \
356 (a)[1] == (b)[1] && \
357 (a)[2] == (b)[2])
358
359 /** Copy a 3-element vector */
360 #define COPY_3V( DST, SRC ) \
361 do { \
362 (DST)[0] = (SRC)[0]; \
363 (DST)[1] = (SRC)[1]; \
364 (DST)[2] = (SRC)[2]; \
365 } while (0)
366
367 /** Copy a 3-element vector with cast */
368 #define COPY_3V_CAST( DST, SRC, CAST ) \
369 do { \
370 (DST)[0] = (CAST)(SRC)[0]; \
371 (DST)[1] = (CAST)(SRC)[1]; \
372 (DST)[2] = (CAST)(SRC)[2]; \
373 } while (0)
374
375 /** Copy a 3-element float vector */
376 #define COPY_3FV( DST, SRC ) \
377 do { \
378 const GLfloat *_tmp = (SRC); \
379 (DST)[0] = _tmp[0]; \
380 (DST)[1] = _tmp[1]; \
381 (DST)[2] = _tmp[2]; \
382 } while (0)
383
384 /** Subtraction */
385 #define SUB_3V( DST, SRCA, SRCB ) \
386 do { \
387 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
388 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
389 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
390 } while (0)
391
392 /** Addition */
393 #define ADD_3V( DST, SRCA, SRCB ) \
394 do { \
395 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
396 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
397 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
398 } while (0)
399
400 /** In-place scalar multiplication */
401 #define SCALE_3V( DST, SRCA, SRCB ) \
402 do { \
403 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
404 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
405 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
406 } while (0)
407
408 /** In-place element-wise multiplication */
409 #define SELF_SCALE_3V( DST, SRC ) \
410 do { \
411 (DST)[0] *= (SRC)[0]; \
412 (DST)[1] *= (SRC)[1]; \
413 (DST)[2] *= (SRC)[2]; \
414 } while (0)
415
416 /** In-place addition */
417 #define ACC_3V( DST, SRC ) \
418 do { \
419 (DST)[0] += (SRC)[0]; \
420 (DST)[1] += (SRC)[1]; \
421 (DST)[2] += (SRC)[2]; \
422 } while (0)
423
424 /** Element-wise multiplication and addition */
425 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
426 do { \
427 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
428 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
429 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
430 } while (0)
431
432 /** Scalar multiplication */
433 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
434 do { \
435 (DST)[0] = S * (SRCB)[0]; \
436 (DST)[1] = S * (SRCB)[1]; \
437 (DST)[2] = S * (SRCB)[2]; \
438 } while (0)
439
440 /** In-place scalar multiplication and addition */
441 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
442 do { \
443 (DST)[0] += S * (SRCB)[0]; \
444 (DST)[1] += S * (SRCB)[1]; \
445 (DST)[2] += S * (SRCB)[2]; \
446 } while (0)
447
448 /** In-place scalar multiplication */
449 #define SELF_SCALE_SCALAR_3V( DST, S ) \
450 do { \
451 (DST)[0] *= S; \
452 (DST)[1] *= S; \
453 (DST)[2] *= S; \
454 } while (0)
455
456 /** In-place scalar addition */
457 #define ACC_SCALAR_3V( DST, S ) \
458 do { \
459 (DST)[0] += S; \
460 (DST)[1] += S; \
461 (DST)[2] += S; \
462 } while (0)
463
464 /** Assignment */
465 #define ASSIGN_3V( V, V0, V1, V2 ) \
466 do { \
467 V[0] = V0; \
468 V[1] = V1; \
469 V[2] = V2; \
470 } while(0)
471
472 /*@}*/
473
474
475 /**********************************************************************/
476 /** \name 2-element vector operations*/
477 /*@{*/
478
479 /** Zero */
480 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
481
482 /** Copy a 2-element vector */
483 #define COPY_2V( DST, SRC ) \
484 do { \
485 (DST)[0] = (SRC)[0]; \
486 (DST)[1] = (SRC)[1]; \
487 } while (0)
488
489 /** Copy a 2-element vector with cast */
490 #define COPY_2V_CAST( DST, SRC, CAST ) \
491 do { \
492 (DST)[0] = (CAST)(SRC)[0]; \
493 (DST)[1] = (CAST)(SRC)[1]; \
494 } while (0)
495
496 /** Copy a 2-element float vector */
497 #define COPY_2FV( DST, SRC ) \
498 do { \
499 const GLfloat *_tmp = (SRC); \
500 (DST)[0] = _tmp[0]; \
501 (DST)[1] = _tmp[1]; \
502 } while (0)
503
504 /** Subtraction */
505 #define SUB_2V( DST, SRCA, SRCB ) \
506 do { \
507 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
508 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
509 } while (0)
510
511 /** Addition */
512 #define ADD_2V( DST, SRCA, SRCB ) \
513 do { \
514 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
515 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
516 } while (0)
517
518 /** In-place scalar multiplication */
519 #define SCALE_2V( DST, SRCA, SRCB ) \
520 do { \
521 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
522 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
523 } while (0)
524
525 /** In-place addition */
526 #define ACC_2V( DST, SRC ) \
527 do { \
528 (DST)[0] += (SRC)[0]; \
529 (DST)[1] += (SRC)[1]; \
530 } while (0)
531
532 /** Element-wise multiplication and addition */
533 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
534 do { \
535 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
536 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
537 } while (0)
538
539 /** Scalar multiplication */
540 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
541 do { \
542 (DST)[0] = S * (SRCB)[0]; \
543 (DST)[1] = S * (SRCB)[1]; \
544 } while (0)
545
546 /** In-place scalar multiplication and addition */
547 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
548 do { \
549 (DST)[0] += S * (SRCB)[0]; \
550 (DST)[1] += S * (SRCB)[1]; \
551 } while (0)
552
553 /** In-place scalar multiplication */
554 #define SELF_SCALE_SCALAR_2V( DST, S ) \
555 do { \
556 (DST)[0] *= S; \
557 (DST)[1] *= S; \
558 } while (0)
559
560 /** In-place scalar addition */
561 #define ACC_SCALAR_2V( DST, S ) \
562 do { \
563 (DST)[0] += S; \
564 (DST)[1] += S; \
565 } while (0)
566
567 /** Assign scalers to short vectors */
568 #define ASSIGN_2V( V, V0, V1 ) \
569 do { \
570 V[0] = V0; \
571 V[1] = V1; \
572 } while(0)
573
574 /*@}*/
575
576
577 /** \name Linear interpolation functions */
578 /*@{*/
579
580 static inline GLfloat
581 LINTERP(GLfloat t, GLfloat out, GLfloat in)
582 {
583 return out + t * (in - out);
584 }
585
586 static inline void
587 INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
588 {
589 dst[0] = LINTERP( t, out[0], in[0] );
590 dst[1] = LINTERP( t, out[1], in[1] );
591 dst[2] = LINTERP( t, out[2], in[2] );
592 }
593
594 static inline void
595 INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
596 {
597 dst[0] = LINTERP( t, out[0], in[0] );
598 dst[1] = LINTERP( t, out[1], in[1] );
599 dst[2] = LINTERP( t, out[2], in[2] );
600 dst[3] = LINTERP( t, out[3], in[3] );
601 }
602
603 /*@}*/
604
605
606
607 /** Clamp X to [MIN,MAX] */
608 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
609
610 /** Minimum of two values: */
611 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
612
613 /** Maximum of two values: */
614 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
615
616 /** Minimum and maximum of three values: */
617 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
618 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
619
620
621
622 /** Cross product of two 3-element vectors */
623 static inline void
624 CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
625 {
626 n[0] = u[1] * v[2] - u[2] * v[1];
627 n[1] = u[2] * v[0] - u[0] * v[2];
628 n[2] = u[0] * v[1] - u[1] * v[0];
629 }
630
631
632 /** Dot product of two 2-element vectors */
633 static inline GLfloat
634 DOT2(const GLfloat a[2], const GLfloat b[2])
635 {
636 return a[0] * b[0] + a[1] * b[1];
637 }
638
639 static inline GLfloat
640 DOT3(const GLfloat a[3], const GLfloat b[3])
641 {
642 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
643 }
644
645 static inline GLfloat
646 DOT4(const GLfloat a[4], const GLfloat b[4])
647 {
648 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
649 }
650
651
652 static inline GLfloat
653 LEN_SQUARED_3FV(const GLfloat v[3])
654 {
655 return DOT3(v, v);
656 }
657
658 static inline GLfloat
659 LEN_SQUARED_2FV(const GLfloat v[2])
660 {
661 return DOT2(v, v);
662 }
663
664
665 static inline GLfloat
666 LEN_3FV(const GLfloat v[3])
667 {
668 return sqrtf(LEN_SQUARED_3FV(v));
669 }
670
671 static inline GLfloat
672 LEN_2FV(const GLfloat v[2])
673 {
674 return sqrtf(LEN_SQUARED_2FV(v));
675 }
676
677
678 /* Normalize a 3-element vector to unit length. */
679 static inline void
680 NORMALIZE_3FV(GLfloat v[3])
681 {
682 GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
683 if (len) {
684 len = INV_SQRTF(len);
685 v[0] *= len;
686 v[1] *= len;
687 v[2] *= len;
688 }
689 }
690
691
692 /** Is float value negative? */
693 static inline GLboolean
694 IS_NEGATIVE(float x)
695 {
696 return signbit(x) != 0;
697 }
698
699 /** Test two floats have opposite signs */
700 static inline GLboolean
701 DIFFERENT_SIGNS(GLfloat x, GLfloat y)
702 {
703 return signbit(x) != signbit(y);
704 }
705
706
707 /** Compute ceiling of integer quotient of A divided by B. */
708 #define CEILING( A, B ) ( (A) % (B) == 0 ? (A)/(B) : (A)/(B)+1 )
709
710
711 /** casts to silence warnings with some compilers */
712 #define ENUM_TO_INT(E) ((GLint)(E))
713 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
714 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
715 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
716
717
718 #endif